
Published as a conference paper at ICLR 2025

DATA CURATION FOR MACHINE LEARNING
INTERATOMIC POTENTIALS BY
DETERMINANTAL POINT PROCESSES

Joanna Zou
Computational Science & Engineering
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA
{jjzou}@mit.edu

Youssef Marzouk
Computational Science & Engineering
Massachusetts Institute of Technology
{ymarz}@mit.edu

ABSTRACT

The development of machine learning interatomic potentials faces a critical com-
putational bottleneck with the generation and labeling of useful training datasets.
We present a novel application of determinantal point processes (DPPs) to the task
of selecting informative subsets of atomic configurations to label with reference
energies and forces from costly quantum mechanical methods. Through experi-
ments with hafnium oxide data, we show that DPPs are competitive with existing
approaches to constructing compact but diverse training sets by utilizing kernels
of molecular descriptors, leading to improved accuracy and robustness in machine
learning representations of molecular systems. Our work identifies promising di-
rections to employ DPPs for unsupervised training data curation with heteroge-
neous or multimodal data, or in online active learning schemes for iterative data
augmentation during molecular dynamics simulation.

1 INTRODUCTION

A primary challenge in the development of machine learning interatomic potentials (MLIPs) for
atomistic simulation is the high degree of sensitivity of model performance to the choice of training
set. In practice, parameters of MLIPs are learned from a training set of atomic configurations labeled
with reference ground state energy and force values obtained from higher-order quantum mechanical
(QM) calculations such as density functional theory (DFT). Due to the significant cost of QM cal-
culations, training datasets must be limited in size to keep the data generation task computationally
tractable and reduce overfitting to redundant data, but also retain representation of conformational
diversity in order to produce robust MLIPs capable of capturing chemical processes of interest.

In this work, we propose using determinantal point processes (DPPs) for automated training set
construction for machine learning-driven atomistic simulation. A DPP is an efficient probabilistic
model over subsets of discrete sets which assigns greater likelihood to subsets with diverse elements,
as determined by the determinant of a kernel matrix measuring the similarity between elements.
Our work is one of the first to compare state-of-the-art data subselection algorithms on the task of
training MLIPs, assessed in terms of diversity of atomic environments sampled, accuracy of the
MLIP as it varies with training set size, and transferrability of the MLIP to predicting energies of
atomic environments unseen during training.

2 BACKGROUND AND RELATED WORK

Data subselection is one form of active learning, in which an algorithm queries informative samples
from a large pool of unlabeled data to label using a cost-intensive process for regression tasks. For
MLIP training, the initial pool of unlabeled data is generally sourced from 1) hand-crafted datasets
using expert judgment for each system of study, such as those of the QM9 database (Ramakrishnan
et al., 2014); or 2) from time steps of molecular dynamics (MD) simulation which are efficiently
evaluated using an empirical potential or initial iterate of the MLIP to approximately sample from
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the Gibbs distribution of the system. However, since the step size must be sufficiently small for
stable numerical simulation (on the order of 10−12 or 10−15 seconds), configurations generated by
MD simulation are highly correlated and lead to high redundancy in the dataset.

Data subselection techniques seek to assemble compact training sets which improve on hand-crafted
datasets as well as the naive approach of uniform sampling from the MD trajectory. In Huan et al.
(2017), the descriptor space is partitioned into clusters using Euclidean distances via k-means which
are each subsampled randomly. However, the k-means algorithm is sensitive to the geometry of
the descriptor space and performs poorly in the high dimensional regime, which is often the set-
ting for molecular descriptors. In Podryabinkin & Shapeev (2017); Lysogorskiy et al. (2023), the
MaxVol algorithm identifies an optimal subset of configurations whose descriptors span the largest
volume, based on the D-optimality criterion in linear experimental design. This approach is limited
to choosing a fixed number of data, namely the same number as the dimension of the descrip-
tors, to form a square D-optimal matrix. In the entropy-maximization method in Karabin & Perez
(2020); de Oca Zapiain et al. (2022), local maxima of a chosen entropy function are assumed to be
sufficiently non-redundant and included in the training dataset. This method heavily relies on the
assumption that the full support of an effective potential function can be adequately sampled such
that the local maxima correspond to well-separated modes of the entropy function. Each method
utilizes a different similarity metric to compare atomic configurations, summarized in Table 1 in
Appendix A.1, with the aim to reduce redundancy in the training set.

