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Abstract

Recently, Target-oriented Multimodal Senti-001
ment Classification (TMSC) has gained signif-002
icant attention among scholars. However, cur-003
rent multimodal models have reached a perfor-004
mance bottleneck. To investigate the causes of005
this problem, we perform extensive empirical006
evaluation and in-depth analysis of the datasets007
to answer the following questions: Q1: Are the008
modalities equally important for TMSC? Q2:009
Which multimodal fusion modules are more010
effective? Q3: Do existing datasets adequately011
support the research? Our experiments and012
analysis reveal that the current TMSC systems013
primarily rely on the textual modality, as most014
of targets’ sentiments can be determined solely015
by text. Consequently, we point out several di-016
rections to work on for the TMSC task in terms017
of model design and dataset construction.018

1 Introduction019

Target-oriented sentiment classification, also020

known as aspect-based sentiment classification, is021

a fundamental task of sentiment analysis (Pontiki022

et al., 2014, 2015, 2016). It aims to judge the sen-023

timental polarity (positive, negative, or neutral) of024

a specific target within text. To improve the per-025

formance by considering multimodal information,026

Target-oriented Multimodal Sentiment Classifica-027

tion (TMSC) is proposed to integrate both visual028

and textual information (Yu and Jiang, 2019).029

Recently, the performance of the TMSC systems030

gradually reaches a plateau and the progress in031

tackling this task has slowed down. Using the F1-032

score metric on the popular datasets, Twitter15 and033

Twitter17 (Yu and Jiang, 2019), we observe that034

state-of-the-art baselines only achieve an F1-score035

of around 70. Therefore, in this paper, we aim to036

analyze the causes behind it at both model level037

and modality level. Roughly speaking, the modules038

in the model structures can be categorized into two039

types: 1) encoders to model the representations040

of different modalities; and 2) multimodal fusion 041

modules to model the interactions between modal- 042

ities. Moreover, we give a deep analysis of the 043

characteristics of two widely-used datasets, aiming 044

to answer the following three questions: 045

Q1: Are the modalities equally important for 046

TMSC? To explore this issue, we compare and 047

analyze the performance of unimodal models on 048

this task. For the textual modality, we use BERT 049

(Devlin et al., 2019) as the backbone, as it is a 050

widely-used pre-trained language model outper- 051

forming earlier models like LSTM (Hochreiter and 052

Schmidhuber, 1997), memory network (Weston 053

et al., 2015), etc. For the visual modality, ResNet 054

(He et al., 2016), ViT (Dosovitskiy et al., 2021), 055

and Faster R-CNN (Ren et al., 2015) are adopted 056

(see Figure 1). 057

Q2: Which multimodal fusion modules are more 058

effective? The current models use various fusion 059

strategies to model the interactions between modali- 060

ties, while obtaining little improvement. To explore 061

the effectiveness of different fusion approaches, we 062

summarize the fusion strategies into six categories: 063

Concatenation, Tensor Fusion (Zadeh et al., 2017), 064

Self Attention, Image2Text, Text2Image and Bi- 065

direction. Then we perform a comparative study 066

of them using a unified setup to eliminate potential 067

bias from model size and structure (see Figure 2). 068

Q3: Do existing datasets adequately support the 069

research? We analyze the existing datasets (i.e., 070

Twitter15 and Twitter17) in depth and obtain the 071

following findings: 1) The size of existing datasets 072

is limited; 2) The multimodal sentiment is much 073

more consistent with the textual sentiment than 074

the visual sentiment; 3) A large number of targets 075

do not exist in images; 4) There are only a small 076

number of samples where the sentiment is decided 077

by both text and image. 078

The main contributions of this work are as fol- 079

lows: 1) We investigate the effectiveness of differ- 080

ent model structures for TMSC, including various 081
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Model Image Encoder Fusion Module
ResNet ViT Faster R-CNN Concat Tensor Fusion Self Attention Image2Text Text2Image

Res-BERT+BL ! % % ! % ! % %

Res-BERT+BL-TFN ! % % % ! ! % %

mBERT ! % % ! % ! % %

TomBERT ! % % ! % ! ! %

EF-CapTrBERT ! % % % % ! % %

SMP % ! % % % % ! !

