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ABSTRACT

Self-supervised learning (SSL) has garnered increasing attention in the graph learn-
ing community, owing to its capability of enabling powerful models pre-trained on
large unlabeled graphs for general purposes, facilitating quick adaptation to specific
domains. Though promising, existing graph SSL frameworks often struggle to
capture both high-level abstract features and fine-grained features simultaneously,
leading to sub-optimal generalization abilities across different downstream tasks.
To bridge this gap, we present Multi-granularity Graph Semantic Ensemble via
Knowledge Distillation, namely MGSE, a plug-and-play graph knowledge distilla-
tion framework that can be applied to any existing graph SSL framework to enhance
its performance by incorporating the concept of multi-granularity. Specifically,
MGSE captures multi-granular knowledge by employing multiple student models
to learn from a single teacher model, conditioned by probability distributions with
different granularities. We apply it to six state-of-the-art graph SSL frameworks and
evaluate their performances over multiple graph datasets across different domains,
the experimental results show that MGSE can consistently boost the performance
of these existing graph SSL frameworks with up to 9.2% improvement.

1 INTRODUTION

Graph neural network (GNN) garnered increasing attention due to its exceptional performance
in learning powerful representations over graphs (Kipf & Welling, 2017). However, obtaining a
sufficient number of annotated graphs can be prohibitively expensive. As a result, self-supervised
learning (SSL) on graphs has emerged as a popular research direction, offering the ability to learn
task-agnostic representations without relying on costly label annotations (Zhu et al., 2020; You et al.,
2020; Thakoor et al., 2022). The SSL paradigm has proven particularly valuable in various real-world
applications, such as drug discovery (Gilmer et al., 2017; Wu et al., 2018; Zhang et al., 2021b),
protein analysis (Jiang et al., 2017), and social network analysis (Fan et al., 2019; Wang et al., 2019a;
Ying et al., 2018), where the scarcity of labeled data poses a significant challenge. Meanwhile, SSL
frameworks are usually time-consuming and computationally expensive, because they require either
contrasting the positive samples with a large number of negatives (Chen et al., 2020a) or learning
the same object from different views by multiple trials (Chen & He, 2021), which undermines the
feasibility to train a model from scratch on each application. To overcome the computational barrier,
transfer learning frameworks have been extensively explored to quickly migrate models trained for
general purposes to task-specific domains. For example, models can be adapted to new downstream
tasks by appending only one or few MLP layers (Chen et al., 2020a; Kenton & Toutanova, 2019) with
little fine-tuning to achieve good performance.

Unfortunately, the knowledge from models trained for general purposes may not always suffice
for various downstream tasks requiring semantics with different granularities. For instance, in
the computer vision field, object detection requires fine-grained knowledge to recognize minute
objects; whereas image segmentation needs a high-level overview of the contours (Sun et al., 2019).
Similarly, in the natural language processing field, named entity recognition requires fine-grained
token-level representations but document classification needs high-level understanding over the
whole input text (Liu et al., 2022). Consider the illustration in Figure 1, where amino acids share
common amino and carboxyl groups, which make up the majority of amino acids. However, their
hydrophobic properties are determined by the side chains, with glycine and alanine being hydrophobic
and serine and threonine being non-hydrophobic. The defining sub-structures for amino acids
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operate at a coarse granularity, while those for hydrophobicity operate at a fine-grained granularity.
Hence, the incorporation of multi-granularity into graph learning could help the model gain a more
comprehensive understanding of the underlying graph structure and its associated semantics.
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Figure 1: Multi-granularity existing in graphs.
With different granularities, the activated
sub-structures diverge significantly. Coarse
granularity captures the high-level semantics;
whereas fine granularity captures minute sub-
structures. Bold sub-graphs indicate the acti-
vated sub-graphs in the current granularity. The
dashed line indicates the granularity split.

Existing SSL methods design different tasks and ob-
jectives to enhance downstream task performance,
but few of those leverage the concept of multi-
granularity when applied to different tasks. For
instance, graph contrastive learning methods (You
et al., 2020; 2021; Suresh et al., 2021) learn from in-
stance discrimination tasks (Tschannen et al., 2019),
which maximize the similarities between the posi-
tive pairs while minimizing those between different
instances, including instances falling under similar
granularities. Consequently, the graph representa-
tions learned through contrastive objectives (e.g., In-
foNCE (Oord et al., 2018)) might be optimized into
sub-optimal situations, where high-level abstraction
features are neglected and only those fine-grained
features are kept. On the other hand, graph SSL
methods based on generative objectives (Hou et al.,
2022; Hu et al., 2020b) struggle to extract high-level
semantics since the generative objectives require the model to recover the original masked attributes,
enforcing the encoder to learn representations at fine-grained levels, which falls short on tasks whose
objective naturally conforms the high-level abstraction features (Liu et al., 2021). GraphLoG (Xu
et al., 2021) explores the prototypical graph contrastive learning, which indeed considers the concept
of representation granularity. However, it suffers from the same issue because the cluster granularity
is pre-defined before the model training, which is not flexible to handle all downstream tasks.

