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Abstract
Recent efforts have extended textual LLMs001
to the speech domain, yet a key challenge re-002
mains: balancing speech understanding and003
generation while avoiding catastrophic forget-004
ting when integrating acoustically rich codec-005
based representations into models originally006
trained on text. In this work, we propose a007
novel approach that leverages continual pre-008
training (CPT) on a pre-trained textual LLM to009
create a codec-based speech language model.010
This strategy mitigates the modality gap be-011
tween text and speech, preserving the linguis-012
tic reasoning of the original model while en-013
abling high-fidelity speech synthesis. We vali-014
date our approach with extensive experiments015
across multiple tasks—including automatic016
speech recognition, text-to-speech, speech-to-017
text translation, and speech-to-speech transla-018
tion (S2ST)—demonstrating that our model019
achieves superior TTS performance and, no-020
tably, the first end-to-end S2ST system based021
on neural codecs.022

1 Introduction023

The textual large language model (LLM) has sig-024

nificantly influenced the natural language process-025

ing community, achieving exceptional performance026

across a variety of tasks, both in-domain and out-027

of-domain, with consistent reliability (Zhao et al.,028

2023; Achiam et al., 2023; Dubey et al., 2024; Yang029

et al., 2024a). A central element of its success is030

the auto-regressive architecture, which can be ab-031

stracted to handle a wide range of NLP tasks in a032

unified form. This approach not only boosts the033

model’s versatility but also positions it as a founda-034

tional model for diverse downstream applications.035

Building on the robust capabilities of textual036

LLMs, recent work has introduced several ex-037

amples of speech LLMs. Some exhibit strong038

performance in spoken language understanding039

tasks (Kharitonov et al., 2022; Gong et al., 2023,040

2024; Chang et al., 2024a; Tang et al., 2024a;041

Huang et al., 2024b; Dubey et al., 2024; Ruben- 042

stein et al., 2023; Kuan et al., 2024; Zhang et al., 043

2023a; Maiti et al., 2024), while others demonstrate 044

reasonable generalization in various speech gener- 045

ation tasks (Wang et al., 2023; Anastassiou et al., 046

2024; Kim et al., 2024; Défossez et al., 2024a; 047

Chen et al., 2024a; Tian et al., 2024; Wang et al., 048

2024; Huang et al., 2024c; Yang et al., 2024b). 049

A key challenge in speech LLMs is balancing 050

speech understanding and generation while miti- 051

gating catastrophic forgetting when incorporating 052

speech modalities into a textual LLM. Codec-based 053

representations offer high-fidelity speech synthesis 054

by preserving fine-grained acoustic details (Wang 055

et al., 2023; Yang et al., 2024b; Défossez et al., 056

2024a; Kim et al., 2024) but exhibit limitations in 057

understanding tasks due to their primary focus on 058

resynthesis (Shi et al., 2024; Chang et al., 2024c; 059

Dhawan et al., 2024). Moreover, integrating codec 060

tokens into a textual LLM introduces a substantial 061

modality gap, as textual models are not inherently 062

designed to process acoustically rich representa- 063

tions. This shift in knowledge distribution can dis- 064

rupt the model’s linguistic reasoning, leading to 065

catastrophic forgetting of previously learned text- 066

based capabilities. While codec-based models have 067

shown promise in speech generation, their effective 068

integration into a unified speech LLM remains an 069

open problem. 070

To address the above challenge, this paper 071

proposes using continual pre-training (CPT) on 072

a pre-trained textual LLM to realize a codec- 073

based speech language model for the first time. 074

The CPT helps mitigate the catastrophic forget- 075

ting from modality mismatch and connect speech 076

codec sequences to the language knowledge em- 077

bedded in the original textual LLM. Extensive ex- 078

periments are conducted over the continual pre- 079

trained codec speech LLM with further super- 080

vised fine-tuning (SFT) across various tasks, in- 081

cluding automatic speech recognition (ASR), text- 082
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to-speech (TTS), speech-to-text translation (S2TT),083