VLP % % ! % % ! % %

Table 1: The model structures of various baselines. All text encoders in the above models except for VLP are
initialized with BERT.

ResNet

V1 V2 V3 V49···

Faster R-CNN

V1 V2 V3 V36···

···

ViT

Vcls V1 V2 V196···

Figure 1: Different image encoders.

unimodal encoders and multimodal fusion mod-082

ules; 2) We give an in-depth analysis of limitations083

of existing widely-used datasets; 3) We derive sev-084

eral valuable observations and point out promising085

directions for the future research of TMSC model086

design and dataset creation.087

2 Empirical Study088

We summarize the model structures and perfor-089

mance of the baselines for the TMSC task in Ta-090

ble 1. Their structural differences are mainly re-091

flected in the different unimodal encoders and mul-092

timodal fusion modules used. Therefore, we carry093

out several experiments to analyze the impact of094

these two aspects on performance.095

2.1 Unimodal Encoder096

As previously mentioned in Section 1, we primarily097

focus on exploring the different image encoders,098

ResNet, ViT, and Faster R-CNN (see Figure 1),099

while using BERT as the text encoder.100

ResNet. Following most of the baselines (e.g.,101

mBERT (Yu and Jiang, 2019), TomBERT (Yu and102

Jiang, 2019) and EF-CapTrBERT (Khan and Fu,103

2021)), we adopt ResNet-152 as one of the image104

encoders. Each image is resized into 224 by 224,105

and then passed through the model to obtain 49106

regions, which are used as the image representation107

I “ rv1, v2, ..., v49s, where vi P R2048.108

ViT. Following SMP (Ye et al., 2022), we adopt109

ViT to model the image by dividing it into 16 by110

16 patches. A CLS token is added at the beginning111

and fed into the Transformer (Vaswani et al., 2017) 112

encoder to obtain the image representation I “ 113

rvcls, v1, v2, ..., v196s, where vi P R768. 114

Faster R-CNN. Similar to VLP (Ling et al., 115

2022), we adopt Faster R-CNN that is retrained on 116

the Visual Genome dataset (Krishna et al., 2017). 117

We select the top 36 object proposals as the im- 118

age representation I “ rv1, v2, ..., v36s, where 119

vi P R2048 is obtained from the ROI pooling layer 120

of the Region Proposal Network (Ren et al., 2015). 121

2.2 Multimodal Fusion 122

We categorize the current multimodal fusion mod- 123

ules into six groups as follows (see Figure 2). 124

Concatenate is the simplest form of fusion, 125

where the pooled text representation HT
p P R768 126

is directly combined with the pooled image repre- 127

sentation HI
p P R768 1 to obtain the multimodal 128

representation H “ HI
p

À

HT
p , where

À

is a con- 129

catenation operation and H P R768`768. 130

Tensor Fusion is proposed for modeling inter- 131

actions between modalities while preserving the 132

characteristics of individual modalities. We obtain 133

H “ HI
p

Â

HT
p , where

Â

is an outer product 134

operation and H P R768ˆ768. 135

Self Attention concatenates the image represen- 136

tation HI P RlIˆ768 and the text representation 137

HT P RlT ˆ768, where lI and lT are the lengths 138

of image and text, respectively. Then it is passed 139

through three self-attention layers and a pooling 140

layer to obtain H P R768. 141

Image2Text is one type of cross-attention mech- 142

anism, using HI as the query and HT as the key 143

and value, through three attention layers to get 144

H P R768. Text2Image uses HT as the query 145

and HI as the key and value instead. Furthermore, 146

we concatenate these two as Bi-direction represen- 147

tation H P R768`768. 148

1A linear mapping layer is added after the image encoder
to map the image representation to 768 dimensions to ensure
uniformity when using different image encoders.
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Figure 2: Various multimodal fusion modules.

