Under review as a conference paper at ICLR 2026

TOMPO: TRAINING LLM STRATEGIC DECISION
MAKING FROM A MULTI-AGENT PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have been used to make decisions in complex
scenarios, where they need models to think deeply, reason logically, and decide
wisely. Many existing studies focus solely on multi-round conversations in social
tasks or simulated environments, neglecting the various types of decisions and
their interdependence. Current reinforcement learning methods struggle to con-
sider the strategies of others during training. To address these issues, we first de-
fine a strategic decision-making problem that includes two types of decisions and
their temporal dependencies. Furthermore, we propose Theory of Mind Policy
Optimization (ToMPO) algorithm to optimize the perception of other individual
strategies and the game situation trends. Compared to the Group Relative Policy
Optimization (GRPO) algorithm, TOMPO enhances the LLM’s strategic decision-
making mainly by: 1) generating rollouts based on reasoning the strategies of
other individuals, 2) estimating advantages at both the graph-level and sample-
level, and 3) balancing global and partial rewards. The ToMPO algorithm outper-
forms the GRPO method by 35% in terms of model output compliance and coop-
erative outcomes. Additionally, when compared to models with parameter sizes
100 times larger, it shows an 18% improvement. This demonstrates the effective-
ness of the TOMPO algorithm in enhancing the model’s strategic decision-making
capabilities.

1 INTRODUCTION

Large Language Models (LLMs) utilize natural language understanding and generation capabilities
to achieve leading performance in decision-making scenarios, assisting people in generating (Gou
et al.}[2024)), simulating (Mao et al.,|2025), and predicting (Zhang et al.,|2024a)) decisions across var-
ious categories. While LLMs excel in coding and math tasks, they struggle with strategic decision-
making, which requires understanding others’ intentions, predicting behaviors, and adjusting their
own strategies dynamically (Zhang et al., [2024b)).

LLMs demonstrate varying strategic abilities in matrix games (Lore & Heydari, 2024} Herr et al.,
2024)) and can be enhanced through a game-theoretic workflow (Hua et al.| [2024). Recent research
further explores LLM strategic decision-making through multi-level thinking (Zhang et al.| 2024c}
Gou et al) [2024), Theory of Mind (Duan et al., 2024} |Cross et al.), task-solving (Zhang et al.,
2025a; Wang et al.| [2024), as well as influences between individuals and groups (Mi et al., 2025;
Zhang et al., 2025D). (detailed related work in section D)) These studies provide methods for LLMs
to adapt to human society, emerge human behaviors, and serve social issues. However, these studies
restrict the strategic decision-making capabilities of LLM to two-agent chatroom environments or
single-game scenarios. This approach fails to provide the necessary methods for LLM to enhance
its performance in diverse, long-term multi-agent decision-making tasks.

By focusing on these key issues, our paper analyzes the strategic decision-making capabilities of
LLMs in complex social environments, where LLMs must sequentially make decisions that impact
both individuals and groups. During this period, the prior decisions made by LLM will have a cer-
tain degree of influence on subsequent decisions. This implies that individual behaviors may lead
to changes in the social structure of the group, and at the same time, changes in the group structure
will affect subsequent individual decisions. For instance, in real life, before signing a cooperation
agreement with multiple distributors, enterprises will conduct various evaluations. After the coop-

Under review as a conference paper at ICLR 2026

eration agreement is signed, they will implement the cooperation with varying levels of investment
over a specified period. Each cooperation has a certain impact on whether the enterprise decides to
continue the next collaboration. Furthermore, if there is a desire to terminate the cooperation dur-
ing the process, it cannot be done immediately; that is, reversing the decision is not possible. This
decision-making process helps highlight the real-world challenges faced by individuals and groups
over time, posing a challenge to the model’s capabilities.

In this context, we first define the problem as a sequential decision-making process that primarily
involves graph-level and effort-level decisions. Then we build three kinds of complex social envi-
ronments to test SOTA (State-of-the-Art) LLM performance. To optimize performance, we propose
areinforcement learning algorithm that integrates a multi-agent perspective into the LLM-based pol-
icy model training process. Based on the preliminary tests, we created an expert dataset containing
the effort-level decisions made by models that achieve high rewards, across various topological posi-
tions and at different stages in the game. The policy model effectively learns decision-making at the
effort level from the expert dataset through a supervised fine-tuning process. We enhanced the pol-
icy model for graph-level decision-making through reinforcement fine-tuning, which incorporates
multi-agent considerations in reward modeling during the training process.

Our contribution can be summarized as:

* We define a problem for real-world strategic decision-making and design corresponding
general simulation environments for decision data generation and examination.

* We evaluate the performance of the State-of-the-Art (SOTA) models and provide a dataset
including the expert model’s strategic decisions under different topological structures and
at different game time processes.

* We propose a reinforcement learning algorithm, Theory of Mind Policy Optimization
(ToMPO), and apply it to the Qwen—2 . 5-7B-inst ruct model, achieving improvement
in strategic decision-making capabilities.

2 PROBLEM FORMULATION

In contrast to the scenarios discussed in Theory of Mind (Strachan et al.|[2024; |Liu et al.,|2025¢) and
single LLM long-term planning (Huang et al., 2024; Ma et al.,|2025)), we require the LLM to operate
as an agent within a multi-agent environment consisting of at least three agents, making two types
of decisions sequentially. During any decision-making process, an agent considers the strategies
of other agents and its subsequent strategy, depending on its own state. These considerations will
autonomously change based on the agent’s social status, game progress, and others’ performance.

Graph-Effort Strategic Decision-Making We define the decision-making process as a set
(N,S, A, T, 7, f,r,7), with the set of all agents or players N = {1,2,..., N}, state space S,
total game round 7', decision type sequence 7, the state transition function f € {fq, fr}, utility
function r, and discount factor . The agent state at round ¢ includes the agent’s social relationship
structure (G) and effort (£) at this round. L and M represent how many steps of actions related to
structure forming and effort investment, respectively in one round. 7 represents the overall action
type sequence. For example, when L = 1, M = 2,let 7 = {(G,E,E),(G,E,E), ...} represent
a sequence where the LLM agent must make a graph-level decision at step O in one game round.
This decision involves choosing whether to join one group or establish relationships with others. At
steps 1 and 2, the agent will determine how much to invest based on the social relations established
in step 0. This pattern continues in subsequent rounds. a;; ; is the action decision agent ¢ made at
step j of round ¢ (equation . Action space A = {4; }ienr = {ai r }ien (equation .

VieN,tel0,T—1], j€[0,L+ M —1] (1)

: e ifT(tj) =G
St = (Gt7Et)a T(ta.]) € {G7E}a Qi t,5 = {g b T(J> (2)

eity if7(t,j)=E

Ay = (ABFALMY = ({AL, ALY L ALETIY (AR AT AL 3)

Under review as a conference paper at ICLR 2026

Decision-Making Optimization with Credit Assignment According to Credit Assignment
(Nguyen et al.l 2018 [Pignatelli et al., 2024) in reinforcement learning, we decompose strategic
decision- ma.kmg into dual complementary processes (equation] and [5)). V* represents the optimal
value function, and H; = {(a,,r,)}._{, denotes the decision-reward history. The forward process
is designed to optimize the model’s decision-making capabilities within a defined social graph struc-
ture. It effectively involves understanding the rules, accurately predicting or assessing the decisions
of other agents, and clearly defining its own strategy. On the other hand, the inverse process sig-
nificantly enhances the model’s ability to determine which group structure it will join next, relying
on its memory of past decisions. These two processes align with the credit assignment principle

(equation [6).