In the absence of labels, samples must be selected in an unsupervised manner utilizing only in-
formation on the atomic environment, which is summarized using descriptors which characterize
multi-body interactions while preserving invariance properties of the representation. Examples of
such descriptors include symmetric polynomials (ACE potential, Drautz (2019)), bispectrum com-
ponents (SNAP potential, Thompson et al. (2015)), SOAP descriptors (GAP potential, Bartók et al.
(2010)), atom-centered symmetry functions (Behler, 2011), SMILES strings used in graph neural
network (NN) potentials (Weininger, 1988), or other latent representations learned simultaneously
by NN potentials such as NequIP (Batzner et al., 2022) and Allegro (Bartók et al., 2022). In prin-
ciple, the choice of descriptors for active learning may be independent from the choice of MLIP
architecture which is trained, though the expressiveness of the descriptor – its ability to distinguish
between atomic environments – will affect the efficiency of the data subselection algorithm.

Figure 1: Sample subsets drawn with each method from a MD trajectory of alanine dipeptide.

To illustrate the data subselection methods, Figure 1 shows subsets of N = 5 configurations of
alanine dipeptide, taken from a 50-ns Langevin dynamics simulation at 300 K using the AMBER
ff-99SB-ILDN force field, sourced from Wehmeyer et al. (2023). The subsets are drawn using two
collective variables (backbone dihedral angles ϕ, ψ) as the descriptors of the atomic configurations.
Unlike the uniform random subset, the subsets drawn with the DPP and k-means more consistently
distribute the five selected points to distinct regions of descriptor space, utilizing similarity-based
metrics and distance-based clustering respectively. The MaxVol algorithm is limited to selecting 2
points (equal to the collective variable dimension), and these configurations are located at the bounds
of the descriptor space in order to maximize the volume enclosed by their span.

3 METHODOLOGY

DPPs have seen a recent surge of interest in applications to machine learning (Kulesza & Taskar,
2012), experimental design (Dereziński et al., 2020), and dimensionality reduction (Belhadji et al.,
2020). This section gives an intuitive introduction to DPPs, with details in Appendix A.4. If the data
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pool is modeled by a point process, where each configuration constitutes a point in descriptor space,
then a DPP is a type of repulsive point process which favors the sampling of distinctly unique and
non-clustered points. Unlike other repulsive point processes, DPPs have several features, including
closed-form probabilities and efficient sampling algorithms, which make them attractive in ML ap-
plications (Lavancier et al., 2015). Along this vein, simple random sampling can be interpreted as a
homogeneous Poisson process where points are purely independent and uniformly distributed.

As a point process model, a DPP places a random measure over all subsets of a discrete dataset
Y of M elements. The degree of repulsion between elements is controlled by a kernel matrix
K ∈ RM×M , where Kij = κ(Yi, Yj) for some positive semidefinite (PSD) kernel function κ :
Y×Y → R. The DPP places greater probability on subsets which have a higher degree of repulsion
corresponding to a larger determinant of a kernel matrix, which can be interpreted as a measure of
volume spanned by the matrix columns. For a subset {Yi}i∈α ⊆ Y indexed by α = {α1, ..., αm}
with m ≤ M and the kernel matrix [Kij ]i,j∈α restricted to rows and columns indexed by α, the
probability of the subset being drawn by the DPP is given by:

P({Yi}i∈α) = det
(
[Kij ]i,j∈α

)
(1)

