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Abstract
Deep neural networks have been successfully applied to a broad range of problems where over-
parametrization yields weight matrices which are partially random. A comparison of weight matrix
singular vectors to the Porter-Thomas distribution suggests that there is a boundary between ran-
domness and learned information in the singular value spectrum. Inspired by this finding, we
introduce an algorithm for noise filtering, which both removes small singular values and reduces
the magnitude of large singular values to counteract the effect of level repulsion between the noise
and the information part of the spectrum. For networks trained in the presence of label noise, we
find that the generalization performance improves significantly due to noise filtering.

1. Introduction

In recent years, deep neural networks (DNNs) have proven to be powerful tools for solving a wide
range of problems [1–5], including many applications in physics [6–16]. DNNs are often highly
over-parametrized [17–23], enabling them to generalize well beyond the training dataset and mem-
orize large amounts of random data [24, 25]. However, overfitting to mislabeled examples in real-
world datasets can significantly decrease generalization performance [26, 27].

Random matrix theory (RMT) has been successfully applied to analyzing neural networks [28–
36]. Since DNN weights are initialized randomly, learned information after training manifests itself
as deviations from RMT predictions. Even state-of-the-art DNNs have weights that follow RMT
predictions [34, 36]. The singular value distribution of a weight matrix can be decomposed into
a random bulk, described by the Marchenko-Pastur (MP) distribution, and a tail region. Singular
vectors in the bulk follow the Porter-Thomas (PT) distribution, while large singular values and
corresponding vectors deviate from RMT [34, 36].

We study weight matrices of various DNN architectures trained with and without label noise.
Using a Kolmogorov-Smirnov test, we find a boundary between noise and information: singular
vectors with small singular values match RMT predictions, while those with large singular values
deviate significantly. This is confirmed by setting small singular values to zero and evaluating the
impact on training and test accuracy. We find that small singular values and their associated vectors
do not encode information. Networks trained with label noise require more singular values for good
performance compared to those trained on pristine data, indicating that label noise is primarily
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Figure 1: Analysis of singular values ν and vec-
tors V of the first weight matrix for the MLP1024
network trained with varying label noise: 0%
(blue), 40% (green), and 100% (brown). Ran-
domly initialized weights are shown in red. Up-
per panel: p-values of Kolmogorov-Smirnov tests
for a Porter-Thomas distribution, averaged over
neighboring singular values, with the 2σ region
around the mean in light red. Lower panel: Cor-
responding singular value spectra (dashed line: fit
of an MP distribution).

encoded in intermediate singular values. Motivated by these results, we propose a noise-filtering
algorithm for DNN weights: (i) removing small and intermediate singular values, and (ii) reverting
the shift of large singular values due to level repulsion with the noisy bulk. This algorithm improves
test accuracy by up to 6% for DNNs trained with label noise. The results presented here are a
concise summary of Ref. [37], which includes additional findings and detailed information.

2. Setup

We train several DNNs on the CIFAR-10 dataset [38] containing N = 50000 training images sorted
into ten different classes. For training with label noise, we randomly shuffle a certain percentage
of the labels. We train two kinds of architectures: (i) fully connected networks with three hidden
layers, denoted as MLP1024, with layer sizes [in, 1024, 512, 512, out], and (ii) convolutional neural
networks (CNNs), called miniAlexNet [25], consisting of two convolutional layers followed by
max-pooling, batch normalization, and fully connected layers with regularization. We initialize
the networks with a Glorot uniform distribution [39] and zero biases. For details of the training
parameters refer to the Appendix A.

To show that our results are generalize to larger models, we additionally consider the two net-
works alexnet [40] and vgg19 [21] pretrained on the imagenet dataset [40] with 1000 classes. We
compute the singular value decompositions W = Udiag(ν)V with orthogonal matrices U, V con-
taining the singular vectors, and non-negative singular values ν. For convolutional layers in CNNs,
we first need to reshape the convolutional layer weight tensors into a rectangular shape, as shown in
the Appendix F.