T
Forward Process (Effort Decision Optimization): maxE Z by |Ge=g 4)
! =t
Inverse Process (Graph Decision Optimization): maxE [V *(St+1) | Hy (5)
gt
Vol (0)= > wUr(d) + Y. ald) +((AC) 6)

t:r(t)=E t:7(t)=G

Forward Process Credit Inverse Process Credit

3 PRELIMINARY TESTING LLM STRATEGIC DECISION-MAKING

3.1 GRAPH-EFFORT STRATEGIC GAME DESIGN

We present two sequential multi-agent game environments where Large Language Model (LLM)
agents make decisions over 7" rounds. Both environments involve IV agents making choices related
to social graph formation (G) and effort investment (E) to maximize their individual utility. Agents
observe full historical information (Gristory; Thistorys Thistory) to inform their current decisions.
The decision-making process in each round generally consists of two key components: graph for-
mation and effort investment. An agent refers to an individual who participates in the game and is
part of the graph. As shown in Figure[T] the agent, represented by the policy model, makes decisions
simultaneously as other agents in the environment.

round 1 reward 1 round 2 reward 2
agent 0 decision G agent 0 decision E T agent 0 decision G agent 0 decision E T
[o, ,0,0,0,0,00D —> — $effort1 — [0. , 10,0,0,0,0] — Sef‘fortz > e
other agents’ concurrent other agents’ concurrent other agents’ concurrent other agents' concurrent
decision-making G decision-making [decision-making G decision-making E

Figure 1: Demonstration of a two-round decision-making process in the GE sub-environment.

3.1.1 SEQUENTIAL BCZ GAME

This environment extends the classic BCZ (Bala-Goyal-Jackson) game (Ballester et al., 2006)) to a
sequential framework. Each agent ¢ simultaneously decides on their social links and effort invest-
ments. The sequence in which these decisions are made defines three sub-environments: GE, GEE,
and GGE (detailed in Appendix [C.T).

Decision Components

* Link Decision(G): All agents simultaneously decide on mutual social links, represented by an
adjacency matrix G € {0, 1}V*N where G;; = 1 denotes a mutual link between agents ¢ and j.

 Effort Investment(E): Each agent ¢ invests an effort x; > 0.
Utility Function As for GE, the utility (payoff) for agent ¢ at a given round, 7;, is defined as:

1 .
7Ti:O(,‘xi—§$3+5§G1‘j$1‘3}j—6§Gij, 1,7 eN @)
VE) VE)

Under review as a conference paper at ICLR 2026

where: a; > 0: agent ¢’s individual productivity parameter, z;: effort invested by agent ¢, 6 > 0:
synergy parameter, representing benefit from interactions, G;;: indicates a mutual link between
agent ¢ and agent j, ¢ > 0: cost of maintaining a link.

3.1.2 SEQUENTIAL PUBLIC GOODS GAME (PGG)

We implement a sequential LLM-based multi-agent Public Goods Game environment, inspired by
classical PGG models (Ledyard et all |1994; [Fehr & Gichter, |2000), incorporating endogenous
group formation. Further details are available in the associated code implementation.

Decision Components

* Group Formation (G) All agents simultaneously decide their preferred group memberships.
Agent i submits a binary vector g; € {0,1}", where g;; = 1 signifies a desire to form a group
with agent j. A mutual link forms if g;; = 1 and g;; = 1. Non-overlapping groups G, are then
formed by identifying maximal cliques in the resulting graph; agents not in larger cliques form
singleton groups.

* Effort Investment (E) Within their established groups G ,, each agent ¢ decides on a continuous
effort contribution x; € [0, 1] into their group’s public good.

Payoff Calculation The payoff (utility) for agent ¢ in group G ;. at round ¢, 7; 4, is calculated as:

Tt = | T Z Ljt /|Gt,k| — Tit ®)

JEGk

where: r > 1: public good multiplication factor (e.g., r = 1.5), z;;: effort contributed by agent j
in round ¢, |Gy |: number of agents in group G k.

3.2 EVALUATION METRICS DEFINITION

To assess the performance of LLM agents in both the BCZ and Public Goods Game (PGG) envi-
ronments, we define three key evaluation metrics: U; (Compliance), U, (Strategic Efficiency), and
Us (Cooperative Outcome). These metrics are calculated based on the agents’ behavior and the
resulting game states over 7" rounds.

U;: Compliance (Adherence to Game Rules) U; measures how well agents’ decisions follow the
structural and operational rules of the game. For instance, it penalizes non-zero diagonal entries
in the link matrix G, which represent self-loops that are not allowed in social graph formation.
Additionally, it evaluates the presence of general errors or malformed decisions in the log files. A
higher value of U; indicates a better understanding and execution of the game’s mechanics.

Total Rule Violations
Total Possible Checks’

U; = max <1)
U,: Strategic Efficiency (Proximity to Individual Optimum) U evaluates how well agents make
strategic decisions based on the observed graph structure. It measures the difference between agents’
actual effort investments, Z,wa, and their optimal effort levels, *, which are determined using
optimization methods for BCZ and the formula z* = max(0,1 — |Gy |/r) for PGG. The optimal
effort is calculated based on the final group structure GG in each game. A higher Us indicates that
agents are making rational decisions.

(10)

Uy — max (1 ||Actual Efforts — Optimal Efforts||o ’ O>

||Optimal Efforts||o
Us: Cooperative Outcome (Global Welfare Achieved) Us assesses the overall collective perfor-
mance of the LLM agents by comparing the total payoff achieved in the final round to the maximum
theoretically possible total payoff (global optimum) for the respective game. A higher Us indicates
more successful collective action and welfare generation.

Actual Total Payoff
Globally Optimal Total Payoff’

ngmax< (11)

Under review as a conference paper at ICLR 2026

3.3 DEFICIENCY FOR EXISTING MODELS

According to the preliminary test result in table [T we can summarize the deficiency into three
points. First, most models cannot generate compliant outputs (U1 test metric). For large models, the
limitation is reasoning, while for backbone models, it stems from following the rules. For example,
some backbone models generate five numbers in the decision list in a six-agent game. Secondly,
when comparing the U2 and U3 metrics (BCZ-2 and PGG), which have an upper limit for the optimal
solution, we observe that models perform better in scenarios involving homogeneous agents. In our
test logs, the model more easily completes the reasoning chain and generates more comprehensive
texts in the BCZ game. Therefore, we use the BCZ game to prepare the expert decision data (details
in section [4.I). Thirdly, in comparing the results of BCZ-1 and BCZ-2, the reasoning model can
more easily recognize that the current optimal investment has no upper limit. Therefore, a larger
effort can be made when the network structure is improved.

Table 1: Large models are tested in three complex social environments, with three simulations each.
BCZ-1 optimizes for homogeneous agents without limits, while BCZ-2 suits heterogeneous agents
with limits. PGG features isomorphic agents and also has an optimal solution with limits.

Ul U2 U3
Category Model Name BCZ-1 BCZ-2 PGG BCZ-1 BCZ-2 PGG BCZ-1 BCZ-2 PGG
LLM GPT-40 099 0960 1 0254 0.845 0.660 62.831 0.007 0.445
LLM DeepSeek-V3 1 1 1 0971 0.994 0355 18253 0.010 0.755
LLM Llama-3.3-70B 0.758 0.740 0.863 0.702 0.275 0.533 5.385 0.004 0.649
LLM GPT-40-mini 0942 0960 0988 0 0.014 0.672 288.208 0.007 0.554
LRM GPT-03 0.963 0.980 0.996 0.904 0.631 0.403 2.852 x 10° 0.006 0.877
LRM DeepSeek-R1 099 0980 1 0.333 0.808 0.500 8.045 x 10° 0.033 0.750

LRM kimi-k2-0711-preview 0.971 0.960 0.992 0.401 0.005 0.529 1.059 x 10* 0.001 0.531

Backbone Qwen2.5-7B-instruct 0.650 0.640 0.779 0.414 0.224 0.511 42542 0.006 0.713
Backbone Llama-3.1-8B 0.704 0.600 0.767 0.367 0.008 0.512 7.660 0.004 0.707

4 ToMPO: THEORY OF MIND PoOLICY OPTIMIZATION

4.1 EFFORT REASONING LEARNING

Through the preliminary test results, we find that reasoning models are consistently effective at
defining the “sub-tasks” necessary to achieve the ultimate goal and complete the overall task. In
contrast, backbone models like L.1ama-3.1-8B struggle to reason through a series of steps to
finish tasks one by one; they tend to repeat existing rules and perform basic calculations simply.
The challenge for the backbone model lies more in transforming the strategic reasoning with social
elements into a series of small tasks leading to the final decision, rather than in making the model’s
calculations more accurate. This is in perfect harmony with the concept of Program of Thought
(Chen et al., [2022)). The model needs to learn the compliant generation and thinking program first
before some other higher needs.