and speech-to-speech translation (S2ST). The re-084

sults demonstrate that continual pre-trained speech085

LLM on speech-only data can achieve significantly086

better TTS performance. Notably, we show that the087

model can perform well in S2ST in a single end-to-088

end model based on neural codecs, which can only089

be achieved with semantic-oriented discrete speech090

representation in previous works (Lee et al., 2022).091

Our contribution includes:092

• first proposing CPT to mitigate the catas-093

trophic forgetting from mismatched modal-094

ities for speech codecs-based LLM.095

• designing a practical solution for the CPT and096

SFT with the speech codec-based LLM.097

• utilizing the CPT-ed model to a range of098

speech tasks, which shows comparable or bet-099

ter performance to specialized models in dif-100

ferent tasks. Notably, we achieved the first101

successful S2ST system in a single end-to-end102

model based on neural codecs.103

2 Related Works104

2.1 Speech Language Modeling105

Discrete tokens offer a natural connection to textual106

LLMs. SSL-based discrete tokens can seamlessly107

integrate with textual LLMs, functioning similarly108

to text tokens (Rubenstein et al., 2023; Maiti et al.,109

2024; Wu et al., 2024c; Zhang et al., 2023b). A110

common practice in these works is to use a com-111

bined vocabulary for both speech tokens and tex-112

tual tokens, enabling the model to perform both113

understanding and generation tasks. However, a114

vocoder is required to enable the speech generation.115

The quality of generation is often limited by the116

lossy nature of SSL representations and the addi-117

tional clustering process involved (Lee et al., 2022;118

Shi et al., 2023; Tang et al., 2024b), especially in119

multi-speaker setups where previous works need120

to utilize additional speaker embedding to stabilize121

the training (Maiti et al., 2024; Guo et al., 2025).122

To improve generation quality, codec tokens can123

be used in speech LLMs (Wang et al., 2023; Anas-124

tassiou et al., 2024; Kim et al., 2024; Défossez125

et al., 2024a; Chen et al., 2024a; Tian et al., 2024;126

Wang et al., 2024; Yang et al., 2024b). Unlike127

SSL-based tokens, codec tokens often require mul-128

tiple streams or levels of code to achieve high-129

quality resynthesis. By balancing efficiency, per-130

formance, and interdependencies among different131

codec streams, various interleaving patterns can be 132

employed to predict multi-stream codecs (Wang 133

et al., 2023; Copet et al., 2023; Yang et al., 2024b). 134

Using codec tokens, speech synthesis quality can 135

be significantly enhanced. However, empirical anal- 136

ysis suggests that codec tokens may have limited 137

understanding capabilities when applied to train an 138

ASR system, particularly in comparison to SSL- 139

based tokens (Shi et al., 2024; Chang et al., 2024b; 140

Dhawan et al., 2024). 141

Based on the above literature review, the pri- 142

mary challenge in utilizing SSL-related features 143

arises from their relatively lossy conversion, which 144

highlights a performance bottleneck at the vocoder 145

stage during speech reconstruction. This suggests 146

that a standalone speech LLM relying on SSL- 147

based tokens is unlikely to resolve this issue. In- 148

stead, we use the other type of speech tokenizer, 149

speech codecs in our main framework. In con- 150

trast, while codec-based speech LLMs may exhibit 151

limitations in understanding tasks, their high resyn- 152

thesis quality ensures effective information trans- 153

fer within the model, offering greater potential for 154

speech LLM development. Therefore, we have cho- 155

sen codec-based speech LLMs as the focus for our 156

CPT efforts. 157

2.2 Continual Pre-training for Speech 158

Codec-based LLM 159

Continual pre-training has proven to be an effective 160

strategy in textual LLMs, particularly when there 161

is a significant shift or expansion in the model’s 162

knowledge base (Wu et al., 2024b). While speech 163

signals have shared semantic information with text, 164

speech also contains diverse additional informa- 165

tion, including paralinguistics, and environments. 166

Though both speech and text are in sequences, 167

speech signals tend to be longer due to richer in- 168

formation (Chen et al., 2022; Wang et al., 2022; 169

Han et al., 2021). Due to these differences from 170

the modality mismatch, the introduction of speech 171

modality to a textual LLM can significantly alter 172

the knowledge base of an originally pre-trained tex- 173

tual LLM, causing catastrophic forgetting to the 174

model. As a result, several previous works have 175

shown that the combination of speech-related mod- 176

ules and textual LLMs can result in catastrophic 177

forgetting on common natural language understand- 178

ing tasks and speech processing tasks (Zhan et al., 179

2024; Huang et al., 2024b,a; Chu et al., 2024b). 180

Continual pre-training, which involves an addi- 181

tional pre-training stage, is used to extend the 182

2



general knowledge of a pre-trained model with-183

out focusing on task details. Previous works have184

applied CPT in speech LLMs with SSL tokens185

by expanding the vocabulary of pre-trained tex-186

tual LLMs (Zhang et al., 2023a; Rubenstein et al.,187

2023), demonstrating its effectiveness in integrat-188

ing speech components into textual LLMs. But189

SSL-based tokens inherently struggle to retain suf-190

ficient acoustic information for generation tasks.191

Neural codecs, on the other hand, provide higher192

quality in speech reconstruction by capturing more193

detailed acoustic information, approaching the fi-194

delity of raw speech signals (Wu et al., 2024a; Shi195

et al., 2024; Kim and Skoglund, 2024). Despite196

this, there is a substantial domain gap between tex-197

tual and codec tokens due to the codec’s emphasis198

on acoustic details. Additionally, codec tokens are199

often represented in multi-stream setups to achieve200

high-fidelity acoustic details, necessitating modifi-201

cations to the model architecture to bridge the two202

modalities, which introduces further complexity in203

model changes (Chen et al., 2024a; Wang et al.,204

2023; Copet et al., 2023; Défossez et al., 2024b).205

Given these challenges, we propose employing206

CPT to align codec tokens with textual tokens. This207

approach aims to mitigate catastrophic forgetting208

while effectively linking speech codec sequences209

to the linguistic knowledge embedded in the orig-210

inal textual LLM. By doing so, we enhance the211

model’s capability in both speech understanding212

and generation tasks. Our method capitalizes on213

the strong comprehension abilities of pre-trained214

textual LLMs while leveraging the superior genera-215

tion quality of codec-based speech LLMs, creating216

a more robust and integrated multimodal system.217

3 Methodology218

This section outlines the key components of the219

proposed method, including the speech tokenizer,220

model architecture, and the training strategy em-221

ployed for CPT. The first two subsections (i.e.,222

speech tokenizer and model architecture) provide a223

practical base framework for CPT, where the third224

section discusses the novel CPT strategy applied to225

the model training.226

3.1 Speech Tokenizer227

As discussed in Sec. 2, we utilize neural codecs228

as the speech tokenizer in this work. The speech229

tokenizer, denoted as Tokenizer(·), consists of an230

Encoder(·), a quantizer Quantizer(·), and a de-231

coder Decoder(·). The quantizer includes a set 232

of L codebooks, where the ith codebook, Bi = 233

{bi1, bi2, ..., biBi}, contains Bi codes. 234

Given a sampled speech signal S ∈ R1×TS with 235

length TS , the encoder processes the signal into 236

hidden states Q = Encoder(S) ∈ RDembed×TQ , 237

where Dembed represents the dimension of each 238

frame in the hidden states, and TQ is the temporal 239

sequence length. The quantizer then transforms Q 240

into discrete codes C ∈ (B1 × B2 × ... × BL)TC 241

across TC frames: 242

C,E = Quantizer(Q|B1,B2, ...,BL), (1) 243

where the hidden states E ∈ RDembed×TC is con- 244

structed from the discrete codes C. Specifically, 245

using the codebooks, the discrete code C is firstly 246

mapped into corresponding embeddings M ∈ 247

RL×Dembed×TC . M are then compressed along 248

the codebooks’ axis to form E. To reconstruct 249

the speech signal S, the decoder takes E as in- 250

put and generates the reconstructed signal Ŝ = 251

Decoder(E). The discrete codes C are used as the 252

I/O of speech signals for codec-based speech LLM. 253

3.2 Model Architecture 254

The model architecture is illustrated in Figure 1. In 255

the first step, both speech codec tokens and textual 256

tokens are transformed into multi-modal shared 257

embeddings. For codec tokens, we select a subset 258

of L′(≤ L) streams of codes, denoted as C ′ ∈ 259

(B1 ×B2 × ...×BL′
)TC , from the full set of codec 260

tokens C in the input speech stream.1 Each code 261

in C ′ is mapped into corresponding embeddings 262

M ′ ∈ RL′×Dembed×TC and is then aggregated into 263

Espeech ∈ RDembed×TC . Textual tokens A ∈ VTA 264

with a vocabulary of V are directly transformed into 265

embeddings Etext ∈ RDembed×TA with a sequence 266

length of TA. Both Espeech and Etext (denoted as 267

E) are used seamlessly within the LLM’s decoder- 268

only architecture. For simplicity, we denote R ∈ 269

(B1 × B2 × ...× BL′ × V)TR that represents both 270

speech codec tokens and text tokens. The TR can be 271

the length of either a speech codec token sequence 272

(i.e., TC) or a text token sequence (i.e., TA). 273

The core of the LLM is adapted from Qwen1.5, 274

a Transformer-based LLM (Yang et al., 2024a).2 275

1L′ is a hyperparameter chosen to balance computational
efficiency, modeling complexity in LLM training, and audio
reconstruction quality.

