
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOMPO: TRAINING LLM STRATEGIC DECISION
MAKING FROM A MULTI-AGENT PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have been used to make decisions in complex
scenarios, where they need models to think deeply, reason logically, and decide
wisely. Many existing studies focus solely on multi-round conversations in social
tasks or simulated environments, neglecting the various types of decisions and
their interdependence. Current reinforcement learning methods struggle to con-
sider the strategies of others during training. To address these issues, we first de-
fine a strategic decision-making problem that includes two types of decisions and
their temporal dependencies. Furthermore, we propose Theory of Mind Policy
Optimization (ToMPO) algorithm to optimize the perception of other individual
strategies and the game situation trends. Compared to the Group Relative Policy
Optimization (GRPO) algorithm, ToMPO enhances the LLM’s strategic decision-
making mainly by: 1) generating rollouts based on reasoning the strategies of
other individuals, 2) estimating advantages at both the graph-level and sample-
level, and 3) balancing global and partial rewards. The ToMPO algorithm outper-
forms the GRPO method by 35% in terms of model output compliance and coop-
erative outcomes. Additionally, when compared to models with parameter sizes
100 times larger, it shows an 18% improvement. This demonstrates the effective-
ness of the ToMPO algorithm in enhancing the model’s strategic decision-making
capabilities.

1 INTRODUCTION

Large Language Models (LLMs) utilize natural language understanding and generation capabilities
to achieve leading performance in decision-making scenarios, assisting people in generating (Gou
et al., 2024), simulating (Mao et al., 2025), and predicting (Zhang et al., 2024a) decisions across var-
ious categories. While LLMs excel in coding and math tasks, they struggle with strategic decision-
making, which requires understanding others’ intentions, predicting behaviors, and adjusting their
own strategies dynamically (Zhang et al., 2024b).

LLMs demonstrate varying strategic abilities in matrix games (Lorè & Heydari, 2024; Herr et al.,
2024) and can be enhanced through a game-theoretic workflow (Hua et al., 2024). Recent research
further explores LLM strategic decision-making through multi-level thinking (Zhang et al., 2024c;
Gou et al., 2024), Theory of Mind (Duan et al., 2024; Cross et al.), task-solving (Zhang et al.,
2025a; Wang et al., 2024), as well as influences between individuals and groups (Mi et al., 2025;
Zhang et al., 2025b). (detailed related work in section D) These studies provide methods for LLMs
to adapt to human society, emerge human behaviors, and serve social issues. However, these studies
restrict the strategic decision-making capabilities of LLM to two-agent chatroom environments or
single-game scenarios. This approach fails to provide the necessary methods for LLM to enhance
its performance in diverse, long-term multi-agent decision-making tasks.

By focusing on these key issues, our paper analyzes the strategic decision-making capabilities of
LLMs in complex social environments, where LLMs must sequentially make decisions that impact
both individuals and groups. During this period, the prior decisions made by LLM will have a cer-
tain degree of influence on subsequent decisions. This implies that individual behaviors may lead
to changes in the social structure of the group, and at the same time, changes in the group structure
will affect subsequent individual decisions. For instance, in real life, before signing a cooperation
agreement with multiple distributors, enterprises will conduct various evaluations. After the coop-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

eration agreement is signed, they will implement the cooperation with varying levels of investment
over a specified period. Each cooperation has a certain impact on whether the enterprise decides to
continue the next collaboration. Furthermore, if there is a desire to terminate the cooperation dur-
ing the process, it cannot be done immediately; that is, reversing the decision is not possible. This
decision-making process helps highlight the real-world challenges faced by individuals and groups
over time, posing a challenge to the model’s capabilities.

In this context, we first define the problem as a sequential decision-making process that primarily
involves graph-level and effort-level decisions. Then we build three kinds of complex social envi-
ronments to test SOTA (State-of-the-Art) LLM performance. To optimize performance, we propose
a reinforcement learning algorithm that integrates a multi-agent perspective into the LLM-based pol-
icy model training process. Based on the preliminary tests, we created an expert dataset containing
the effort-level decisions made by models that achieve high rewards, across various topological posi-
tions and at different stages in the game. The policy model effectively learns decision-making at the
effort level from the expert dataset through a supervised fine-tuning process. We enhanced the pol-
icy model for graph-level decision-making through reinforcement fine-tuning, which incorporates
multi-agent considerations in reward modeling during the training process.

Our contribution can be summarized as:

• We define a problem for real-world strategic decision-making and design corresponding
general simulation environments for decision data generation and examination.

• We evaluate the performance of the State-of-the-Art (SOTA) models and provide a dataset
including the expert model’s strategic decisions under different topological structures and
at different game time processes.

• We propose a reinforcement learning algorithm, Theory of Mind Policy Optimization
(ToMPO), and apply it to the Qwen-2.5-7B-instructmodel, achieving improvement
in strategic decision-making capabilities.

2 PROBLEM FORMULATION

In contrast to the scenarios discussed in Theory of Mind (Strachan et al., 2024; Liu et al., 2025c) and
single LLM long-term planning (Huang et al., 2024; Ma et al., 2025), we require the LLM to operate
as an agent within a multi-agent environment consisting of at least three agents, making two types
of decisions sequentially. During any decision-making process, an agent considers the strategies
of other agents and its subsequent strategy, depending on its own state. These considerations will
autonomously change based on the agent’s social status, game progress, and others’ performance.

Graph-Effort Strategic Decision-Making We define the decision-making process as a set
⟨N ,S,A, T, τ, f, r, γ⟩, with the set of all agents or players N = {1, 2, . . . , N}, state space S,
total game round T , decision type sequence τ , the state transition function f ∈ {fG, fE}, utility
function r, and discount factor γ. The agent state at round t includes the agent’s social relationship
structure (G) and effort (E) at this round. L and M represent how many steps of actions related to
structure forming and effort investment, respectively in one round. τ represents the overall action
type sequence. For example, when L = 1,M = 2, let τ = {(G,E,E), (G,E,E), . . .} represent
a sequence where the LLM agent must make a graph-level decision at step 0 in one game round.
This decision involves choosing whether to join one group or establish relationships with others. At
steps 1 and 2, the agent will determine how much to invest based on the social relations established
in step 0. This pattern continues in subsequent rounds. ai,t,j is the action decision agent i made at
step j of round t (equation 2). Action space A = {Ai}i∈N = {ai,τ}i∈N (equation 3).

∀i ∈ N , t ∈ [0, T − 1], j ∈ [0, L+M − 1] (1)

St = (Gt, Et), τ(t, j) ∈ {G,E}, ai,t,j =

{
gi,t,j if τ(t, j) = G
ei,t,j if τ(t, j) = E

(2)

At = (At,L
G , At,M

E) = ({At,0
G , At,1

G , ..., At,L−1
G }, {At,L

E , At,L+1
E , ..., At,L+M−1

E }) (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Decision-Making Optimization with Credit Assignment According to Credit Assignment
(Nguyen et al., 2018; Pignatelli et al., 2024) in reinforcement learning, we decompose strategic
decision-making into dual complementary processes (equation 4 and 5). V ∗ represents the optimal
value function, and Ht = {(aτ , rτ)}t−1

τ=0 denotes the decision-reward history. The forward process
is designed to optimize the model’s decision-making capabilities within a defined social graph struc-
ture. It effectively involves understanding the rules, accurately predicting or assessing the decisions
of other agents, and clearly defining its own strategy. On the other hand, the inverse process sig-
nificantly enhances the model’s ability to determine which group structure it will join next, relying
on its memory of past decisions. These two processes align with the credit assignment principle
(equation 6).

