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Abstract

Learning causal representations from observational and interventional data in the1

absence of known ground-truth graph structures necessitates implicit latent causal2

representation learning. Implicit learning of causal mechanisms typically involves3

two categories of interventional data: hard and soft interventions. In real-world4

scenarios, soft interventions are often more realistic than hard interventions, as the5

latter require fully controlled environments. Unlike hard interventions, which di-6

rectly force changes in a causal variable, soft interventions exert influence indirectly7

by affecting the causal mechanism. However, the subtlety of soft interventions8

impose several challenges for learning causal models. One challenge is that soft9

intervention’s effects are ambiguous, since parental relations remain intact. In this10

paper, we tackle the challenges of learning causal models using soft interventions11

while retaining implicit modeling. Our approach models the effects of soft inter-12

ventions by employing a causal mechanism switch variable designed to toggle13

between different causal mechanisms. In our experiments, we consistently observe14

improved learning of identifiable, causal representations, compared to baseline15

approaches.16

1 Introduction17
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Figure 1: Difference between hard interventions
and soft interventions: As seen in the middle row,
hard interventions sever connections with parents.
Therefore, an object’s class cannot have any effect
on the object’s color when we intervene on color.
On the other hand, soft interventions, as shown in
the bottom row, allow for such effects.

One of the long-standing challenges in causal18

representation learning is how to recover the19

ground-truth causal graph of a system solely20

from observations. Termed the identifiability21

of causal models problem, this endeavor is cru-22

cial. Without achieving identifiability, we risk23

erroneously attributing causal relationships to24

learned representations. Furthermore, statisti-25

cal models can masquerade as Directed Acyclic26

Graphs (DAGs) where edges lack causal signif-27

icance, further complicating our pursuit.28

When considering the challenge of identifying29

causal models, it is known that the Markov con-30

dition in graphs is insufficient for this task [26].31

Thus, without additional assumptions or data,32

we find ourselves limited to learning only a33

Markov Equivalence Class (MEC) of the causal34

model. Existing works have made different35

assumptions about availability of ground-truth36

causal variables labels [34], model parameters37

[1], availability of paired interventional data [3, 31], and availability of intervention targets [17] to38

ensure identifiability of causal models.39
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Interventional data are usually obtained through soft or hard interventions. Hard interventions40

usually involve controlled experiments and they severe the connection of an intervened variable41

with its parents [24]. In terms of Structural Causal Models (SCM), hard interventions set the causal42

mechanism relating a causal variable to its parents, to a constant. Due to ethical or safety reasons, it43

may not be possible to perform hard interventions in many real-world applications. On the other hand,44

the effects of soft interventions are more subtle since parent variables can still affect their children.45

These effects can be modeled by a change in the set of parents, the causal mechanisms, and the46

exogenous variables [7]. Consequently, hard interventions can also be seen as a special case of soft47

interventions where the causal mechanism is set to a constant. Illustrated in Figure 1, a prominent48

challenge in causal representation learning lies in dealing with the ambiguity surrounding the effects49

of soft interventions. The observed alterations in object colors fail to distinctly elucidate whether50

they stem from parental influences or the applied interventions.51

Additionally, a lack of comprehension regarding causal graphs can pose significant challenges in52

causal representation learning. In certain applications, the causal graph can be constructed using53

domain knowledge, allowing us to subsequently learn the causal variables [2, 18, 20]. However, this is54

not universally applicable, necessitating the direct learning of the causal graph itself. In a Variational55

AutoEncoder (VAE) framework, there are generally two approaches for causal representation learning:56

Explicit Latent Causal Models (ELCMs) [34, 1, 35, 37, 17, 15] and Implicit Latent Causal Models57

(ILCMs) [3]. In ELCMs, the latents are the causal variables and the adjacency matrix of the causal58

graph is parameterized and integrated into the prior of the latents such that the prior of latents is59

factorized according to the Causal Markov Condition [27]. This approach to causal representation60

learning is highly susceptible to becoming stuck in local minima as it is hard to learn representations61

without knowing the graph, and it is hard to learn the graph without knowing the representations.62

ILCMs [3] were introduced to circumvent this “chicken-and-egg” problem by using solution functions,63

which can implicitly model edges in the causal graph rather than explicitly modeling the entire64

adjacency matrix of the causal model. In ILCMs the latents are the exogenous variables and the there65

is no explicit parameterization for the graph.66

In implicit causal representation learning, the task involves recovering the exogenous variables E67

from observed variables X and learning solution functions. In [3], interventions are assumed to68

be hard, but this is often unrealistic and does not align with real-world problems. In this paper,69

we propose a novel approach for Implicit Causal Representation Learning via Switchable70

Mechanisms (ICRL-SM). We will introduce the causal mechanism switch variable as a way of71

modeling the effect of soft interventions and identifying the causal variables. Our experiments on72

both synthetic and large real-world datasets, highlight the efficacy of proposed method in identifying73

causal variables and promising future directions in implicit causal representation learning. Our key74

contributions can be summarized as follows:75

I. A novel approach for implicit causal representation learning with soft interventions.76

II. Employing causal mechanisms switch variable to model the effect of soft interventions.77

III. Theory for identifiability up to reparameterization from soft interventions.78

79

2 Related Work80

Causal representation learning has recently garnered significant attention [27, 14]. The primary81

challenge in this problem lies in achieving identifiability beyond the Markov equivalence class [26].82

Solely relying on observational data necessitates additional assumptions regarding causal mechanisms,83

decoders, latent structure, and the availability of interventional data [22, 28, 36, 25, 15, 1, 40, 13,84

34]. Recent works have focused on identifying causal models from collected interventional data85

instead of making strong assumptions about functions of the causal model. Interventional data86

facilitates identifiability based on relatively weak assumptions [1, 6, 3, 39, 33]. This type of data87

can be further categorized based on whether it involves soft or hard interventions, and whether the88

manipulated variables are observed and specified or latent. Our focus in this paper is on examining89

soft interventions, encompassing both observed and unobserved variables.90

2.1 Explicit models vs. Implicit models91

Table 1 presents a comparison of the assumptions and identifiability results between our proposed92

theory and other related works on causal representation learning with interventions. In causal repre-93

sentation learning with interventions, one approach assumes a given causal graph and concentrates94

on identifying causal mechanisms and mixing functions. For instance, Causal Component Analysis95

(CauCA) [33] explores soft interventions with a known graph. Alternatively, when the graph is96
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Table 1: Comparison of proposed method with other recent related work on causal learning from
interventional data

Methods Causal Mechanisms Mixing functions Interventions Explicit/Implicit Identifiability

CausalDiscrepancy [38] Nonlinear Full row rank polynomial Soft Explicit Permutation and Affine
CauCA [33] Nonlinear Diffeomorphism Soft Explicit Different based on assumptions
Linear-CD [29] Linear Linear Hard Explicit Permutation
Scale-I [30] Nonlinear Linear Hard/Soft Explicit Scale/Mixed
ILCM [3] Nonlinear Diffeomorphism Hard Implicit Permutation and reparameterization
dVAE [21] Nonlinear Diffeomorphism Hard Implicit Permutation and reparameterization
ICRL-SM (ours) Nonlinear Diffeomorphism Soft Implicit Reparameterization

not provided, explicit models seek to reconstruct it from interventional data [6, 17], potentially97

resulting in a chicken-and-egg problem in causal representation learning [3]. Current methods face98

the challenge of simultaneously learning the causal graph and other network parameters, especially99

in the absence of information about causal variables or the graph. Addressing these challenges, [3]100

recently introduced ILCM, which performs implicit causal representation learning exclusively using101

hard intervention data. In contrast, our approach introduces a novel method for learning an implicit102

model from soft interventions. [3] describes methods for extracting a causal graph from a learned103

implicit model, which could be applied to our method as well. In our experiments, we will compare104

our method with ILCM and dVAE [21], given their implicit nature and similar experimental settings105

and assumptions. Additionally, to showcase the superiority of our method over explicit models, we106

will employ explicit causal model discovery methods like ENCO [16] and DDS [5], in conjunction107

with various variants of β-VAE.108

2.2 Hard interventions vs Soft interventions109

The identification of explicit causal models from hard interventions has been extensively ex-110

plored. [29] investigate causal disentanglement in linear causal models with linear mixing functions111

under hard interventions. Similarly, [4] focus on identifying causal models with linear causal mecha-112

nisms and nonlinear mixing functions, also utilizing hard interventions. In a more general setting113

with non-parametric causal mechanisms and mixing functions, [32] examine the identifiability of114

causal models, utilizing multi-environment data from unknown interventions. Similarly, [2] explore115

identifiability of causal models using multi-environment data from unknown interventions. [30]116

investigate the identifiability of causal models with nonlinear causal mechanisms and linear mixing117

functions, considering both hard and soft interventions.118

Recent work has expanded the concept of explicit hard interventions to include soft interventions. In119

their study, [38] address the identification of causal models from soft interventions, leveraging the120

sparsity of the adjacency matrix as an inductive bias. However, when dealing with implicit models,121

soft interventions introduce new complexities. Identifiability becomes more challenging, as the122

causal effect of variables on observed variables is less apparent. This ambiguity arises from the dual123

possibility of effects originating from interventions or influences from parent variables on the causal124

variables. Moreover, in scenarios where implicit modeling is retained, the absence of knowledge about125

parent variables further complicates identifiability. While [3] theoretically establishes identifiability126

for hard interventions, practical experiments involving complex causal models with over 10 variables127

reveal increased ambiguity and confounding factors. Consequently, model identification becomes128

less straightforward.129

3 Methodology130

3.1 Data Generating Process131

A structural causal model (Definition A1.1) is used to understand and describe the relationships132

between different variables and how they influence each other through causal mechanisms. A decoder133

function, g(z) = x, maps a vector of causal values z to observed values x. The causal variables134