2While Qwen1.5 has demonstrated superior performance
compared to other recent open-source textual LLMs (Yang
et al., 2024a), it also offers a 0.5B version that fits within our
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Transformer LLM

. . . . . . 

. . . . . . 
Multi-modal Embedding	𝐸

Codec Tokens	𝐶′

Textual Tokens 𝐴
or

Codec 𝐶′à Embedding 𝑀′

Shared Embedding 𝐸

Codec (Level3)

Codec (Level2)

Codec (Level1)

Text token

Embeddings

Hidden states

Shared Embedding 𝐸

Textual Tokens 𝐴

Codec 𝐶′

Speech 𝑆

Figure 1: The architecture of the codec-based speech LLM. Codec tokens and textual tokens are converted into
multi-modal shared embeddings, as shown on the right side of the figure. These shared embeddings are then fed
into a Transformer-based LLM, which features parallel prediction heads designed for predicting either codec tokens
or textual tokens. Details are discussed in Sec. 3.2.

To retain the majority of pre-trained knowledge276

for CPT, we preserve the original Transformer ar-277

chitecture along with the same textual tokenizer278

and textual token embeddings. Given the hidden279

states from the final Transformer layer, the lan-280

guage model prediction head is partially initial-281

ized with the pre-trained Qwen1.5 weights, while282

the portion related to the extended vocabulary for283

codec tokens is initialized randomly. Additional284

language prediction heads are introduced to pre-285

dict subsequent codec levels in parallel. Unlike286

recent works (Chen et al., 2024a; Copet et al.,287

2023; Yang et al., 2024b), we do not enforce depen-288

dency constraints between codec predictions. Com-289

pared to approaches that use non-autoregressive290

networks (Wang et al., 2023) or multi-scale Trans-291

formers (Yang et al., 2024b), our parallel prediction292

style remains simple yet efficient during inference.293

3.3 Model Training294

The formulation discussed in the previous two sec-295

tions provides a unified interface for speech and296

text modalities within a single end-to-end model,297

where speech is represented in multiple streams298

and text in a single stream. Notably, this is the299

first approach to seamlessly integrate multi-stream300

speech codecs with text tokens.301

However, this formulation has limitations when302

incorporating a pre-trained textual LLM due to303

significant modality mismatches, particularly with304

speech codecs. To address this, we propose us-305

computational constraints. Therefore, in this work, we focus
on Qwen1.5 as our base textual LLM.

ing CPT to align modalities, enabling a unified 306

model for both understanding and generation. This 307

approach leverages the strong foundation of tex- 308

tual LLMs while maintaining high-fidelity speech 309

acoustics through advanced codecs. 310

In the original textual LLM, the pre-training ob- 311

jective is defined as: 312

θPT-A = argmaxθ

TA∏
t

Pθ(at|a0, a1, ..., at−1),

(2) 313

where θ is the language model parameters. When 314

applying CPT using only speech data, the objective 315

transforms into: 316

θCPT-C = argmaxθ

TC∏
t

Pθ(ct|c0, c1, ..., ct−1).

(3) 317

The purpose of CPT is to inject knowledge about 318

speech modality into the LLM transformer base. 319

Therefore, we conduct two pre-training configura- 320

tions: one with speech data only following Eq. (3), 321

and the other with bi-modal (i.e., speech and text) 322

datasets. Details of data preparation are discussed 323

in Sec. 4.1. We denote a sequence of speech and 324

text tokens R = (r1, r2, ..., rTR
) with a length of 325

TR. rt ∈ (B1 ×B2 × ...×BL′ ×V) can represent 326

either a speech codec token (c1t , c
2
t , ..., c

L′
t , null) or 327

text token (null, ..., null, at). The pre-training ob- 328

jective follows the basic next-token prediction task: 329

θCPT = argmaxθ

TR∏
t

Pθ(rt|r0, r1, ..., rt−1), (4) 330
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where θ is the model illustrated in Fig. 1 and r0 is331