Modality Model Twitter15 Twitter17
ACC F1 ACC F1

Text BERT 76.72±1.16 71.19±2.19 68.04±0.40 65.66±0.35

Image
ResNet 57.65±1.00 32.52±2.66 57.79±0.99 51.98±1.23
ViT 59.65±1.13 31.25±2.71 59.53±0.95 54.08±0.78
Faster R-CNN 55.97±1.10 35.72±5.43 56.18±0.85 49.88±1.70

Multimodal

ResNet

Concatenate 75.29±0.45 68.71±1.34 67.92±0.56 65.32±0.53
Tensor Fusion 74.19±0.94 68.93±0.57 66.66±1.21 63.99±1.61
Self Attention 76.03±0.96 70.57±2.39 68.01±0.96 65.41±1.60
Image2Text 77.13±1.33 71.48±1.90 69.37±0.36 66.85±0.79
Text2Image 75.18±1.66 67.77±4.81 68.07±0.58 65.18±1.48
Bi-direction 77.32±0.63 72.06±0.81 68.41±1.01 66.39±1.39

ViT

Concatenate 76.22±0.90 70.37±1.45 67.94±0.70 66.17±0.78
Tensor Fusion 73.44±0.78 67.46±1.45 65.46±1.67 62.02±1.40
Self Attention 75.08±0.41 68.94±0.83 67.52±0.58 65.56±0.35
Image2Text 77.11±0.44 71.91±0.42 69.14±0.52 66.96±0.68
Text2Image 75.12±1.01 69.40±1.38 67.52±1.06 64.49±1.46
Bi-direction 76.70±0.75 71.67±1.45 69.16±0.17 67.25±0.56

Faster R-CNN

Concatenate 75.45±0.73 69.77±1.23 67.60±1.15 64.74±1.69
Tensor Fusion 72.09±0.66 66.77±1.04 66.34±1.45 62.96±2.09
Self Attention 76.09±0.89 70.08±1.37 68.09±1.10 66.12±1.23
Image2Text 77.36±0.37 71.69±0.37 68.43±0.65 66.44±1.10
Text2Image 70.82±2.99 57.94±5.81 60.31±6.43 54.50±7.06
Bi-direction 76.57±0.46 70.88±0.89 69.51±0.62 67.50±0.37

Table 2: Results on Twitter15 and Twitter17. The over-
all best results and those within each corresponding
block are marked with bold and underline, respectively.

2.3 Results Analysis149

We perform experiments of different unimodal en-150

coders and fusion modules over Twitter15 and Twit-151

ter17. In Table 2, we show the results and we have152

the following observations 2:153

First, the text-only model (i.e., BERT) performs154

well, while the visual-only models (i.e., ResNet,155

ViT, and Faster R-CNN) perform relatively poorly,156

revealing that the reliance on text is much greater157

than that on images for the TMSC task on these158

two datasets. In comparison, this phenomenon is159

more pronounced in Twitter15.160

Second, the performance of the model is affected161

by the use of different fusion methods. Specifically,162

fusion modules that primarily focus on acquiring163

the textual information (e.g., Image2Text) perform164

2The experimental setup is illustrated in Appendix B.