Forward Process (Effort Decision Optimization): max
et

E

[
T∑

k=t

γk−trk | Gt = g

]
(4)

Inverse Process (Graph Decision Optimization): max
gt

E [V ∗(St+1) | Ht] (5)

∇θJ(θ) =
∑

t:τ(t)=E

ψE(δt)︸ ︷︷ ︸
Forward Process Credit

+
∑

t:τ(t)=G

ψG(δt)︸ ︷︷ ︸
Inverse Process Credit

+ζ(∆C) (6)

3 PRELIMINARY TESTING LLM STRATEGIC DECISION-MAKING

3.1 GRAPH-EFFORT STRATEGIC GAME DESIGN

We present two sequential multi-agent game environments where Large Language Model (LLM)
agents make decisions over T rounds. Both environments involve N agents making choices related
to social graph formation (G) and effort investment (E) to maximize their individual utility. Agents
observe full historical information (Ghistory, xhistory, πhistory) to inform their current decisions.
The decision-making process in each round generally consists of two key components: graph for-
mation and effort investment. An agent refers to an individual who participates in the game and is
part of the graph. As shown in Figure 1, the agent, represented by the policy model, makes decisions
simultaneously as other agents in the environment.

agent 0 decision G

round 1 reward 1 reward 2

other agents' concurrent
decision-making G

other agents' concurrent
decision-making E

0
1

2

$ effort 1[0, , 0, 0, 0, 0, 0, 0]1
0

1

2
agent 0 decision Gagent 0 decision E

other agents' concurrent
decision-making G

[0, , , 0, 0, 0, 0, 0]1 1

other agents' concurrent
decision-making E

$ effort 2

agent 0 decision E

round 2

Figure 1: Demonstration of a two-round decision-making process in the GE sub-environment.

3.1.1 SEQUENTIAL BCZ GAME

This environment extends the classic BCZ (Bala-Goyal-Jackson) game (Ballester et al., 2006) to a
sequential framework. Each agent i simultaneously decides on their social links and effort invest-
ments. The sequence in which these decisions are made defines three sub-environments: GE, GEE,
and GGE (detailed in Appendix C.1).

Decision Components

• Link Decision(G): All agents simultaneously decide on mutual social links, represented by an
adjacency matrix G ∈ {0, 1}N×N , where Gij = 1 denotes a mutual link between agents i and j.
• Effort Investment(E): Each agent i invests an effort xi ≥ 0.

Utility Function As for GE, the utility (payoff) for agent i at a given round, πi, is defined as:

πi = αixi −
1

2
x2i + δ

∑
j ̸=i

Gijxixj − c
∑
j ̸=i

Gij , i, j ∈ N (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where: αi > 0: agent i’s individual productivity parameter, xi: effort invested by agent i, δ > 0:
synergy parameter, representing benefit from interactions, Gij : indicates a mutual link between
agent i and agent j, c > 0: cost of maintaining a link.

3.1.2 SEQUENTIAL PUBLIC GOODS GAME (PGG)

We implement a sequential LLM-based multi-agent Public Goods Game environment, inspired by
classical PGG models (Ledyard et al., 1994; Fehr & Gächter, 2000), incorporating endogenous
group formation. Further details are available in the associated code implementation.

Decision Components

• Group Formation (G) All agents simultaneously decide their preferred group memberships.
Agent i submits a binary vector gi ∈ {0, 1}N , where gij = 1 signifies a desire to form a group
with agent j. A mutual link forms if gij = 1 and gji = 1. Non-overlapping groups Gt are then
formed by identifying maximal cliques in the resulting graph; agents not in larger cliques form
singleton groups.
• Effort Investment (E) Within their established groupsGt,k, each agent i decides on a continuous
effort contribution xi ∈ [0, 1] into their group’s public good.

Payoff Calculation The payoff (utility) for agent i in group Gt,k at round t, πi,t, is calculated as:

πi,t =

r · ∑
j∈Gt,k

xj,t

/
|Gt,k| − xi,t (8)

where: r > 1: public good multiplication factor (e.g., r = 1.5), xj,t: effort contributed by agent j
in round t, |Gt,k|: number of agents in group Gt,k.

3.2 EVALUATION METRICS DEFINITION

To assess the performance of LLM agents in both the BCZ and Public Goods Game (PGG) envi-
ronments, we define three key evaluation metrics: U1 (Compliance), U2 (Strategic Efficiency), and
U3 (Cooperative Outcome). These metrics are calculated based on the agents’ behavior and the
resulting game states over T rounds.

U1: Compliance (Adherence to Game Rules) U1 measures how well agents’ decisions follow the
structural and operational rules of the game. For instance, it penalizes non-zero diagonal entries
in the link matrix G, which represent self-loops that are not allowed in social graph formation.
Additionally, it evaluates the presence of general errors or malformed decisions in the log files. A
higher value of U1 indicates a better understanding and execution of the game’s mechanics.

U1 = max

(
1− Total Rule Violations

Total Possible Checks
, 0

)
(9)

U2: Strategic Efficiency (Proximity to Individual Optimum) U2 evaluates how well agents make
strategic decisions based on the observed graph structure. It measures the difference between agents’
actual effort investments, xactual, and their optimal effort levels, x∗, which are determined using
optimization methods for BCZ and the formula x∗ = max(0, 1 − |Gt,k|/r) for PGG. The optimal
effort is calculated based on the final group structure G in each game. A higher U2 indicates that
agents are making rational decisions.

U2 = max

(
1− ∥Actual Efforts− Optimal Efforts∥2

∥Optimal Efforts∥2
, 0

)
(10)

U3: Cooperative Outcome (Global Welfare Achieved) U3 assesses the overall collective perfor-
mance of the LLM agents by comparing the total payoff achieved in the final round to the maximum
theoretically possible total payoff (global optimum) for the respective game. A higher U3 indicates
more successful collective action and welfare generation.

U3 = max

(
Actual Total Payoff

Globally Optimal Total Payoff
, 0

)
(11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 DEFICIENCY FOR EXISTING MODELS

According to the preliminary test result in table 1, we can summarize the deficiency into three
points. First, most models cannot generate compliant outputs (U1 test metric). For large models, the
limitation is reasoning, while for backbone models, it stems from following the rules. For example,
some backbone models generate five numbers in the decision list in a six-agent game. Secondly,
when comparing the U2 and U3 metrics (BCZ-2 and PGG), which have an upper limit for the optimal
solution, we observe that models perform better in scenarios involving homogeneous agents. In our
test logs, the model more easily completes the reasoning chain and generates more comprehensive
texts in the BCZ game. Therefore, we use the BCZ game to prepare the expert decision data (details
in section 4.1). Thirdly, in comparing the results of BCZ-1 and BCZ-2, the reasoning model can
more easily recognize that the current optimal investment has no upper limit. Therefore, a larger
effort can be made when the network structure is improved.

Table 1: Large models are tested in three complex social environments, with three simulations each.
BCZ-1 optimizes for homogeneous agents without limits, while BCZ-2 suits heterogeneous agents
with limits. PGG features isomorphic agents and also has an optimal solution with limits.