Z are unobserved and the goal is to infer them from interventional data. For each causal variable,135

a diffeomorphic solution function, si : Ei → Zi, deterministically maps a value for exogenous136

variable Ei to a value for causal variable Zi. In implicit modeling, we learn the solution functions si137

directly, rather than defining them through local mechanisms fi. We write S for the set of all solution138

functions si ∈ S, so S : E → Z.139

Identifying causal models from data can be complex and is often studied within classes of models140

such as those identifiable up to affine transformations. For example, in the context of nonlinear141

Independent Component Analysis (ICA), the generative process also involves a mixture function g of142

latent causal variables Z ∈ Rn, resulting in observations X ∈ Rn [15, 41]. However, a significant143

distinction between causal representation learning and nonlinear-ICA is that in the former, the causal144
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variables Z may have complex dependencies. Our objective in this paper is to recover E from X and145

eventually map E to Z using solution functions.146

Identifying a causal model from observational data is not trivial and requires assumptions on the147

parameters of the model [1]. Adding information about interventions in addition to observations,148

helps to identify causal variables by exhibiting the effect of changing a causal variable on the observed149

variables. An interventional data point (x, x̃, i) includes the pre-intervention observation x, the post-150

intervention observation x̃, and intervention target i ∈ I where I is the set of intervention targets151

selected from the causal variables. The post-intervention data x̃ is generated by a soft intervention152

that targets one of the causal variables in Z . To achieve identifiability up to reparametrization, we153

rely on a series of assumptions within the data generation process, outlined as follows:154

Assumption 3.1. (Data generating assumptions)155

1. Atomic Interventions: For every sample (x, x̃, i), only one causal variable is targeted by an156

intervention.157

2. Known Targets: Targets of soft interventions are known.158

3. Post-intervention Exogenous Variables: The exogenous variables’ values change only for the159

corresponding intervened causal variable, while the others maintain their pre-intervention values,160

thus ei ̸= ẽi if i ∈ I ,and ei = ẽi otherwise.161

4. Sufficient Variability: Soft interventions alter causal mechanisms to introduce sufficient variability162

[15]. These interventions should modify causal mechanisms to ensure non-overlapping conditional163

distributions of causal variables (refer to Figure A1).164

5. Diffeomorphic decoder and causal mechanisms: Diffeomorphism guarantees no information loss165

and avoids abrupt changes in the function’s image.166

The known targets assumption can be relaxed in applications where such data is not available167

and the same procedure in [3] can be used to infer the intervention targets. In fact, in our real-168

world experiments, intervention targets are not available and based on the nature of the datasets, we169

hypothesize our causal variables to be object attributes and actions to be intervention targets.170

3.2 Causal Mechanisms Switch Variable171

The major difference of soft intervention with hard intervention is that post-intervention causal172

variable Z̃i is no longer disconnected from its parents and its causal mechanism s̃i is affected by the173

intervention. This is why identifying the causal mechanisms is more difficult for soft interventions.174

Soft intervention data yield fewer constraints on the causal graph structure than hard intervention175

data. For more details refer to string diagrams of soft and hard interventions depicted in Figure A5.176

Figure 2b shows our main generative model. It includes a data augmentation step that adds the177

intervention displacement x̃− x as an observed feature that directly represents the effect of a soft178

intervention in observation space.179

Augmented implicit causal model To model the effect of soft interventions, we introduce the180

causal mechanism switch variable V [26]. By leveraging V , we can effectively switch to the pre-181

intervention causal mechanisms within post-intervention data. This facilitates the model’s ability to182

solely focus on discerning alterations in the intrinsic characteristics of each causal variable. These183

changes are encapsulated within their respective exogenous variables, aiding the model in learning184

the causal relationships more accurately. We propose to use a modulated form of V to model the185

soft intervention effects on each causal variable as an additive effect with a nonlinear function hi186

such that ∀i, Z̃i = s̃i(Ẽi; Ẽ/i) = si(Ẽi; E/i, hi(V)). As the parental set for each causal variable is187

not known, we have to use a modulated form of V in every causal variable’s solution function and188

the inclusion of hi(V) enables the model to encompass variations in the parental sets of all causal189

variables in V . Therefore, there is a switch variable Vi for each causal variable Zi. Adding switch190

variables to solution functions leads to the concept of an augmented implicit causal model.191

Definition 3.2. (Augmented Implicit Causal Models) An Augmented Implicit Causal Models (AICMs)192

is defined as A = (S,Z, E ,V) where V ∈ Rn is the causal mechanism switch variable which models193

the effect of soft interventions on solution functions S:194

∀i, Z̃i = s̃i(Ẽi; Ẽ/i) = si(Ẽi; E/i, hi(V)), (1)

where s̃i is the new solution function resulting from the soft intervention, Ẽ/i is the altered set of all195

exogenous variables except i, including the ancestral exogenous variables, due to intervention, and196

Ẽi is the post-intervention exogenous variable.197
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The usage of V in soft interventions is analogous to augmented networks in [23] which were mainly198

designed for hard interventions. Pearl [23] even foresaw this possibility by saying: "One advantage199

of the augmented network representation is that it is applicable to any change in the functional200

relationship fi and not merely to the replacement of fi by a constant."201

By using Taylor’s expansion, we can expand the solution functions as follows:202

si(Ẽi; E/i, hi(V)) = si(Ẽi; E/i, hi(v0)) +
∑∞

n=1
1
n!

(
∂nsi
∂hn

i

∣∣∣∣
hi=hi(v0)

(hi(V)− hi(v0))
n

)
= si(Ẽi; E/i, hi(v0)) +Ri

(2)

where we’ll use Ri as a short-hand for Equation 2. We define the separable dependence property203

for solution functions as ∃hi(v0) : si(Ẽi; E/i, hi(v0)) = si(Ẽi; E/i). An example of such a scenario204

could be in location-scale noise models such as, si(ẽi; e/i, hi(v)) = ẽi + loc(e/i) + hi(v) =205

ẽi + loc(e/i) + v2 + v where v0 would be zero . By assuming the separable dependence property,206

we can write the solution function in Equation 2 as:207

si(Ẽi; E/i, hi(V)) = si(Ẽi; E/i) +Ri = si(Ẽi; E/i) + soft intervention effect (3)

As a result, we can switch to pre-intervention solution functions. Subsequently, by modeling soft208

intervention effects using hi(V), we can recover pre-intervention solution functions. During inference,209

we simply disregard the hi(V) term in the solution functions. Nonetheless, it is possible to train the210

prior p(V) to ensure that the separable dependence property is maintained for pre-intervention data.211

Observability of switch variable The intuition behind using V is to separate the effect of soft212

intervention on Z̃i into two: (1) The effect on causal mechanisms and parents, and (2) The effect on213

exogenous variable Ei. For example, we can say that causal variables in images of objects are the214

objects’ attributes such as shape, color, and size, and performing actions like "Fold" change these215

attributes. Furthermore, it can be asserted that the camera angle within a given image may influence216

the shape of the object. If the images were generated from a hard intervention, the camera angle217

remains fixed between pre and post intervention. However, the camera angle changes along with218

the performed actions indicating that the interventions are soft. In this case, if we had a knowledge219

of how the camera angle affects the attributes of objects, then we could separate the effect of soft220

intervention. In other words, if V is observed, then we can extract the effect of the intervention that221

we are interested in (i.e., the effect on the causal variable itself). For more details, refer to Figure A4.222

Lacking an understanding of how soft intervention influences the causal model, a more complex223

model becomes necessary. Consequently, the term Ri in Equation 2 would involve a higher order of224

hi(V). Therefore, we assume the observability of V:225

Assumption 3.3. (Observability of V) Given an intervention sample (x, x̃, i) and linear decoders,226

we can approximate the soft intervention effects hi(V) as follows:227

z̃ − z = ∆ei +R (using Equation 2), x̃− x = g(z̃)− g(z) ≈ g(z̃ − z) = g(∆ei +R),

where R = [R0, R1, ..., Rn] and n is the number of causal variables. R and ∆ei are the vectors228

indicating the soft intervention effects and change in effect of the exogenous variable of the intervened229

causal variable, respectively. Note that elements of R will be all zero except for the intervened causal230

variable. Consequently, with linear mixing functions and some pre-processing on observed samples231

(here subtraction), we can observe Ri.232

Our synthetic data is generated using a linear decoder, however, the decoder for the real-world233

datasets is not necessarily linear. Therefore, we do not observe V from x̃−x in the real-world dataset.234

Nevertheless, our findings suggest that incorporating soft interventions through V leads to superior235

performance compared to other implicit modeling approaches. Clearly, understanding the impact of236

soft interventions on the generative system of the dataset would result in improved outcomes.237

3.3 Identifiability Theorem for Implicit SCMs with Soft Interventions238

In this paper, our focus lies in identifying the causal variables up to reparameterization through soft239

interventions. We first define identifiability up to reparameterization (Definition 3.4) and subsequently240

introduce the identifiability theorem 3.5. The proof of theorem is extensive and is available in full in241

Appendix A1.242

We establish identifiability up to reparameterization, allowing for the mapping of causal variables Z243

and Z ′ between two Latent Causal Models (M and M′) through component-wise transformations244
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(Definition A1.2). Given our implicit modeling approach, lacking knowledge of the causal graph, we245

include all exogenous variables in the solution functions, as depicted in Equation 1. Notably, the246

causal graph remains unaltered during learning. To illustrate, we contrast hard interventions,247

which neglect parent influences, with soft interventions that acknowledge parental effects in a simple248

example. Consider a basic causal model Z1 → Z2 alongside a location-scale noise model [12] for the249

solution function, given by z̃2 = ẽ2−l̃oc(e1)

s̃cale(e1)
. The distribution p(Z̃2) mean is 1

s̃cale(e1)
× mean(Ẽ2)−250

l̃oc(e1)

s̃cale(e1)
In the context of hard interventions, we can assume p(Z̃2|Z1) = p(Z̃2) = N(0, 1) as there251

are no parental effects. Consequently, the location and scale networks within the solution function tend252

to dampen parental effects, given the absence of parental influence in the ground-truth data. Contrarily,253

soft interventions exhibit parental influence in the ground-truth data, thus p(Z̃2|Z1) ̸= N(0, 1). Due254

to the lack of parental knowledge in implicit modeling, we model p(Z̃2|Z1) = p(Z̃2|E2), as E2255

is a known parent of Z̃2. Consequently, parental effects are propagated to Ei (the corresponding256

exogenous variable of each causal variable), violating identifiability up to reparameterization. By257

leveraging V , we allow parental effects to propagate to V instead of Ei.258

Definition 3.4. (Equivalence up to component-wise reparameterization) Let M = (A,X , g, I)259

and M′ = (A′,X , g′, I) be two Latent Causal Models (LCM) based on AICMs A,A′ with shared260

observation space X , shared intervention targets I, and respective decoders g and g′. We say that261