In light of this, we propose to combine different models in an ensemble manner, where each candidate
model learns at a specific granularity. To learn graph representations at multiple granularities, one
straightforward design could be training multiple GraphLoG models and combining them during the
inference phase. However, such an implementation might entail sub-optimal performance because
the hierarchical granularities of different GraphLoG models might overlap due to the independent
training of each model. Instead, we explore knowledge distillation (KD), by which student models
with different granularities learn from the same pre-trained teacher model, such that the knowledge
learned by student models is guaranteed to be non-overlapping. KD is initially proposed for model
compression (Hinton et al., 2014; Zhang et al., 2022), however, recently KD has also been proven
to enhance the model performance: distilling knowledge of one model to its randomly initialized
clone without extra supervision signal (i.e., self-distillation) results in performance improvement
(Zhang et al., 2019b; Furlanello et al., 2018; Chen et al., 2020b; Tian et al., 2019). Previous
Study (Allen-Zhu & Li, 2020) explains this phenomenon from the point of ensemble learning and
theoretically proves that the student model leans to learn a perspective different from that of the
teacher model due to the various random initialization for model parameters. The student model
learns the representations through its own parameters while leveraging the knowledge learned by the
teacher model initialized differently, which improves the performance (e.g., instances misclassified
by the model of one perspective could be correctly predicted by the model of the other perspective,
and vice versa). To learn the multi-granular knowledge in graphs, leveraging the philosophies and the
performance improvement brought by KD, we propose Multi-granularity Graph Semantic Ensemble
via Knowledge Distillation, namely MGSE, a plug-and-play knowledge distillation framework aimed
at enhancing the transfer learning performance for existing graph SSL models. Unlike existing
graph KD frameworks that require specific configurations, MGSE makes no such assumption and is
directly applicable to any graph SSL method to improve its performance. Specifically, we extract the
multi-granular knowledge by training multiple student models that align their outputs with the teacher
model in the hidden space with different granularities. Finally, we combine the knowledge learned by
students with different granularities in an ensemble manner to fulfill the downstream applications. Our
contributions are summarized into three aspects: (i) We propose the MGSE, a novel plug-and-play
knowledge distillation framework aimed at enhancing the generalization ability of any graph SSL
model by the incorporation of multi-granularity; (ii) We provide theoretical illustration to demonstrate
the superiority of our proposed framework; (iii) Comprehensive experiments are conducted and the
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results show that all graph SSL models outperform their original variants when equipped with MGSE,
indicating the strong performance improvement brought by introducing multi-granularity.

2 RELATED WORK

Graph Neural Network. Graph neural networks (GNNs) map the non-Euclidean graph-structured
data into lower-dimensional hidden spaces for further utilization of the graph learning task. The
key mechanism behind GNNs is message passing, where GNNs learn node representations by
transforming and aggregating the information along the edges of graphs (Scarselli et al., 2008; Kipf
& Welling, 2017). Therefore, the learned node representations are generally optimized to preserve
the proximity features, i.e., the node representations reflect their neighborhood distributions (Ma
et al., 2022). GNN variants mainly focus on improving the transformation or aggregation functions
(Veličković et al., 2018; Xu et al., 2018; Gasteiger et al., 2019; Hamilton et al., 2017; Zhang et al.,
2019a; Wang et al., 2019b), achieving better effectiveness or scalability. Due to the remarkable
performance of GNNs on graph data, they have been broadly used in many applications, such as drug
discovery (Gilmer et al., 2017; Wu et al., 2018; Zhang et al., 2021b), protein analysis (Jiang et al.,
2017), and social network analysis (Fan et al., 2019; Wang et al., 2019a; Ying et al., 2018).