A DPP is defined by a choice of PSD kernel function. In this work, we employ a linear kernel
equivalent to the cosine similarity of the descriptor vectors. Given a configuration of Ji atoms with
Cartesian positions xi ∈ R3Ji , a second configuration of Jj atoms with positions xj ∈ R3Jj , and a
global q-dimensional descriptor ϕ : R3J → Rq as a function of the positions of an arbitrary number
of atoms J , the normalized linear kernel is given by:

κ(xi,xj) =
ϕ(xi) · ϕ(xj)

∥ϕ(xi)∥ ∥ϕ(xj)∥
(2)

A DPP models probabilities over all 2M subsets of Y without constraints on the size of the subset;
however, subsets of a pre-specified size are often desired in applications. Therefore, we employ
fixed-size DPPs (Kulesza & Taskar, 2011; Barthelmé et al., 2019) which provide a probability mea-
sure over subsets of Y of the same cardinality. Efficient sampling algorithms have been developed
for both regular and fixed-size DPPs which perform sampling by decomposing the DPP into a mix-
ture of elementary DPPs; refer to Kulesza & Taskar (2011); Barthelmé et al. (2019) and Appendix
A.4. In general, the probabilistic nature of DPPs can offer substantially improved computational
efficiency over brute force or optimization-based methods to data subselection.

4 EXPERIMENT

Reference dataset. We utilize hafnium oxides as systems of study for benchmarking the perfor-
mance of the data subselection algorithms. Training and validation data belong to a 45,201-element
set of HfO2 and HfO configurations generated from six simulation sets to represent a range of states
across the compression curve of each system, starting from crystal structures obtained from the Ma-
terials Project database (Jain et al., 2013). A 67% partition of this set, chosen proportionally from
each simulation setting, is taken to be candidate data from which training data are subselected, while
the remaining 33% constitutes the validation set. The test data consist of 67,219 configurations of
either hafnium (Hf) or oxygen (O) atoms generated across 12 simulation sets by a similar procedure.
Using this test set, we evaluate the ability of the MLIP trained on multi-species configurations of
hafnium oxides to extrapolate to single-species configurations of Hf2, Hf, O2, and O, which are not
explicitly seen during training. Reference QM values of energies and forces are computed with DFT
using Quantum ESPRESSO (Giannozzi et al., 2017). Further details are provided in Appendix A.2.

Experimental setup. Data subselection is performed with four methods, by taking 1) a uniform
sample of the candidate data, referred to as a simple random sample (SRS); 2) a random sample
from clusters identified with k-means using k = 5 and covariance-weighted Euclidean distances
between descriptors, where clusters are uniformly sampled proportionally to the cluster size; 3) the
fixed set of basis vectors selected by the MaxVol algorithm; and 4) a random sample from a fixed-
sized DPP computed from a linear kernel matrix of the descriptors. The molecular descriptors used
to represent configurations are global ACE descriptors of Hf-O systems with body order N = 5
and polynomial degree p = 8 (Drautz, 2019), leading to descriptors of dimension d = 1160. Once
training data are selected, reference QM values of energy are queried and an ACE potential is trained
on the set by taking the least squares estimator of the model parameters.
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Accuracy vs. training set size. We compare the accuracy of a MLIP trained on data subselected
with each method using two common accuracy metrics: root mean square error (RMSE) in en-
ergy predictions capturing bias and variance information, and the coefficient of determination (R2)
measuring goodness of fit. For algorithms which sample variable set sizes (SRS, k-means, and
DPP), accuracy statistics over 100 trials on the validation data are reported in Figure 2 for set sizes
N ∈ {100, 200, 400, 800, 1600, 3200, 6400}, whereas the accuracy is reported for a single set size
d = 1160 for MaxVol, as by construction it solves for a deterministic subset with cardinality equal
to the dimension of the descriptor vector. The DPP-trained MLIP is comparable to that trained with
k-means in both the data-poor regime (<200 samples), where small training sets limit model ac-
curacy, as well as in the data-rich regime (>6400 samples), where large training sets have reduced
distinction from one another. DPP outperforms the other variable-size data subselection methods,
achieving low RMSE and high R2 for each training set size N with less dispersion as represented
by the interquartile range. MaxVol achieves an R2 value closest to 1. This study demonstrates that
DPP-based subselection is effective at constructing training datasets which summarize the Hf-O data
with O(102 − 103) elements.