M and M′ are equivalent up to component-wise reparameterization M ∼r M′ if there exists a262

component-wise transformation (Definition A1.2) ϕZ from the causal variables Z to the causal263

variables Z ′ and a component-wise transformation ϕE between E and E ′ such that:264

1. Indices are preserved (i.e., ϕi(zi) = z′i and ϕi(ei) = e′i). Corresponding edges are preserved (i.e.,265

Zi → Zj holds in G iff Z ′
i → Z ′

j holds in G′. Edges Ei → Zi should be preserved as well.)266

2. The exogenous transformation preserves the probability measure on exogenous variables267

pE′ = (ϕE)∗pE (Definition A1.4).268

3. The causal transformation preserves the probability measure on causal variables pZ′ = (ϕZ)∗pZ269

(Definition A1.4).270

271

Theorem 3.5. (Identifiability of latent causal models.) Let M = (A,X , g, I) and M′ =272

(A′,X , g′, I) be two LCMs with shared observation space X and shared intervention targets I.273

Suppose the following conditions are satisfied:274

1. Data generating assumptions explained in Assumption 3.1.275

2. Soft interventions satisfy Assumption 3.3.276

3. The causal and exogenous variables are real-valued.277

4. The causal and exogenous variables follow a multivariate normal distribution.278

Then the following statements are equivalent:279

-Two LCMs M and M′ assign the same likelihood to interventional and observational data i.e.,280

pX ,I
M (x, x̃, i) = pX ,I

M′ (x, x̃, i).281

- M and M′ are disentangled, that is M ∼r M′ according to Definition 3.4.282

3.4 Training Objective283

Consequently, there will be three latent variables in ICRL-SM:284

1. A causal mechanism switch variable V .285

2. The pre-intervention exogenous variables E .286
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3. The post-intervention exogenous variables Ẽ .287

As the data log-likelihood log p(x, x̃, x − x̃) ≡ log p(x, x̃) is intractable, we utilize an ELBO288

approximation as training objective:289

log p(x, x̃) ≥Eq(e,ẽ,v|x,x̃)

[
log p(x, x̃|e, ẽ, v)

]
−KLD(q(e, ẽ, v|x, x̃)||p(e, ẽ, x))

= Eq(v|x̃−x)·q(e|x)·q(ẽ|x̃)

[
log(p(x|e)p(x̃|ẽ)p(x̃− x|v))

]
−KLD(q(v|x̃− x) · q(e|x) · q(ẽ|x̃)||p(ẽ|e, v)p(v)p(e)).

(4)
The observations are encoded and decoded independently. The KLD term regularizes the encodings290

to share the latent intervention model p(ẽ|e, v)p(v)p(e) that is shared across all data points. The291

components of this model can be interpreted as follows:292

1. p(e) is the prior distribution over exogenous variables e.293

2. p(v) is the prior distribution over switch variables v.294

3. p(ẽ|e, v) is a transition model that shows how the exogeneous variables change as a function of the295

intervention.296

We factorize the posterior with a mean-field approximation q(v, e, ẽ|x, x̃) = q(v|x̃ − x) · q(e|x) ·297

q(ẽ|x̃) and, following our data generation model (Figure 2b), the reconstruction probability298

as p(x, x̃|e, ẽ, v) = p(x|e)p(x̃|ẽ)p(x̃ − x|v). The prior over latent variables is factorized as299

p(ẽ, e, v) = p(ẽ|e, v)p(v)p(e)(Figure 2b). Pre-intervention exogenous variables are mutually inde-300

pendent, hence, p(e) = Πip(ei) and p(v) = Πip(vi). We assume p(ei) and p(vi) to be standard301

Gaussian. Furthermore, as we assume ei = ẽi for all non-intervened variables, the p(ẽ|e, v) will be302

as follows:303

p(ẽ|e, v) = Πi/∈Iδ(ẽi − ei)Πi∈Ip(ẽi|e, v) = Πi/∈Iδ(ẽi − ei)Πi∈Ip(z̃i|ei)
∣∣∣∣∂z̃i∂ẽi

∣∣∣∣ (5)

The last equality is obtained from the Change of Variable Rule in probability theory, applied to the304

solution function z̃i = si(ẽi; e/i, hi(v)). Furthermore, we write p(z̃i|e, v) = p(z̃i|ei) since only ei305

is a known parent of z̃i in implicit modeling. We assume p(z̃i|ei) to be a Gaussian whose mean is306

determined by ei. We implement the solution function using a location-scale noise models [12] as307

also practiced in [3], which defines an invertible diffeomorphism. For simplicity, in our experiments,308

we are only going to change the loc network in post-intervention. Therefore, hi(v) will be used as:309

z̃i = s̃i(ẽi; e/i, hi(v)) =
ẽi − (loci(e/i) + hi(v))

scalei(e/i)
, (6)

where loci : Rn−1 → R and scalei : Rn−1 → R are fully connected networks calculating the first310

and second moments, respectively. The general overview of the model is illustrated in Figure 2a.311

4 Experiments and Results312

The experiments conducted in this paper address two downstream tasks; (1) Causal Disentanglement313

to identify the true causal graph from pairs of observations (x, x̃, i), and (2) Action Inference to make314

supervised inferences about actions generated from the post-intervention samples using information315

about the values of the manipulated causal variables. Moreover, we conducted additional experiments316

designed as an ablation study, the results of which are presented in A4. All models are trained using317

the same setting and data with known intervention targets.318

4.1 Datasets319

Synthetic Dataset We generate simple synthetic datasets with X = Z = Rn. For each value of320

n, we generate ten random DAGs, a random location-scale SCM, then a random dataset from the321

parameterized SCM. To generate random DAGs, each edge is sampled in a fixed topological order322

from a Bernoulli distribution with probability 0.5. The pre-intervention and post-intervention causal323

variables are obtained as:324

zi = scale(zpai)ei + loc(zpai)
Soft-Intervention−−−−−−−−−→ z̃i = scale(zpai)ẽi + l̃oc(zpai), (7)

where the loc and scale networks are changed in post intervention. The pre-intervention loc and325

post-intervention l̃oc network weights are initialized with samples drawn from N (0, 1) and N (3, 1),326

respectively. The scale is constant 1 for both pre-intervention and post-intervention samples. Both327

ei and ẽi are sampled from a standard Gaussian. The causal variables are mapped to the data space328

through a randomly sampled SO(n) rotation. For each dataset, we generate 100,000 training samples,329

10,000 validation samples, and 10,000 test samples.330
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Action Datasets Causal-Triplet datasets tailored for actionable counterfactuals [19] feature paired331

images where several global scene properties may vary including camera view and object occlusions.332

Thus, the images can be viewed as outcomes of soft interventions, wherein actions affect objects333

alongside subtle alterations. These datasets [19] consist of: images obtained from a photo-realistic334

simulator of embodied agents, ProcTHOR [9], and the other contains images repurposed from a real-335

world video dataset of human-object interactions [8]. The former one contains 100 k images in which336

7 types of actions manipulate 24 types of objects in 10 k distinct ProcTHOR indoor environments.337

The latter consists of 2,632 image pairs, collected under a similar setup from the Epic-Kitchens338

dataset with 97 actions manipulating 277 objects.Based on the nature of actions in this dataset, the339

causal variables should represent attributes of objects such as shape and color. As the dataset consists340

of images we train all the methods with ResNet encoder and decoder. For the ProcThor dataset the341

number of causal variables are 7. For the Epic-Kitchens dataset, we randomly chose 20 actions from342

the dataset as 97 causal variables will be too complex in a VAE setup.343

4.2 Metrics344

For the causal disentanglement task, we are going to use the DCI scores [10]. Causal disentanglement345

score quantifies the degree to which Zi factorises or disentangles the Z∗. Causal disentanglement Di346

for Zi is calculated as Di = (1−HK(Pi.)) = (1 +
∑K−1

k=0 Pik logK Pik) where Pij =
Rij∑K−1

k=0 Rik
347

andRij denotes the probability of Zi being important for predicting Z∗
j . Total causal disentanglement348

is the weighted average
∑

i ρiDi where ρi =
∑

j Rij∑
ij Rij

. Causal Completeness quantifies the degree349

to which each Z∗
i is captured by a single Zi. Causal completeness is calculated as Cj = (1 −350