3. Boundary between noise and information

For a large random matrix, the components of its m-dimensional singular vectors follow a PT dis-
tribution, which is a normal distribution with zero mean and standard deviation 1/

√
m. To account

for correlations introduced by the normalization of singular vectors, we compute the Kolmogorov-
Smirnov test statistic using Monte-Carlo methods. This test is applied to the empirical distribution
of the singular vectors V of trained networks, with details provided in the Appendix B. The resulting
p-values, ranging from 0 to 1, indicate the likelihood of the sample being from the test distribution.
We average these p-values over an interval of size 31, resulting in a random control fluctuating
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Figure 2: Boundary between information and
noise, demonstrated by setting singular val-
ues to zero. Training accuracy for remov-
ing singular values from (a) the second layer
of MLP1024 networks trained with various
amounts of label noise (0% blue, 40% green,
and 100% brown), and (b) from the second con-
volutional layer of miniAlexNet. Test accu-
racy for setting singular values to zero in (c)
miniAlexNet trained without label noise in the
first dense layer (orange) and the second convo-
lutional layer (blue), and (d) in the pre-trained
networks vgg19 [21] (third dense layer, blue)
and alexnet [40] (second dense layer, orange).
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Figure 3: Dependence of the test accuracy on
the removal and shifting of singular values from
the second weight matrix of MLP1024 net-
works trained in the presence of label noise:
upon setting singular values to zero (blue) and
when additionally shifting them according to
Eq. (3) (green) we observe a significant im-
provement in performance. For training with
overfitting (red) no improvement is observed,
indicating that information and noise are mixed
in the spectrum.

around 0.5 with a standard deviation of σ = 0.05. For the MLP1024 architecture without label
noise, the averaged p-values drop below 2σ of the random control for singular values ν ≳ 2.3, cor-
responding to 14.3 percent of deviating singular values (blue solid line in the upper panel of Fig. 1).
This indicates that information may be contained in these singular vectors. For vectors correspond-
ing to small singular values, the p-values lie within or above the 2σ region due to the orthogonality
requirement with vectors possessing a small mean (see Appendix C).

Additionally, we compare the empirical singular values to a MP distribution valid for random
matrices [41]. The bulk of small singular values can be fitted with a MP distribution (lower panel,
dashed line), which describes the spectrum of randomly initialized weight matrices. The upper end
of this fit is located at singular values ν ≈ 2, consistent with the value 2.3 found above, where the
p-value falls outside the 2σ interval.

To verify that system-specific information is stored in singular vectors corresponding to large
singular values, we set the smallest singular values to zero and monitored the training and test
accuracy of the networks (Fig.2). The training accuracy (upper panels, blue lines) shows that learned
information is stored only in the largest singular values and their corresponding vectors. Label
noise, learned differently from the rule, is mainly stored in intermediate singular values, causing
the training accuracy to drop significantly earlier when label noise is present. This behavior is more
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pronounced in a convolutional layer of miniAlexNet (Fig.2b), where the training accuracy drops
sharply after removing more than 30% of the singular values, compared to about 90% for pristine
training data. Examining the dependence of test accuracy on the removal of singular values (Fig.2c,
d) reveals that generalization relies solely on the largest singular values and corresponding vectors.
This finding holds for large convolutional networks such as AlexNet (orange) and VGG19 (blue)
in Fig.2d. The observation that neural networks use only a small fraction of large singular values
and vectors to learn the underlying rule explains why they generalize well despite their capacity
to memorize random labels, as larger singular values and vectors store the rule, while intermediate
ones can memorize random labels.

4. Noise filtering of weights

We next study how the generalization performance of DNNs trained with label noise depends on the
removal of singular values. In Fig. 3 we show the test accuracy of an MLP1024 network when set-
ting singular values to zero in the second layer. We show results for 20% and 40% label noise which
are common in web-crawled datasets [42]. For 40% noise the generalization accuracy improves
by up to 2.5% when removing about 90% of singular values. See the Appendix H for differently
trained models that show similar behavior. Following the improvements found for image recogni-
tion tasks when removing singular values [37], it was later found that even large transformer models
can benefit from the removal of singular values [43].