better than those focused on acquiring the visual 165

information (e.g., Text2Image). This again reveals 166

the inconsistent importance of text and images. 167

Third, compared with the text-only model, the 168

various fusion modules do not have significant 169

gains in performance and some are even worse. 170

This is due to the fact that some images do not 171

provide related information, but rather distracting 172

information instead 3. 173

Fourth, the impact of various image encoders 174

is not clear, as evidenced by low performance and 175

high standard deviation on the two datasets (see the 176

“Image” part of Table 2). Moreover, differences 177

in performance among various image encoders are 178

small in the multimodal fusion settings (see the 179

“Multimodal” part of Table 2). This is due to the 180

characteristics of visual data in existing datasets, 181

which is analyzed in depth in the following section. 182

Based on the comprehensive experimental analy- 183

ses conducted above, we identify several key points 184

to be considered when designing models for the 185

TMSC task in the future: 1) leveraging text infor- 186

mation to exploit the advantages of textual data 187

fully; 2) devising more effective image encoding 188

methods to extract semantic information from im- 189

ages better; and 3) enhancing the noise immunity 190

of the fusion module to enable more flexible se- 191

lection and utilization of informative features from 192

both textual and visual modalities. 193

3 Data Analysis 194

To gain a deeper understanding of the performance 195

issues mentioned above, we conduct detailed analy- 196

ses of the two datasets, taking into account quantity, 197

diversity, and annotation. Following the annotation 198

procedure employed by Yu and Jiang (2019), we 199

enlist the participation of three domain experts to 200

annotate 400 randomly sampled test data (200 from 201

3We give a detailed analysis of the performance compari-
son for the multimodal model versus the text-only model in
Appendix C.
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Dataset Twitter15 Twitter17
#Negative #Neutral #Positive #Total #Avg Targets #Negative #Neutral #Positive #Total #Avg Targets

Train 368 1883 928 3179 1.348 416 1638 1508 3562 1.410
Dev 149 670 303 1122 1.336 144 517 515 1176 1.439
Test 113 607 317 1037 1.354 168 573 493 1234 1.450

Table 3: Statistics of the datasets. #Avg Targets means the average number of targets for each sample.

93.00%

47.50%
44.50%

22.00%

79.00%

70.50%

17.00%

55.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Textual Sentiment
Consistency

Visual Sentiment
Consistency

No Target Co-determination

Twitter15 Twitter17

Figure 3: Annotation analysis. Textual/Visual Senti-
ment Consistency: the consistency of the target’s sen-
timent in text/image with the sentiment in multimodal
information. No Target: the percentage of images
that are missing the target for sentiment analysis. Co-
determination: the percentage of targets that sentiment
is jointly determined by text and image.

Twitter15 and 200 from Twitter17) across four as-202

pects, with the majority vote being considered as203

the final annotation result (Figure 3) 4. We have204

the following observations:205

First, as shown in Table 3, the sample size is206

relatively small, with an average of less than 1.5207

targets per sample. Additionally, the distributions208

of the sentimental labels are unbalanced in both209

datasets, with neutral sentiment accounting for ap-210

proximately 50% and negative sentiment account-211

ing for less than 15%. The reason behind this is212

that Twitter15 and Twitter17 were originally con-213

structed by Zhang et al. (2018) and Lu et al. (2018)214

respectively for the named entity recognition task,215

rather than specifically for TMSC.216

Second, the multimodal sentiment has high con-217

sistency with the textual sentiment but low consis-218

tency with the visual sentiment. In Twitter15, 93%219

of the targets have the same textual sentiment as220

the multimodal sentiment, while only 47.5% have a221

visual sentiment that matches. This indicates the bi-222

ased distribution existing in the dataset, i.e., the tex-223

tual information is more useful for determining the224

multimodal sentiment. Although this phenomenon225

is mitigated in Twitter17, the textual information is226

still more consistent with the multimodal sentiment227

4Illustrative examples with annotations are in Appendix D.