HD(P̃.j)) = (1 +
∑D−1

d=0 P̃dj logD P̃ij). D and K here are equal to the dimension of Z∗ and Z351

which is n. For the action inference task, we will use classification accuracy as a metric. As we352

assume intervention targets are known, we train all models using known intervention targets for a fair353

comparison.354

5 Results355

5.1 Causal Disentanglement356

We generated a dataset for the soft interventions and trained the models of ICRL-SM, ILCM, β-VAE357

and D-VAE for 10 different seeds, which generated 10 different causal graphs. We selected 4 causal358

variables to encompass complex causal structures, including forks, chains, and colliders. Table 2359

displays the Causal Disentanglement and Causal Completeness scores for all models, computed on360

the test data.361

Table 2: Comparison of identifiability results

Graph Causal Disentanglement Causal Completeness

Model Name β-VAE d-VAE ILCM ICRL-SM β-VAE d-VAE ILCM ICRL-SM

G1 0.38 0.54 0.71 0.82 0.51 0.69 0.78 0.87

G2 0.30 0.72 0.75 0.83 0.49 0.77 0.80 0.87

G3 0.28 0.51 0.68 0.98 0.49 0.56 0.78 0.98

G4 0.16 0.50 0.65 0.68 0.38 0.69 0.77 0.78

G5 0.27 0.44 0.53 0.42 0.45 0.54 0.66 0.50

G6 0.52 0.62 0.71 0.98 0.66 0.69 0.86 0.98

G7 0.39 0.49 0.71 0.75 0.70 0.73 0.89 0.89

G8 0.47 0.54 0.50 0.59 0.6 0.63 0.62 0.68

G9 0.30 0.68 0.83 0.85 0.40 0.76 0.86 0.87

G10 0.39 0.39 0.52 0.32 0.53 0.56 0.82 0.70

The results in Table 2 indicate that our method ICRL-SM can identify the true causal graph in most362

cases. The worst results are seen for graphs G5 and G10. As mentioned in [27, 25], causal graphs are363

sparse and in the G5 case, where the graph is fully connected, the proposed method cannot identify364

the causal variables well. Furthermore, in the next experiment we are going to examine the factors365

affecting causal disentanglement such as the number of edges in the graph and the intensity of soft366

intervention effect. These findings can explain why ICRL-SM cannot identify causal variables in367

G10 despite its sparsity.368
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Table 3: Table comparing action and object accuracy across various methods on Causal-Triplet
datasets under different settings. Z and zi show whether all causal variables (Z), or only the
intervened casual variable (zi) are used for the prediction task. R64 denote images with resolutions
64× 64.

Epic-Kitchens ProcTHOR

Action Accuracy Object Accuracy Action Accuracy Object Accuracy

Method Z;R64 zi;R64 Z;R64 zi;R64 Z;R64 zi;R64 Z;R64 zi;R64

β − V AE [11] 0.27 0.18 0.19 0.06 0.39 0.30 0.44 0.37
d− V AE [21] 0.19 0.69 0.20 0.17 0.35 0.81 0.40 0.78
ILCM [3] 0.21 0.59 0.14 0.14 0.30 0.70 0.41 0.76
ICRL-SM (ours) 0.16 0.86 0.16 0.18 0.28 0.93 0.40 0.82

5.2 Factors Affecting Causal Disentanglement369

In this experiment, we consider the graph G3, which has the best identifiability, and change the370

intensity of soft intervention and number of edges in its data generation process. To change the371

intensity, the post-intervention l̃oc network weights are initialized with samples drawn from N(1, 1)372

(almost similar to loc) and N(10, 1) (significantly different from loc). To change the number of373

edges, we consider a chain and fully-connected graph.374

Table 4: Left table depicts the action and object accuracy of three explicit models, with experiments
conducted applying an image with resolution of R64 as the input to the Resnet50 encoder with the
intervened causal variable (zi). Right table shows the comparison of ICRL-SM performance on
different configurations of G5

Datasets Methods Action Accuracy Object Accuracy
Epic-Kitchens ENCO [16] 0.69 0.13

DDS [5] 0.44 0.09
Fixed-order 0.79 0.14
ICRL-SM (ours) 0.86 0.18

ProcTHOR ENCO [16] 0.45 0.53
DDS [5] 0.64 0.67
Fixed-order 0.65 0.54
ICRL-SM (ours) 0.93 0.82

Edges Post-intervention Causal Causal
causal mechanism Disentanglement Completeness

Chain Default 0.98 0.98
Full Default 0.89 0.89

Default Significantly different 0.68 0.73
Default Almost similar 0.85 0.86

The results in Table 4 further confirms the sparsity of causal graphs as the causal disentanglement is375

much worse in the fully-connected graph than the default graph of G3. The result for significantly376

different post-intervention causal mechanisms indicate that the switch variable cannot approximate377

intense effects of soft intervention and more supervision is required to observe V . Similar post-378

intervention causal mechanisms also do not have sufficient variability to disentangle the causal379

variables as mentioned in Theory 3.5.380

5.3 Action Inference381

In this experiment, we show the performance of ICRL-SM in the real-world Causal-Triplet datasets.382

In these datasets V i.e., soft intervention effects, are not directly observable. Nevertheless, our findings383

suggest that incorporating soft interventions through V leads to superior performance compared to384

other implicit modeling approaches. Clearly, understanding the impact of soft interventions on the385

generative system of the dataset would result in improved outcomes.386

The results in Table 3 indicate that when including all causal variables to predict actions, ICRL-SM387

performs at par with the baseline methods. However, including all causal variables in the action388

or object inference may cause spurious correlations. Therefore, we have also experimented with389

including only the related causal variable in action and object inference. In this setting, ICRL-390

SM significantly outperforms the baseline methods which means that it can better disentangle the391

causal variables. We have also compared ICRL-SM with explicit causal representation learning392

methods. ENCO [16] and DDS [5] have variable topological order of causal variables during training.393

Furthermore, we have included a specific setting where the topological order is fixed during training.394

As shown in Table 4, our proposed method has superior performance to explicit models as well.395

6 Conclusion396

ICRL-SM, our novel model, enhances implicit causal representation learning during soft interventions397

by introducing a causal mechanism switch variable. Evaluations on synthetic and real-world datasets398

demonstrate ICRL-SM’s superiority over state-of-the-art methods, highlighting its practical effective-399

ness. Our findings emphasize ICRL-SM’s ability to discern causal models from soft interventions,400

marking it as a promising avenue for future research.401
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David M. Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representations from494

unknown interventions, 2023.495
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Appendix518

A1 Proof of Identifiability Theorem519

In order to prove our model is identifiable we need a two additional definitions and some previously520

stated assumptions.521

Definition A1.1. Structural Causal Models522

A structural causal model (SCM) is a tuple C = (F ,Z, E ,G) with the following components:523

1. The domain of causal variables Z = Z1 ×Z2 × . . .×Zn.524

2. The domain of exogenous variables E = E1 × E2 × . . .× En.525

3. A directed acyclic graph G(C) over the causal and exogenous variables.526

4. A causal mechanism fi ∈ F which maps an assignment of parent values for the parents Zpai
plus527

an exogenous variable value for Ei to a value of causal variable Zi.528

Definition A1.2. (Component-wise Transformation) Let ϕ be a transformation (1-1 onto mapping)529

between product spaces ϕ : Πn
i=1Xi → Πn

i=1Yi. If there exist local transformations ϕi such that530

∀i, j, ∀x, ϕ(x1, x2, ..., xn)i = ϕi(xj), then ϕ is a component-wise transformation.531

Definition A1.3. (Diffeomorphism) A diffeomorphism between smooth manifolds M and N is a532

bijective map f : M → N , which is smooth and has a smooth inverse. Diffeomorphisms preserve533

information as they are invertible transformations without discontinuous changes in their image.534

Definition A1.4. (Pushforward measure) Given a measurable function f : A → B between two535

measurable spaces A and B, and a measure p defined on A, the pushforward measure f∗p on B is536

defined for measurable sets E in B as:537

(f∗p)(E) = p(f−1(E))538

where ∗ denotes the pushforward operation. In other words, the pushforward measure f∗p assigns a539

measure to a set in B by measuring the pre-image of that set under f in the space A.540

Lemma A1.5. The transformation ϕZ : Z → Z ′ between the causal variable of two LCMs M541

and M′ defined in Definition 3.4 is a component-wise transformation, if ∀i, j, i ̸= j Ẽ ′
i ⊥⊥ Ẽ ′

j and542

the causal variables follow a multivariate normal distribution conditional on the pre-intervention543

exogenous variables where Ẽ′
i denote the post-intervention exogenous variable of causal variable i544

in M′.545

proof: We consider the case where the exogenous variables are mapped to causal variables by a546

location-scale noise model such that z̃i =
ẽi−l̃oc(e/i)

s̃cale(e/i)
.547

∀i, j, i ̸= j Ẽ ′
i ⊥⊥ Ẽ ′

j → E[Ẽ ′
i Ẽ ′

j ] = E[Ẽ ′
i ]E[Ẽ ′

j ]
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let’s add these three constants −E[Ẽ ′
i ]l̃oc

′
j(e

′
/j), −E[Ẽ ′

j ]l̃oc
′
i(e

′
/i), l̃oc

′
i(e

′
/i)l̃oc

′
j(e

′
/j) to the both548

sides of the equality and then divide both sides by s̃cale′i(e
′
/i)s̃cale

′
j(e

′
/j):549

E

 Ẽ ′
i Ẽ ′

j − Ẽ ′
i l̃oc

′
j(e

′
/j)− Ẽ ′

j l̃oc
′
i(e

′
/i) + l̃oc′i(e

′
/i)l̃oc

′
j(e

′
/j)

s̃cale′i(e
′
/i)s̃cale

′
j(e

′
/j)

 =

E[Ẽ ′
i ]E[Ẽ ′

j ]− E[Ẽ ′
i ]l̃oc

′
j(e

′
/j)− E[Ẽ ′

j ]l̃oc
′
i(e

′
/i) + l̃oc′i(e

′
/i)l̃oc

′
j(e

′
/j)

s̃cale′i(e
′
/i)s̃cale

′
j(e

′
/j)

→ E

( Ẽ ′
i − l̃oc′i(e

′
/i)

s̃cale′i(e
′
/i)

)(
Ẽ ′
j − l̃oc′j(e

′
/j)

s̃cale′j(e
′
/j)

)

 = (
E[Ẽ ′

i ]− l̃oc′i(e
′
/i)

s̃cale′i(e
′
/i)

)(
E[Ẽ ′

j ]− l̃oc′j(e
′
/j)

s̃cale′j(e
′
/j)

)

→ E[Z̃ ′
iZ̃ ′

j |E
′] = E[Z̃ ′

i|E
′]E[Z̃ ′

j |E
′]