U1 U2 U3
Category Model Name BCZ-1 BCZ-2 PGG BCZ-1 BCZ-2 PGG BCZ-1 BCZ-2 PGG

LLM GPT-4o 0.996 0.960 1 0.254 0.845 0.660 62.831 0.007 0.445
LLM DeepSeek-V3 1 1 1 0.971 0.994 0.355 18.253 0.010 0.755
LLM Llama-3.3-70B 0.758 0.740 0.863 0.702 0.275 0.533 5.385 0.004 0.649
LLM GPT-4o-mini 0.942 0.960 0.988 0 0.014 0.672 288.208 0.007 0.554
LRM GPT-o3 0.963 0.980 0.996 0.904 0.631 0.403 2.852× 109 0.006 0.877
LRM DeepSeek-R1 0.996 0.980 1 0.333 0.808 0.500 8.045× 109 0.033 0.750
LRM kimi-k2-0711-preview 0.971 0.960 0.992 0.401 0.005 0.529 1.059× 104 0.001 0.531

Backbone Qwen2.5-7B-instruct 0.650 0.640 0.779 0.414 0.224 0.511 42.542 0.006 0.713
Backbone Llama-3.1-8B 0.704 0.600 0.767 0.367 0.008 0.512 7.660 0.004 0.707

4 TOMPO: THEORY OF MIND POLICY OPTIMIZATION

4.1 EFFORT REASONING LEARNING

Through the preliminary test results, we find that reasoning models are consistently effective at
defining the “sub-tasks” necessary to achieve the ultimate goal and complete the overall task. In
contrast, backbone models like Llama-3.1-8B struggle to reason through a series of steps to
finish tasks one by one; they tend to repeat existing rules and perform basic calculations simply.
The challenge for the backbone model lies more in transforming the strategic reasoning with social
elements into a series of small tasks leading to the final decision, rather than in making the model’s
calculations more accurate. This is in perfect harmony with the concept of Program of Thought
(Chen et al., 2022). The model needs to learn the compliant generation and thinking program first
before some other higher needs.

So, according to the model deficiency analysis in section 3.3, we identify the expert models that meet
the evaluation criteria U1 and demonstrate a balanced capability in U2 and U3. This means that these
models can provide compliant outputs while excelling in both the individual optimal solution and
the group optimal solution. We select two reasoning models and analyze their thinking processes
to identify a common program of thought for improving reasoning. We organize two programs
of thought for decisions regarding graphing and effort, and then we generate expert data using the
GPT-o3 model based on the Program of Thought prompts.

After getting the expert effort decision data (DEffort), we use these data to fine-tune the policy model
for learning the common thinking program and compliance output. The optimization method of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Low-rank adaptation (LoRA) fine-tuning (Hu et al., 2022) is shown in Formula 12.

θ∗ = {A∗, B∗} = arg min
{A,B}

−E(x,y)∼DEffort

 |y|∑
t=1

log π(W0+
α
r BA)(yt | x, y<t)

 (12)

4.2 THEORY OF MIND POLICY OPTIMIZATION (TOMPO)

Figure 2: Demonstration of our Theory of Mind Policy Optimization (ToMPO) method. Step 1:
Select an expert model and common programs of thought. Step 2: Supervised Fine-Tuning of the
policy model for Effort Decision optimization. Step 3: Reinforcement Fine-Tuning policy model
with ToMPO algorithm for Graph Decision optimization.

Common policy optimization methods usually calculate advantage from a single agent perspective.
This will cause the policy model’s adaptability to the environment or information to become in-
creasingly self-centered, to some extent, ignoring the performance and strategies of other models
(agents) in the environment. More importantly, when the policy model’s decisions involve depen-
dencies among rounds, for example, the decision in round i + 1 will be based on the memory of
round i, the update of the policy model cannot rely solely on the n rollouts of a single round.

As models increasingly resemble human thinking and decision-making, enhancing their capabilities
through the Theory of Mind (ToM) (Frith & Frith, 2005; Li et al., 2023; Wu et al., 2025) has gar-
nered significant attention. It’s crucial to consider the strategies of other agents during the rollout
generation and advantage estimation, as this directly affects the model’s policy update process.

Training Data Preparation: We consider the policy model (Qwen-2.5-7B-instruct) as
Agent 0 in all the games during the training process. All other agents are represented by the ex-
pert model GPT-o3. This makes the strategies of the policy model generally inferior to those of
other individuals in the environment, making the purpose of reinforcement learning training clearer.
In the model’s reinforcement training, classifying the difficulty level of the training data is very im-
portant (Pikus et al., 2025). Other agents during the training process directly affect the proportion
of the advantages of the policy model’s strategy and the learning difficulty. Therefore, we used the
expert model to conduct 126 simulations in environments with both homogeneous and heteroge-
neous agents of different quantities (from 4 to 8), with each simulation lasting for 10 rounds. We
collected the actual graph formation situations of each round of the expert models as the “memory”
part in the RFT prompt, and the graphs formed by the expert models as the expert data for the reward
calculation in the RFT process.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Concise description for ToMPO algorithm: Let the generated decision graph by GPT-o3 models
using the same prompt (the same game parameter settings) be the expert data. Then, we have the
expert data decision graph Gexpert, and m rollouts O at step p. Each rollout O contains a decision
list showing the policy model (Agent 0) strategy. Each list combines with the expert decision graph
under this prompt to form a complete graph, denoted as G1 . . . Gn, representing the final summary
of all agents’ strategies. At the graph level, each graph G is compared to the Gexpert for structural
calculations, as well as to the prompt best graph Gbprompt and memory best graph Gbmemory for
sequential calculations. At the sample level, each G compares to the Gexpert and calculates group
advantage. Detailed algorithm process is in Appendix B.

Based on the ToMPO algorithm, the overall optimization objective is:

JToMPO(θ) = Eq∼P(Q), {ai}m
i=1∼πθold

(·|q)

[
1

m

m∑
i=1

min
(
ri(θ),

clip
(
ri(θ), 1−ε, 1+ε

))(
wSA

S(ai) + wGA
G(Gi)

)
− β DKL[πθ∥πθold]

] (13)

ToMPO graph-level advantage estimation balances local precision with global graph optimality,
while the sample-level advantage focuses on evaluating the policy model’s decisions.

4.2.1 REWARDS

Our reward functions contain three parts. We first calculate the Compliance Reward for all rollouts.
For those rollouts that are compliant, we calculate the Sample-Level and graph-level rewards.

Compliance Reward: We set the basic reward at 0.5 points for model compliance, which means it
can generate a decision list where the list length equals the agent sum and there are no self-loops.
However, if the model cannot generate the thinking process and the decision list, or if the list does
not meet the above needs, the reward is deducted by 1 point, resulting in a final score of -0.5 points.

Sample-Level Reward: We believe the sample-level reward needs to be more sensitive to the deci-
sion list of the policy model itself. So, we use the F1 score and accuracy to calculate, highlighting
the decision list’s weight.

Rsample(G) = 5
(
0.7F1(G, Gexpert) + 0.3 Acc(G, Gexpert)

)
(14)

Graph-Level Reward: At the graph level, all the comparisons between graphs need to be fair, so
we use the Hamming distance for calculation. We calculate and update three rewards, the graph
reward Rgraph(G), the prompt best reward Rprompt

p , the memory best reward Rmemory
p . Rgraph(G)

represents the Hamming distance between the actual rollout graph and the expert decision graph.
The term Rprompt

p calculates the highest reward among all rollout graphs generated from a single
prompt. Meanwhile, Rmemory

p is updated whenever a larger reward is obtained within the same game
parameter settings (with the exception that only the agent’s memory in the prompt is different). θi is
the combination of hyperparameters to which the rollout i belongs.

Rgraph(G) = 1− 1

|E|
∑

(i,j)∈E

∣∣Gij −Gexpert
ij

∣∣, |E| = N(N − 1) (15)

Rprompt
p = max

k∈group(p)
Rgraph(G), ∀p ∈ {1, . . . ,M} (16)

Rmemory
i = max

history H(θi)
Rgraph(G), θi = (α, δ, c)i (17)

4.2.2 ADVANTAGE ESTIMATION

We mainly use the reward at the sample level Rsample to estimate sample-level advantages AS
m, and

the reward at the graph level Rgraph for graph-level advantages AG
m. In our training, we set the wlocal,

wsample as 0.8, the wglobal and wgraph as 0.2.