Self-Supervised Learning on Graph. According to the pre-training task, existing graph SSL
methods can be mainly categorized into contrast-based and generation-based methods (Liu et al.,
2021). Contrastive graph SSL methods learn graph representations following the InfoMax principle
(Tschannen et al., 2019), where the mutual information between positive pairs is maximized while that
between negative pairs is minimized (Velickovic et al., 2019; Zhu et al., 2020; Hassani & Khasahmadi,
2020; You et al., 2020; 2021). To reduce the computational cost entailed by extensive negative pairs,
some recent works also propose to achieve the same effects by either specific architecture designs
such as dual-encoder architecture with stop-gradient (Thakoor et al., 2022; Yang et al., 2021b), or
feature regularization terms such as feature decorrelation (Zhang et al., 2021a). On the other hand,
generative graph SSL models learn graph representations by recovering features of the masked
nodes or the masked edges (Liu et al., 2021; You et al., 2018; Hu et al., 2020b; Kipf & Welling,
2016; Hou et al., 2022). Despite their promising performance on many downstream tasks, those
SSL methods are mainly evaluated under the in-distribution setting. They do not explicitly leverage
the granularities accompanied by the downstream domains, therefore leaving certain spaces in
performance improvement under some scenarios (e.g., GNNs are trained over general molecular
graphs but tested on graphs from other domains). In light of this, we propose MGSE, a plug-and-play
module, to provide a more comprehensive view for downstream tasks with multi-granular knowledge.

Knowledge Distillation. Knowledge distillation (Hinton et al., 2014) is introduced as a strategy for
model compression, accomplished by having a compact student model approximate the performance
of a large over-parameterized teacher model, supervised by both the annotated labels and the teacher
model output. However, recently KD has also been proven to enhance the model performance:
distilling knowledge of one model to its randomly initialized clone without extra supervision signal
(i.e., self-distillation) leads to performance improvement(Zhang et al., 2019b; Furlanello et al., 2018;
Chen et al., 2020b; Fang et al., 2020). Some (Allen-Zhu & Li, 2020) credit this to ensemble learning
(Hansen & Salamon, 1990), by theoretically proving that random initialization allows the teacher and
student models to learn features from different views. Assisted by the knowledge distillation strategy,
the student model is able to integrate the information from its own view with the "dark knowledge"
(Furlanello et al., 2018; Tian et al., 2019; Allen-Zhu & Li, 2020) learned by the teacher model from
another view, therefore improving the performance While most of the existing works focus on model
compression by incorporating a lighter student model (Yang et al., 2021a; Zhang et al., 2022), few of
them exploit the advantage of feature ensemble brought by knowledge distillation for further model
performance generalizability. In this work, we aim to exploit the merits of ensemble learning along
with KD to further fortify the generalizability of existing graph SSL methods.

3 PRELIMINARIES

Notations. We use G = (V,E) to represent the input graph, where V and E stand for the node set
and edge set, respectively. Besides, we use xv ∈ RDv and xe ∈ RDe to denote the attribute vector of
each node v ∈ V and edge e ∈ E. In this work, we focus on the graph-level tasks, whose datasets
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Figure 2: The illustration of our proposed MGSE. The teacher model f t can be any existing graph
SSL method with its parameters frozen. K randomly initialized student models are constructed with
identical architecture, each with a set of prototypes initialized to transfer the semantic information
from the teacher in a specific granularity. During the distillation, the outputs of the teacher and the
student are aligned at different granularities. After that, all students are independently fine-tuned and
the average of their predictions are taken as the final prediction.

include multiple graphs, i.e., G = {Gi = (Vi, Ei)}Ni=1 and c is the number of classes. Each graph Gi

is associated with an C-dimensional one-hot prediction target vector, denoted as yi ∈ RC .

Graph Neural Networks. As we mentioned in Section 2, most GNNs follow the message-passing
schema to iteratively update the node embedding through the message from its neighborhood Nv.
Considering a L-layer GNN model, the forward process of the l-th layer can be formulated as:

h(l+1)
v = COM

(
h(l)
v ,AGG

({
h(l)
u ,∀u ∈ Nv

}))
, (1)

where h
(l)
v is the embedding of node v at the l-th layer and h

(0)
v = xv, Nv is the set of the nodes

adjacent to v, AGG and COM are aggregation function and transformation function of the GNN
layer, respectively. For the graph classification task, there is a READOUT function (e.g., mean, sum,
or max) to summarize all the node embeddings into one graph embedding after L-th layer.

4 METHODOLOGY

In this section, we will introduce the technical details of our proposed Multi-granular Graph Ensemble
via Knowledge Distillation (MGSE), whose overall framework is shown in Figure 2. MGSE enhances
the representations learned from student models by the self-supervised knowledge distillation, such
that the resulting representations achieve better generalization ability. Given the input graph G and a
pre-trained teacher model f t (including a GNN encoder fg and a projection layer fh), we transfer the
knowledge from f t to the student model fs by aligning their hidden representations. Multi-granular
semantic knowledge is extracted by training multiple student models with different granularities. At
last, we unify the distilled student models through model ensemble to conduct downstream inference.