than the visual information. 228

Third, a large number of targets do not exist in 229

images, which is also not suitable for the target- 230

oriented multimodal sentiment classification task. 231

This phenomenon may stem from the construction 232

of the two datasets, where the targets are selected 233

directly from the text, without taking into account 234

the corresponding images (Yu and Jiang, 2019). 235

Fourth, due to the facts of irrelevant images and 236

non-existence of targets in images, there is only a 237

small portion of the data where the sentiment is 238

determined by both text and images. Specifically, 239

only 22% of Twitter15 and 55% of Twitter17 data 240

require both text and images for the sentiment clas- 241

sification. As for the multimodal task, these two 242

datasets may not be the best-suited in this aspect. 243

Based on our analyses of existing datasets, we 244

propose that high-quality TMSC datasets should 245

possess the following characteristics: 1) accurately 246

reflecting the real-world data distribution, includ- 247

ing factors such as unbalanced label distribution, 248

while also providing sufficient data samples for dif- 249

ferent cases; 2) large data diversity, i.e., various 250

data types and domains, to facilitate valid testing 251

for models’ generalization capability and robust- 252

ness; and 3) multi-dimensional annotation informa- 253

tion, including both multimodal and unimodal sen- 254

timent, to enable thorough analysis of the model’s 255

ability to handle different data sources. 256

4 Conclusion and Future Work 257

In this paper, we conduct a series of in-depth ex- 258

periments for TMSC and data analysis of exist- 259

ing datasets. Our findings reveal that current mul- 260

timodal models do not exhibit significant perfor- 261

mance gains compared to text-only models on the 262

TMSC task. This is largely attributed to the over- 263

reliance on textual modality in existing datasets, 264

while visual modality playing a comparatively less 265

significant role. Based on our experimental anal- 266

yses, we propose future directions for designing 267

models for the TMSC task and for constructing 268

more suitable datasets which better capture the mul- 269

timodal nature of social media sentiments. 270
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Limitations271

Although we have conducted a series of experi-272

ments and data analysis for the TMSC task to the273

best of our ability, there are at least the following274

limitations to our work. First, our data analysis275

was performed mainly for the currently publicly276

available English datasets Twitter15 and Twitter17,277

neglecting the Chinese dataset Multi-ZOL, which278

has not been widely studied. Second, although our279

analysis indicated some problems in using the cur-280

rently dataset to measure the TMSC task, we did281

not construct a new and better dataset for use in282

academic studies. We have included this task as283

one of our future works to be investigated. Third, in284

our experiments, we did not specifically compare285

the impact of different text encoding methods on286

the model performance. While we acknowledge287

that different text encoding methods may indeed288

have an impact, it is worth noting that BERT, being289

a well-established text encoding method, already290

performs adequately. And most existing models291

use BERT as the text encoder. Therefore, we fo-292

cused our study on investigating image encoding293

methods and fusion modules, as we believe there294

is more room for improvement in these parts.295
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A Related Work 439

As one of the tasks of sentiment analysis, TMSC 440

has gained great attention from scholars in re- 441

cent years (Yu and Jiang, 2019). Xu et al. (2019) 442

constructed a Chinese dataset named Multi-ZOL 443

and proposed a multi-hop memory network for 444

handling modal interactions. Subsequently, Yu 445

and Jiang (2019) constructed two English datasets, 446

Twitter15 and Twitter17, and applied BERT to this 447

task. The following research on the TMSC task can 448

be divided into two directions. On the one hand, 449

there is the continuous exploration of how to en- 450

hance the interactions between modalities (Khan 451

and Fu, 2021), and on the other hand, there is the 452

application of pre-trained models to this task (Ye 453

et al., 2022; Ling et al., 2022). Despite these efforts, 454

the current models have not yet achieved significant 455

performance gains relative to the text-only models. 456

We have conducted a series of experiments and 457

data analysis, hoping to provide some insights for 458

the future research of TMSC. 459

B Experimental Setup 460

For each set of experiments, we conduct tests us- 461

ing five different random seeds (i.e., 0, 42, 199, 462

2022, and 11122). We initialize the parameters 463

of the BERT text encoder with bert-base-uncased. 464

The image encoder parameters are frozen, and we 465

use resnet-152, vit-base, and faster-rcnn retrained 466

on the Visual Genome dataset as image encoders, 467

respectively. For both the self-attention and cross- 468

attention modules, we use the last three initializa- 469

tion parameters of bert-base-uncased. We utilize 470

the Adam optimizer (Kingma and Ba, 2015) with 471

a learning rate of 2e-5 and run each experiment 472

on a 3090 GPU for 8 epochs. We select the best 473

epoch’s parameters on the validation set for testing 474

and calculate the mean and standard deviation as 475

the final result. 476

To ensure a fair comparison, we set the models 477

in Table 2 uniformly and without continuing pre- 478

training, which may make it challenging to com- 479

pare them with existing papers due to differences 480

in overall structure and training details compared 481

to Table 1, even if they may use the same unimodal 482

encoder and multimodal fusion modules. 483
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Text Image Target
Sentiment

Multimodal Textual Visual

Congratulations to our
second draw winner - Bu-
laire Leber of ADSS
Global , Haiti . Thanks
for participating , Bulaire

Bulaire Leber Positive Positive! Positive!