AS(Gi) =
Rsample(Gi)−mean

{
Rsample(G1), . . . , Rsample(Gn)

}
std

{
Rsample(G1), . . . , Rsample(Gn)

}
+ ε

(18)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AG(Gi) = wlocal

(
Rgraph(Gi)−Rprompt

i

)
+ wglobal

(
Rgraph(Gi)−Rmemory

i

)
(19)

The overall advantage of a rollout can be calculated as the sum of the sample-level and graph-level
advantages, with normalization applied. Compared to the GRPO advantage estimation (Guo et al.,
2025; Shao et al., 2024), the ToMPO advantage has two main differences. First, in addition to the
sample advantage, we have also improved the graph advantage. This enhances the model’s ability to
consider the graph more thoroughly while achieving high scores, allowing it to learn more effective
decision-making methods. In the rewards at the graph level, we consider both the difference between
the current round of the graph and the optimal solution for the same hyperparameters. This allows
the model’s strategy to gradually move towards both the short-term optimum and the global optimum
at the same time.

A(Gi) = wsampleA
S(Gi) + wgraphA

G(Gi), wsample + wgraph = 1 (20)

5 EXPERIMENTS

Since the preliminary test revealed that the Qwen model is relatively balanced in terms
of performance across all evaluation criteria, we apply the ToMPO algorithm to the
Qwen-2.5-7B-instruct model, which completes the effort learning fine-tuning process, and
compare it with existing models. We conduct each simulation three times, with 20 rounds each,
allowing adequate time for model decision-making.

Table 2: Algorithm examination in four environment settings, compared to backbone models, super-
vised fine-tuning models, and GRPO applied models. We use the global welfare/ actual simulation
rounds to represent BCZ and PGG U3 here, illustrating the efficiency of global welfare gains.

BCZ - GE BCZ - GEE BCZ - GGE PGG - GE
U1 U2 U3 U1 U2 U3 U1 U2 U3 U1 U2 U3

Deepseek-V3 1 0.44 0.11 1 0 0.09 1 0 0 1 0 0.07
GPT-4o 1 0.36 0.10 1 0 0.01 1 0.07 -0.11 1 0 0.06

Qwen2.5-72b-instruct 1 0.39 0.02 1 0 0.03 1 0.24 -0.11 0.99 0 0.07
Qwen3-235b-a22b 1 0.05 -0.2 1 0 0 0.99 0 -0.24 0.99 1 0

Qwen2.5-7B-instruct 0.65 0.38 0.08 0.95 0 0.53 0.75 0 -0.02 0.85 0 0.10
SFT effort learning 1 0 -0.09 1 0 0.17 1 0 -0.02 1 0 0.10

SFT + GRPO 1 0 0 1 0 0.99 1 0.12 -0.03 1 0 0.11
SFT + ToMPO 1 0 0.03 1 0 1.34 1 0.16 -0.02 1 0 0.25

Evaluation Environments Based on our problem definition and environment building, we use the
BCZ and PGG games as our examination environments. We create subenvironments by modifying
the configuration, which includes variables like the number of agents, network hyperparameters
such as private gain sensitivity, reciprocity intensity, connection costs, and whether the agents are
homogeneous or heterogeneous. Our experiment environments set as: BCZ-GE (8 homogeneous
agents, alpha = 1, delta = 0.05, c = 0.2), BCZ-GEE (5 heterogeneous agents, alpha = [0.8, 1.8, 1.1,
0.6, 1.5], delta = 0.15, c = 0.4), BCZ-GGE (4 homogeneous agents, alpha = 1, delta = 0.1, c = 0.6),
PGG-GE (5 homogeneous agents, r = 1.5).

Evaluation Models and Algorithms Based on the preliminary test in table 1, we select models
Deepseek-V3 and GPT-4o that have balanced capabilities in the metrics for comparison. Fur-
thermore, we add the Qwen3-235b-a22b and Qwen2.5-72b-instruct for comparison on
the number of parameters and model type. We apply supervised LoRA fine-tuning to the backbone
model, the GRPO algorithm to the SFT model, and the ToMPO algorithm to the SFT model. The
GRPO algorithm serves as the baseline method, using sample-level rewards as mentioned in section
4.2.1 and sample-level advantage estimation in the GRPO algorithm (Shao et al., 2024).

Result Analysis Based on the results in Table 2, we can summarize the performance of the models
and algorithms as follows. SFT helps ensure that models generate compliant outputs. The models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a) Qwen2.5-7b-instruct b) Qwen2.5-7b-instruct-SFT

c) Qwen2.5-7b-instruct-SFT-GRPO d) Qwen2.5-7b-instruct-SFT-ToMPO

Figure 3: One BCZ-GEE evaluation result comparison for four models: the backbone model (a),
the SFT applied model (b), the SFT+GRPO model (c), and the SFT+ToMPO model (d). Each
model’s results include four components: the blue line shows the total number of links in the graph
throughout the game (ending early if unchanged for five rounds), the green line indicates average
agent effort, the purple line represents global welfare, and the red and yellow lines display the
frequency of changes in the graph and effort, respectively.

generally scored lower on the U2 standard. This is primarily because, in certain scenarios, the mod-
els are capable of making higher investments. However, due to the process of mutual exploration
and analysis of prior investments made by other models, it becomes challenging for them to make
substantial investments directly. As a result, they often deviate from the theoretically optimal indi-
vidual investment value. Compared to a model with 100 times the parameters, the model trained by
ToMPO can achieve the corresponding capabilities.

We analyzed the experimental results and presented the general findings in Figure 3. The result
shows the backbone model tends to unpredictable changes in the decision-making process of the
graph. It is difficult to make an optimal effort decision under an optimal structure. SFT can help
model compliant output, but since the graph does not reach optimality and remains fixed, achieving
an average effort that is optimal is challenging. Comparing parts c), a), and b), we find the GRPO al-
gorithm effectively enhances the stability of the model’s performance in graph decision-making. On
this basis, the model can more easily make the optimal effort decision. When comparing the ToMPO
algorithm d) with the GRPO algorithm c), the main takeaway is that the ToMPO algorithm improves
the stability and global awareness of the model’s decision-making process in graph representation.
This enhancement enables the model to make more effective decisions more quickly.

Limitation and Future Work Our current work has delivered the supervised fine-tuning (SFT)
and ToMPO reinforcement fine-tuning (RFT) on the backbone model, showing the algorithm’s ef-
fectiveness. The policy model’s perspective may be biased towards agent 0 due to our training data.
In future work, we will adjust the RFT prompt and training data to broaden the model’s perspec-
tives. Despite tests showing reduced capability when combining supervised finetuning for graph and
effort, we will explore alternative SFT methods or consider separating the SFT process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Coralio Ballester, Antoni Calvó-Armengol, and Yves Zenou. Who’s who in networks. wanted: The
key player. Econometrica, 74(5):1403–1417, 2006.

Yair Censor. Pareto optimality in multiobjective problems. Applied Mathematics and Optimization,
4(1):41–59, 1977.

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen.
Llmarena: Assessing capabilities of large language models in dynamic multi-agent environments.
arXiv preprint arXiv:2402.16499, 2024a.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Op-
tima: Optimizing effectiveness and efficiency for llm-based multi-agent system. arXiv preprint
arXiv:2410.08115, 2024b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Logan Cross, Violet Xiang, Agam Bhatia, Daniel LK Yamins, and Nick Haber. Hypothetical minds:
Scaffolding theory of mind for multi-agent tasks with large language models. In The Thirteenth
International Conference on Learning Representations.