So, according to the model deficiency analysis in section[3.3] we identify the expert models that meet
the evaluation criteria U1 and demonstrate a balanced capability in U2 and U3. This means that these
models can provide compliant outputs while excelling in both the individual optimal solution and
the group optimal solution. We select two reasoning models and analyze their thinking processes
to identify a common program of thought for improving reasoning. We organize two programs
of thought for decisions regarding graphing and effort, and then we generate expert data using the
GPT-03 model based on the Program of Thought prompts.

After getting the expert effort decision data (Dggror), We use these data to fine-tune the policy model
for learning the common thinking program and compliance output. The optimization method of

Under review as a conference paper at ICLR 2026

Low-rank adaptation (LoRA) fine-tuning (Hu et al.| |2022) is shown in Formula@
[yl

0" ={A*,B"} = arg {I}‘lig} —E(2,y)~ Degron Zlog T(Wot2BA) (Yt | T,Y<t) (12)
’ t=1

4.2 THEORY OF MIND PoLICY OPTIMIZATION (TOMPO)

Step 1: Select Expert Model & Common Program
LLMs game prompt expert model output analysis summarize

— - - 5 common common programs
L??nr\is DeerZglim thinking process > of thought (PoT)

" " Tuning .
expert II expert_ Effort’ II policy
reasoning data model

reasoning data

Step 2: Supervised Fine-Tuning
game prompt slice data
expert model with PoT
GPT-03 _—

Step 3: ToOMPO

sequential
calculation

f G, 48
— e o) - (LA
structural

calculation A§+A§

reference

reward
model

e -6~
model

Figure 2: Demonstration of our Theory of Mind Policy Optimization (ToMPO) method. Step 1:
Select an expert model and common programs of thought. Step 2: Supervised Fine-Tuning of the
policy model for Effort Decision optimization. Step 3: Reinforcement Fine-Tuning policy model
with ToMPO algorithm for Graph Decision optimization.

Common policy optimization methods usually calculate advantage from a single agent perspective.
This will cause the policy model’s adaptability to the environment or information to become in-
creasingly self-centered, to some extent, ignoring the performance and strategies of other models
(agents) in the environment. More importantly, when the policy model’s decisions involve depen-
dencies among rounds, for example, the decision in round ¢ + 1 will be based on the memory of
round ¢, the update of the policy model cannot rely solely on the n rollouts of a single round.

As models increasingly resemble human thinking and decision-making, enhancing their capabilities
through the Theory of Mind (ToM) (Frith & Frith| 2005; |Li et al., 2023; [Wu et al., [2025) has gar-
nered significant attention. It’s crucial to consider the strategies of other agents during the rollout
generation and advantage estimation, as this directly affects the model’s policy update process.

Training Data Preparation: We consider the policy model (Qwen-2.5-7B-instruct) as
Agent O in all the games during the training process. All other agents are represented by the ex-
pert model GPT-03. This makes the strategies of the policy model generally inferior to those of
other individuals in the environment, making the purpose of reinforcement learning training clearer.
In the model’s reinforcement training, classifying the difficulty level of the training data is very im-
portant (Pikus et al., 2025). Other agents during the training process directly affect the proportion
of the advantages of the policy model’s strategy and the learning difficulty. Therefore, we used the
expert model to conduct 126 simulations in environments with both homogeneous and heteroge-
neous agents of different quantities (from 4 to 8), with each simulation lasting for 10 rounds. We
collected the actual graph formation situations of each round of the expert models as the “memory”
part in the RFT prompt, and the graphs formed by the expert models as the expert data for the reward
calculation in the RFT process.

Under review as a conference paper at ICLR 2026

Concise description for TOMPO algorithm: Let the generated decision graph by GPT—-03 models
using the same prompt (the same game parameter settings) be the expert data. Then, we have the
expert data decision graph Gexper, and m rollouts O at step p. Each rollout O contains a decision
list showing the policy model (Agent 0) strategy. Each list combines with the expert decision graph
under this prompt to form a complete graph, denoted as G5 . . . G,,, representing the final summary
of all agents’ strategies. At the graph level, each graph G is compared to the Gexpere for structural
calculations, as well as to the prompt best graph Ghprompe and memory best graph Gumemory for
sequential calculations. At the sample level, each G compares to the Gexpere and calculates group
advantage. Detailed algorithm process is in Appendix [B]

Based on the TOMPO algorithm, the overall optimization objective is:

1 & .
Trompo(8) = Eynp(Q), {ai}r, ~mo,, (la) [m E mm(?“z'(@),
=1
13)

clip(ri(ﬁ), 1—e¢, 1—|—5)> (wsAS(ai) + ngG(Gi)) - IBDKL[TFQHTI'QUM]]

ToMPO graph-level advantage estimation balances local precision with global graph optimality,
while the sample-level advantage focuses on evaluating the policy model’s decisions.

4.2.1 REWARDS

Our reward functions contain three parts. We first calculate the Compliance Reward for all rollouts.
For those rollouts that are compliant, we calculate the Sample-Level and graph-level rewards.

Compliance Reward: We set the basic reward at 0.5 points for model compliance, which means it
can generate a decision list where the list length equals the agent sum and there are no self-loops.
However, if the model cannot generate the thinking process and the decision list, or if the list does
not meet the above needs, the reward is deducted by 1 point, resulting in a final score of -0.5 points.

Sample-Level Reward: We believe the sample-level reward needs to be more sensitive to the deci-
sion list of the policy model itself. So, we use the F1 score and accuracy to calculate, highlighting
the decision list’s weight.

Rample(G) =5 (0.7 F1(G, Gexpert) + 0.3 Acc(G, Gexpert)) (14)

Graph-Level Reward: At the graph level, all the comparisons between graphs need to be fair, so
we use the Hamming distance for calculation. We calculate and update three rewards, the graph
reward Rgmpn(G), the prompt best reward Rp°™, the memory best reward R, Rgrpn(G)
represents the Hamming distance between the actual rollout graph and the expert decision graph.
The term R)°™ calculates the highest reward among all rollout graphs generated from a single
prompt. Meanwhile, R,,“"*" is updated whenever a larger reward is obtained within the same game
parameter settings (with the exception that only the agent’s memory in the prompt is different). 6; is
the combination of hyperparameters to which the rollout i belongs.

1 X
Reapn(G) = 1 — 7 > |Gy =GP, |E]l = N(N - 1) (15)
(i,5)€€
Rgrompt — max Rgraph(G)v Vp S {1, ey M} (16)
kegroup(p)
memory _ - .
it n histgfly%'}f(ai) Rerapn(G), b = (a0, 0)s a7

4.2.2 ADVANTAGE ESTIMATION

We mainly use the reward at the sample level Rgympie to estimate sample-level advantages A;fl, and

the reward at the graph level Rgrapn for graph-level advantages ASL. In our training, we set the wiocal,
Wsample a8 0.8, the Welopal and Weraph as 0.2.

Rsample(Gi) - mean{Rsample(Gl)7 sy Rsample(Gn)}
Std{Rsample(Gl)a HRR) Rsample(Gn)} +e

AS(Gy) = (18)

Under review as a conference paper at ICLR 2026

AG (Gz) = Wipcal (Rgraph(Gi) - Rli)rompt) + Welobal (Rgraph(Gi> - Rli‘ﬂemOry> (19)

The overall advantage of a rollout can be calculated as the sum of the sample-level and graph-level
advantages, with normalization applied. Compared to the GRPO advantage estimation (Guo et al.,
2025} |Shao et al. [2024), the TOMPO advantage has two main differences. First, in addition to the
sample advantage, we have also improved the graph advantage. This enhances the model’s ability to
consider the graph more thoroughly while achieving high scores, allowing it to learn more effective
decision-making methods. In the rewards at the graph level, we consider both the difference between
the current round of the graph and the optimal solution for the same hyperparameters. This allows
the model’s strategy to gradually move towards both the short-term optimum and the global optimum
at the same time.