RT @ BeschlossDC
: Coretta Scott King
with Robert amp Ethel
Kennedy after husband
’ s assassination , which
occurred tonight 1968

Ethel Kennedy Negative Negative! Neutral%

Pres Obama takes the
stage at @ RutgersU
Commencement in
school football stadium
in Piscataway , NJ .

Obama Positive Neutral% Positive!

RT @ Refugees : Today
, 18 - year - old Yehya
became the 1 millionth
Syrian to register as a
refugee in Lebanon

Lebanon Neutral Neutral! No Target%

Table 4: The annotation examples.

(a) Twitter15 (b) Twitter17

Figure 4: Venn diagram for model performance visual-
ization.

C Model Performance Visualization484

We select Image2Text (Faster R-CNN) as the rep-485

resentative of the multimodal models and compare486

its performance with that of BERT with a random487

seed of 11122 to obtain Figure 4. The intersec-488

tion of every two circles in the figure represents489

the part where the prediction results are consis-490

tent. Based on this comparison, we have the fol-491

lowing observations: First, in terms of prediction 492

accuracy, the multimodal model does not achieve 493

a significant gain over the text-only model. Sec- 494

ond, a portion of the data is predicted correctly by 495

the multimodal model but incorrectly by the text- 496

only model, and vice versa. The proportions of 497

these two parts are similar. This suggests that when 498

images do contribute valuable information to the 499

multimodal model, they also introduce noise. In 500

order to improve the performance, further investi- 501

gation is required for how to properly incorporate 502

the visual information. Third, over 16% of the data 503

has sentiments that neither the text-only model nor 504

the multimodal model predicts correctly. This in- 505

dicates the weakness of the current models and we 506

need further explorations. 507

D Annotation Examples 508

To clearly and visually illustrate the various scenar- 509

ios that arise during the dataset annotation process, 510

four samples are presented in Table 4. 511
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The first example demonstrates a scenario where512

the textual sentiment and the visual sentiment513

matches, resulting in a multimodal sentiment de-514

termined by both modalities. In the example, the515

sentiment in the text is determined to be positive516

through the use of words such as “Congratulations”517

and “winner”. Similarly, the sentiment in the image518

can be inferred as positive by identifying the target519

(i.e., the first person on the right) and noticing his520

smiling face.521

The second example shows a scenario where522

the textual sentiment aligns with the multimodal523

sentiment but not with the visual sentiment, lead-524

ing to a multimodal sentiment determined by the525

textual modality only. Specifically, the sentiment526

conveyed by the text is negative due to the phrase527

“after husband’s assassination” and the sentiment528

conveyed by the image is neutral as it does not529

show an obvious facial expression on the person re-530

ferred to in the text (i.e., the first person on the left).531

Therefore, the multimodal sentiment conveyed by532

both modalities is negative.533

Corresponding to the second example, the third534

example illustrates a scenario where the visual sen-535

timent aligns with the multimodal sentiment but536

not with the textual sentiment. In particular, the537

text simply states a fact with a neutral sentiment,538

while the image shows the target (i.e., the person539

waving his hand in front of the podium) with a pos-540

itive facial expression and posture, resulting in a541

positive multimodal sentiment overall.542

The fourth example presents a scenario where543

there is no target in the image, resulting in a multi-544

modal sentiment determined solely by the textual545

modality. Here, the target is “Lebanon”, but since546

there is only one person in the image and no in-547

formation about “Lebanon”, we can only conclude548

that the multimodal sentiment is neutral based on549

the text. It is worth mentioning that such a sample550

is not ideal for the TMSC task as the image does551

not convey any sentimental information towards552

the target.553
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