In addition, we train MLP1024 networks with severe overfitting, i.e. we train for much longer
than necessary to achieve 100% training accuracy, with a slower learning rate schedule. This causes
an earlier drop of the test accuracy when removing singular values (red line, Fig. 3), without any no-
ticeable improvements before the drop. We interpret this behavior as a mixing between information
and noise in the spectra such that no clear boundary between these regimes exists anymore.

Level repulsion in random matrices leads to an upward shift of large singular values in the
presence of a random bulk of smaller singular values [44–46]. To identify the bulk, we suggest to
model the weight matrices as W = W0 +Wnoise with a noisy bulk Wnoise and a low rank part W0

containing the information. This model can be justified by assuming Langevin learning dynamics
as discussed in the Appendix D. The upward shift of singular values in this model can be explicitly
computed [44, 47] in the limit where the dimensions of the nl × nl−1 weight matrix tend to infinity
with a fixed ratio q = nl/nl−1 ≤ 1. Under the assumption of i.i.d distributed elements of Wnoise

with standard deviation σ, the singular values ν of W can be shifted back to recover the unperturbed
singular values ν0 of W0 via

ν0
σ

=
1√
2

√√√√(ν
σ

)2
− q − 1 +

√((ν
σ

)2
− q − 1

)2

− 4q , (1)

where σ is obtained from a MP fit to the spectrum [37] (for details see the Appendix E). The effect
of such a transformation is shown in Fig. 4: While large values are shifted by a relatively small
amount as seen in the inset, there are several singular values that get pushed far into the MP region.

When cleaning a weight matrix W from noise, we use the following algorithm: i) rank order
the singular values of W ; ii) shift the large singular values outside the MP region, maintaining
their rank; and iii) remove singular values from small to large based on their rank. This algorithm

4



NOISE INFORMATION BOUNDARY IN NEURAL NETWORKS

Figure 4: Singular value shift: histogram of
singular values for the first weight matrix of
the MLP1024 network and MP fit (solid, black)
with boundaries of the MP region (dashed black
lines). The dashed red lines show the locations
of shifted singular values according to Eq. (1),
and the inset zooms into the tail region.
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Figure 5: Average improvement of the test ac-
curacy when removing singular values (blue,
red) from all layers and when additionally shift-
ing them (green) in MLP1024 networks, with
results for both the standard learning rate sched-
ule (blue crosses, green diamonds) and an over-
fitting schedule (red squares).

significantly improves generalization accuracy (see Fig. 3, green lines) when combining shifting
and removing singular values, as compared to only removing them [37].

To study typical improvements from noise filtering DNN weight matrices, we train MLP1024
networks on CIFAR-10 with partially shuffled labels, keeping a validation set of 2000 and a test set
of 8000 images. After training, we optimize the amount of singular values to remove for each layer,
starting from the last layer and moving to the first, fixing previously filtered weights. We determine
the amount to remove from the maximum validation accuracy when setting singular values to zero,
starting with the smallest. We also shift singular values outside an MP-fit when this increases
validation accuracy.

The results, shown in Fig. 5, indicate a 1% improvement in networks trained with the regular
schedule and 20% label noise when shifting and removing singular values (green symbols). Error
bars and means are computed over ten seeds. With increased label noise, improvements are more
significant. However, overfitted networks (red symbols) show no improvement. Our parameter-free
algorithm for removing label noise can be applied to already trained networks and combined with
other methods for mitigating label noise effects, such as cleaning training data [48], modeling true
labels as unknown variables [26], or using inherently label noise-robust models [49].

4.1. Conclusions

By comparing singular vectors to the Porter-Thomas distribution and singular values to a Marchenko-
Pastur law, we argue that weight matrices of DNNs exhibit a boundary between noise and infor-
mation in their spectra. We test this idea by systematically setting singular values to zero while
monitoring the impact on the training and test accuracy. It turns out that (i) small singular values
do not contribute to either training or test performance, (ii) large singular values encode the un-
derlying rule, and (iii) intermediate singular values are important for the training accuracy when
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learning images with label noise. We suggest a filtering algorithm combining the removal of small
and intermediate singular values with the downward shift of large ones, and find that it increases
the generalization performance significantly in the presence of label noise. As label noise can be
inherent in datasets where label annotation is difficult, we believe that filtering of weight matrices
could be useful for improving the performance of DNNs in such situations.
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Appendix: Boundary between noise and information applied to filtering neural
network weight matrices