4.1 SELF-SUPERVISED PROTOTYPICAL DISTILLATION

Similar to the previous self-supervised distillation work (Fang et al., 2020), we keep the pre-trained
teacher model frozen while training the randomly initialized student models to approximate its output.
However, the semantic granularity is challenging to extract in the SSL setting due to the absence of
supervision. Inspired by prototypical contrastive learning frameworks that encode features at one
granular level (Li et al., 2021; Guo et al., 2022; Xu et al., 2021), we align the outputs of the teacher
model and the student model in various probability spaces to extract features in multiple granularities.

Given a graph Gi ∈ G and its augmented view a(Gi), where a(·) is randomly sampled from a graph
augmentation family A (i.e., node dropping, edge perturbation and subgraph sampling), we firstly get
the representations of these two graphs from the pre-trained teacher model, i.e., zti = f t(Gi) ∈ RD.
Next, we randomly initialize K sets of corresponding trainable prototypes to map zti into K probability
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spaces. The prototype matrix for k-th set is denoted as qk ∈ RD×Dk , where each column indicates
the centroid of a prototype and Dk is the number of prototypes in k-th set. In order to extract
multi-granular semantics from a single teacher model f t, we thereby train multiple student models
specific to different granularities. Given K sets of prototypes corresponding to different granular

semantics, we train K student models with identical architecture, i.e.,
{
zsi,k

}K

k=1
= {fs

k(Gi)}Kk=1,
to obtain the approximated probability distributions of the teacher model in different granularities.
The soft prototypical assignment for zti and zsi,k in k-th prototype set are denoted as pt

i,k and ps
i,k,

with d-th dimension calculated as:

[
pt
i,k

]
d
=

exp (z̄ti · [q̄k]d /τt)∑Dk

d′=1 exp (z̄
t
i · [q̄k]d′ /τt)

,
[
ps
i,k

]
d
=

exp
(
z̄si,k · [q̄k]d /τs

)
∑Dk

d′=1 exp
(
z̄si,k · [q̄k]d′ /τs

) , (2)

where τt, τs ∈ (0, 1) is the temperature parameter for the teacher and students, z̄ti, z̄
s
i,k and q̄k is the

L2 normalized representations and prototypes and [·]d is the d-th element in a variable. To guarantee
different prototype sets capture different semantic granularities, we assign the number of prototypes
in each set in descending order, i.e., D1 > D2 > · · · > DK > 1. In short, we get K sets of “soft
label” by measuring the cosine similarity between zti and centroids of different prototype sets, then
the soft labels are utilized as supervision to align the output of teacher and students. It is noteworthy
that we use a larger temperature parameter τs than τt to implicitly encourage the student models
to produce confident low entropy anchor predictions (Fang et al., 2020; Caron et al., 2021). In our
implementation, we use a sharpen operation (i.e., τt = τ

1/P
s with P ∈ R+ and P < 1) on the target

probability distribution produced by the teacher model to achieve the same effect. With the multi-
granular distributions from the student models and their corresponding distributions from the teacher
model, MGSE is optimized by minimizing the divergence between the probability distributions of
the teacher and the students. We use the negative cross entropy to measure the divergence for each
granularity and for k-th granularity:

D
(
pt
k,p

s
k

)
= −H

(
pt
k,p

s
k

)
=

1

NDk

N∑
i=1

Dk∑
d=1

−
[
pt
i,k

]
d
· log

[
ps
i,k

]
d
. (3)

Note that the distillation objective in Equation 3 can maximize the mutual information between the
output of the teacher model and student model, which is similar to InfoMax principle (Tschannen
et al., 2019) in contrastive SSL frameworks. Particularly, our optimization objective can be an analogy
to the ProtoNCE loss to maximize the mutual information at cluster-level. We conduct a more detailed
discussion in Appendix A. Therefore, by aligning the representation probability distributions of the
teacher model and the student models, we can transfer the knowledge from the teacher to students.