Figure 2: RMSE and R2 values of energy predictions on the validation set by the MLIP trained on set size N .
The center point denotes the median value and rangebars denote the 25th to 75th percentile over 100 trials.

Although SRS, k-means, and DPP are flexible to select variable set sizes, we fix the set size sampled
by each of these methods to N = d = 1160 for the remainder of the studies, in order to maintain
one-to-one comparison with the MaxVol algorithm.

Diversity of training set. The subsets chosen by each method is assessed for diversity, which is
measured in terms of reference energies and force amplitudes (averaged over all atoms) associated
with configurations in the subset, following de Oca Zapiain et al. (2022). In Figure 3, the sub-
sets drawn with DPP and MaxVol cover a greater range of energies and force amplitudes, whereas
the subset drawn with k-means has marginal distinction from that drawn with SRS, indicating that
distance-based clustering in descriptor space does not necessarily correspond to better coverage of
output quantities. This study provides evidence of the expressiveness of product-based similarity
metrics used by DPPs and MaxVol to choose subsets with a greater range in the output space.

Figure 3: Distribution of energies and force amplitudes of 1160 selected configurations.

Prediction error on unseen data. We evaluate the generalization capabilities of the MLIP, trained
on atomic interactions with HfO2 and HfO data, to predict energies of single-species Hf and O
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systems. Figure 4 shows the relative error in energy predictions over test configurations categorized
into 5 molecule types, as summarized in Appendix A.2. In general, the prediction error by the DPP-
trained MLIP is close to that of the MaxVol-trained MLIP, which achieves the lowest distribution of
error for the bulk 128-atom Hf system.

Figure 4: Relative error in energy predictions on the test set by an MLIP trained on a 1160-element set. Errors
in Hf2, Hf, O2, and O have been truncated to visualize the main mass of the distribution.

5 DISCUSSION

We present a new approach to training data curation for MLIPs leveraging DPPs and provide one of
the first studies to benchmark the performance of different data subselection algorithms, advancing
the state of the art in computational materials characterization. Our work demonstrates the com-
petitiveness of the DPP-based approach with respect to existing approaches to variable-size data
subselection in terms of accuracy of the trained MLIP, diversity of sampled configurations, and
generalization to predictions on unseen data. If the kernel matrix is chosen to be the Fisher infor-
mation matrix, then DPPs can be viewed as a principled probabilistic counterpart to the MaxVol
algorithm, as both approaches rely on the D-optimality principle of maximizing the matrix determi-
nant (Dereziński et al., 2020). This technique may complement several existing efforts to accelerate
active learning in an online setting, where data are simultaneously sampled via molecular dynamics
simulation of a fast potential and assessed for labeling with calls to a costly QM method. The next
step of this work is to employ conditional DPP sampling for data augmentation tasks amenable to
online active learning, to draw subsets of novel configurations conditioned on an existing set of train-
ing configurations, and compare this kernel-based strategy to uncertainty-based strategies proposed
in Vandermause et al. (2020); van der Oord et al. (2023); Kulichenko et al. (2023). Another future
direction is to apply this method to heterogeneous or multimodal datasets, such as simulation data
of multiple element species or combinations of simulation and experimental data, as an automated
technique for extracting informative data subsets which are most efficient for model development.
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Albert P. Bartók, Matthias Rupp, Heng Huo, Miguel A. Caro, Anton Götz, and Michele Ceriotti.
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A APPENDIX

A.1 COMPARISON OF DATA SUBSAMPLING ALGORITHMS

Table 1 provides a summary of the literature review from Section 2. A primary distinction among
the algorithms for data subselection is the similarity metric used to compare two configurations.
While the entropy maximization method is amenable to offline active learning schemes for data
subselection, the entropy function depends on local (per-atom) descriptors, and is therefore excluded
from comparison studies of methods depending on global (molecular) descriptors.