Jinhao Duan, Shiqi Wang, James Diffenderfer, Lichao Sun, Tianlong Chen, Bhavya Kailkhura, and
Kaidi Xu. Reta: Recursively thinking ahead to improve the strategic reasoning of large language
models. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
2232–2246, 2024.

Ernst Fehr and Simon Gächter. Cooperation and punishment in public goods experiments. American
Economic Review, 90(4):980–994, 2000.

Chris Frith and Uta Frith. Theory of mind. Current biology, 15(17):R644–R645, 2005.

Tian Gou, Boyao Zhang, Zhenglie Sun, Jing Wang, Fang Liu, Yangang Wang, and Jue Wang. Ra-
tionality of thought improves reasoning in large language models. In International Conference on
Knowledge Science, Engineering and Management, pp. 343–358. Springer, 2024.

Yilin Guan, Wenyue Hua, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, and
William Yang Wang. Dynamic speculative agent planning. arXiv preprint arXiv:2509.01920,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Nathan Herr, Fernando Acero, Roberta Raileanu, Maria Perez-Ortiz, and Zhibin Li. Large language
models are bad game theoretic reasoners: Evaluating performance and bias in two-player non-
zero-sum games. In ICML 2024 Workshop on LLMs and Cognition, 2024.

Charles A Holt and Alvin E Roth. The nash equilibrium: A perspective. Proceedings of the National
Academy of Sciences, 101(12):3999–4002, 2004.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wenyue Hua, Ollie Liu, Lingyao Li, Alfonso Amayuelas, Julie Chen, Lucas Jiang, Mingyu Jin,
Lizhou Fan, Fei Sun, William Wang, et al. Game-theoretic llm: Agent workflow for negotiation
games. arXiv preprint arXiv:2411.05990, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Weiqiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A compre-
hensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
and perspectives. arXiv preprint arXiv:2503.13415, 2025.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

John O Ledyard et al. Public goods: A survey of experimental research. Division of the Humanities
and Social Sciences, California Inst. of Technology, 1994.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia Sycara. Theory of mind for multi-agent collaboration via large language models. arXiv
preprint arXiv:2310.10701, 2023.

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-
tuning. arXiv preprint arXiv:2504.16129, 2025.

Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent
reinforcement learning. arXiv preprint arXiv:2508.04652, 2025a.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. arXiv
preprint arXiv:2506.16499, 2025b.

Zizhou Liu, Ziwei Gong, Lin Ai, Zheng Hui, Run Chen, Colin Wayne Leach, Michelle R Greene,
and Julia Hirschberg. The mind in the machine: A survey of incorporating psychological theories
in llms. arXiv preprint arXiv:2505.00003, 2025c.

Nunzio Lorè and Babak Heydari. Strategic behavior of large language models and the role of game
structure versus contextual framing. Scientific Reports, 14(1):18490, 2024.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. arXiv preprint arXiv:2410.17195, 2024.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation
of language models for reasoning and planning. In The Thirteenth International Conference on
Learning Representations, 2025.

Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang, Qiang Guan, Tao Ge,
and Furu Wei. Alympics: Llm agents meet game theory. In Proceedings of the 31st International
Conference on Computational Linguistics, pp. 2845–2866, 2025.

Qirui Mi, Mengyue Yang, Xiangning Yu, Zhiyu Zhao, Cheng Deng, Bo An, Haifeng Zhang,
Xu Chen, and Jun Wang. Mf-llm: Simulating population decision dynamics via a mean-field
large language model framework. arXiv preprint arXiv:2504.21582, 2025.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 2007.

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assignment for collective multi-
agent rl with global rewards. Advances in neural information processing systems, 31, 2018.

Martin J Osborne et al. An introduction to game theory, volume 3. Springer, 2004.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, and Laura
Toni. A survey of temporal credit assignment in deep reinforcement learning. Transactions on
Machine Learning Research, 2024.

Benjamin Pikus, Pratyush Ranjan Tiwari, and Burton Ye. Hard examples are all you need: Maxi-
mizing grpo post-training under annotation budgets. arXiv preprint arXiv:2508.14094, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.
Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. arXiv preprint
arXiv:2504.16078, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Alonso Silva. Large language models playing mixed strategy nash equilibrium games. In Inter-
national Conference on Network Games, Artificial Intelligence, Control and Optimization, pp.
142–152. Springer, 2024.

James WA Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio Scaliti, Saurabh
Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido Manzi, et al. Testing theory of
mind in large language models and humans. Nature Human Behaviour, 8(7):1285–1295, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Ruiyi Wang, Haofei Yu, Wenxin Zhang, Zhengyang Qi, Maarten Sap, Yonatan Bisk, Graham Neu-
big, and Hao Zhu. Sotopia-π: Interactive learning of socially intelligent language agents. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 12912–12940, 2024.

Yuheng Wu, Wentao Guo, Zirui Liu, Heng Ji, Zhaozhuo Xu, and Denghui Zhang. How large lan-
guage models encode theory-of-mind: a study on sparse parameter patterns. npj Artificial Intelli-
gence, 1(1):20, 2025.

Yingxuan Yang, Huacan Chai, Yuanyi Song, Siyuan Qi, Muning Wen, Ning Li, Junwei Liao,
Haoyi Hu, Jianghao Lin, Gaowei Chang, et al. A survey of ai agent protocols. arXiv preprint
arXiv:2504.16736, 2025a.

Yingxuan Yang, Ying Wen, Jun Wang, and Weinan Zhang. Agent exchange: Shaping the future of
ai agent economics. arXiv preprint arXiv:2507.03904, 2025b.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
Chen, Martz Ma, Bowen Dong, et al. Oasis: Open agent social interaction simulations with one
million agents. arXiv preprint arXiv:2411.11581, 2024.

Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad
Majumder, Hao Zhu, Paul Pu Liang, and Jiaxuan You. Sotopia-rl: Reward design for social
intelligence. arXiv preprint arXiv:2508.03905, 2025a.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm with
multi-conv rl-based memory agent. arXiv preprint arXiv:2507.02259, 2025b.

Wenyuan Zhang, Tianyun Liu, Mengxiao Song, Xiaodong Li, and Tingwen Liu. Sotopia-: Dynamic
strategy injection learning and social instruction following evaluation for social agents. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 24669–24697, 2025a.

Xinnong Zhang, Jiayu Lin, Libo Sun, Weihong Qi, Yihang Yang, Yue Chen, Hanjia Lyu, Xinyi Mou,
Siming Chen, Jiebo Luo, et al. Electionsim: Massive population election simulation powered by
large language model driven agents. arXiv preprint arXiv:2410.20746, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu,
Ting Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with
large language models. arXiv preprint arXiv:2404.01230, 2024b.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, and Furu Wei. K-level
reasoning: Establishing higher order beliefs in large language models for strategic reasoning.
arXiv preprint arXiv:2402.01521, 2024c.

Yiwen Zhang, Yifu Wu, Wenyue Hua, Xiang Lu, and Xuming Hu. Attention mechanism for llm-
based agents dynamic diffusion under information asymmetry. arXiv preprint arXiv:2502.13160,
2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LARGE LANGUAGE MODEL UTILIZATION EXPLANATION

In our research, LLM is the backbone and comparison models for the algorithm delivery and exam-
ination. We use LLM to generate the configuration, which ensures the balance between randomness
and parameter significance. The rest was not involved with LLM.