A. NEURAL NETWORK ARCHITECTURES AND TRAINING SCHEDULES

In the main text, we consider different network architectures, trained with various amounts of label noise. Tab. S1
lists the network architectures, training datasets, and accuracies achieved on each dataset. For networks trained
with several different seeds, we report the average accuracy and the error of the mean. We downloaded the large
pre-trained networks v) alexnet [3] via Matlab and vi) vgg19 [4] via tensorflow [5]. For the networks i)-iv), weights
are initialized using the Glorot uniform distribution [6], the biases are initialized with zeros, and we standardize each
image of the CIFAR-10 dataset by subtracting the mean and dividing by the standard deviation. We train networks
i), iii), and iv) for 100 epochs using mini-batch stochastic gradient descent with an initial learning rate of 0.005,
an exponential learning rate schedule with decay constant 0.95, momentum of 0.95, and mini-batch size 32. For
the first dense layers in the CNN, we use an L2 regularization with strength 10−4. For the discussion of accuracy
improvements when shifting and removing singular values we also consider an overfitting training schedule ii) with
500 epochs, with a stepwise schedule starting at a learning rate 0.001, which is then reduced by a factor of 0.7 every
50 epochs. This ensures that we train for a large number of epochs after reaching 100% training accuracy. For the
compressed MLP1024, we trained the network 10-times using the algorithm described in Ref. [1] using the same setup

Table S1. Neural network architectures and performance of trained networks before any filtering techniques are applied. We
use d to indicate a dense layer, c for a convolutional layer, p for max pooling, f for flattening, and r for a response normalization
layer (with a depth radius of 5, a bias of 1, α = 1, and β = 0.5).

network dataset noise train acc test acc

i) 3 hidden layers {d 3072, d 1024, d 512, d 512, d 10} (MLP1024) CIFAR-10 0% 100.0% (55.84± 0.15)%

10% 100.0% (51.96± 0.13)%

20% 100.0% (47.72± 0.09)%

30% 100.0% (43.16± 0.08)%

40% 100.0% (38.40± 0.15)%

50% 100.0% (33.46± 0.16)%

60% 100.0% (28.46± 0.09)%

70% 100.0% (23.58± 0.12)%

80% 100.0% (18.82± 0.08)%

100% 100.0% 10.3%

ii) 3 hidden layer {d 3072, d 1024, d 512, d 512, d 10} (MLP1024) overfitting
schedule

CIFAR-10 0% 100.0% (56.15± 0.10)%

10% 100.0% (51.89± 0.11)%

20% 100.0% (47.94± 0.11)%

30% 100.0% (43.85± 0.18)%

40% 100.0% (38.93± 0.21)%

50% 100.0% (34.01± 0.18)%

60% 100.0% (29.05± 0.08)%

70% 100.0% (24.10± 0.10)%

80% 100.0% (19.04± 0.09)%

iii) 3 hidden layers {d 3072, d 1024, d 512, d 512, d 10} (MLP1024),
compressed during training [1]

CIFAR-10 0% 100% (54.97± 0.11)%

40% 100% (36.42± 0.15)%

iv) CNN {c 300 5× 5, p 3× 3, r, c 150 5× 5, p 3× 3, r, f, d 384, d 192, d 10}
(miniAlexNet) [2]

CIFAR-10 0% 100.0% 78.53%

20% 100.0% 66.38%

40% 100.0% 49.76%

100% 100.0% 10.15%

v) alexnet [3] ImageNet 0% 57.1%

vi) vgg19 [4] ImageNet 0% 71.8%
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Figure S1. Comparison between Kolmogorov-Smirnov test statistics for random vectors of length 512 with i.i.d. entries (green)
and for normalized vectors (blue). (a) Probability density function of the Kolmogorov-Smirnov distances Eq. (S1) obtained with
Monte-Carlo sampling. (b) Cumulative distribution functions for the pdfs shown in (a). It becomes apparent that normalizing
the vectors significantly changes the Kolmogorov-Smirnov test statistics even though it leaves the cumulative distribution of
the vector entries unchanged.

of MLP1024 as in i). As parameters for the compression algorithm we choose λ = 0.0025 and µ = 0.004.