Table 1: Review of data subselection algorithms for ML-IPs in literature.
Algorithm Primary Reference Similarity Metric Subset Size Type

SRS – None Variable Probabilistic
k-means clustering Huan et al. (2017) Euclidean distance in descriptor space Variable Probabilistic

MaxVol Podryabinkin & Shapeev (2017) Fisher information matrix Fixed Deterministic
Entropy max. Karabin & Perez (2020) Entropy function Variable Deterministic

fixed-size DPP This work PSD kernel Variable Probabilistic

A.2 REFERENCE DATASET

The reference data used to validate energy predictions in the experiments of Section 4 consist of
quantum-level energies and forces of atomistic configurations of hafnium (Hf), oxygen (O), hafnium
dioxide (HfO2), and hafnium oxide (HfO) systems. The configurations are generated using a sys-
tematic approach to explore the descriptor space of interest: for each system, the experimentally
observed crystal structures are obtained from Materials Project (Jain et al., 2013). Using the com-
pression curves of each material, Latin Hypercube Sampling (LHS) is performed, treating the lattice
parameters (length and angles) and density as random variables, to draw random samples ranging
from highly compressed states to melting point states. The atomic positions are then minimized
for each configuration to obtain the equation of state (EOS). Additional simulations are carried out
for bulk Hf systems to sample configurations along the phase diagram from the convex hull to high
energy states In particular, a modified Monte Carlo rattling procedure using the hiPhive package
(Eriksson et al., 2019) is employed on supercells replicated from the unit cell of each structure to
generate LHS samples emulating the phase diagram. For each configuration, quantum-level ener-
gies are computed with Quantum ESPRESSO (Giannozzi et al., 2017) utilizing the PBE functional
with the Optimized Norm Conserving Vanderbilt (ONCV) pseudopotential. All calculations used
the Marzari-Vanderbilt method (Marzari et al., 1999) for electron smearing and the electronic tem-
perature was set to 0.06 Ry. The kinetic energy cutoff was 90 Ry and the k-point spacing of 0.025
Å-1 was adopted to ensure all configurations have consistent spacing.

Table 2 summarizes the configurations of HfO2, HfO used for training and validation and Table 3
summarizes the configurations of Hf and O systems used for the test set, categorized into simulation
sets. The simulation sets are labeled with their chemical species; Materials Project ID number (MP
ID), if one exists; the number of translation and/or rotational degrees of freedom (1D, 3D, 6D); phase
(primitive, gas); whether the Monte Carlo rattling procedure is performed (MC); and whether the
atomic positions have been minimized (EOS). Set 1 of Table 2 (labeled with “figshare”) corresponds
to hafnium dioxide configurations sourced from Sivaraman et al. (2020) where electronic structure
calculations are recomputed with the ONCV pseudopotential. The number of Hf or O atoms per
configuration are reported in the last two columns.