B TOMPO ALGORITHM

Algorithm 1: Theory of Mind Policy Optimization (ToMPO) Algorithm

Input: Initial policy model πθ, expert graph Gexpert, task prompts Q, reference model πref
θ , total

training steps T , rollout number m
1 for iteration t = 1, 2, . . . , T do
2 Sample prompt q ∼ P(Q);
3 Retrieve expert graph Gexpert for prompt q;
4 Generate m rollouts: {ai}mi=1 ∼ πθold(·|q);
5 Construct graphs {Gi}mi=1 by combining each ai with Gexpert;
6 for i = 1 to m do
7 if ai is compliant then
8 Rcomp,i ← 0.5;
9 Rsample,i ← 5 (0.7F1i + 0.3Acci);

10 Rgraph,i ← 1− Hamming(Gi, Gexpert);
11 Update Rprompt and Rmemory using Rgraph,i;
12 Compute sample-level advantage AS(Gi) by normalizing Rsample,i;
13 Compute graph-level advantage AG(Gi) using Rgraph,i, Rprompt, Rmemory;
14 Combine total advantage A(Gi) = wSA

S(Gi) + wGA
G(Gi);

15 Compute importance ratio ri(θ) = πθ(ai|q)/πθold(ai|q);
16 Update θ via clip objective with KL penalty βDKL[πθ∥πref

θ];
17 else
18 Rcomp,i ← −0.5;
19 ;

Output: Optimized policy model πnew
θ

C ENVIRONMENT AND TRAINING

C.1 DETAILED DESCRIPTION OF WDBCZ SUB-ENVIRONMENT SEQUENCES

The following are the three sub-environments that define the sequence of decisions made within
each round:

1. GE (Graph-Effort) Environment: In this environment, each round consists of a single stage of
link decisions followed by a single stage of effort decisions.

τ = {(G,E), (G,E), . . .}
Agents first decide on their links, forming the graph Gt. Subsequently, observing Gt, they decide
on their effort levels xt.

2. GEE (Graph-Effort-Effort) Environment: This environment features a single stage of link
decisions, followed by two consecutive stages of effort decisions within each round.

τ = {(G,E1, E2), (G,E1, E2), . . .}
Agents first establish links Gt. Then, they make a first effort decision xt,1. After all agents have
made their first effort decisions (which may be observed by others), they make a second effort
decision xt,2. The final effort for the round might be a combination of xt,1 and xt,2 or just xt,2
depending on the specific implementation. Our current implementation uses xt,1 and xt,2 as distinct
effort components.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

3. GGE (Graph-Graph-Effort) Environment: This environment introduces a two-stage linking
process, followed by a single stage of effort decisions.

τ = {(GP , GF , E), (GP , GF , E), . . .}

Agents first propose provisional links (GP). After observing all provisional link proposals, agents
then make final link decisions (GF), which forms the actual graph Gt. Finally, observing Gt,
agents decide on their effort levels xt. This allows for a more nuanced negotiation process for
link formation.

C.2 DETAILED TRAINING PARAMETERS

Table 3: Parameters in SFT LoRA training.
parameter value
lora rank 64
lora alpha 32

attention implementation eager
max length 6000

train batch size 16
optim learning rate 5e-5

Table 4: Parameters in RFT training.
parameter value

actor optim learning rate 1e-6
use kl in reward true

ppo kl coef 0.1
kl cov ratio 0.0002

max prompt length 5500
max response length 2692

train batch size 32

D RELATED WORKS

Our work intersects with several active research areas, including the theoretical foundations of credit
assignment in reinforcement learning, the burgeoning field of Large Language Models (LLMs) for
decision-making, and the complex domain of strategic decision-making in multi-agent systems. This
section reviews relevant literature and positions our contributions within these contexts.

D.1 CREDIT ASSIGNMENT AND POLICY OPTIMIZATION

Credit assignment is a fundamental challenge in reinforcement learning, concerning how to attribute
responsibility for outcomes to specific actions or sequences of actions, especially in environments
with delayed rewards (Sutton et al., 1998). Early work by Minsky (2007) highlighted this problem,
and subsequent research has developed various mechanisms, including eligibility traces (Sutton,
1988) and actor-critic methods (Konda & Tsitsiklis, 1999), to address it. Recently, the concept of
credit assignment has been extended to complex, hierarchical, and multi-agent settings (Nguyen
et al., 2018; Pignatelli et al., 2024) and Large Language Model agents’ social interactions (Yu et al.,
2025a). Our work leverages the theoretical underpinnings of credit assignment to decompose the
strategic decision-making process into forward (effort decision) and inverse (graph decision) com-
ponents. This decomposition allows for targeted optimization, where the forward process focuses on
immediate utility within a given structure, and the inverse process learns to adapt the structure based
on long-term value, aligning with the principles of assigning credit to different types of decisions
over time. This approach is distinct from traditional single-agent credit assignment by explicitly
considering the interplay between structural and behavioral decisions in a multi-agent context.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Policy optimization methods, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017),
MAGRPO (Liu et al., 2025a), multi-conversation DAPO (Yu et al., 2025b), MARFT (Liao et al.,
2025), and its variants, have been highly successful in training agents for complex tasks. These
methods typically aim to maximize expected cumulative rewards by iteratively updating a policy
function. Recent advancements have explored integrating multi-agent considerations into policy
optimization, often through centralized training with decentralized execution or by incorporating
explicit models of other agents (Lorè & Heydari, 2024). Our Theory of Mind Policy Optimization
(ToMPO) algorithm builds upon these ideas by introducing a novel advantage estimation mechanism
that explicitly accounts for the strategies and performance of other agents (expert models) in the
environment. By incorporating both sample-level (individual decision accuracy) and graph-level
(structural optimality) rewards, and by considering historical best performance, ToMPO provides
a more nuanced credit assignment mechanism tailored for sequential strategic decision-making in
multi-agent social environments, moving beyond standard single-agent or simplified multi-agent
PPO formulations.

D.2 LARGE LANGUAGE MODELS FOR DECISION-MAKING

The remarkable capabilities of Large Language Models (LLMs) in natural language understanding
and generation have led to their increasing application in various decision-making scenarios. LLMs
have been shown to assist in generating rational decisions (Gou et al., 2024), simulating complex
social interactions (Mao et al., 2025), and even predicting outcomes in large-scale social events
(Zhang et al., 2024a). Their ability to process and synthesize vast amounts of information, cou-
pled with their emergent reasoning capabilities, makes them powerful tools for augmenting human
decision-making or acting as autonomous agents.

However, while LLMs excel in tasks requiring strong logical reasoning (Schmied et al., 2025; Liu
et al., 2025b), such as coding and mathematics, their performance in strategic decision-making,
particularly in social contexts, remains a significant challenge (Zhang et al., 2024b). This is largely
due to the inherent difficulty in understanding others’ intentions, predicting their behaviors, and
dynamically adjusting one’s own strategy in response. Recent efforts have explored enhancing LLM
strategic abilities in matrix games (Lorè & Heydari, 2024; Herr et al., 2024) and through game-
theoretic workflows (Hua et al., 2024). Furthermore, research has delved into multi-level thinking
(Zhang et al., 2024c; Gou et al., 2024), Theory of Mind (ToM) capabilities (Duan et al., 2024;
Cross et al.), and task-solving in social environments (Zhang et al., 2025a; Wang et al., 2024).
Our work contributes to this growing body of literature by specifically addressing the limitations
of LLMs in sequential, long-term multi-agent strategic decision-making, moving beyond two-agent
chatroom environments or single-game scenarios. We aim to equip LLMs with the ability to make
interdependent decisions that shape and are shaped by evolving social structures, a critical step
towards more sophisticated LLM agents in complex social systems.