A(Gz) = wsampleAS(Gi) + wgraphAG(Gi)7 Wsample T Weraph = 1 (20)

5 EXPERIMENTS

Since the preliminary test revealed that the Qwen model is relatively balanced in terms
of performance across all evaluation criteria, we apply the ToMPO algorithm to the
Qwen-2.5-7B-instruct model, which completes the effort learning fine-tuning process, and
compare it with existing models. We conduct each simulation three times, with 20 rounds each,
allowing adequate time for model decision-making.

Table 2: Algorithm examination in four environment settings, compared to backbone models, super-
vised fine-tuning models, and GRPO applied models. We use the global welfare/ actual simulation
rounds to represent BCZ and PGG U3 here, illustrating the efficiency of global welfare gains.

BCZ - GE BCZ - GEE BCZ - GGE PGG - GE

Ul U2 U3 Uur U2 U3 Ul U2 U3 U1 U2 U3
Deepseek-V3 1 044 0.11 1 0 009 1 0 0 1 0 0.07
GPT-40 1 036 0.10 1 0 001 1 0.07 -0.11 1 0 0.06
Qwen2.5-72b-instruct 1 039 0.02 1 0 003 1 024 -0.11 099 0 0.07

Qwen3-235b-a22b 1 005 -02 0 0 099 0 -024 099 1 0
Qwen2.5-7B-instruct 0.65 0.38 008 095 0 053 075 O -002 08 0 0.10
SFT effort learning 1 0 -0.09 1 0 0.17 1 0 -0.02 1 0 0.10
SFT + GRPO 1 0 0 1 0 09 1 0.12 -0.03 1 0 0.11
SFT + ToMPO 1 0 0.03 1 0 134 1 0.16 -0.02 1 0 025

Evaluation Environments Based on our problem definition and environment building, we use the
BCZ and PGG games as our examination environments. We create subenvironments by modifying
the configuration, which includes variables like the number of agents, network hyperparameters
such as private gain sensitivity, reciprocity intensity, connection costs, and whether the agents are
homogeneous or heterogeneous. Our experiment environments set as: BCZ-GE (8 homogeneous
agents, alpha = 1, delta = 0.05, ¢ = 0.2), BCZ-GEE (5 heterogeneous agents, alpha =[0.8, 1.8, 1.1,
0.6, 1.5], delta = 0.15, ¢ = 0.4), BCZ-GGE (4 homogeneous agents, alpha = 1, delta = 0.1, ¢ = 0.6),
PGG-GE (5 homogeneous agents, r = 1.5).

Evaluation Models and Algorithms Based on the preliminary test in table I, we select models
Deepseek-V3 and GPT-4o0 that have balanced capabilities in the metrics for comparison. Fur-
thermore, we add the Qwen3-235b-a22b and Qwen?2.5-72b—-instruct for comparison on
the number of parameters and model type. We apply supervised LoRA fine-tuning to the backbone
model, the GRPO algorithm to the SFT model, and the ToMPO algorithm to the SFT model. The
GRPO algorithm serves as the baseline method, using sample-level rewards as mentioned in section
and sample-level advantage estimation in the GRPO algorithm (Shao et al.,|2024).

Result Analysis Based on the results in Table[2] we can summarize the performance of the models
and algorithms as follows. SFT helps ensure that models generate compliant outputs. The models

Under review as a conference paper at ICLR 2026

a) Qwen2.5-7b-instruct b) Qwen2.5-7b-instruct-SFT

BCZ Game Mock Run: Total Links Over Time BCZ Game Mock Run: Avg Effort Over Time BCZ Game Mock Run: Total Links Over Time BCZ Game Mock Run: Avg Effort Over Time

10 1
00

2
215

250 0

\ 225 B

200

175

150

.

125
513345678 0NN BB IEN 0133456783 nNLBMs6YBE G 17345678 00N BIIL067 B 615345678 00N BMs6Y B
Found Found found Round

BCZ Game Mock Run: Global Welfare Over Time BCZ Game Mock Run: Change in G and Effort BCZ Game Mock Run: Global Welfare Over Time BCZ Game Mock Run: Change in G and Effort

—
x

v

I

10 | wus
0

150

1s °
125
100 6 100
s s
B
5o 50
V 2

00

!

25
5132345676 NN ELBBLTBEL 0123456785005 56T BL 512345676 50Nz n1s511 B
round Round Round

]

123535676 onNRbLBlY BB
Round

c) Quen2.5-7b-instruct-SFT-GRPO d) Qwen2.5-7b-instruct-SFT-ToMPO

BCZ Game Mock Run: Total Links Over Time BCZ Game Mock Run: Avg Effort Over Time BCZ Game Mock Run: Total Links Over Time BCZ Game Mock Run: Avg Effort Over Time

1200 'ﬁ / 32 2 287
s 30
10 261

150 28
. s
na2s - 241
100 6
1075 1

22
1050

20 1
1025

18
1000

C 123456765 mNREL5LTLE 0123 4567090025050 b5 R EEREEEEEEEERE] G 1 2 3 45 6 7 8 5 0 ou @
Round Round Round Round

BCZ Game Mock Run: Global Wielfare Over Time BCZ Game Mock Run: Change in G and Effort BCZ Game Mock Run: Global Welfare Over Time. BCZ Game Mock Run: Change in G and Effort
o]
20 A 7
15
ol
2
15 % 51
10
s N
15 - 21
o
==a 1
1 - & of =7 S A AN

G 1234367800 NBGLGBBYER G133 4356789 0NnB0s06YTBE0 C 13 3 4 5
Round Round

EE

Figure 3: One BCZ-GEE evaluation result comparison for four models: the backbone model (a),
the SFT applied model (b), the SFT+GRPO model (c), and the SFT+ToMPO model (d). Each
model’s results include four components: the blue line shows the total number of links in the graph
throughout the game (ending early if unchanged for five rounds), the green line indicates average
agent effort, the purple line represents global welfare, and the red and yellow lines display the
frequency of changes in the graph and effort, respectively.

generally scored lower on the U2 standard. This is primarily because, in certain scenarios, the mod-
els are capable of making higher investments. However, due to the process of mutual exploration
and analysis of prior investments made by other models, it becomes challenging for them to make
substantial investments directly. As a result, they often deviate from the theoretically optimal indi-
vidual investment value. Compared to a model with 100 times the parameters, the model trained by
ToMPO can achieve the corresponding capabilities.

We analyzed the experimental results and presented the general findings in Figure 3] The result
shows the backbone model tends to unpredictable changes in the decision-making process of the
graph. It is difficult to make an optimal effort decision under an optimal structure. SFT can help
model compliant output, but since the graph does not reach optimality and remains fixed, achieving
an average effort that is optimal is challenging. Comparing parts c), a), and b), we find the GRPO al-
gorithm effectively enhances the stability of the model’s performance in graph decision-making. On
this basis, the model can more easily make the optimal effort decision. When comparing the ToMPO
algorithm d) with the GRPO algorithm c), the main takeaway is that the TOMPO algorithm improves
the stability and global awareness of the model’s decision-making process in graph representation.
This enhancement enables the model to make more effective decisions more quickly.

Limitation and Future Work Our current work has delivered the supervised fine-tuning (SFT)
and ToMPO reinforcement fine-tuning (RFT) on the backbone model, showing the algorithm’s ef-
fectiveness. The policy model’s perspective may be biased towards agent O due to our training data.
In future work, we will adjust the RFT prompt and training data to broaden the model’s perspec-
tives. Despite tests showing reduced capability when combining supervised finetuning for graph and
effort, we will explore alternative SFT methods or consider separating the SFT process.