Table 2: Training/validation set of hafnium dioxide (HfO2) and hafnium monoxide (HfO) configurations.
index MP ID set no. configurations no. Hf no. O
1 – HfO2 figshare 2052 36 72
2 352 HfO2 EOS 1D 300 4 8
3 550893 HfO2 EOS 1D 131 1 2
4 550893 HfO2 EOS 6D 27620 1 2
5 – HfO gas 129 1 1
6 – HfO EOS 1D 14969 1 1

Note that in Figure 4, the bulk Hf test data corresponds to sets 1-3, the Hf2 test data to sets 4-7, the
Hf test data to sets 8-9, the O2 test data to sets 10-11, and the O test data to set 12, as listed in Table
3.
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Table 3: Test set of hafnium (Hf) and oxygen (O) configurations.
index MP ID set no. configurations no. Hf no. O
1 – Hf2 gas 63 2 0
2 103 Hf2 EOS 1D 202 2 0
3 103 Hf2 EOS 3D 9377 2 0
4 103 Hf2 EOS 6D 17205 2 0
5 100 Hf EOS 1D 201 1 0
6 100 Hf 1D primitive 201 1 0
7 100 bulk Hf MC 306 128 0
8 103 bulk Hf MC 50 128 0
9 – bulk Hf MC 498 128 0
10 607540 O2 EOS 6D 19223 0 2
11 – O2 gas 204 0 2
12 – O EOS 6D 19689 0 1

A.3 ADDITIONAL EXPERIMENTS ON HAFNIUM DATA

In another study, we consider single-species hafnium (Hf) data to evaluate the performance of DPP,
k-means (k = 5), and SRS to draw variable-sized training datasets. We take the candidate training
data and validation data from a 27,249-element set of 1-atom and 2-atom Hf configurations, gener-
ated from simulation sets 1-6 detailed in Table 3. The training sets, subselected from a 70% split
of the data, are used to learn a 5-body 6-degree ACE potential of hafnium, which have a descriptor
dimension of d = 35. Figure 5 shows the statistics of RMSE andR2 values of the energy predictions
on the validation set by MLIPs trained on each subset. Figure 6 shows the distribution of per-atom
energies and force magnitudes associated with a 400-sample set drawn by each of the three methods.
While the results using the Hf data largely mirror the trends observed with the Hf-O data in Section
4, the improvements of the DPP-based approach in terms of both prediction accuracy and diversity
of configurations are more pronounced in this study. Further experiments can be conducted to as-
sess the dependency of the data subselection algorithms on the choice of descriptor, in particular the
dimension and expressivity of the descriptor for a given system of study.

Figure 5: RMSE and R2 values of energy predictions on the validation set by the hafnium MLIP for training
set size N . The center point denotes the median value and rangebars denote the interquartile range (25th to
75th percentile) over 100 trials.

In addition, we assess diversity of subsets selected by DPP and k-means in terms of the rate at
which the algorithm samples each of the 6 simulation datasets composing the candidate training
data (the first six rows of Table 3). Over 100 trials, subsets of 800 elements are drawn from the
data pool of Mtot = 19, 090 elements and the number of instances of each simulation dataset is
counted and normalized by the batch size and total number of elements per dataset, such that the
normalized rate can be compared to the uniform sampling rate of 1/Mtot from SRS. Figure 7 shows
that the DPP leads to differential rates of sampling between datasets, with Sets 1 and 6 favored
relative to the SRS baseline. This indicates that these two simulation sets, while relatively small in
number compared to other sets, are important to include in the DPP subset to represent diversity
in the data pool. Therefore, DPPs can also be utilized as a diagnostic for categories of data which
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Figure 6: Distribution of energies and force amplitudes of 400 configurations selected by each algorithm.

have proportionally greater influence in training, which can inform the collection of additional data.
In contrast, the k-means clustering method does not lead to substantially different sampling rates
compared to SRS.

Figure 7: Representation from simulation datasets 1-6 (Table 3) in the 800-element subsets selected by DPPs
and k-means, with the uniform rate from SRS as reference.