D.3 STRATEGIC DECISION-MAKING IN MULTI-AGENT SYSTEMS

Strategic decision-making in multi-agent systems is a rich field (Ma et al., 2024; Yang et al., 2025b;
Jin et al., 2025; Liu et al., 2025b; Yang et al., 2025a) that studies how autonomous agents interact
and make choices to achieve their objectives, often in the presence of other intelligent agents. Game
theory (Hua et al., 2024) provides a foundational framework for analyzing such interactions, offer-
ing concepts like Nash equilibrium (Silva, 2024; Holt & Roth, 2004) and Pareto optimality (Censor,
1977) to understand rational behavior (Osborne et al., 2004). Traditional multi-agent reinforcement
learning (MARL) has focused on developing algorithms for agents to learn optimal policies in en-
vironments where their actions affect others, often dealing with challenges like non-stationarity and
credit assignment across agents (Hernandez-Leal et al., 2019).

Recent advancements in MARL have explored more complex social dynamics, including coopera-
tion (Guan et al., 2025), competition (Chen et al., 2024a), operation (Chen et al., 2024b), and the
formation of social structures (Yang et al., 2024). Studies have investigated how individual be-
haviors can lead to emergent group-level phenomena and how group structures, in turn, influence
individual decisions (Mi et al., 2025; Zhang et al., 2025b). The concept of Theory of Mind (ToM),
which involves an agent’s ability to attribute mental states (beliefs, desires, intentions) to others, has
gained traction as a crucial component for strategic reasoning in multi-agent settings (Frith & Frith,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2005; Li et al., 2023; Wu et al., 2025). Our research extends these ideas by defining a novel problem
of sequential graph-effort strategic decision-making, where agents must make interdependent deci-
sions about both their social connections (graph-level) and their resource investments (effort-level)
over time. This problem formulation captures the dynamic interplay between individual actions
and evolving social structures, which is often overlooked in simpler multi-agent game settings. By
developing ToMPO, we provide a method for LLM agents to learn and adapt their strategies by ex-
plicitly considering the actions and potential mental states of other agents, thereby enhancing their
ability to navigate and influence complex social environments.

E DETAILS FOR PROMPTS

You are an autonomous agent participating in a repeated network-effort game simulated by the environment.

Important global rules (read before answering):

- There are two configuration modes controlled by the simulator:

 1) "single" mode: each round has one link decision and then one effort decision.

 2) "multi" mode: each round has one joint link decision and then TWO consecutive effort decisions per
agent:

 - Step 1: all agents submit their first-effort e1.

 - After all e1 are submitted, the simulator may publish all agents' e1 values to the environment.

 - Step 2: each agent then submits its second-effort e2, and when answering you may see both your own
prev_e1 and the vector prev_e1_all (all agents' first efforts) if the simulator publishes them.

Payoff calculation (per round) you should assume when reasoning:

- single mode (legacy):

 pi_i = alpha[i] * sum_j G[i,j] * effort[j] - c * effort[i]

- multi mode (new):

 pi_i = alpha[i] * sum_j G[i,j] * (effort1[j] + delta * effort2[j]) - c * (effort1[i] + effort2[i])

 where delta is a discount factor (0 <= delta <= 1) applied to the second effort's benefit to neighbors;
costs are paid fully.

Visibility / formatting constraints:

- On step2 in multi mode, you may see prev_e1 (your own first effort) and prev_e1_all (first efforts from all
agents) — use them in your reasoning.

- Always output analysis in plain text, and put the requested numeric effort FOR THIS STEP as the very last
line of your message in Markdown code format, e.g.:

 `2.5`

- On multi-step runs you will be asked twice; return only the requested effort value for that step at the end
of the message.

Safety & parsing:

- Avoid returning any extra Markdown code blocks or formatted numbers except the final single-line numeric
code. This helps the simulator parse decisions reliably.

If agents/engineers update reward formulas in code, treat on-code formulas as authoritative; keep system
prompt consistent with the implementation above.

Figure 4: BCZ game system prompt.

You are Agent {agent_id}, in round {round} of the game.

Your task in STEP 1 is to make an initial linking decision (a provisional candidate G_step1).

Historical Information:

- Group structure history (G_history): {G_history}

- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

You must detail your reasoning about whom you would like to form a mutual link with.

At the end of your message, on a new line, return your provisional linking decision as a binary vector of
length N = {num_agents} indicating whom you want to link with.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: `0 1 0 1 0` (no explanation on that line).

Do not swap the order. Always follow [Agent 0, Agent 1, Agent 2, ...] index order.

Figure 5: BCZ game graph decision 1 prompt.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

You are Agent {agent_id}, in round {round} of the game.

Your task in STEP 2 is to finalize the linking decision after observing others' provisional link proposals and
after updates to your memory.

Observations for STEP 2:

- Everyone's provisional link proposals (G_step1_all): {G_step1_all}

- Your memory has been updated with the provisional links.

- Group structure history (G_history): {G_history}

- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

Please carefully reason and, at the end of your message, on a new line, return your final linking decision
G_final as a binary vector of length N = {num_agents}.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: `0 1 0 1 0` (no explanation on that line).

Do not swap the order. Always follow [Agent 0, Agent 1, Agent 2, ...] index order.

Figure 6: BCZ game graph decision 2 prompt.

You are Agent {agent_id}, in round {round} of the game.

Current network structure G (this round):

{current_G}

Previous G history:

{G_history}

Previous effort history:

{effort_history}

Previous payoff history:

{payoff_history}

Now decide your FIRST effort for this round to maximize your payoff given the current network and history.

Output Formatting Requirements

Explain your reasoning in detail. At the **end of your message**, put your chosen first effort (a single
float) on a new line in Markdown code format, e.g.:

`1.5`

Only the final effort number should be in Markdown code format.

Figure 7: BCZ game effort decision 1 prompt.

You are Agent {agent_id}, in round {round} of the game.

Current network structure G (this round):

{current_G}

Your FIRST effort this round was: `{prev_e1}`

Previous G history:

{G_history}

Previous effort history:

{effort_history}

Previous payoff history:

{payoff_history}

Now decide your SECOND effort for this round to maximize your payoff, taking into account your first effort
above (`prev_e1`). Explain how/why you adjust the second effort relative to your first.

Output Formatting Requirements

Explain your reasoning in detail. At the **end of your message**, put your chosen second effort (a single
float) on a new line in Markdown code format, e.g.:

`0.8`

Only the final effort number should be in Markdown code format.

Figure 8: BCZ game effort decision 2 prompt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are a rational, goal-oriented intelligent agent participating in a multi-agent Public Goods Game (PGG)
environment with endogenous group formation.

Environment details:

1. There are N agents (numbered from 0 to N-1).

2. Each game consists of T rounds.

3. At the beginning of each round, all agents simultaneously choose their preferred group memberships by
outputting a binary vector of length N:

 - A 1 at position j means the agent wants to form a group with agent j.

 - Groups only form if two agents mutually select each other (both output 1 for each other).

4. The system constructs the final groups by finding maximal cliques (fully connected subgraphs) of mutually
consenting agents, without overlap. Agents not included in any clique form singleton groups.

5. After groups are formed, each agent decides how much effort to contribute to the public good in their
group. The effort is a continuous value between 0 and 1.

6. The payoff for each agent is calculated as:

 payoff_i = (r * sum_{j in group} effort_j) / group_size - effort_i

 where r > 1 is the public good multiplication factor.

7. Historical information about previous rounds' group structures, efforts, and payoffs is provided to you for
decision-making.

Your objective:

- Maximize your individual payoff over the game.

- Make rational and strategic decisions on group formation and effort contribution based on the given
history.

Input format:

- You receive the full history of past rounds: group membership lists, efforts per agent, and payoffs per
agent.

- You know your own agent ID and the total number of agents.

Output requirements:

- For group formation: output a JSON array of length N containing only 0 or 1, representing which agents you
want to group with. Do not include any extra text.