the start of sentence.332

Following the CPT stage, we conduct SFT where333

a prompt token sequence Rinp is first processed334

before the target sequence Rtgt. The objective for335

the SFT is:336

θSFT = argmaxθPθ(R
tgt|Rinp). (5)337

4 Experimental Setup338

In this section, we detail the experimental settings339

for CPT and SFT to evaluate the effectiveness of340

the proposed method across various downstream341

tasks. Specifically, we compare CPT-ed models342

with those that are either randomly initialized or343

initialized from a textual LLM.344

The basic speech tokenizer follows the Sound-345

Stream architecture (Zeghidour et al., 2021). In-346

stead of using a complex short-term Fourier trans-347

form (STFT) discriminator, we adopt the discrimi-348

nators from (Kumar et al., 2023), which include a349

multi-frequency STFT discriminator, a multi-scale350

discriminator, and a multi-period discriminator. For351

more detailed hyperparameters of the speech tok-352

enizer, please refer to Appendix A.353

4.1 Pre-training Data Preparation354

As mentioned in Sec. 1, we focus on codec-based355

speech LLMs. Therefore, in the following experi-356

ments, we primarily consider bilingual scenarios,357

using both English and Mandarin data.358

The pre-training data consists of around 140k359

hours of English and Mandarin speech, along360

with corresponding transcriptions and translations.361

Given the limited availability of open-source Man-362

darin speech data, we incorporate 70k hours of363

in-house Mandarin data to maintain a balance be-364

tween English and Mandarin in the pre-training cor-365

pus. More detailed information about the corpora366

used for pre-training is provided in Appendix B.1.367

For training consistency on punctuation, we use368

a BERT-based punctuation restoration model3 to369

recover the punctuation for textual data without370

punctuation (e.g., Librispeech (Panayotov et al.,371

2015)).372

Most of the corpora included were originally373

designed for ASR or TTS purposes and did not374

include translations in their official release, which375

may prevent full alignment of the semantic spaces376

between the two languages. To semantically align377

3https://huggingface.co/felflare/
bert-restore-punctuation

English and Mandarin in the speech LLM, we sup- 378

plement the data using an internal machine trans- 379

lation model to generate translations between En- 380

glish and Mandarin (EN->ZH and ZH->EN) based 381

on the original speech transcriptions.4 For each 382

utterance in the pre-training dataset, we use the 383

paired tuple (i.e., speech, transcription, and trans- 384

lation) to create six tasks: (1) speech continuation, 385

which predicts future speech tokens based on previ- 386

ous segments; (2) language modeling, which gen- 387

erates the following textual tokens from a given 388

context; (3) ASR, which transcribes speech into 389

text; (4) TTS, which generates speech from text us- 390

ing a target speaker’s speech segment as a prompt; 391

(5) speech-to-text translation (S2TT), which trans- 392

lates speech in one language to text in another; and 393

(6) text-to-speech translation (T2ST), which gen- 394

erates translated speech from a source text using a 395

target speaker’s prompt. 396

We did not include S2ST during continual pre- 397

training because (1) our ASR/TTS corpora lack 398

native S2ST pairs, making high-quality paired data 399

scarce, and (2) synthesizing speech that fully pre- 400

serves speaker identity and natural prosody is chal- 401

lenging. Instead, we reserve S2ST as an unseen 402

task and later verify its performance via supervised 403

fine-tuning, allowing us to assess whether our CPT 404

framework has successfully aligned the English 405

and Mandarin semantic spaces. 406

Based on the six tasks mentioned, the final se- 407

quence is formulated using the pattern “<Condi- 408

tion><Prompt><Target>”. Additionally, a bound- 409

ary token is inserted for each speech or text seg- 410

ment to mark the start or end of the corresponding 411

segment. Depending on the specific task type, we 412

enforce slightly different policies generating the 413

data. The specifics are detailed in Appendix B.2. 414

Noted that the natural language prompts are only 415

in textual modality. 416

4.2 Continual Pre-training 417

We adopt Megatron-LM5 with tensor parallelism 418

as our training framework (Shoeybi et al., 2019), 419

using Qwen1.5-0.5B as the base pre-trained textual 420

LLM (Yang et al., 2024a). 421

As formulated in Eq. (4), we carry out two CPT 422

experiments: one using only speech data, and the 423

other incorporating both speech and text modalities. 424

4We use our internal system because it’s fine-tuned on our
speech corpora and integrated with our data pipeline, ensuring
more consistent and accurate translations for our tasks.

5https://github.com/NVIDIA/Megatron-LM
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For the mixed-modality training, we aim to balance425

different domains and tasks by constructing a data426

loader that samples data from various tasks. Specif-427

ically, the loader randomly selects data for each428

of the six speech-related tasks with a 15% proba-429

bility. To maintain the reasoning capacity of the430

original textual LLM and avoid catastrophic forget-431

ting, we include text-only data for the remaining432

10%. Of this textual data, 5% comes from gen-433

eral domains such as books, YouTube titles, and434

Wikipedia, while the other 5% is sourced from an435

in-house machine translation (MT) corpus to en-436

hance the model’s translation capabilities. This de-437

sign aligns with previous CPT approaches in both438

textual and multimodal LLMs, where even limited439

text-based pre-training acts as a stabilizing regular-440

izer, anchoring the model’s internal representations441

to those learned during pre-training (Zhai et al.,442

2023; Sun et al., 2020). Detailed training hyperpa-443

rameters are discussed in Appendix C.444

Additionally, to identify the effect of CPT, we445

conduct experiments with a random-initialized446

0.5B model that has the same architecture as447

Qwen1.5-0.5B and the pre-trained Qwen1.5-0.5B448

for comparison.6449

4.3 Downstrem Tasks450

As formulated in Eq. (5), the downstream evalu-451

ation is performed by fine-tuning the pre-trained452

model across four tasks: ASR, TTS, S2TT, and453

S2ST. ASR, TTS, and S2TT are used to assess the454

model’s basic speech understanding and generation455

abilities. S2ST can be broken down into ASR, MT,456

and TTS, making it a more comprehensive task457

that evaluates both understanding and generation458

capabilities.459

All four fine-tuning tasks follow the sequence460

formulation discussed in Sec. 4.1, with different461

<Condition>, <Prompt>, and <Target>, related462

to the tasks. Notably, the task prompts are also463

generated following the pipeline in Sec. 4.1 but464

they do not overlap with the pre-training prompts.465

ASR: For the ASR task, we evaluate the model466

using the Librispeech dataset for English and the467

Aishell2 dataset for Mandarin (Panayotov et al.,468

2015; Du et al., 2018). The <Condition> consists469

of a sequence of speech codec tokens, followed470

by a natural language prompt. As described in471

Sec. 4.1, the <Target> sequence is the transcrip-472

tion with restored punctuation. To further improve473

6They are denoted as “No Initialization" and “Text LLM
Initialization" in the following discussion.