→ E[Z̃ ′
iZ̃ ′

j |E
′]− E[Z̃ ′

i|E ]E[Z̃ ′
j |E

′] = 0

→ E[Z̃ ′
iZ̃ ′

j |E
′]− E[Z̃ ′

i|E
′]E[Z̃ ′

j |E
′]− E[Z̃ ′

i|E
′]E[Z̃ ′

j |E
′] + E[Z̃ ′

i|E
′]E[Z̃ ′

j |E
′] = 0

→ E[Z̃ ′
iZ̃ ′

j |E
′]− E[Z̃ ′

jE[Z̃ ′
i|E

′]|E ′]− E[Z̃ ′
iE[Z̃ ′

j |E
′]|E ′] + E[Z̃ ′

i|E
′]E[Z̃ ′

j |E
′] = 0

→ E
[
(Z̃ ′

i − E[Z̃ ′
i|E

′])(Z̃ ′
j − E[Z̃ ′

j |E
′])|E ′

]
= 0

→ cov(Z̃ ′
i, Z̃ ′

j |E
′) = 0

Typically, the aforementioned equalities would be valid for any diffeomorphic solution function550

s̃i : Ẽi → Z̃i. However, in this paper, we specifically focus on solution functions represented by a551

location-scale noise model.552

Assuming that the causal variables follow a multivariate normal distribution conditional on the553

pre-intervention exogenous variables, cov(Z̃ ′
i, Z̃ ′

j |E ′) = 0 would imply that Z̃ ′
i ⊥⊥ Z̃ ′

j |E ′. Let’s554

define ϕE = g′−1 ◦ g : E → E ′ where g and g′ are the decoders in M and M′. As stated in555

Assumption 3.1, the decoders are diffeomorphism, hence, ϕE is a diffeomorphism. Furthermore, let’s556

denote s̃ as the set of all solution functions in post-intervention which are also diffeomorphism as557

stated in Assumption 3.1. Consequently:558

(ϕ−1
E is diffeomorphic) ∀i, j, i ̸= j Z̃ ′

i ⊥⊥ Z̃ ′
j |E

′ → Z̃ ′
i ⊥⊥ Z̃ ′

j |ϕ
−1
E (E ′) → Z̃ ′

i ⊥⊥ Z̃ ′
j |E

→ p(Z̃ ′
i|E)p(Z̃ ′

j |E) = p(Z̃ ′
i, Z̃ ′

j |E)

(all functions in s̃ are diffeomorphism) → p(Z̃ ′
i|s̃(E))p(Z̃ ′

j |s̃(E)) = p(Z̃ ′
i, Z̃ ′

j |s̃(E))

→ p(Z̃ ′
i|Z̃)p(Z̃ ′

j |Z̃) = p(Z̃ ′
i, Z̃ ′

j |Z̃)

The association between Z̃ ′ and Z̃ arises from their shared observation space. We know that every559

causal variable in M′ depends at least on one of the causal variables in M. If one of the causal560

variables in M′ depended on more than one causal variable in M, it would create dependency561

between two variables in M′ and violate the above equality. Therefore, no variable in M′ depends562

on more than one causal variable in M. Consequently, the transformation ϕZ is a component-wise563

transformation.564

Theorem A1.6. (Identifiability of latent causal models.) Let M = (A,X , g, I) and M′ =565

(A′,X , g′, I) be two LCMs with shared observation space X and shared intervention targets I.566

Suppose the following conditions are satisfied:567

1. Identical correspondence assumptions explained in 3.1.568

2. Soft interventions satisfy Assumption 3.3.569

3. The causal and exogenous variables are real-valued.570

4. The causal and exogenous variables follow a multivariate normal distribution.571

Then the following statements are equivalent:572

-Two LCMs M and M′ assign the same likelihood to interventional and observational data i.e.,573
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pXM(x, x̃) = pX
′

M′(x, x̃).574

- M and M′ are disentangled, that is M ∼r M′ according to Definition 3.4.575

Proof We will proceed to prove the equivalence between statements 1 and 2 by showing the implica-576

tion is true in each direction.577

A1.1 M ∼r M′ ⇒ pXM(x, x̃) = pXM′(x, x̃)578

This direction is fairly straightforward. According to Definition 3.4, the fact that M ∼r M
′ implies579

that ϕE is measure preserving. Therefore, pEM′(e′, ẽ′) = (ϕE)∗p
E
M(e, ẽ). Furthermore, considering580

that ancestry is preserved, ϕZ is measure preserving, and that causal variables are obtained from their581

ancestral exogenous variables in implicit models, we have pZM′(z′, z̃′) = (ϕZ)∗p
Z
M(z, z̃). Since582

models are trained to maximize the log likelihood of p(x, x̃, x̃ − x) and the latent spaces in M583

and M ′ have the same distribution, the decoders should yield the same observational distributions584

pXM(x, x̃) = pXM′(x, x̃).585

A1.2 pXM(x, x̃) = pXM′(x, x̃) ⇒ M ∼r M′586

Let’s define ϕE = g′−1 ◦ g : E → E ′. Since we can express e = s−1(z), we can now define ϕZ as587

ϕZ = s′ ◦ g′−1 ◦ g ◦ s−1 : Z → Z ′. (8)

Therefore, ϕE = s′−1◦ϕZ◦s. Because g and g′ are diffeomorphisms, ϕE is a diffeomorphism as well.588

Furthermore, since pXM = pXM′ and ϕE is a diffeomorphism, then pEM′ = (ϕE)∗p
E
M. Consequently,589

ϕE is measure-preserving. Similarly, ϕE is measure-preserving as well since causal mechanisms are590

diffeomorphisms.591

Step 1: Identical correspondence of edges and nodes Let’s define the set U as U = {E ×E|∀I, J ∈592

I : supp pE,IM (e, ẽ|I) ∩ supp pE,IM (e, ẽ|J)}. Then, assuming atomic interventions and counterfac-593

tual exogenous variables, pE,IM (U |I) = pE,IM (U |J) = 0. Therefore, we can say that pEM(e, ẽ) =594 ∑
I∈I p

E,I
M (e, ẽ|I)pIM(I) is a discrete mixture of non-overlapping distributions pE,IM (e, ẽ|I). Sim-595

ilarly, we can say that pEM′(e, ẽ) is a discrete mixture of non-overlapping distributions. It can be596

concluded that as ϕE must map between these distributions, there exists a bijection that also induces597

a permutation ψ : [n] → [n]. Note: If we had non-atomic interventions or non-counterfactual exoge-598

nous variables, then these distributions would have some overlapping. With overlapping distributions,599

we can no longer claim there is a bijection mapping between these distributions.600

In space Z , the interventions should also be sufficiently variable in order to have non-overlapping601

pZ,I
M (z, z̃|I) distributions. In the case of soft interventions, z̃ is affected by all ancestral exogenous602

variables which could be ancestors of other causal variables as well. Consequently, if the changes in603

causal mechanisms are not sufficient, the effect of ancestral exogenous variables on causal variables604

will share some similarities and create overlapping distributions. Similar to pEM(e, ẽ|I), we can say605

that there is a permutation between pZM(z, z̃|I) as well. Furthermore, as we assume the target of606

interventions are known we have:607

∀I ∈ I : pZM(z, z̃|I) = pZM′(z, z̃|I) (9)

Consequently, the permutation ψ is an identity transformation. The effect of soft intervention with608

known targets on these conditional distributions is shown in Figure A1.609

Step 2: Component-wise ϕZ610

According to Lemma A1.5, in order to prove that ϕZ is a component-wise transformation, we need611

to prove that Ẽ ′
i and Ẽ ′

j are independent ∀i, j, i ̸= j. In implicit modeling we do not know the parents612

of each causal variable, hence, we assume the distribution of Z̃ ′
i to be conditioned only on E ′

i as in613

Equation 5 since E ′
i is a known parent of Z̃ ′

i . The mean of a conditional distribution can be calculated614

as:615

E[z̃′i|e′i] = µz̃′
i
+ ρ

σz̃′
i

σe′i
(e′i − µe′i

) (10)

where ρ and σ are the correlation coefficient and variance of the random variables, respectively. On616

the other hand, we model Z̃ ′
i using switch mechanisms as:617
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Figure A1: The distribution of observed and causal variables in two causal models M and M′,
which belong to the equivalence class up to reparameterization. (a) There are 10 observed samples
in which Z1 or Z2 has been intervened on. (b) The distribution of causal variables when I = 0 (no
intervention) is identical to each other but the range of value of causal variables are different and can
be mapped to each other using ϕZ . (c) The intervention on Z1 (I = 1). (d) The intervention on Z2

(I = 2). For I = 1 and I = 2 the distributions are again identical to each other but are different for
different targets of intervention as soft interventions change the conditional distribution (condition on
parents) of causal variables. Also, for each value of I , the distributions of M and M′ should move
in one direction as targets are known.

z̃′i = si(ẽ
′
i; e

′
/i, h(v

′))

By using Taylor’s expansion we can write above equation as:618

si(ẽ
′
i; e

′
/i, hi(v

′)) = si(ẽ
′
i; e

′
/i, hi(v

′
0)) + +

∞∑
n=1

1

n!