Under review as a conference paper at ICLR 2026

REFERENCES

Coralio Ballester, Antoni Calvo-Armengol, and Yves Zenou. Who’s who in networks. wanted: The
key player. Econometrica, 74(5):1403-1417, 2006.

Yair Censor. Pareto optimality in multiobjective problems. Applied Mathematics and Optimization,
4(1):41-59, 1977.

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen.
Llmarena: Assessing capabilities of large language models in dynamic multi-agent environments.
arXiv preprint arXiv:2402.16499, 2024a.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Op-
tima: Optimizing effectiveness and efficiency for llm-based multi-agent system. arXiv preprint
arXiv:2410.08115, 2024b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Logan Cross, Violet Xiang, Agam Bhatia, Daniel LK Yamins, and Nick Haber. Hypothetical minds:
Scaffolding theory of mind for multi-agent tasks with large language models. In The Thirteenth
International Conference on Learning Representations.

Jinhao Duan, Shigi Wang, James Diffenderfer, Lichao Sun, Tianlong Chen, Bhavya Kailkhura, and
Kaidi Xu. Reta: Recursively thinking ahead to improve the strategic reasoning of large language
models. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
2232-2246, 2024.

Ernst Fehr and Simon Giéchter. Cooperation and punishment in public goods experiments. American
Economic Review, 90(4):980-994, 2000.

Chris Frith and Uta Frith. Theory of mind. Current biology, 15(17):R644—-R645, 2005.

Tian Gou, Boyao Zhang, Zhenglie Sun, Jing Wang, Fang Liu, Yangang Wang, and Jue Wang. Ra-
tionality of thought improves reasoning in large language models. In International Conference on
Knowledge Science, Engineering and Management, pp. 343-358. Springer, 2024.

Yilin Guan, Wenyue Hua, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, and
William Yang Wang. Dynamic speculative agent planning. arXiv preprint arXiv:2509.01920,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750-797, 2019.

Nathan Herr, Fernando Acero, Roberta Raileanu, Maria Perez-Ortiz, and Zhibin Li. Large language
models are bad game theoretic reasoners: Evaluating performance and bias in two-player non-
zero-sum games. In ICML 2024 Workshop on LLMs and Cognition, 2024.

Charles A Holt and Alvin E Roth. The nash equilibrium: A perspective. Proceedings of the National
Academy of Sciences, 101(12):3999-4002, 2004.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wenyue Hua, Ollie Liu, Lingyao Li, Alfonso Amayuelas, Julie Chen, Lucas Jiang, Mingyu Jin,
Lizhou Fan, Fei Sun, William Wang, et al. Game-theoretic 1lm: Agent workflow for negotiation
games. arXiv preprint arXiv:2411.05990, 2024.

10

Under review as a conference paper at ICLR 2026

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of Ilm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Weiqgiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A compre-
hensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
and perspectives. arXiv preprint arXiv:2503.13415, 2025.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

John O Ledyard et al. Public goods: A survey of experimental research. Division of the Humanities
and Social Sciences, California Inst. of Technology, 1994.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia Sycara. Theory of mind for multi-agent collaboration via large language models. arXiv
preprint arXiv:2310.10701, 2023.

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-
tuning. arXiv preprint arXiv:2504.16129, 2025.

Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent
reinforcement learning. arXiv preprint arXiv:2508.04652, 2025a.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. arXiv
preprint arXiv:2506.16499, 2025b.

Zizhou Liu, Ziwei Gong, Lin Ai, Zheng Hui, Run Chen, Colin Wayne Leach, Michelle R Greene,
and Julia Hirschberg. The mind in the machine: A survey of incorporating psychological theories
in llms. arXiv preprint arXiv:2505.00003, 2025c.

Nunzio Lore and Babak Heydari. Strategic behavior of large language models and the role of game
structure versus contextual framing. Scientific Reports, 14(1):18490, 2024.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. arXiv preprint arXiv:2410.17195, 2024.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. In The Thirteenth International Conference on
Learning Representations, 2025.

Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang, Qiang Guan, Tao Ge,
and Furu Wei. Alympics: Llm agents meet game theory. In Proceedings of the 31st International
Conference on Computational Linguistics, pp. 2845-2866, 2025.

Qirui Mi, Mengyue Yang, Xiangning Yu, Zhiyu Zhao, Cheng Deng, Bo An, Haifeng Zhang,
Xu Chen, and Jun Wang. Mf-llm: Simulating population decision dynamics via a mean-field
large language model framework. arXiv preprint arXiv:2504.21582, 2025.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8-30, 2007.

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assignment for collective multi-
agent rl with global rewards. Advances in neural information processing systems, 31, 2018.

Martin J Osborne et al. An introduction to game theory, volume 3. Springer, 2004.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, and Laura
Toni. A survey of temporal credit assignment in deep reinforcement learning. Transactions on
Machine Learning Research, 2024.

Benjamin Pikus, Pratyush Ranjan Tiwari, and Burton Ye. Hard examples are all you need: Maxi-
mizing grpo post-training under annotation budgets. arXiv preprint arXiv:2508.14094, 2025.

11

Under review as a conference paper at ICLR 2026

Thomas Schmied, Jorg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.
Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. arXiv preprint
arXiv:2504.16078, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Alonso Silva. Large language models playing mixed strategy nash equilibrium games. In Inter-
national Conference on Network Games, Artificial Intelligence, Control and Optimization, pp.
142-152. Springer, 2024.

James WA Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio Scaliti, Saurabh
Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido Manzi, et al. Testing theory of
mind in large language models and humans. Nature Human Behaviour, 8(7):1285-1295, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9—44, 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Ruiyi Wang, Haofei Yu, Wenxin Zhang, Zhengyang Qi, Maarten Sap, Yonatan Bisk, Graham Neu-
big, and Hao Zhu. Sotopia-7: Interactive learning of socially intelligent language agents. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 12912-12940, 2024.

Yuheng Wu, Wentao Guo, Zirui Liu, Heng Ji, Zhaozhuo Xu, and Denghui Zhang. How large lan-
guage models encode theory-of-mind: a study on sparse parameter patterns. npj Artificial Intelli-
gence, 1(1):20, 2025.

Yingxuan Yang, Huacan Chai, Yuanyi Song, Siyuan Qi, Muning Wen, Ning Li, Junwei Liao,
Haoyi Hu, Jianghao Lin, Gaowei Chang, et al. A survey of ai agent protocols. arXiv preprint
arXiv:2504.16736, 2025a.

Yingxuan Yang, Ying Wen, Jun Wang, and Weinan Zhang. Agent exchange: Shaping the future of
ai agent economics. arXiv preprint arXiv:2507.03904, 2025b.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
Chen, Martz Ma, Bowen Dong, et al. Oasis: Open agent social interaction simulations with one
million agents. arXiv preprint arXiv:2411.11581,2024.

Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad
Majumder, Hao Zhu, Paul Pu Liang, and Jiaxuan You. Sotopia-rl: Reward design for social
intelligence. arXiv preprint arXiv:2508.03905, 2025a.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
multi-conv rl-based memory agent. arXiv preprint arXiv:2507.02259, 2025b.

Wenyuan Zhang, Tianyun Liu, Mengxiao Song, Xiaodong Li, and Tingwen Liu. Sotopia-: Dynamic
strategy injection learning and social instruction following evaluation for social agents. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 24669-24697, 2025a.

Xinnong Zhang, Jiayu Lin, Libo Sun, Weihong Qi, Yihang Yang, Yue Chen, Hanjia Lyu, Xinyi Mou,

Siming Chen, Jiebo Luo, et al. Electionsim: Massive population election simulation powered by
large language model driven agents. arXiv preprint arXiv:2410.20746, 2024a.

12

Under review as a conference paper at ICLR 2026

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu,
Ting Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with
large language models. arXiv preprint arXiv:2404.01230, 2024b.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, and Furu Wei. K-level
reasoning: Establishing higher order beliefs in large language models for strategic reasoning.
arXiv preprint arXiv:2402.01521, 2024c.