model performance, we apply random time-domain 474

masking, similar to the approach in (Chang et al., 475

2023, 2024c). 476

During inference, the model autoregressively 477

predicts the transcription by feeding the <Con- 478

dition><Prompt> sequence into the system. To 479

enhance decoding performance, we employ beam 480

search, using a beam size of 8. We measure word 481

error rate (WER) for English ASR and character 482

error rate (CER) for Mandarin ASR. 483

TTS: We focus on the multi-speaker TTS task with 484

LibriTTS (Zen et al., 2019). For the task formu- 485

lation, we follow VaLL-E style input where the 486

condition includes a three-second speaker prompt 487

and the text (Wang et al., 2023). For the target text, 488

we restore the punctuation similar to the ASR task. 489

Since greedy search tends to produce trivial out- 490

puts, we adopt a sampling-based inference with 491

a top-k strategy, setting k = 30, as used in prior 492

works (Wang et al., 2023; Yang et al., 2024b; Tian 493

et al., 2024). To further increase the diversity of 494

generated speech, we re-scale the predicted logits 495

using a temperature of 1.5. 496

For evaluation, we use: WER from a pre-trained 497

ASR model, speaker similarity (SPK-SIM) from 498

a pre-trained speaker embedding model, and an 499

automatic speech quality predictor based on a 500

pre-trained mean opinion score (MOS) predictor. 501

Specifically, we use Whisper-large-V3 (Radford 502

et al., 2023) for WER evaluation, a pre-trained 503

Rawnet3 model (Jung et al., 2024) trained on Vox- 504

celeb for speaker embedding extraction, and UT- 505

MOS (Saeki et al., 2022) as the MOS predictor. Fol- 506

lowing common practice in previous works (Wang 507

et al., 2023; Yang et al., 2024b; He et al., 2024; 508

Tian et al., 2024), we generate five samples per test 509

instance using the sampling strategy and report the 510

average score across each metric. 511

S2TT: The S2TT adopts a task formulation as the 512

ASR task by simply replacing the input speech with 513

source language speech and target transcription 514

with target language translation. The prompts are 515

changed to task-related prompts accordingly. We 516

test two corpora: CoVOST2 and GigaST (Wang 517

et al., 2021; Ye et al., 2023). For CoVOST2, 518

we focus on two translation directions, including 519

English-to-Mandarin (EN->ZH) and Mandarin-to- 520

English (ZH->EN). For GigaST, we only focus on 521

EN->ZH. We use SacreBLEU to evaluate the pre- 522

diction results with BLEU score (Post, 2018). 523

S2ST: We conduct S2ST using the GigaS2S cor- 524

pus, which supplements the GigaST corpus with a 525
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Table 1: ASR performance on LibriSpeech and Aishell2.
Models marked with * indicate pre-trained models did
not undergo continual pre-training. + stands models that
do not use neural codecs as their speech representation.
We report WER for Librispeech and CER for Aishell2.

Models Param.
LibriSpeech Aishell2

Test-clean Test-other Test-overall

VoxtLM+ (Maiti et al., 2024) 1B 2.7 6.5 -
AnyGPT (Zhan et al., 2024) 7B 8.5 - -

No Initialization*

1B

5.5 9.5 15.5
Text LLM Initialization* 4.8 8.5 13.1
Speech CPT 5.5 8.9 13.0
Speech & Text CPT 3.7 6.3 7.2

single-speaker TTS model (Ye et al., 2023).7 Due526

to data constraints, we focus only on the English-to-527

Mandarin (EN->ZH) translation direction. Since528

the target speech is single-speaker, the <Condi-529

tion> consists solely of source language speech530

(i.e., English). The prompt generation process fol-531

lows the same approach as in previous tasks. Con-532

sistent with the method used in AudioPalm (Ruben-533

stein et al., 2023), we directly assign the <Target>534

as the codec sequence of the target speech.535

For inference, we use the same top-k sampling536

strategy employed in the TTS task. For evaluation,537

we measure translation quality using ASR-BLEU538

and speech quality using UTMOS.8539

5 Results and Discussion540

5.1 ASR541

The experimental results for ASR are presented in542

Table 1. The best performance is achieved by the543

model that underwent CPT with both speech and544

text modalities. This outcome is expected since545

ASR is one of the tasks included in the pre-training546

phase. The model that received only speech CPT547

performed worse on Librispeech, indicating that548

focusing solely on speech continuation within the549

speech codec pre-training does not necessarily en-550

hance speech recognition performance.551

We also compare these results with reference per-552

formances from other speech LLM-based models553

on Librispeech. VoxtLM, which uses SSL-based554

tokens as its modeling unit (Maiti et al., 2024), and555

AnyGPT, a multi-modal LLM that uses SpeechTo-556

kenizer—a speech neural codec that additionally557

7https://github.com/SpeechTranslation/GigaS2S
8Although UTMOS was trained on English speech, which

might introduce some language mismatch in the scoring,
prior work (Huang et al., 2022) has shown that UTMOS still
achieved reasonable correlation scores when evaluating out-
of-domain Chinese speech. Thus, we continue to use it for our
speech quality evaluation.

Table 2: TTS performance on LibriTTS. Models marked
with * indicate pre-trained models that did not un-
dergo continual pre-training. ◦ corresponds to a version
trained on LibriTTS.

Models UTMOS WER SPK-SIM

UniAudio◦ (Yang et al., 2024b) 3.64 13.1 0.43

No Initialization* 3.01 17.5 0.55
Text LLM Initialization* 2.78 18.8 0.51
Speech CPT 3.65 3.7 0.66
Speech & Text CPT 3.59 3.7 0.65

distills representations from speech self-supervised 558

models (Zhan et al., 2024; Zhang et al., 2024)—are 559

included in the comparison. While the proposed 560

model with CPT slightly degraded from VoxtLM 561

on the Librispeech text-clean set, it outperforms 562

on the more realistic test-other set.9 This poten- 563

tially suggests that CPT successfully improves 564

the model’s understanding ability in codec-based 565

speech LLMs, bringing its performance closer to 566

that of SSL representations, which are known to 567

excel in understanding tasks. 568

5.2 TTS 569

The TTS performance results are presented in Ta- 570

ble 2. The best-performing system is the model 571

that uses speech-only CPT, indicating that speech 572

continuation pre-training can significantly enhance 573

speech generation quality and ease the challenges 574

associated with speech generation modeling. The 575

model with joint speech and text CPT achieves 576

comparable performance in terms of intelligibil- 577

ity, as measured by WER, and in speaker prompt 578

understanding, as indicated by SPK-SIM. Overall, 579

models that apply CPT have demonstrated superior 580

performance compared to those with or without 581

textual LLM initialization. 582

As shown in Table 2, We also conduct experi- 583

ments on the LibriTTS dataset using the UniAudio- 584

based model (i.e., multi-scale transformer-based 585

language model TTS model) in ESPnet (Shi et al., 586

2024; Tian et al., 2024; Yang et al., 2024b). The 587

same speech tokenizer as our CPT-ed model is 588

employed for these experiments. Compared to 589

the TTS-specialized model, the results demon- 590

strate that the proposed method generates speech 591

with comparable quality, as measured by UTMOS, 592

while significantly improving intelligibility and 593

speaker style transfer, as reflected by much lower 594

WER and higher SPK-SIM scores. 595

9Due to differences in pre-training data and model size,
concrete comparisons are challenging.
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Table 3: S2TT performance on CoVOST2 and GigaST.
The performance is reported in BLEU. Models marked
with * indicate pre-trained models that did not undergo
continual pre-training. • stands that external machine
translation data is used.