B. KOLMOGOROV-SMIRNOV TEST STATISTIC FOR NORMALIZED PORTER-THOMAS VECTORS

Entries of N -dimensional singular vectors ξi of random matrices from the Gaussian orthogonal ensemble follow the

cumulative Porter-Thomas distribution function CPT(x) = 1/2 + erf
(√

N/2 x
)
/2. However, their entries are not

uncorrelated due to the normalization condition
∑

i ξ
2
i = 1. Hence, the statistic of the usual Kolmogorov-Smirnov test

which determines the p-values for uncorrelated data cannot be applied here. We obtain the statistic for normalized
vectors using Monte-Carlo sampling of 50000 normalized random vectors ξ(k) by computing the empirical cdf for each

vector C
(k)
emp to find the corresponding Kolmogorov-Smirnov distances

D(k) = sup
x

∣∣∣C(k)
emp(x)− CPT(x)

∣∣∣ . (S1)

The cdf CKS(D) for the 50000 distances {D(k)} allows to determine the p-values for a given new vector ξ with deviation
D(ξ) as 1−p = CKS(D(ξ)). The deviations between the usual Kolmogorov-Smirnov statistic (green) and the sampled
statistic for normalized vectors (blue) are shown in Fig. S1.

C. INCREASED p-VALUES

In main text Fig. 1 we test the singular vector entries of trained weight matrices against the Porter-Thomas
distribution and find that the p-values in the random part of the spectrum are significantly higher than statistically
expected. We argue that this is due to the presence of a few non-random singular vectors that store the information.
These vectors force the random singular vectors to have a narrower distribution around the most likely part of the
Porter-Thomas distribution (normal distribution with zero mean) due to the constraint of orthogonality with the
deviating singular vectors with large singular values.

For example, using the same test statistic as described in Sec. B such that random normalized vectors from the
Porter-Thomas distribution have on average a p-value of 0.5, the subset of vectors with zero mean have an average
p-value of 0.74. We show in Fig. S2(a) that the mean values of singular vector entries for small singular values of
trained weight matrices (0% label noise blue, 40% green, 100% brown) are indeed smaller than the expected values
(2σ range in light red stripe) for fully random matrices (red) while the means are much larger for large singular values
where the information is stored.

The increase of p-values can also be shown for a simple model, adding a low-rank matrix δW to a fully random
matrix Wrandom that would have singular vectors with p-value of 0.5 on average. For this we draw a 1024×512 matrix
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W           + δW
W

random

random

Figure S2. (a) Mean values of singular vector components for the first hidden layer of the trained MLP1024 DNN (same vectors
as in Fig. 1 main text) as a function of the corresponding singular values ν. The red line shows the distribution of means for
singular vectors of a random weight matrix with i.i.d. Gaussian entries, with the corresponding 2σ region shown as a transparent
red stripe. We observe means much closer to zero for singular vectors of the trained weight matrix in the case of small singular
values, and significantly larger means for the vectors corresponding to large singular values. (b) Kolmogorov-Smirnov p-values
(with test statistics from Sec. B) for singular vectors of a 1024 × 512 matrix Wrandom (red) with i.i.d. Gaussian entries with
zero mean and variance 1/512; 2σ region for p-values shown in light red. When adding a matrix δW of rank ten with entries
from a Gaussian distribution with the same variance but with mean −0.01 (similar to mean values observed for empirical
vectors corresponding to the largest singular values in (a)), the sum Wrandom+δW (blue) has singular vectors with significantly
increased p-values, due to the requirement of orthogonality between singular vectors with large and small singular values. The
p-values are averaged over neighboring singular values with a window size of 31.