Yiwen Zhang, Yifu Wu, Wenyue Hua, Xiang Lu, and Xuming Hu. Attention mechanism for llm-
based agents dynamic diffusion under information asymmetry. arXiv preprint arXiv:2502.13160,
2025b.

13

1

2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

Under review as a conference paper at ICLR 2026

A LARGE LANGUAGE MODEL UTILIZATION EXPLANATION

In our research, LLLM is the backbone and comparison models for the algorithm delivery and exam-
ination. We use LLM to generate the configuration, which ensures the balance between randomness
and parameter significance. The rest was not involved with LLM.

B ToMPO ALGORITHM

Algorithm 1: Theory of Mind Policy Optimization (ToMPO) Algorithm

Input: Initial policy model 7y, expert graph Gexper, task prompts (), reference model ﬂgef, total
training steps 7', rollout number m

for iterationt =1,2,...,T do

Sample prompt ¢ ~ P(Q);

Retrieve expert graph Geypere for prompt g;

Generate m rollouts: {a;}1™ ~ g, (:|q);

Construct graphs {G;}/; by combining each a; with Gexper;

for i = 1tomdo

if a; is compliant then

Rcomp,i + 0.5;

Rgmples < 5(0.7F1; + 0.3 Acc;);

Rgraph,i —1- Hamming(Gi; Gexpen);

Update RP™P' and R™™°Y using Rgraph,is

Compute sample-level advantage AS (G;) by normalizing Rsample,is

Compute graph-level advantage A% (G;) using Rgpaph,i, RPOTP, Rmemory;

Combine total advantage A(G;) = ws A% (G;) + wg A% (G;);

Compute importance ratio r;(0) = mg(a;|q) /7o, (ailq);

Update 6 via clip objective with KL penalty 8Dxy [mal|75];

else
Rcompﬂ‘ +— —0.5;

>

Oiltput: Optimized policy model 7™

C ENVIRONMENT AND TRAINING

C.1 DETAILED DESCRIPTION OF WDBCZ SUB-ENVIRONMENT SEQUENCES

The following are the three sub-environments that define the sequence of decisions made within
each round:

1. GE (Graph-Effort) Environment: In this environment, each round consists of a single stage of
link decisions followed by a single stage of effort decisions.

T={(G,E),(G,E),...}
Agents first decide on their links, forming the graph G;. Subsequently, observing G, they decide
on their effort levels x;.
2. GEE (Graph-Effort-Effort) Environment: This environment features a single stage of link
decisions, followed by two consecutive stages of effort decisions within each round.
T = {(Ga Elv E2)7 (Gv E17E2)7 e }

Agents first establish links G;. Then, they make a first effort decision x; ;. After all agents have
made their first effort decisions (which may be observed by others), they make a second effort
decision z; 2. The final effort for the round might be a combination of x;; and x; 2 or just z; o
depending on the specific implementation. Our current implementation uses x; 1 and x; » as distinct
effort components.

14

Under review as a conference paper at ICLR 2026

3. GGE (Graph-Graph-Effort) Environment: This environment introduces a two-stage linking
process, followed by a single stage of effort decisions.

={(Gp,GF,E),(Gp,Gp,E),...}

Agents first propose provisional links (G p). After observing all provisional link proposals, agents
then make final link decisions (Gr), which forms the actual graph G;. Finally, observing G,
agents decide on their effort levels x,. This allows for a more nuanced negotiation process for
link formation.

C.2 DETAILED TRAINING PARAMETERS

Table 3: Parameters in SFT LoRA training.

parameter value

lora rank 64

lora alpha 32
attention implementation eager
max length 6000

train batch size 16
optim learning rate 5e-5

Table 4: Parameters in RFT training.

parameter value
actor optim learning rate le-6
use kl in reward true
ppo kl coef 0.1
kl cov ratio 0.0002
max prompt length 5500
max response length 2692
train batch size 32

D RELATED WORKS

Our work intersects with several active research areas, including the theoretical foundations of credit
assignment in reinforcement learning, the burgeoning field of Large Language Models (LLMs) for
decision-making, and the complex domain of strategic decision-making in multi-agent systems. This
section reviews relevant literature and positions our contributions within these contexts.

D.1 CREDIT ASSIGNMENT AND POLICY OPTIMIZATION

Credit assignment is a fundamental challenge in reinforcement learning, concerning how to attribute
responsibility for outcomes to specific actions or sequences of actions, especially in environments
with delayed rewards (Sutton et al.| [1998). Early work by [Minsky|(2007) highlighted this problem,
and subsequent research has developed various mechanisms, including eligibility traces (Sutton,
1988)) and actor-critic methods (Konda & Tsitsiklis, |[1999)), to address it. Recently, the concept of
credit assignment has been extended to complex, hierarchical, and multi-agent settings (Nguyen
et al.| [2018; [Pignatelli et al.,2024) and Large Language Model agents’ social interactions (Yu et al.,
2025a). Our work leverages the theoretical underpinnings of credit assignment to decompose the
strategic decision-making process into forward (effort decision) and inverse (graph decision) com-
ponents. This decomposition allows for targeted optimization, where the forward process focuses on
immediate utility within a given structure, and the inverse process learns to adapt the structure based
on long-term value, aligning with the principles of assigning credit to different types of decisions
over time. This approach is distinct from traditional single-agent credit assignment by explicitly
considering the interplay between structural and behavioral decisions in a multi-agent context.

15

Under review as a conference paper at ICLR 2026

Policy optimization methods, such as Proximal Policy Optimization (PPO) (Schulman et al.||2017),
MAGRPO (Liu et al., [2025al), multi-conversation DAPO (Yu et al., 2025b), MARFT (Liao et al.,
2025), and its variants, have been highly successful in training agents for complex tasks. These
methods typically aim to maximize expected cumulative rewards by iteratively updating a policy
function. Recent advancements have explored integrating multi-agent considerations into policy
optimization, often through centralized training with decentralized execution or by incorporating
explicit models of other agents (Lore & Heydari, [2024). Our Theory of Mind Policy Optimization
(ToMPO) algorithm builds upon these ideas by introducing a novel advantage estimation mechanism
that explicitly accounts for the strategies and performance of other agents (expert models) in the
environment. By incorporating both sample-level (individual decision accuracy) and graph-level
(structural optimality) rewards, and by considering historical best performance, TOMPO provides
a more nuanced credit assignment mechanism tailored for sequential strategic decision-making in
multi-agent social environments, moving beyond standard single-agent or simplified multi-agent
PPO formulations.

D.2 LARGE LANGUAGE MODELS FOR DECISION-MAKING

The remarkable capabilities of Large Language Models (LLMs) in natural language understanding
and generation have led to their increasing application in various decision-making scenarios. LLMs
have been shown to assist in generating rational decisions (Gou et al., 2024)), simulating complex
social interactions (Mao et al., 2025), and even predicting outcomes in large-scale social events
(Zhang et al.l 2024a). Their ability to process and synthesize vast amounts of information, cou-
pled with their emergent reasoning capabilities, makes them powerful tools for augmenting human
decision-making or acting as autonomous agents.

However, while LLMs excel in tasks requiring strong logical reasoning (Schmied et al., 2025} |[Liu
et al.l 2025b), such as coding and mathematics, their performance in strategic decision-making,
particularly in social contexts, remains a significant challenge (Zhang et al.| |2024b). This is largely
due to the inherent difficulty in understanding others’ intentions, predicting their behaviors, and
dynamically adjusting one’s own strategy in response. Recent efforts have explored enhancing LLM
strategic abilities in matrix games (Lore & Heydaril, 2024; |Herr et al 2024) and through game-
theoretic workflows (Hua et al.l [2024). Furthermore, research has delved into multi-level thinking
(Zhang et al., 2024c} |Gou et al., [2024), Theory of Mind (ToM) capabilities (Duan et al., [2024;
Cross et al.), and task-solving in social environments (Zhang et al.| 2025a; Wang et al., [2024).
Our work contributes to this growing body of literature by specifically addressing the limitations
of LLMs in sequential, long-term multi-agent strategic decision-making, moving beyond two-agent
chatroom environments or single-game scenarios. We aim to equip LLMs with the ability to make
interdependent decisions that shape and are shaped by evolving social structures, a critical step
towards more sophisticated LLM agents in complex social systems.