Pre-training
CoVoST2 GigaST

EN -> ZH ZH -> EN EN -> ZH

Fairseq ST (Wang et al., 2021) 25.4 5.8 -
OWSM-v3 (Peng et al., 2023) 33.4 13.6 -
GigaST• (Ye et al., 2023) - - 38.0
LLM-ST• (Huang et al., 2023) - - 39.6

No Initialization* 25.5 5.8 30.4
Text LLM Initialization* 28.9 9.9 33.2
Speech CPT 24.8 5.4 33.1
Speech & Text CPT 33.1 16.1 37.5

Combining these results with those from596

Sec. 5.1, our proposed method not only enhances597

the ASR performance of codec-based speech LLMs598

but also maintains high TTS quality, ensuring no599

degradation in speech generation compared to other600

specialized codec-based speech language models601

without textual LLM initialization.602

5.3 S2TT603

The results for speech-to-text translation are shown604

in Table 3. In both the CoVOST2 and GigaST605

datasets, models with CPT using both speech and606

text modalities demonstrate significant improve-607

ments in the S2TT task, highlighting their effec-608

tiveness in understanding tasks. Notably, the model609

with speech-only CPT performs worse than models610

without initialization. This result aligns with the611

ASR findings but contrasts with the TTS results, in-612

dicating that a focus on speech generation does not613

necessarily enhance speech understanding ability.614

We also present results from related works615

(Wang et al., 2021; Peng et al., 2023; Ye et al., 2023;616

Huang et al., 2023). Our proposed model shows617

better performance than Fairseq-ST and achieves618

performance comparable to OWSM-v3, which fo-619

cuses on understanding tasks. For GigaST, since620

both models incorporate external machine transla-621

tion data, a direct comparison is not possible. But622

we observe that the model with joint-modality CPT623

has achieved performance similar to these models624

that are specifically designed for S2TT tasks.625

5.4 S2ST626

The results for S2ST are presented in Table 4. The627

best performance is achieved by the model with628

joint speech-text CPT. Notably, unlike ASR, TTS,629

and S2TT, S2ST is not included as a task in the630

CPT phase. However, both models that underwent631

Table 4: S2ST performance on GigaST. † indicates that
the ASR-BLEU scores were calculated using different
ASR systems, as described in Sec. 5.4.

Pre-training
GigaST

ASR-BLEU UTMOS

Vec-Tok† (Zhu et al., 2023) 21.6 -
HW-TSC† (Wu et al., 2024d) 33.6 -

Speech CPT 28.0 3.41
Speech & Text CPT 33.4 3.66

CPT still demonstrated strong S2ST performance. 632

In contrast, models without CPT, even after exten- 633

sive hyper-parameter tuning, struggled to converge 634

effectively on the S2ST task.10 635

For comparison, we also include results from 636

two prior works (Zhu et al., 2023; Wu et al., 2024d). 637

Vec-Tok uses an end-to-end architecture with ad- 638

ditional emphasis on source speaker style transfer, 639

while the HW-TSC S2ST model is built using a cas- 640

caded ASR and MT system. It is important to note 641

that the results are not directly comparable due to 642

differences in the ASR models used for evaluation. 643

However, we observe that the models with CPT 644

show performance potentially comparable to the 645

cascaded approach, highlighting the effectiveness 646

of CPT for this task. 647

6 Conclusion 648

We explore continual pre-training as an effective 649

strategy to extend codec-based speech LLMs for 650

speech translation-related tasks. By carefully for- 651

mulating our pre-training data, we adapt a pre- 652

trained textual LLM in two configurations—one 653

with speech-only data and another with a joint 654

speech-text approach. Our extensive experiments 655

on ASR, TTS, S2TT, and S2ST tasks show that 656

continual pre-training can significantly enhance 657

performance. In particular, speech-only contin- 658

ual pre-training yields notable improvements for 659

TTS, while joint speech-text continual pre-training 660

strikes a balance between understanding and gener- 661

ation, ultimately delivering high-quality end-to-end 662

S2ST. These findings underscore the potential of 663

continual pre-training in addressing issues such 664

as catastrophic forgetting and modality mismatch, 665

thereby advancing the development of robust mul- 666

timodal language models.11 667

10Due to the non-convergence, we did not put the results in
Table 4.

11Some generated audio samples are available at https:
//hiddenmeprivate.github.io/
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7 Limitations668