A.4 DETERMINANTAL POINT PROCESSES

Consider a set ofM discrete elements represented by their indices Y = {1, ...,M}. A determinantal
point process (DPP) is a probability measure placed over all 2M subsets of Y , where probabilities
are determined by the kernel matrixK ∈ RM×M associated with the process. In practice, the kernel
matrix is constructed from evaluations of a positive semidefinite (PSD) kernel function κ : Y×Y →
R between each pair of elements in the set, where Kij = κ(Yi, Yj) for Yi, Yj ∈ Y . If the kernel
matrix satisfies conditions for the existence of the L formulation (namely, that P (∅) ̸= 0 and K
has no eigenvalue equal to 1 (Kulesza & Taskar, 2012)), then the L ensemble corresponding to K is
given by:

L = K(I −K)−1 (3)

The DPP is then defined equivalently by the following, for random subsets Y ⊆ Y and a fixed subset
A ⊆ Y (Edelman, 2024):

PDF definition. The probability density function of the DPP is given by:

P(Y = A) =
det(LA)∑

A′⊆Y det(LA′)
(4)

where LA = [Lij ]i,j∈A denotes the matrix restricted to entries indexed by the elements of A. The
PDF definition is also referred to as the “L formulation” of the DPP (Edelman, 2024).
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CCDF definition. The complementary cumulative density function of the DPP is given by:

P(Y ⊇ A) = det(KA) (5)

In other words, the probability that A is a subset of the randomly drawn set Y is given by the
determinant of the kernel matrix restricted to entries indexed by A. A special case of the CCDF is
the marginal probability of each element of the set, which is given by the diagonal of the K matrix:

P(i ∈ Y ) = Kii (6)

The marginal probability is also referred to in literature as the “inclusion probability” (Kulesza &
Taskar, 2012). The CCDF definition is also referred to as the “K formulation” of the DPP (Edelman,
2024).

CDF definition. The cumulative density function of the DPP is given by:

P(Y ⊆ A) = det(I −K)Ā (7)

where Ā denotes the complement, Ā = Y \A.

Mixture of elementary DPPs. An important property of a DPP is that it can be represented as the
mixture of elementary DPPs. Also referred to as projection DPPs, an elementary DPP has a kernel
matrix which is a projection matrix of rank r ≤ M , e. g. KTK = K and K = V V T for a set of r
orthonormal vectors V (Edelman, 2024). Elementary DPPs then have the property that:

PVr (A) =

{
det(KA) if |A| = r

0 otherwise
(8)

Therefore, only
(
M
r

)
subsets of size exactly r have non-zero probability (Edelman, 2024). The PDF

of the DPP can be represented as the mixture of elementary DPPs, using the eigendecomposition of
the L matrix L =

∑M
i=1 λiviv

T
i :

P(Y = A) =
1

det(I + L)

∑
J⊆1:M

PVJ

∏
i∈J

λi (9)

In particular, it can be shown that the normalizing constant of the density can be derived as in
Kulesza & Taskar (2011):

∑
A′⊆Y

det(LA′) = det(I + L) =

M∏
i=1

(λi + 1) (10)

The mixture representation of DPPs lends it to a computationally tractable sampling algorithm. In
particular, the DPP can be sampled by drawing samples from each of the elementary DPPs with
probability

∏
i∈J λi∏M

i=1(λi+1)
.

Fixed-size determinantal point processes. A k-DPP is a DPP which produces samples of fixed
size k ≤ M (not to be misconstrued with the number of clusters in k-means). Unlike elementary
DPPs, which are restricted to represent specific probability measures associated with a projection
kernel matrix, k-DPPs can represent a more flexible range of probability measures over the subsets.
As one example, a k-DPP can be defined to assign a uniform distribution over subsets, whereas a
singular elementary DPP cannot (Kulesza & Taskar, 2012). Therefore, elementary DPPs can be
considered a subclass of k-DPPs.