D.3 STRATEGIC DECISION-MAKING IN MULTI-AGENT SYSTEMS

Strategic decision-making in multi-agent systems is a rich field (Ma et al., 2024; Yang et al.,[2025b;
Jin et al., 2025} [Liu et al., 2025b; | Yang et al.| [2025a)) that studies how autonomous agents interact
and make choices to achieve their objectives, often in the presence of other intelligent agents. Game
theory (Hua et al.} [2024) provides a foundational framework for analyzing such interactions, offer-
ing concepts like Nash equilibrium (Silva, |2024; [Holt & Rothl|2004) and Pareto optimality (Censor,
1977) to understand rational behavior (Osborne et al.,[2004). Traditional multi-agent reinforcement
learning (MARL) has focused on developing algorithms for agents to learn optimal policies in en-
vironments where their actions affect others, often dealing with challenges like non-stationarity and
credit assignment across agents (Hernandez-Leal et al.| 2019).

Recent advancements in MARL have explored more complex social dynamics, including coopera-
tion (Guan et al, [2025)), competition (Chen et al.| [2024al), operation (Chen et al.| [2024b)), and the
formation of social structures (Yang et al., [2024). Studies have investigated how individual be-
haviors can lead to emergent group-level phenomena and how group structures, in turn, influence
individual decisions (Mi et al |2025; Zhang et al., [2025b)). The concept of Theory of Mind (ToM),
which involves an agent’s ability to attribute mental states (beliefs, desires, intentions) to others, has
gained traction as a crucial component for strategic reasoning in multi-agent settings (Frith & Frith,

16

Under review as a conference paper at ICLR 2026

2005; L1 et al.| [2023; |[Wu et al.,[2025)). Our research extends these ideas by defining a novel problem
of sequential graph-effort strategic decision-making, where agents must make interdependent deci-
sions about both their social connections (graph-level) and their resource investments (effort-level)
over time. This problem formulation captures the dynamic interplay between individual actions
and evolving social structures, which is often overlooked in simpler multi-agent game settings. By
developing ToMPO, we provide a method for LLM agents to learn and adapt their strategies by ex-
plicitly considering the actions and potential mental states of other agents, thereby enhancing their
ability to navigate and influence complex social environments.

E DETAILS FOR PROMPTS

You are an autonomous agent participating in a repeated network-effort game simulated by the environment.

Important global rules (read before answering):
- There are two configuration modes controlled by the simulator:
1) "single" mode: each round has one link decision and then one effort decision.
2) "multi" mode: each round has one joint link decision and then TWO consecutive effort decisions per
agent:
- Step 1: all agents submit their first-effort el.
- After all el are submitted, the simulator may publish all agents' el values to the environment.
- Step 2: each agent then submits its second-effort e2, and when answering you may see both your own
prev_el and the vector prev_el_all (all agents' first efforts) if the simulator publishes them.

Payoff calculation (per round) you should assume when reasoning:
- single mode (legacy):
pi_i = alphalil * sum_j G[i,j] * effort[j] - c * effort[il
- multi mode (new):
pi_i = alpha[il * sum_j G[i,j] * (effortl[j] + delta * effort2[jl) - c * (effortl[i] + effort2[il)
where delta is a discount factor (@ = delta = 1) applied to the second effort's benefit to neighbors;
costs are paid fully.

Visibility / formatting constraints:
- On step2 in multi mode, you may see prev_el (your own first effort) and prev_el_all (first efforts from all
agents) - use them in your reasoning.
- Always output analysis in plain text, and put the requested numeric effort FOR THIS STEP as the very last
line of your message in Markdown code format, e.g.:

Y250
- On multi-step runs you will be asked twice; return only the requested effort value for that step at the end
of the message.

Safety & parsing:
- Avoid returning any extra Markdown code blocks or formatted numbers except the final single-line numeric
code. This helps the simulator parse decisions reliably.

If agents/engineers update reward formulas in code, treat on-code formulas as authoritative; keep system
prompt consistent with the implementation above.

Figure 4: BCZ game system prompt.

You are Agent {agent_id}, in round {round} of the game.

Your task in STEP 1 is to make an initial linking decision (a provisional candidate G_stepl).
#HHt Historical Information:

- Group structure history (G_history): {G_history}

- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

You must detail your reasoning about whom you would like to form a mutual link with.

At the end of your message, on a new line, return your provisional linking decision as a binary vector of
length N = {num_agents} indicating whom you want to link with.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: ‘0 1 6 1 0' (no explanation on that line).

Do not swap the order. Always follow [Agent 0, Agent 1, Agent 2, ...] index order.

Figure 5: BCZ game graph decision 1 prompt.

17

Under review as a conference paper at ICLR 2026

You are Agent {agent_id}, in round {round} of the game.

Your task in STEP 2 is to finalize the linking decision after observing others' provisional link proposals and
after updates to your memory.

##H# Observations for STEP 2:

- Everyone's provisional link proposals (G_stepl_all): {G_stepl_all}

- Your memory has been updated with the provisional links.

- Group structure history (G_history): {G_history}

- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

Please carefully reason and, at the end of your message, on a new line, return your final linking decision
G_final as a binary vector of length N = {num_agents}.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: ‘0 1 0 1 @' (no explanation on that line).

Do not swap the order. Always follow [Agent ©, Agent 1, Agent 2, ...] index order.

Figure 6: BCZ game graph decision 2 prompt.

You are Agent {agent_id}, in round {round} of the game.

Current network structure G (this round):
{current_G}

Previous G history:
{G_history}

Previous effort history:
{effort_history}

Previous payoff history:
{payoff_history}

Now decide your FIRST effort for this round to maximize your payoff given the current network and history.
#HH# Output Formatting Requirements

Explain your reasoning in detail. At the *xend of your message*x, put your chosen first effort (a single
float) on a new line in Markdown code format, e.g.:

‘1.5°

Only the final effort number should be in Markdown code format.

Figure 7: BCZ game effort decision 1 prompt.

You are Agent {agent_id}, in round {round} of the game.

Current network structure G (this round):
{current_G}

Your FIRST effort this round was: ‘{prev_el}"

Previous G history:
{G_history}

Previous effort history:
{effort_history}

Previous payoff history:
{payoff_history}

Now decide your SECOND effort for this round to maximize your payoff, taking into account your first effort
above (‘prev_el'). Explain how/why you adjust the second effort relative to your first.

#HH Output Formatting Requirements
Explain your reasoning in detail. At the **end of your messagex*, put your chosen second effort (a single
float) on a new line in Markdown code format, e.g.:

\0.8"

Only the final effort number should be in Markdown code format.

Figure 8: BCZ game effort decision 2 prompt.

18

Under review as a conference paper at ICLR 2026

You are a rational, goal-oriented intelligent agent participating in a multi-agent Public Goods Game (PGG)
environment with endogenous group formation.

Environment details:

1. There are N agents (numbered from 0 to N-1).
2. Each game consists of T rounds.
3. At the beginning of each round, all agents simultaneously choose their preferred group memberships by
outputting a binary vector of length N:

- A 1 at position j means the agent wants to form a group with agent j.

- Groups only form if two agents mutually select each other (both output 1 for each other).
4. The system constructs the final groups by finding maximal cliques (fully connected subgraphs) of mutually
consenting agents, without overlap. Agents not included in any clique form singleton groups.
5. After groups are formed, each agent decides how much effort to contribute to the public good in their
group. The effort is a continuous value between © and 1.
6. The payoff for each agent is calculated as:

payoff_i = (r * sum_{j in group} effort_j) / group_size - effort_i

where r > 1 is the public good multiplication factor.
7. Historical information about previous rounds' group structures, efforts, and payoffs is provided to you for
decision-making.