We demonstrate through several experiments that669

CPT can potentially help balance the generation670

and understanding abilities in codec-based speech671

LLMs. However, we acknowledge the following672

limitations:673

• Limited model size: Due to computational674

and time constraints, we were unable to train675

a larger-scale model. In comparison to many676

recent models with 7B or more parameters,677

the smaller capacity of our model may limit678

the full exploration of our proposed approach.679

• Difficulty in comparison to recent works: Per-680

forming fair comparisons with recent models681

is challenging for several reasons, such as mis-682

matched pre-trained textual LLMs (which we683

could not utilize due to computational limita-684

tions), mismatched datasets, and the difficulty685

of reproducing results with limited resources.686

As a result, most reference models cannot be687

directly compared to our models.688

• Use of in-house data: For continual pre-689

training, we employed some in-house data to690

reduce bias present in open-source data (e.g.,691

language distribution, task distribution, and692

demographic distribution). However, due to693

privacy agreements and licensing issues, this694

data cannot be openly shared.695

• Comprehensiveness of ablation studies: Given696

our computational budgets, we were unable697

to conduct full-cycle ablation studies for all698

aspects of the proposed methodology. Instead,699

we modified and tested design choices during700

early-stage training, where performance may701

not be fully representative of the later-stage702

training results.703

8 Ethical Statement and Potential Risks704

The development of codec-based speech language705

models through CPT has the potential to en-706

hance a wide range of speech-related tasks, includ-707

ing speech-to-text and text-to-speech translations,708

thereby contributing to advancements in commu-709

nication technologies. However, the use of these710

models must be approached with caution due to711

several ethical considerations:712

Speech data often contains sensitive personal713

information. The use of speech language mod-714

els necessitates strict adherence to privacy laws715

and regulations, such as GDPR, to ensure that 716

personally identifiable information is not inadver- 717

tently exposed or misused. Robust mechanisms 718

for data anonymization and secure storage must 719

be employed to prevent unauthorized access or ex- 720

ploitation of individuals’ speech data. 721

The ability to generate high-quality speech 722

through TTS or S2ST poses risks related to the 723

generation of deepfake audio or other forms of 724

speech-based manipulation. Misuse of this technol- 725

ogy could potentially lead to the spread of misinfor- 726

mation or impersonation, raising concerns over its 727

potential role in fraudulent activities or the dissem- 728

ination of false information. Measures such as wa- 729

termarking or other forms of verifiable speech gen- 730

eration could be explored to mitigate these risks. 731

In developing codec-based speech language 732

models, we commit to adhering to ethical princi- 733

ples that prioritize user privacy, data security, and 734

fairness, while also actively working to mitigate 735

any negative societal impacts that may arise from 736

misuse of this technology. 737

References 738

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 739
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 740
Diogo Almeida, Janko Altenschmidt, Sam Altman, 741
Shyamal Anadkat, et al. 2023. GPT-4 technical re- 742
port. arXiv preprint arXiv:2303.08774. 743

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe 744
Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng, 745
Chuang Ding, Lu Gao, et al. 2024. Seed-TTS: A 746
family of high-quality versatile speech generation 747
models. arXiv preprint arXiv:2406.02430. 748

Rosana Ardila, Megan Branson, Kelly Davis, Michael 749
Kohler, Josh Meyer, Michael Henretty, Reuben 750
Morais, Lindsay Saunders, Francis Tyers, and Gre- 751
gor Weber. 2020. Common voice: A massively- 752
multilingual speech corpus. In Proceedings of the 753
Twelfth Language Resources and Evaluation Confer- 754
ence, pages 4218–4222, Marseille, France. European 755
Language Resources Association. 756

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao 757
Zheng. 2017. Aishell-1: An open-source mandarin 758
speech corpus and a speech recognition baseline. 759
In 2017 20th conference of the oriental chapter of 760
the international coordinating committee on speech 761
databases and speech I/O systems and assessment 762
(O-COCOSDA), pages 1–5. IEEE. 763

Kai-Wei Chang, Haibin Wu, Yu-Kai Wang, Yuan-Kuei 764
Wu, Hua Shen, Wei-Cheng Tseng, Iu-thing Kang, 765
Shang-Wen Li, and Hung-yi Lee. 2024a. Speech- 766
prompt: Prompting speech language models for 767

9

https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520


speech processing tasks. IEEE/ACM Transactions on768
Audio, Speech, and Language Processing.769

Xuankai Chang, Jiatong Shi, Jinchuan Tian, Yuning Wu,770
Yuxun Tang, Yihan Wu, Shinji Watanabe, Yossi Adi,771
Xie Chen, and Qin Jin. 2024b. The interspeech 2024772
challenge on speech processing using discrete units.773
In Interspeech 2024, pages 2559–2563.774

Xuankai Chang, Brian Yan, Kwanghee Choi, Jee-Weon775
Jung, Yichen Lu, Soumi Maiti, Roshan Sharma, Ji-776
atong Shi, Jinchuan Tian, Shinji Watanabe, et al.777
2024c. Exploring speech recognition, translation,778
and understanding with discrete speech units: A com-779
parative study. In ICASSP 2024-2024 IEEE Interna-780
tional Conference on Acoustics, Speech and Signal781
Processing (ICASSP), pages 11481–11485. IEEE.782

Xuankai Chang, Brian Yan, Yuya Fujita, Takashi783
Maekaku, and Shinji Watanabe. 2023. Exploration784
of efficient end-to-end ASR using discretized input785
from self-supervised learning. In INTERSPEECH786
2023, pages 1399–1403.787

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu788
Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel789
Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, Sanjeev790
Khudanpur, Shinji Watanabe, Shuaijiang Zhao, Wei791
Zou, Xiangang Li, Xuchen Yao, Yongqing Wang,792
Zhao You, and Zhiyong Yan. 2021. Gigaspeech: An793
evolving, multi-domain asr corpus with 10,000 hours794
of transcribed audio. In Interspeech 2021, pages795
3670–3674.796

Sanyuan Chen, Shujie Liu, Long Zhou, Yanqing Liu,797
Xu Tan, Jinyu Li, Sheng Zhao, Yao Qian, and Furu798
Wei. 2024a. VALL-E 2: Neural codec language mod-799
els are human parity zero-shot text to speech synthe-800
sizers. arXiv preprint arXiv:2406.05370.801

Zhehuai Chen, He Huang, Andrei Andrusenko, Oleksii802
Hrinchuk, Krishna C Puvvada, Jason Li, Subhankar803
Ghosh, Jagadeesh Balam, and Boris Ginsburg. 2024b.804
SALM: Speech-augmented language model with in-805
context learning for speech recognition and transla-806
tion. In ICASSP 2024-2024 IEEE International Con-807
ference on Acoustics, Speech and Signal Processing808
(ICASSP), pages 13521–13525. IEEE.809

Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhuvana810
Ramabhadran, Pedro J. Moreno, Ankur Bapna, and811
Heiga Zen. 2022. MAESTRO: Matched speech text812
representations through modality matching. In Inter-813
speech 2022, pages 4093–4097.814

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,815
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng816
He, Junyang Lin, Chang Zhou, and Jingren Zhou.817
2024a. Qwen2-audio technical report. Preprint,818
arXiv:2407.10759.819

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,820
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng821
He, Junyang Lin, et al. 2024b. Qwen2-audio techni-822
cal report. arXiv preprint arXiv:2407.10759.823

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shil- 824
iang Zhang, Zhijie Yan, Chang Zhou, and Jingren 825
Zhou. 2023. Qwen-audio: Advancing universal 826
audio understanding via unified large-scale audio- 827
language models. Preprint, arXiv:2311.07919. 828

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David 829
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre 830
Defossez. 2023. Simple and controllable music gen- 831
eration. In Advances in Neural Information Process- 832
ing Systems, volume 36, pages 47704–47720. Curran 833
Associates, Inc. 834

Alexandre Défossez, Laurent Mazaré, Manu Orsini, 835
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard 836
Grave, and Neil Zeghidour. 2024a. Moshi: a speech- 837
text foundation model for real-time dialogue. 838