(
∂nsi
∂hni

∣∣∣∣
hi=hi(v′

0)

(hi(v
′)− hi(v

′
0))

n

)
= si(ẽ

′
i; e

′
/i, hi(v

′
0)) +Ri

Furthermore, we assume separable dependence such that:619

∃v′0 such that ∀i si(ẽ
′
i; e

′
/i, hi(v

′
0)) = si(ẽ

′
i; e

′
/i)

An example of such a scenario could be in location-scale noise models, where a soft intervention620

changes the location parameter of the model as:621

si(e
′
i; e

′
/i) = e′i + loc(e′/i) → s̃i(ẽ

′
i; e

′
/i) = si(ẽ

′
i; e

′
/i, hi(v

′))

= ẽ′i + loc(e′/i) + hi(v
′) = ẽ′i + loc(e′/i) + v′2 + v′
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In this example, for v′0 = 0, si(ẽ′i; e
′
/i, hi(v

′
0)) = si(ẽ

′
i; e

′
/i).622

Consequently, we can write the following equality from Equation 10:623

E[Z̃ ′
i|e

′
i] = E[si(Ẽ ′

i ; E
′
/i) +Ri|e′i] = µZ̃′

i
+ ρ

σZ̃′
i

σE′
i

(e′i − µE′
i
)

By taking the partial derivative of both side with respect to Ẽ ′
j we have:624

∀j ̸= i E[
∂si(Ẽ ′

i ; E ′
/i)

∂Ẽ ′
i

· ∂Ẽ
′
i

∂Ẽ ′
j

+
∂si(Ẽ ′

i ; E ′
/i)

∂E ′
/i

·
∂E ′

/i

∂Ẽ ′
j

+
∂Ri

∂Ẽ ′
j

|e′i] = 0

If we did not have the causal mechanism switch variable (hi(V ′)), the equation above would only625

hold if si was constant in parents, which is not the case due to the presence of soft interventions, or if626

∂si(Ẽ′
i;E

′
/i)

∂Ẽ′
i

· ∂Ẽ
′
i

∂Ẽ′
j

= −∂si(Ẽ′
i;E

′
/i)

∂E′
/i

· ∂E
′
/i

∂Ẽ′
j

. The latter scenario would imply that ∂Ẽ′
i

∂Ẽ′
j

̸= 0, hence, Ẽ ′
i ̸⊥⊥ Ẽ ′

j .627

However, by introducing the causal mechanism switch variable V and assuming it is observed, we628

can account for the effects of soft interventions through hi(V ′). In this case, ∂Ẽ′
i

∂Ẽ′
j

= 0 as exogenous629

variables are commonly assumed to be independent in practice. Consequently:630

∀i, j Ẽ ′
i ⊥⊥ Ẽ ′

j

→ ∀i, j p(Z̃ ′
i, Z̃ ′

j |Z̃i, Z̃j) = p(Z̃ ′
i|Z̃i)p(Z̃ ′

j |Z̃j)

→ ϕZ is a component-wise transformation.
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Figure A2: (a) String diagram of the causal variables Z and Z ′. The triangle indicates sampling I
from its distribution. The left-hand side diagram is when ϕZ is applied last and the right-hand side
diagram is when ϕZ is applied first. I is the intervention which affects intervened causal variable’s
mechanism variable. V is used to model the effect of intervention on mechanisms and parents. (b)
String diagrams after discarding Z̃ ′

o and the disentangled effect of soft intervention on Z̃i modeled by
V .

Step 3: Component-wise ϕE631

Using the result from previous step that ϕZ is a component-wise transformation, the string diagrams632

for connections between E and E ′ will be as shown in Figure A3. ϕEi
will only depend on EA,633

where A = anci is the ancestors of variable i, and ei. Because s(e)anci , s(e)i, and s′−1(z′)i only634

depend on ancestors and ϕZ is a component-wise transformation. The first equality in Figure A3635

follows from the definition of ϕEi . The second equality holds when we first apply ϕZA
and then apply636

the causal mechanisms. It can be concluded from the most right-hand side diagram in Figure A3637

that the transformation from E ′
i × EA → E ′

i is constant in EA. Therefore, ϕEi
is a component-wise638

transformation.639
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variables from their corresponding distributions.

(a) Pre-Epic-Kitchens (b) Pre-Epic-Kitchens (c) Pre-Epic-Kitchens (d) Pre-Epic-Kitchens

(a) Post: Valve-locked (b) Post: Bread-Inserted (c)
Post: Clothes-Gathered (d) Post: Juice-Poured

(e) Pre-ProcTHOR (f) Pre-ProcTHOR (g) Pre-ProcTHOR (h) Pre-ProcTHOR

(e) Post: Cabinet-Open (f) Post: Box-Open (g) Post: TV-Broken (h) Post: TV-On

Figure A4: In the Causal-Triplet dataset [19], visual representations capture both pre and post-
intervention scenarios. The first two rows showcase data samples from Epic-Kitchens, while the third
and fourth rows feature samples from ProcTHOR. Each image in the post-intervention condition
is accompanied by labels specifying the corresponding action and intervened object. In the images
in the first two rows, the agent is performing an action on an object but the camera angle has also
changed. So we can say that for example the distribution of causal variables conditioned on the
camera angle has been changed due to soft intervention.

A2 Soft vs. Hard intervention640

In a causal model, an intervention refers to a deliberate action taken to manipulate or change one or641

more variables in order to observe its impact on other variables within the causal model. Interventions642

help to study how changes in one variable directly cause changes in another, thereby revealing causal643

relationships.644
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Figure A5: Causal graph models in the presence of Hard (a) and Soft (b) interventions. There are no
connections from parents to Z̃i in hard interventions (a). Whereas, parents are connected to Z̃i in soft
interventions (b).Let’s consider an implicit model and use /i to denote all variables except variable
i. The major difference of soft intervention (b) with hard intervention (a) is that Z̃i is no longer
disconnected from its parents and its causal mechanism s̃i is affected by the intervention. Thus, with
a hard intervention, we know the post-intervention parents of a node Z̃i (there are none), whereas
with soft interventions, the parents themselves may not change.

Based on the levels of control and manipulation in a causal intervention, we can have soft vs. hard645

interventions. A hard intervention involves directly manipulating the variables of interest in a646

controlled manner such as Randomized Controlled Trials (RCTs). In other words, a hard intervention647

sets the value of a causal variable Z to a certain value denoted as do(Z = z) [24].648

On the other hand, soft intervention involves more subtle or less controlled manipulation of variables649

and changes the conditional distribution of the causal variable p(Z|Zpa) → p̃(Z|Zpa) which can be650

modeled as z̃i = f̃i(zpai
, ẽi) [7].651

Looking at interventions from a graphical standpoint, a hard intervention entails that the intervened652

node is solely impacted by the intervention itself, with no influence coming from its ancestral nodes.653

Conversely, in the context of a soft intervention, the representation of the intervened node can be654

influenced not only by the intervention but also by its parent nodes.655

As an example, suppose we are trying to understand the causal relationship between different types656

of diets and weight loss. The soft intervention in this scenario could be a switch from a regular diet to657

a low-carb diet. Switching to a low-carb diet is a voluntary choice made by the individual and there658

are no external forces or regulations compelling them to make this change (non-coercive).659

The intervention involves a modification of the individual’s diet rather than a complete disruption660

since they are adjusting the proportion of macronutrients (fats, proteins, and carbs) they consume,661

which is less disruptive than a radical change in eating habits (gradual modification). The individual662

has autonomy to choose and tailor their diet according to their preferences and health goals so they663

are empowered to make informed decisions about their dietary choices (behavioural empowerment).664

Conversely, if the government or an authority were to intervene and enforce a mandatory low-carb665

diet through legal means, this would constitute a hard intervention. In this scenario, regulations would666

be implemented, prohibiting the consumption of specific carbohydrate-containing foods. Regulatory667

agencies would be established to oversee and ensure adherence to the low-carb diet mandate, taking668

actions such as removing prohibited foods from the market, restricting their import and production,669

and so on. Individuals caught consuming banned foods would be subject to fines, legal repercussions,670

or other penalties.671

A3 Experiments672

This section contains additional details about ICRL-SM design architectures, datasets, and experi-673

ments settings.674

A3.1 Datasets675

A3.1.1 Synthetic676

We generate simple synthetic datasets with X = Z = Rn. For each value of n, we generate ten677

random DAGs, a random location-scale SCM, then a random dataset from the parameterized SCM.678

To generate random DAGs, each edge is sampled in a fixed topological order from a Bernoulli679
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distribution with probability 0.5. The pre-intervention and post-intervention causal variables are680

obtained as:681

zi = scale(zpai
)ei + loc(zpai

)
Soft-Intervention−−−−−−−−−→ z̃i = scale(zpai

)ẽi + l̃oc(zpai
), (11)

where the loc and scale networks are changed in post intervention. The pre-intervention loc and682

post-intervention l̃oc network weights are initialized with samples drawn from N (0, 1) and N (3, 1),683

respectively. For ablation studies, we change the mean of these Normal distributions. The scale is684

constant 1 for both pre-intervention and post-intervention samples. Both ei and ẽi are sampled from685

a standard Gaussian. The causal variables are mapped to the data space through a randomly sampled686

SO(n) rotation. For each dataset, we generate 100,000 training samples, 10,000 validation samples,687

and 10,000 test samples.688

A3.1.2 Causal-Triplet689

The Causal-Triplet datasets are consisted of images containing objects in which an action is manipu-690

lating the objects shown in Figure A4. Examples of actions and objects in these datasets are given in691

Table A1 and A2.692

Table A1: Actions and objects present in the Causal-Triplet images (ProcTHOR Dataset).

ProcTHOR Dataset
Object Television Bed Bed Television Laptop Book Box
Action Break Clean Dirty Turn off Turn on Open Close

Table A2: Actions and objects present in the Causal-Triplet images (Epic-Kitchens Dataset).