Your objective:

- Maximize your individual payoff over the game.

- Make rational and strategic decisions on group formation and effort contribution based on the given
history.

Input format:

- You receive the full history of past rounds: group membership lists, efforts per agent, and payoffs per
agent.

- You know your own agent ID and the total number of agents.

Output requirements:

- For group formation: output a JSON array of length N containing only 0 or 1, representing which agents you
want to group with. Do not include any extra text.

- For effort decision: output a decimal number between @ and 1 (rounded to two decimals) representing your
effort contribution. Do not include any extra text.

Please adhere strictly to these output formats to ensure correct parsing.

Always act to maximize your expected payoff.

Figure 9: PGG game system prompt.

19

Under review as a conference paper at ICLR 2026

[System]
You are an agent participating in a Public Goods Game (PGG). Before each round starts, you need to decide
which agents you want to form a group with.

[Background Rules]

- There are {n_agents} agents in total, numbered from 0 to {n_agents_minus_1}
- You are Agent {agent_id}

- Each agent outputs a binary vector of length {n_agents}

- 1 means you want to group with the corresponding agent

- 0 means you do not want to group with them

- You must set your own position (index {agent_id}) to @

- A group link forms only if both agents mutually select each other

- The system will find maximal cliques to form the final groups

[Available Historical Information]
{history}

[Your Task]
Decide which agents you want to group with and output ONLY the binary vector.

[Output Format]

. First, write your reasoning in detail

. Then, on a new line, write ONLY the binary vector

. The vector must be in JSON format: a list of {n_agents} integers (0 or 1)

. The vector must be in agent index order: Agent 0, Agent 1, ..., Agent {n_agents_minus_1}
. You MUST set position {agent_id} to ©

O EWN R

Example output for Agent 2 in a 5-agent game:
Reasoning: [your detailed reasoning here]
[e, 1, o, 1, 0]

[Important Instructions]

- Your response must have EXACTLY two parts: reasoning and vector

- The vector must be the last line of your response

- Do NOT include any other text after the vector

- Do NOT include any additional explanations or comments after the vector
- Do NOT include any markdown or formatting in the vector line

- The vector must be valid JSON that can be directly parsed

Figure 10: PGG game group decision prompt.

[System]
You are an agent participating in a Public Goods Game (PGG). After groups are formed, you need to decide how
much effort to contribute.

[Game Rules]

- You are Agent {agent_id}

- Current group: {current_group}

- Total effort contributed by all group members is multiplied by factor r
- Public return is evenly shared among all group members

- Your payoff = (public return share) - (your effort cost)

[Available Historical Information]
{history}

[Your Task]
Decide your effort contribution and output ONLY the number.

[Output Format]

. First, write your reasoning in detail

. Then, on a new line, write ONLY the effort value
. The effort must be a float between 0.0 and 1.0

. Round to two decimal places

. Do not include any units or additional text

aEWwWwNE

Example output:
Reasoning: [your detailed reasoning here]
0.75

[Important Instructions]

- Your response must have EXACTLY two parts: reasoning and number

- The number must be the last line of your response

- Do NOT include any other text after the number

- Do NOT include any additional explanations or comments after the number
- Do NOT include any units like "effort" or "contribution"

- The number must be directly parseable as a float

Figure 11: PGG game effort decision prompt.

20

Under review as a conference paper at ICLR 2026

You are participating in a repeated matrix network game as an autonomous agent (LLM).

#HH Game Setup:
- There are N agents in total, indexed from 0 to N-1.
- In each round, each agent decides:
1. #*xWhom to link to** (you can choose to form links with other agents; mutual consent is required for a
link to be established).
2. *xHow much effort to exert*x (a non-negative real number).

#HH Payoff Function:
Your payoff m in each round is calculated as:
W= x x - (1/2) * xi2 + 8 * 505 *x Xi x X, - C * 3 g

Where:

- x; is your effort in this round.

- gj = 1 if both you and agent j choose to link (mutual), otherwise 0.
- 6§ > 0 is a complementarity parameter, encouraging cooperation.

- c 20 is a cost per link.

- a; is your personal linear benefit parameter.

#HH Objective:

Your goal is to **maximize your earnings(payoff) of the last round**, by trying and reasoning in the previous
rounds:

- What kind of social network (link structure) will benefit you,

- How much effort to contribute given the current structure and history,

- And how other agents might behave.

In each round, the following process occurs:

1. ALl agents independently decide which other agents to form links with. Links are only formed if both agents
choose to link with each other.

2. The environment constructs a network (an adjacency matrix G) based on mutual link agreements.

3. Once the network G is formed and known, all agents decide how much effort to exert, taking into account the
network structure and history.

4. The environment calculates each agent's payoff based on their own effort, the network structure, and the
efforts of their neighbors.

5. All agents receive feedback including the current network G, efforts, and individual payoffs.

Your job as an agent is to first make a linking decision, and after seeing the resulting network structure,
decide how much effort to exert.
Be strategic. Think long-term. Learn from history.

#HH Game Parameters:

You have the following information:

- Your personal benefit parameter: #*xalpha = {alpha}*x

- The global complementarity parameter: **delta = {delta}*

- The cost per link: #xc = {c}**

Use these parameters in your reasoning and payoff calculation.

Figure 12: System prompt for SFT and RFT data generation.

You are Agent {agent_id}, in round {round} of the game.
Your task is to decide which agents you would like to form a mutual link with.

#HH# Historical Information:

- Group structure history (G_history): {G_history}
- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

You must detailedly explain your reasoning.

You must follow this thinking program, and based on each program, you can do it by yourself.
Review the payoff structure:

Do the Cost-Benefit Analysis:

Consider the network trend:

Analysis the agents:

Consider Pay-off Optimization:

And at the **end of your message**, Please return your final linking decision, which is a binary vector of
length N = {num_agents} **on a new line*x, indicating whom you want to link with.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: ‘0 1 0 1 0' (no explanation in that line).

Do not swap the order. Always follow [Agent 0, Agent 1, Agent 2, ...] index order.

Figure 13: Graph decision prompt for SFT and RFT data generation.

21

Under review as a conference paper at ICLR 2026

You are Agent {agent_id}, in round {round} of the game.

The final gain is not required to calculate the cumulative payoff.

Current network structure G (this round):
{current_G}

Previous G history:
{G_history}

Previous effort history:
{effort_history}

Previous payoff history:
{payoff_history}

Based on this, decide how much effort you want to exert this round to maximize your payoff.

#HH Output Formatting Requirements
You must detailedly explain your reasoning.

You must follow this thinking program, and based on each program, you can do it by yourself.
Review current network:

Consider the effort trends and payoff structure:

Review the payoff function:

Consider the link costs and risk assessment:

Analyze the optimal effort:

And at the **end of your message**, place your final effort value **on a new line** at the end of your
response, which a single float number in **Markdown code format**, like:

‘o.5°

! Only the final answer should be in Markdown format — use this to help the system identify your chosen
effort. Avoid placing other numbers in the same format elsewhere in your response.

Figure 14: Effort decision prompt for SFT and RFT data generation.

22

	Introduction
	Problem Formulation
	Preliminary Testing LLM Strategic Decision-Making
	Graph-Effort Strategic Game Design
	Sequential BCZ Game
	Sequential Public Goods Game (PGG)

	Evaluation Metrics Definition
	Deficiency for Existing Models

	ToMPO: Theory of Mind Policy Optimization
	Effort Reasoning Learning
	Theory of Mind Policy Optimization (ToMPO)
	Rewards
	Advantage Estimation

	Experiments
	Large Language Model Utilization Explanation
	ToMPO Algorithm
	Environment and Training
	Detailed Description of WDBCZ Sub-Environment Sequences
	Detailed Training Parameters

	Related Works
	Credit Assignment and Policy Optimization
	Large Language Models for Decision-Making
	Strategic Decision-Making in Multi-Agent Systems

	Details for Prompts