Alexandre Défossez, Laurent Mazaré, Manu Orsini, 839
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard 840
Grave, and Neil Zeghidour. 2024b. Moshi: a speech- 841
text foundation model for real-time dialogue. arXiv 842
preprint arXiv:2410.00037. 843

Kunal Dhawan, Nithin Rao Koluguri, Ante Jukić, Ryan 844
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A Speech Tokenizer 1180

The tokenizer is optimized with 8-stream (L = 8) 1181

residual vector quantization (RVQ) layers, each 1182

containing 1,024 tokens per codebook (|Bj | = 1183

1, 024, (j = 1, ..., L)). The framerate is set to 1184

50Hz. Most hyperparameters related to the model 1185

architecture are aligned with those in the original 1186

SoundStream paper (Zeghidour et al., 2021), while 1187

the discriminator setups follow the DAC framework 1188

(Kumar et al., 2023). 1189

We use a segment size of 24,000 samples (1.5 1190

seconds) with a batch size of 6. The loss terms are 1191

consistent with those in the DAC paper. Both the 1192

generator and discriminator are optimized using the 1193

AdamW optimizer with a learning rate of 0.0002. 1194

We apply an exponential learning rate scheduler 1195

with a decay rate of 0.999. 1196

Due to the nature of RVQ, the initial streams 1197

in the codec typically carry the bulk of the sig- 1198

nal information. To further enhance learning in 1199

these initial streams, we select the target bandwidth 1200

from 0.5, 1, 1.5, 2.0, 4.0, sampled uniformly. Em- 1201

pirically, this setup achieves better reconstruction 1202

quality using only three codec levels (L′ = 3), re- 1203

ducing the modeling complexity in the codec-based 1204

speech LLM. We also introduce noise and rever- 1205

beration into 20% of the training data to improve 1206

the model’s understanding capabilities. The signal- 1207

to-noise ratio (SNR) for these samples is randomly 1208
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chosen from a range of 6.0 to 20.0 dB. The total1209

training steps are 1.6M.1210

B Pre-training Dataset1211

B.1 Pre-training Data Details1212

The list of pre-training data is provided in Table 5.1213

B.2 Pre-training Data Simulation1214

Among recent speech LLMs, we identify two ap-1215

proaches to support multi-task training. One ap-1216

proach uses natural language prompts, enabling1217

generalization across multiple tasks (Tang et al.,1218

2024a; Gong et al., 2024; Chu et al., 2024a; Hu1219

et al., 2024). These prompts can also serve as a1220

bridge between the newly introduced speech modal-1221

ity and the original text, particularly when a pre-1222

trained text LLM is involved.1223

The second approach uses a task template with1224

either explicit task tokens or modality orders (Chu1225

et al., 2023; Yang et al., 2024b; Wang et al., 2023;1226

Chen et al., 2024b). While this method allows1227

for more stable modeling across different tasks, it1228

is less flexible. Most generation-oriented speech1229

LLMs use this approach.1230

In our work, to best leverage the reasoning ca-1231

pabilities of the pre-trained text LLM, we opt for1232

the natural language prompt method to connect1233

different modalities.1234

To generate prompts with enough variations, we1235

use OpenAI APIs for both ChatGPT powered by1236

either GPT3.5 or GPT-4 (Achiam et al., 2023). The1237

prompts are generated in both English and Man-1238

darin. After the initial generation of 50 prompts for1239

both English and Mandarin, we conduct manual1240

filtering to remove unreasonable prompts, resulting1241

in 25 English prompts and 25 Mandarin prompts1242

per task. For the prompts used during pre-training,1243

we limit the prompts to have a declarative format1244

during initial generation, while we specify multiple1245

formats for the prompts used during fine-tuning,1246

including declaratives, interrogatives, and impera-1247

tives.1248

We define the pre-training data simulation policy1249

as follows:1250

• For ASR, S2TT, TTS, and T2ST, the randomly1251

selected natural language prompt can be in1252

either language, regardless of the language1253

used in the corresponding speech-text pair.1254

• For each sample in the TTS task, a1255

portion of the target codec tokens is ran-1256

domly selected, with a duration ranging from 1257

[min (TC/4, 2seconds) ,min (TC/2, 4seconds)]. 1258

Additionally, we use ChatGPT to generate 1259

natural language prompts that specify the 1260

task of synthesizing speech in the speaking 1261

style of the target speech. These prompts are 1262

written in an imperative format, matching 1263

the language of the task-specific prompt, 1264

and are concatenated with the input text and 1265

acoustic conditioning in the following format: 1266

‘<Text><Speaking Style Prompt><Acoustic 1267

Conditioning><Task Prompt>”. 1268

C Model Hyper-parameters 1269

Pre-training experiments are conducted with ten- 1270

sor parallelism set to 8, which enables the use of 1271

larger batch sizes during pre-training (Korthikanti 1272

et al., 2023). The gradient clip is set to 1.0. The 1273

normalization epsilon is set to 1e-5. The global 1274

batch size is set to 640 with a sample sequence 1275

length of 4,096. The number of training steps is 1276

set to 40k. The model is trained on BFloat16. We 1277

use the distributed Adamw optimizer with a peak 1278

learning rate of 1e-5 and a minimum learning rate 1279

of 1e-6. The expanded vocabulary size is 155,012, 1280

considering padding tokens and 293 additional to- 1281

kens for tensor shape adjustment to achieve tensor 1282

parallel training. The model has a parameter size 1283

of 943.5M. 1284
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Table 5: Continual pre-training dataset.

Dataset Language Data Type Data Size (Hour)

Aishell{1-3} (Bu et al., 2017; Du et al., 2018; Shi et al., 2021) ZH Read 1,200
Wenetspeech (Zhang et al., 2022) ZH Various 10,000
Gigaspeech (Chen et al., 2021) EN Various 10,000
Librispeech (Panayotov et al., 2015) EN Read 1,000
MLS (Pratap et al., 2020) EN Read 44,000
TEDLIUM3 (Hernandez et al., 2018) EN Lecture 400
WSJ (Rottland et al., 1997) EN Read 140
Commonvoice (Ardila et al., 2020) EN & ZH Read 2,600
In-house ZH Various 70,000

Crawled Youtube subtitles EN & ZH - -
Wikipedia EN - -
The pile book corpus (Gao et al., 2020) EN - -
In-house Mandarin data ZH - -
In-house translation data EN & ZH - -
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