- For effort decision: output a decimal number between 0 and 1 (rounded to two decimals) representing your
effort contribution. Do not include any extra text.

Please adhere strictly to these output formats to ensure correct parsing.

Always act to maximize your expected payoff.

Figure 9: PGG game system prompt.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

[System]

You are an agent participating in a Public Goods Game (PGG). Before each round starts, you need to decide
which agents you want to form a group with.

[Background Rules]

- There are {n_agents} agents in total, numbered from 0 to {n_agents_minus_1}

- You are Agent {agent_id}

- Each agent outputs a binary vector of length {n_agents}

- 1 means you want to group with the corresponding agent

- 0 means you do not want to group with them

- You must set your own position (index {agent_id}) to 0

- A group link forms only if both agents mutually select each other

- The system will find maximal cliques to form the final groups

[Available Historical Information]

{history}

[Your Task]

Decide which agents you want to group with and output ONLY the binary vector.

[Output Format]

1. First, write your reasoning in detail

2. Then, on a new line, write ONLY the binary vector

3. The vector must be in JSON format: a list of {n_agents} integers (0 or 1)

4. The vector must be in agent index order: Agent 0, Agent 1, ..., Agent {n_agents_minus_1}

5. You MUST set position {agent_id} to 0

Example output for Agent 2 in a 5-agent game:

Reasoning: [your detailed reasoning here]

[0, 1, 0, 1, 0]

[Important Instructions]

- Your response must have EXACTLY two parts: reasoning and vector

- The vector must be the last line of your response

- Do NOT include any other text after the vector

- Do NOT include any additional explanations or comments after the vector

- Do NOT include any markdown or formatting in the vector line

- The vector must be valid JSON that can be directly parsed

Figure 10: PGG game group decision prompt.

[System]

You are an agent participating in a Public Goods Game (PGG). After groups are formed, you need to decide how
much effort to contribute.

[Game Rules]

- You are Agent {agent_id}

- Current group: {current_group}

- Total effort contributed by all group members is multiplied by factor r

- Public return is evenly shared among all group members

- Your payoff = (public return share) - (your effort cost)

[Available Historical Information]

{history}

[Your Task]

Decide your effort contribution and output ONLY the number.

[Output Format]

1. First, write your reasoning in detail

2. Then, on a new line, write ONLY the effort value

3. The effort must be a float between 0.0 and 1.0

4. Round to two decimal places

5. Do not include any units or additional text

Example output:

Reasoning: [your detailed reasoning here]

0.75

[Important Instructions]

- Your response must have EXACTLY two parts: reasoning and number

- The number must be the last line of your response

- Do NOT include any other text after the number

- Do NOT include any additional explanations or comments after the number

- Do NOT include any units like "effort" or "contribution"

- The number must be directly parseable as a float

Figure 11: PGG game effort decision prompt.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

You are participating in a repeated matrix network game as an autonomous agent (LLM).

Game Setup:

- There are N agents in total, indexed from 0 to N-1.

- In each round, each agent decides:

 1. **Whom to link to** (you can choose to form links with other agents; mutual consent is required for a
link to be established).

 2. **How much effort to exert** (a non-negative real number).

Payoff Function:

Your payoff πᵢ in each round is calculated as:

 πᵢ = αᵢ * xᵢ - (1/2) * xᵢ² + δ * Σⱼ gᵢⱼ * xᵢ * xⱼ - c * Σⱼ gᵢⱼ

Where:

- xᵢ is your effort in this round.

- gᵢⱼ = 1 if both you and agent j choose to link (mutual), otherwise 0.

- δ > 0 is a complementarity parameter, encouraging cooperation.

- c ≥ 0 is a cost per link.

- αᵢ is your personal linear benefit parameter.

Objective:

Your goal is to **maximize your earnings(payoff) of the last round**, by trying and reasoning in the previous
rounds:

- What kind of social network (link structure) will benefit you,

- How much effort to contribute given the current structure and history,

- And how other agents might behave.

In each round, the following process occurs:

1. All agents independently decide which other agents to form links with. Links are only formed if both agents
choose to link with each other.

2. The environment constructs a network (an adjacency matrix G) based on mutual link agreements.

3. Once the network G is formed and known, all agents decide how much effort to exert, taking into account the
network structure and history.

4. The environment calculates each agent's payoff based on their own effort, the network structure, and the
efforts of their neighbors.

5. All agents receive feedback including the current network G, efforts, and individual payoffs.

Your job as an agent is to first make a linking decision, and after seeing the resulting network structure,
decide how much effort to exert.

Be strategic. Think long-term. Learn from history.

Game Parameters:

You have the following information:

- Your personal benefit parameter: **alpha = {alpha}**

- The global complementarity parameter: **delta = {delta}**

- The cost per link: **c = {c}**

Use these parameters in your reasoning and payoff calculation.

Figure 12: System prompt for SFT and RFT data generation.

You are Agent {agent_id}, in round {round} of the game.

Your task is to decide which agents you would like to form a mutual link with.

Historical Information:

- Group structure history (G_history): {G_history}

- Effort history of all agents: {effort_history}

- Payoff history of all agents: {payoff_history}

You must detailedly explain your reasoning.

You must follow this thinking program, and based on each program, you can do it by yourself.

Review the payoff structure:

Do the Cost-Benefit Analysis:

Consider the network trend:

Analysis the agents:

Consider Pay-off Optimization:

And at the **end of your message**, Please return your final linking decision, which is a binary vector of
length N = {num_agents} **on a new line**, indicating whom you want to link with.

- 1 means you want to link to that agent.

- 0 means you do not.

- You cannot link to yourself (position {agent_id} must be 0).

Output must be space-separated integers like: `0 1 0 1 0` (no explanation in that line).

Do not swap the order. Always follow [Agent 0, Agent 1, Agent 2, ...] index order.

Figure 13: Graph decision prompt for SFT and RFT data generation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

You are Agent {agent_id}, in round {round} of the game.

The final gain is not required to calculate the cumulative payoff.

Current network structure G (this round):

{current_G}

Previous G history:

{G_history}

Previous effort history:

{effort_history}

Previous payoff history:

{payoff_history}

Based on this, decide how much effort you want to exert this round to maximize your payoff.

Output Formatting Requirements

You must detailedly explain your reasoning.

You must follow this thinking program, and based on each program, you can do it by yourself.

Review current network:

Consider the effort trends and payoff structure:

Review the payoff function:

Consider the link costs and risk assessment:

Analyze the optimal effort:

And at the **end of your message**, place your final effort value **on a new line** at the end of your
response, which a single float number in **Markdown code format**, like:

`2.5`

 Only the final answer should be in Markdown format — use this to help the system identify your chosen

effort. Avoid placing other numbers in the same format elsewhere in your response.

Figure 14: Effort decision prompt for SFT and RFT data generation.

22

	Introduction
	Problem Formulation
	Preliminary Testing LLM Strategic Decision-Making
	Graph-Effort Strategic Game Design
	Sequential BCZ Game
	Sequential Public Goods Game (PGG)

	Evaluation Metrics Definition
	Deficiency for Existing Models

	ToMPO: Theory of Mind Policy Optimization
	Effort Reasoning Learning
	Theory of Mind Policy Optimization (ToMPO)
	Rewards
	Advantage Estimation

	Experiments
	Large Language Model Utilization Explanation
	ToMPO Algorithm
	Environment and Training
	Detailed Description of WDBCZ Sub-Environment Sequences
	Detailed Training Parameters

	Related Works
	Credit Assignment and Policy Optimization
	Large Language Models for Decision-Making
	Strategic Decision-Making in Multi-Agent Systems

	Details for Prompts