A k-DPP can be understood as a special form of conditional DPP, with the following PDF:

11



Published as a conference paper at ICLR 2025

P(Y = A| |Y | = k) =
det(LA)∑

|A′|=k det(LA′)
(11)

where the normalizing constant is a sum over all subsetsA′ ∈ Y with restricted cardinality |A′| = k.
It can be shown that the k-DPP can also be expressed as a mixture of elementary DPPs:

P(Y = A| |Y | = k) =
1

eMk

∑
|J|=k

PVJ

∏
i∈J

λi (12)

The normalizing constant of this distribution differs from that of the standard DPP. One can show it
is derived as:

∑
|A′|=k

det(LA′) = det(I + L)
∑

|A′|=k

P(Y = A′)

=
∑
|J|=k

∏
i∈J

λi
(13)

The derivation uses the property that sets drawn from the elementary DPP have cardinality |J | = k
with probability 1, such that the expression reduces to the sum of products of eigenvalues indexed
by elements in each J subset. One can recognize this term to be the kth elementary symmetric
polynomial (Kulesza & Taskar, 2012):

eMk = ek(λ1, ..., λM ) =
∑

J⊆1:M
|J|=k

∏
i∈J

λi (14)

The marginal probability of elements, now considering fixed sizes to the subsets drawn, is propor-
tional to the eigenvalues of L scaled by a ratio of the elementary symmetric polynomials:

P(i ∈ Y | |Y | = k) = λM
eM−1
k−1

eMk
(15)

Sampling algorithm for k-DPPs. Algorithm 1 for sampling from k-DPPs is reproduced from
Kulesza & Taskar (2011; 2012). The algorithm is composed of two loops: Loop 1 samples eigen-
vectors ofL to form a subspace from which to draw the samples. While the eigenvectors are sampled

with probability λn

λn+1 for standard DPPs, the probability becomes λn
en−1
l−1

enl
for k-DPPs. Moreover,

sampling is performed until strictly k eigenvectors are obtained. Loop 2 iteratively samples elements
from the eigenvectors, orthonormalizing the basis after each sample is drawn. While the cardinality
of the basis V varies for standard DPPs, it is kept fixed at k for k-DPPs.

Computationally, the sampling of regular DPPs and k-DPPs differ primarily in the computation
of the probabilities in Loop 1. For k-DPPs, the normalization constant of the probability density
involves calculating the ratio of elementary symmetric polynomials, the cost of which scales ex-
ponentially. For instance, calculation of eNk takes on the order of O(k

(
N
k

)
) operations due to the

combinatorial problem. To address this cost, Kulesza & Taskar (2011; 2012) recommend imple-
menting a recursive algorithm to construct all symmetric elementary polynomials at once, using the
recurrence relation:

eNk = eN−1
k + λNe

N−1
k−1 (16)

The recursive algorithm has polynomial cost at O(Nk), significantly reducing the computational
overhead of the sampling algorithm.
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Algorithm 1 Sampling from a k-DPP

Require: 0 < k ≤ N , eigendecomposition {(vn, λn)}Nn=1 of L from Equation 3

Loop 1: sample eigenvectors to form subspace
J ← ∅
l← k
for n = N, ..., 2, 1 do

if l = 0 then
break

end if
if u ∼ U [0, 1] < λn

en−1
l−1

enl
then

J ← J ∪ {n}
l← l − 1

end if
end for

Loop 2: draw samples from orthonormalized subspace
V ← {vn}n∈J

Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i)− 1
|V |

∑
v∈V (v

Tei)
2

Y ← Y ∪ i
V ← V⊥ (orthonormal basis for subspace of V orthogonal to ei)

end while

Output: Y

A.5 IMPLEMENTATION

Experiments were conducted in Julia using the packages PotentialLearning.jl and InteratomicPo-
tentials.jl, developed Dallas Foster, Emmanuel Lujan, Spencer Wyant, and JZ; Determinantal.jl,
developed by Simon Barthelmé; Maxvol.jl, developed by Aleksandr Mikhalev; ACE.jl, developed
by Christoph Ortner et al.; and Clustering.jl for the k-means algorithm.

13

https://github.com/cesmix-mit/PotentialLearning.jl
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