Epic-Kitchens Dataset

Object Tofu Rice Hob Bag Cupboard Garlic Tap Wrap Rice Cheese
Action Insert Pour Wash Fold Open Pat Move Check Transition Stretch

Object Wrap Skin Button Lid Plate Egg Sponge Oil Water Dough
Action Flip Gather Press Lock Wrap Drop Water Carry Smell Mark

Based on the actions and objects, we treat our causal variables as attributes of objects which can be693

changed by actions. Therefore, actions in these datasets are considered as interventions. Assume that694

z1 corresponds to the attributes of an object, e.g. a door, the target of opening or closing (action’s695

target) is z1.696

We use actions’ labels in these datasets to detect the targets of interventions to determine which causal697

variable has been intervened upon. Note that informing the model about the target of intervention is698

not same as informing about the action itself (See Table 3). We use 5000 images of these datasets to699

train all models.700

A3.2 Architecture Design701

Based on the ICRL-SM architecture depicted in Figure 2a, we devised a location-scale solution702

function (Equation 6) in which the loci and scalei, and hi networks each comprise of fully connected703

networks. These networks consist of two layers each, with 64 hidden units per layer and ReLU704

activation functions. The encoder and decoder parameters for latents E and Ẽ are shared and we use a705

separate encoder and decoder with the same architecture for the latent V . For our synthetic dataset706

experiments, the encoder and decoder are consisted of fully connected networks with 2 hidden layers707

and 64 units in each hidden layer. For the Causal-Triplet datasets, we utilized ResNet-based networks.708

The same encoder and decoder architectures are used for all baseline models in the experiments.709

ResNet50 encoder, ResNet50 decoder, and classifiers with 1 hidden layer and 64 hidden units are710

used for predicting actions and objects for experiments in Table 4 and Table 3. ResNet18 encoder,711

ResNet18 decoder, and classifiers with 2 hidden layer and 2 hidden units are used for predicting712

actions and objects for experiments in Table A4 and Table A3.713

A3.3 Training714

To enforce the condition described in Equation 5 for i /∈ I , we assign the post-intervention exogenous715

variables the same value as the pre-intervention exogenous variables. In mathematical terms, this716

translates to ∀i /∈ I, we set ẽi = ei.717
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In our experiments, we do not pretrain the networks, however, for the baseline models we follow the718

training procedure in [3]. We also use consistency in our experiments to ensure that the encoder and719

decoder are inverse of each other. Consistency regularizer is used as
∑

iEx̂∼p(x̂|e),x∼p(x)[(x− x̂)2]720

where x̂ are the reconstructed samples.721

For optimization, Adam optimizer is used with default hyperparamters. In the synthetic experiments,722

learning rate changes from 3e−4 to 1e−8 with a cosine scheduler. In the Causal-Triplet experiments723

in Table 4 and Table 3 learning rate changes from 0.002 to 1e− 8 with a cosine scheduler. For Table724

A4 and Table A3 experiments earning rate changes from 0.0001 to 1e− 8 with a cosine scheduler. In725

all experiments the batch size is set to 64. In the main Causal-Triplet experiments we train the models726

for 400 epochs, in the appendix Causal-Triplet experiments we train the models for 2000 epochs, and727

in the synthetic experiments we train the models for 100 epochs. In the appendix experiments, the728

graph parameters for explicit models are frozen after 1000 epochs.729

All models are trained using Nvidia GeForce RTX4090 GPUs. Each of the Causal-Triplet experiments730

takes 3-8 hours to train the models and each of the synthetic experiments takes 2-3 hours to train the731

models.732

We save the models’ weights with best validation loss and evaluate them using those weights with733

test data.734

A4 Ablation study735

A4.1 Scalability736

While our primary research objective centered on addressing identifiability challenges in implicit737

causal models under soft interventions, we also conducted an investigation into the scalability of our738

proposed model. To comprehensively assess its performance, we designed experiments covering a739

range of causal graphs, featuring 5 to 10 variables, with 10 different seeds for each variable, following740

a similar experimental setup as our 4-variable causal graph experiments. The outcomes of these741

experiments, comparing ICRL-SM and ILCM, are presented in Figure A6. By increasing the number742

of variables in the graph, confounding factors and ambiguities of causal relations increase as well.743

Consequently, more supervision on V is required to better separate the effect of causal variables744

themselves on the observed variables.745
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Figure A6: Causal disentanglement for different number of variables

A4.2 Backbone model746

We trained the models using a simpler backbone model, ResNet18, to see how it affects performance.747

The input image resolution is 64× 64 and we use the intervened causal variables to predict action748
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and object classes. The results are shown in Table A4 and A3. It can be seen from the results that the749

proposed method outperforms other explicit and implicit models even with a simpler model.750

Table A3: Table comparing action and object accuracy across various methods on Causal-Triplet
datasets using ResNet18 model.

Epic-Kitchens ProcTHOR
Method Action Accuracy Object Accuracy Action Accuracy Object Accuracy

β − V AE [11] 0.15 0.04 0.20 0.36
d− V AE [21] 0.16 0.02 0.15 0.38
ILCM [3] 0.19 0.04 0.15 0.42
ICRL-SM (ours) 0.35 0.04 0.40 0.69

Table A4: Action and object accuracy of three explicit models are compared with ICRL-SM. Exper-
iments are conducted applying image with resolution of R64 as the input to the Resnet18 encoder
with the intervened casual variable (zi).

Datasets Methods Action Accuracy Object Accuracy

Epic-Kitchens ENCO [16] 0.14 0.03
DDS [5] 0.16 0.05
Fixed-order 0.14 0.05
ICRL-SM (ours) 0.35 0.04

ProcTHOR ENCO [16] 0.16 0.28
DDS [5] 0.34 0.35
Fixed-order 0.34 0.38
ICRL-SM (ours) 0.40 0.69
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NeurIPS Paper Checklist751

1. Claims752

Question: Do the main claims made in the abstract and introduction accurately reflect the753

paper’s contributions and scope?754

Answer: [Yes]755

Justification: Our contributions include identifiability of causal models with soft inter-756

ventions. In the proposed methods section we give the theory and assumptions for the757

identifiability result and in our experiments we evaluate our method using datasets generated758

by soft interventions.759

Guidelines:760

• The answer NA means that the abstract and introduction do not include the claims761

made in the paper.762

• The abstract and/or introduction should clearly state the claims made, including the763

contributions made in the paper and important assumptions and limitations. A No or764

NA answer to this question will not be perceived well by the reviewers.765

• The claims made should match theoretical and experimental results, and reflect how766

much the results can be expected to generalize to other settings.767

• It is fine to include aspirational goals as motivation as long as it is clear that these goals768

are not attained by the paper.769

2. Limitations770

Question: Does the paper discuss the limitations of the work performed by the authors?771

Answer: [Yes]772

Justification: We have some strict assumptions on data generation process and model773

which are given in Assumptions 3.3 and 3.1 which may not be plausible to satisfy in some774

applications.775

Guidelines:776

• The answer NA means that the paper has no limitation while the answer No means that777

the paper has limitations, but those are not discussed in the paper.778

• The authors are encouraged to create a separate "Limitations" section in their paper.779

• The paper should point out any strong assumptions and how robust the results are to780

violations of these assumptions (e.g., independence assumptions, noiseless settings,781

model well-specification, asymptotic approximations only holding locally). The authors782

should reflect on how these assumptions might be violated in practice and what the783

implications would be.784

• The authors should reflect on the scope of the claims made, e.g., if the approach was785

only tested on a few datasets or with a few runs. In general, empirical results often786

depend on implicit assumptions, which should be articulated.787

• The authors should reflect on the factors that influence the performance of the approach.788

For example, a facial recognition algorithm may perform poorly when image resolution789

is low or images are taken in low lighting. Or a speech-to-text system might not be790

used reliably to provide closed captions for online lectures because it fails to handle791

technical jargon.792

• The authors should discuss the computational efficiency of the proposed algorithms793

and how they scale with dataset size.794

• If applicable, the authors should discuss possible limitations of their approach to795

address problems of privacy and fairness.796

• While the authors might fear that complete honesty about limitations might be used by797

reviewers as grounds for rejection, a worse outcome might be that reviewers discover798

limitations that aren’t acknowledged in the paper. The authors should use their best799

judgment and recognize that individual actions in favor of transparency play an impor-800

tant role in developing norms that preserve the integrity of the community. Reviewers801

will be specifically instructed to not penalize honesty concerning limitations.802

3. Theory Assumptions and Proofs803
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Question: For each theoretical result, does the paper provide the full set of assumptions and804

a complete (and correct) proof?805

Answer: [Yes]806

Justification: We give the full set of our assumptions in the proposed method section and the807

detailed proof in Appendix A1.808

Guidelines:809

• The answer NA means that the paper does not include theoretical results.810

• All the theorems, formulas, and proofs in the paper should be numbered and cross-811

referenced.812

• All assumptions should be clearly stated or referenced in the statement of any theorems.813

• The proofs can either appear in the main paper or the supplemental material, but if814

they appear in the supplemental material, the authors are encouraged to provide a short815

proof sketch to provide intuition.816

• Inversely, any informal proof provided in the core of the paper should be complemented817

by formal proofs provided in appendix or supplemental material.818

• Theorems and Lemmas that the proof relies upon should be properly referenced.819

4. Experimental Result Reproducibility820

Question: Does the paper fully disclose all the information needed to reproduce the main ex-821

perimental results of the paper to the extent that it affects the main claims and/or conclusions822

of the paper (regardless of whether the code and data are provided or not)?823

Answer:[Yes]824

Justification: We provide the full details of our model architecture and training settings in825

Appendix A3 and in Section 5.826

Guidelines:827

• The answer NA means that the paper does not include experiments.828

• If the paper includes experiments, a No answer to this question will not be perceived829

well by the reviewers: Making the paper reproducible is important, regardless of830

whether the code and data are provided or not.831

• If the contribution is a dataset and/or model, the authors should describe the steps taken832

to make their results reproducible or verifiable.833

• Depending on the contribution, reproducibility can be accomplished in various ways.834

For example, if the contribution is a novel architecture, describing the architecture fully835

might suffice, or if the contribution is a specific model and empirical evaluation, it may836

be necessary to either make it possible for others to replicate the model with the same837

dataset, or provide access to the model. In general. releasing code and data is often838

one good way to accomplish this, but reproducibility can also be provided via detailed839

instructions for how to replicate the results, access to a hosted model (e.g., in the case840

of a large language model), releasing of a model checkpoint, or other means that are841

appropriate to the research performed.842

• While NeurIPS does not require releasing code, the conference does require all submis-843

sions to provide some reasonable avenue for reproducibility, which may depend on the844

nature of the contribution. For example845

(a) If the contribution is primarily a new algorithm, the paper should make it clear how846

to reproduce that algorithm.847

(b) If the contribution is primarily a new model architecture, the paper should describe848

the architecture clearly and fully.849

(c) If the contribution is a new model (e.g., a large language model), then there should850

either be a way to access this model for reproducing the results or a way to reproduce851

the model (e.g., with an open-source dataset or instructions for how to construct852

the dataset).853

(d) We recognize that reproducibility may be tricky in some cases, in which case854

authors are welcome to describe the particular way they provide for reproducibility.855