Wrandom with Gaussian distributed i.i.d. entries with mean zero and variance 1/512, for which the p-values of singular
vectors fluctuate around 0.5 (see red curve in Fig. S2(b), with most values within the 2σ region (light red stripe)). We
then draw a second 1024× 512 matrix with i.i.d. Gaussian distributed entries with mean −0.01 and variance 1/512,
compute the singular value decomposition, and reconstruct the matrix by only keeping the largest 10 singular values
yielding a rank 10 matrix δW. We then analyze the p-values of the singular vectors of Wrandom + δW. We find that
the p-values are increased (blue line in Fig. S2(b)), with mean 0.71, which shows that in the presence of a few singular
vectors with a distribution different from the random bulk, we expect the p-values in the bulk to be increased due to
the enforced orthogonality to the singular vectors with a finite mean.

D. MODELING NOISE IN THE WEIGHT MATRICES

The weight matrix W(t) of a DNN at time step t in the training process is related to the previous weights as
W(t) = W(t− 1)− α ∇WLµ(t), where Lµ(t) is the mini-batch loss function at time t, ∇W is the gradient with respect
to the weights W , and α is the learning rate. We can rewrite this equation in terms of the true loss function L = ⟨Lµ⟩µ
such that

W(t) = W(t−1)− α ∇WL − α ∇W(Lµ(t) − L) . (S2)

If we identify the gradient of the deviation of the mini-batch loss function from the true loss function as noise η and
consider the continuous time limit, we find for the neural networks dynamics

dW

dt
= −α∇WL+ η , (S3)

We assume that in the later stages of training the weights fluctuate around a minimum W0 due to the stochasticity
of training, and approximate L in this minimum to second order:

L(W ) ≈ L0 +
1

2
(W −W0)

TH(W −W0) . (S4)

Here, H denotes the Hessian at the minimum. For a large number of images in the training dataset and a sufficiently
small batch size, the covariance matrix of the gradients is approximately equal to the Hessian of the loss landscape,
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Figure S3. Decomposition of the weight matrix in a low rank and noise part. Left panel: spectrum of the second hidden
layer weight of an MLP1024 network with MP part (blue) and tail (green). Right panel: spectrum of the full weight matrix
W (blue), corrected low rank part W0 (orange), and spectrum of W0 +Wgauß obtained when adding a random matrix to W0

(green).

C ≈ H [7–9]. We therefore assume that the noise η follows a multivariate Gaussian distribution with zero mean and
covariance matrix proportional to C. Following the notation of Ref. [7] that H ≈ C = VΛVT and z = VT (W −W0),
Eq. (S3) is given by

∇WL = VΛz . (S5)

As in Ref. [7], we express the noise as

η =
1√
T
VΛ1/2 dλ

dt
, (S6)

where λ is a Wiener random variable, i.e. dλ/dt is an uncorrelated Gaussian random variable. This ensures that
η is equivalent to the noise in Eq. (S3) above. Here, T is a constant that depends on the learning rate and the
batch size and takes the role of a temperature in the Langevin dynamics. This brings the Langevin equation into the
Ornstein-Uhlenbeck form reported in Refs. [7, 10, 11],

VT d(W −W0)

dt
=

dz

dt
= −αΛz +

1√
T
Λ1/2 dλ

dt
. (S7)

The stationary solution of this process fulfills [7]

⟨zzT ⟩ = 1

2T
1 . (S8)

Transforming back to the original weights, using that V only depends on the energy landscape around the minimum
and VTV = 1 = VVT , we find

⟨(W −W0)(W −W0)
T ⟩ = 1

2T
1 . (S9)

The entries of the matrix Wnoise = W −W0 must hence be i.i.d. random variables with zero mean and variance T .
The singular value spectra for this splitting of a weight matrix into W0 +Wnoise can be seen, based on an example,
in Fig. S3.

E. FITTING MARCHENKO-PASTUR CURVES

In the main text, we fit the singular value density of n×m weight matrices with m ≤ n to the Marchenko-Pastur
(MP) distribution [12]

P (ν) =

{
n/m
πσ2ν

√
(ν2max − ν2)(ν2 − ν2min) ν ∈ [νmin, νmax]

0 else
, (S10)
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Figure S4. Training accuracy when setting singular values to zero in multiple layers of an MLP1024 network. Left panel:
Results for only removing from the second hidden layer (blue) and the third hidden layer (red). Right panel: Results for
removing from layer 2 (blue), layer 2 after 70% of singular values have already been removed from layer 3 (red), and from layer
1 after 70% from both layer 2 and 3 have been removed (green).

with νmax
min

= σ(1±
√
m/n) to obtain the standard deviation of the noise term σ used in the shifting formula Eq. (3).