In the case of closed-source models, it may be that access to the model is limited in856

some way (e.g., to registered users), but it should be possible for other researchers857

to have some path to reproducing or verifying the results.858
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5. Open access to data and code859

Question: Does the paper provide open access to the data and code, with sufficient instruc-860

tions to faithfully reproduce the main experimental results, as described in supplemental861

material?862

Answer: [Yes]863

Justification: We provide our anonymized codes which contains the necessary scripts and864

instructions to run the experiments.865

Guidelines:866

• The answer NA means that paper does not include experiments requiring code.867

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/868

public/guides/CodeSubmissionPolicy) for more details.869

• While we encourage the release of code and data, we understand that this might not be870

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not871

including code, unless this is central to the contribution (e.g., for a new open-source872

benchmark).873

• The instructions should contain the exact command and environment needed to run to874

reproduce the results. See the NeurIPS code and data submission guidelines (https:875

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.876

• The authors should provide instructions on data access and preparation, including how877

to access the raw data, preprocessed data, intermediate data, and generated data, etc.878

• The authors should provide scripts to reproduce all experimental results for the new879

proposed method and baselines. If only a subset of experiments are reproducible, they880

should state which ones are omitted from the script and why.881

• At submission time, to preserve anonymity, the authors should release anonymized882

versions (if applicable).883

• Providing as much information as possible in supplemental material (appended to the884

paper) is recommended, but including URLs to data and code is permitted.885

6. Experimental Setting/Details886

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-887

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the888

results?889

Answer: [Yes]890

Justification: We provide the full details of our model architecture and training settings in891

Appendix A3 and in Section 5.892

Guidelines:893

• The answer NA means that the paper does not include experiments.894

• The experimental setting should be presented in the core of the paper to a level of detail895

that is necessary to appreciate the results and make sense of them.896

• The full details can be provided either with the code, in appendix, or as supplemental897

material.898

7. Experiment Statistical Significance899

Question: Does the paper report error bars suitably and correctly defined or other appropriate900

information about the statistical significance of the experiments?901

Answer: [Yes]902

Justification: In our synthetic experiments we initialized the causal graph in the dataests903

with different seeds. The results of these different seeds are provided in Table 2 and Figure904

A6.905

Guidelines:906

• The answer NA means that the paper does not include experiments.907

• The authors should answer "Yes" if the results are accompanied by error bars, confi-908

dence intervals, or statistical significance tests, at least for the experiments that support909

the main claims of the paper.910
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• The factors of variability that the error bars are capturing should be clearly stated (for911

example, train/test split, initialization, random drawing of some parameter, or overall912

run with given experimental conditions).913

• The method for calculating the error bars should be explained (closed form formula,914

call to a library function, bootstrap, etc.)915

• The assumptions made should be given (e.g., Normally distributed errors).916

• It should be clear whether the error bar is the standard deviation or the standard error917

of the mean.918

• It is OK to report 1-sigma error bars, but one should state it. The authors should919

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis920

of Normality of errors is not verified.921

• For asymmetric distributions, the authors should be careful not to show in tables or922

figures symmetric error bars that would yield results that are out of range (e.g. negative923

error rates).924

• If error bars are reported in tables or plots, The authors should explain in the text how925

they were calculated and reference the corresponding figures or tables in the text.926

8. Experiments Compute Resources927

Question: For each experiment, does the paper provide sufficient information on the com-928

puter resources (type of compute workers, memory, time of execution) needed to reproduce929

the experiments?930

Answer: [Yes]931

Justification: The details are given in Appendix A3.932

Guidelines:933

• The answer NA means that the paper does not include experiments.934

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,935

or cloud provider, including relevant memory and storage.936

• The paper should provide the amount of compute required for each of the individual937

experimental runs as well as estimate the total compute.938

• The paper should disclose whether the full research project required more compute939

than the experiments reported in the paper (e.g., preliminary or failed experiments that940

didn’t make it into the paper).941

9. Code Of Ethics942

Question: Does the research conducted in the paper conform, in every respect, with the943

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?944

Answer: [Yes]945

Justification:946

Guidelines:947

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.948

• If the authors answer No, they should explain the special circumstances that require a949

deviation from the Code of Ethics.950

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-951

eration due to laws or regulations in their jurisdiction).952

10. Broader Impacts953

Question: Does the paper discuss both potential positive societal impacts and negative954

societal impacts of the work performed?955

Answer: [NA]956

Justification:957

Guidelines:958

• The answer NA means that there is no societal impact of the work performed.959

• If the authors answer NA or No, they should explain why their work has no societal960

impact or why the paper does not address societal impact.961
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• Examples of negative societal impacts include potential malicious or unintended uses962

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations963

(e.g., deployment of technologies that could make decisions that unfairly impact specific964

groups), privacy considerations, and security considerations.965

• The conference expects that many papers will be foundational research and not tied966

to particular applications, let alone deployments. However, if there is a direct path to967

any negative applications, the authors should point it out. For example, it is legitimate968

to point out that an improvement in the quality of generative models could be used to969

generate deepfakes for disinformation. On the other hand, it is not needed to point out970

that a generic algorithm for optimizing neural networks could enable people to train971

models that generate Deepfakes faster.972

• The authors should consider possible harms that could arise when the technology is973

being used as intended and functioning correctly, harms that could arise when the974

technology is being used as intended but gives incorrect results, and harms following975

from (intentional or unintentional) misuse of the technology.976

• If there are negative societal impacts, the authors could also discuss possible mitigation977

strategies (e.g., gated release of models, providing defenses in addition to attacks,978

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from979

feedback over time, improving the efficiency and accessibility of ML).980

11. Safeguards981

Question: Does the paper describe safeguards that have been put in place for responsible982

release of data or models that have a high risk for misuse (e.g., pretrained language models,983

image generators, or scraped datasets)?984

Answer: [NA]985

Justification:986

Guidelines:987

• The answer NA means that the paper poses no such risks.988

• Released models that have a high risk for misuse or dual-use should be released with989

necessary safeguards to allow for controlled use of the model, for example by requiring990

that users adhere to usage guidelines or restrictions to access the model or implementing991

safety filters.992

• Datasets that have been scraped from the Internet could pose safety risks. The authors993

should describe how they avoided releasing unsafe images.994

• We recognize that providing effective safeguards is challenging, and many papers do995

not require this, but we encourage authors to take this into account and make a best996

faith effort.997

12. Licenses for existing assets998

Question: Are the creators or original owners of assets (e.g., code, data, models), used in999

the paper, properly credited and are the license and terms of use explicitly mentioned and1000

properly respected?1001

Answer: [Yes]1002

Justification:1003

Guidelines:1004

• The answer NA means that the paper does not use existing assets.1005

• The authors should cite the original paper that produced the code package or dataset.1006

• The authors should state which version of the asset is used and, if possible, include a1007

URL.1008

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1009

• For scraped data from a particular source (e.g., website), the copyright and terms of1010

service of that source should be provided.1011

• If assets are released, the license, copyright information, and terms of use in the1012

package should be provided. For popular datasets, paperswithcode.com/datasets1013

has curated licenses for some datasets. Their licensing guide can help determine the1014

license of a dataset.1015
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• For existing datasets that are re-packaged, both the original license and the license of1016

the derived asset (if it has changed) should be provided.1017

• If this information is not available online, the authors are encouraged to reach out to1018

the asset’s creators.1019

13. New Assets1020

Question: Are new assets introduced in the paper well documented and is the documentation1021

provided alongside the assets?1022

Answer: [Yes]1023

Justification: We only have a code repository for replicating experiments and we have1024

submitted the anonymized zip file with our submission.1025

Guidelines:1026

• The answer NA means that the paper does not release new assets.1027

• Researchers should communicate the details of the dataset/code/model as part of their1028

submissions via structured templates. This includes details about training, license,1029

limitations, etc.1030

• The paper should discuss whether and how consent was obtained from people whose1031

asset is used.1032

• At submission time, remember to anonymize your assets (if applicable). You can either1033

create an anonymized URL or include an anonymized zip file.1034

14. Crowdsourcing and Research with Human Subjects1035

Question: For crowdsourcing experiments and research with human subjects, does the paper1036

include the full text of instructions given to participants and screenshots, if applicable, as1037

well as details about compensation (if any)?1038

Answer: [NA]1039

Justification:1040

Guidelines:1041

• The answer NA means that the paper does not involve crowdsourcing nor research with1042

human subjects.1043

• Including this information in the supplemental material is fine, but if the main contribu-1044

tion of the paper involves human subjects, then as much detail as possible should be1045

included in the main paper.1046

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1047

or other labor should be paid at least the minimum wage in the country of the data1048

collector.1049

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1050

Subjects1051

Question: Does the paper describe potential risks incurred by study participants, whether1052

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1053

approvals (or an equivalent approval/review based on the requirements of your country or1054

institution) were obtained?1055

Answer: [NA]1056

Justification:1057

Guidelines:1058

• The answer NA means that the paper does not involve crowdsourcing nor research with1059

human subjects.1060

• Depending on the country in which research is conducted, IRB approval (or equivalent)1061

may be required for any human subjects research. If you obtained IRB approval, you1062

should clearly state this in the paper.1063

• We recognize that the procedures for this may vary significantly between institutions1064

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1065

guidelines for their institution.1066

• For initial submissions, do not include any information that would break anonymity (if1067

applicable), such as the institution conducting the review.1068
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