As the spectrum additionally has singular values in the tail, the MP part is not normalized and the end of the MP
region is not known a priori. We therefore first broaden the DNN spectrum using Gaussian broadening [13]

P (ν) ≈ 1

m

m∑
k=1

1√
2πσ2

k

exp

(
− (ν − νk)

2

2σ2
k

)
, (S11)

with σk = (νk+a − νk−a)/2 and windows size 2a + 1 = 31, and then fit an adjusted MP distribution, where we use
νmax and the maximum height as independent fit parameters, and infer νmin from the smallest singular values. This
yields an estimate for νmin and νmax. We then fit the proper MP distribution Eq. (S10), only depending on σ, to a
normalized histogram of the singular values between νmin and νmax.

F. RESHAPING AND FILTERING OF CONVOLUTIONAL LAYERS

For convolutional layers, weights are four dimensional. In order to compute the singular value decomposition we
first order the number of input and output channels, width and height by their size such that D1 ≥ D2 ≥ D3 ≥ D4

(e.g. for a layer with shape 150×300×5×5 we choose D1 = 300, D2 = 150, D3 = 5, D4 = 5). Now the three smallest
dimensions are grouped together such that the resulting matrix W̃ has dimension (D1, D2 ·D3 ·D4) according to

W̃k,(l·D3·D4+m·D4+n) = Wk,l,m,n (S12)

with indices counted from zero. By ordering the dimensions first, instead of having a constant reshaping scheme, we
ensure that there is a large enough number of singular values to perform our removal scheme. In practice, this leads
to a reshaping that is most often identical to one of the procedures used in [1, 14] (see also Fig. S5 d).

G. EFFECTS OF DEPTH

The amount of singular values which can be removed without affecting the performance varies from layer to layer
(for an example see left panel of Fig. S4 where we show the removal from the second or the third layer of an MLP1024
network). We find that setting singular values to zero in a given layer is almost independent of the previous removal
from other layers: In the right panel of Fig. S4, we show results for an MLP1024 network where we remove (i) from
layer 2 alone, (ii) from layer 2 after already 70% of the spectrum from layer 3 has been removed, and (iii) from layer
1 after 70% of the singular values from both layer 2 and 3 were set to zero. In all cases we find similar results such
that the majority of singular values and corresponding vectors can be removed without significantly influencing the
performance.
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Figure S5. Effect of noise filtering for different DNN architectures, reshaping, learning rate schedule, and rescaling for the case
of 40% label noise. In (a) we noise filter the second convolutional layer of miniAlexNet to significantly improve the performance.
In (b) we show that the results stay consistent under different reshaping schemes. In (c) we use the learning schedule of Ref. [15]
for MLP1024, while (d) shows the improvements we obtain for a rescaled representation [16] of MLP1024 as compared to the
original one.

H. GENERALITY OF THE RESULTS

To show that the noise filtering results presented in the main text are typical for other network architectures and
representations, we show additional results in Fig. S5. In panel (a) we show the increase of the test accuracy of
miniAlexNet trained with 40% label noise when removing or when shifting and removing singular values from the
second convolutional layer. In panel (b) we show that the improvements in (a) are independent of the way we reshape
the convolutional layer. Using the reshaping schemes proposed in Ref. [1], we find similar or even slightly larger
improvements. We note that scheme 1 and our reshaping algorithm are equivalent in this case. In panel (c) we train
MLP1024 using a learning rate schedule which keeps the learning rate high in the first epochs to find a wider minima
as proposed by Ref. [15]. For 40% label noise we again find significant improvements of the test accuracy when noise
filtering is applied. In panel (d) we rescale the network to a different representation by normalizing the weights wi

leading into a neuron to unity (
√∑

w2
i = 1) and rescaling the output accordingly [16]. This changes the singular

value decomposition significantly, however, the improvement of the test accuracy remains similar to the case without
rescaling.
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