4.2 TRAINING OBJECTIVE

To train the student models, we use the cross entropy measurement H
(
pt
i,k,p

s
i,k

)
to match the

probability distributions of the teacher model and student models in different granularities. Besides,
a mean entropy maximization (ME-MAX) (Assran et al., 2021) regularization term is explored to
maximize the entropy of outputs of student models so that all prototypes are enforced to be utilized,
thereby the learned representations can be more semantically discriminative. Similar to Equation 3,
the regularization term is formulated as:

H(p̄s
k) =

[
1

N

N∑
i=1

ps
i,k

]
· log

[
1

N

N∑
i=1

ps
i,k

]
. (4)

Therefore, we can get the overall optimization objective of our proposed MGSE below:

L =
1

KN

K∑
k=1

N∑
i=1

[
D
(
pt
i,k,p

s
i,k

)
− λH(p̄s

k)
]
, (5)

where λ > 0 is the weight of the ME-MAX regularizer. During the training process, the K sets of
prototypes and student models will be jointly optimized using the objective function in Equation
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5 via the same optimizer. By combining the distribution sharpening operation and the ME-MAX
regularization, the Dk prototypes within each set are optimized to be distinctive, capturing distinct
semantic features at specific granularities. Consequently, the extraction of semantic features at various
granularities is facilitated by aggregating prototype sets with different Dk values. We make a further
theoretical discussion to explain the reason in Proposition 1, and the proof is provided in Appendix B.
Proposition 1. Given the target probability distribution pt

k produced by the teacher model and the
anchor probability distribution pt

k produced by the student model, ∥∇D (pt
k,p

s
k)∥+∥∇H(p̄s

k)∥ > 0
if there exist representation collapse, i.e., pt

i,k = ps
j,k = 1

K1K for ∀Gi, Gj ∈ G.

4.3 MULTI-GRANULAR MODEL ENSEMBLE

To incorporate the knowledge from multiple granularities, we thus combine multiple distilled student
models in an ensemble manner to fully utilize the multi-granular knowledge. During the finetuning
process, we update K student models from the multi-granular self-distillation process to adapt to the
downstream tasks. It is noteworthy that the K student models use the same training set as the teacher
model does. We produce the final prediction by averaging the predictions of K student models as:

f̂s(G) =

K∑
k=1

fs
k (G) /K. (6)

We derive Theorem 1 to justify the ensemble of the multi-granular student models can improve the
prediction accuracy and robustness compared with the single model, shown as the following:

Theorem 1. For a graph dataset G and multiple student model {fs
k}

K
k=1 with the different initialized

knowledge, the ensemble of their predictions can reduce the error rate compared with the prediction
of any single model, i.e,

E
G

[
1
(
f̂s(G) = y

)]
≥ E

G
[1 (fs

k(G) = y)] ∀k ∈ [K] ,

where y is the ground truth. More detailed derivation for this theorem is provided in Appendix C.
Besides, the computation cost of our proposed MGSE only grows linearly w.r.t. the number of student
models. Given the computation cost of existing graph SSL methods as O(N +M), where N is the
number of nodes and M is the number of edges, the computation cost of our proposed MGSE will be
O(K(N +M)). We provide more empirical analysis of the model depth and student numbers to
demonstrate the scalability of our method in the experiment section.

5 EXPERIMENTS

In this section, we demonstrate the performance improvement brought by our proposed MGSE
after being applied to state-of-the-art graph SSL frameworks. Extensive experiments are conducted
on public graph benchmark datasets in different domains to test the effectiveness of the learned
representation. Besides, we provide more experiments to analyze the designs of our proposed
framework. Due to the page limitation, we only demonstrate the empirical study on part of the
datasets in the experiments section. Other contents, including implementation details, experimental
results on node-level tasks and more empirical analysis are provided in Appendix E and F.

5.1 EXPERIMENT SETUP

Datasets. For the graph-level tasks, we follow the setting adopted by previous works (You et al.,
2020; Suresh et al., 2021) to evaluate our proposed MGSE with the data from the chemistry domain
and biology domain under the transfer learning setting. For the chemistry domain datasets, the
teacher model and student models are pre-trained on the ZINC15 dataset (Sterling & Irwin, 2015)
which contains 2 million unlabeled molecule graphs. And then we evaluate the distilled student
models on eight downstream datasets with binary or multi-class classification tasks. Both the pre-train
dataset and the fine-tuning datasets are extracted from MoleculeNet (Wu et al., 2018) and are split
by the scaffold to simulate the real-world scenario where the concept of multi-granularity improves
the performance significantly. The pre-train dataset of the biology domain is PPI-306K (Hu et al.,
2019) and the downstream application is to predict biological functions of 88K protein ego-networks,
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Table 1: Performance (i.e., AUC) of state-of-the-art SSL-based GNN frameworks in the transfer
learning setting, and improvements after MGSE is applied. The percentage in the parentheses refers
to the percentage of performance improvement brought by MGSE.

Model BBBP Tox 21 ToxCast SIDER ClinTox HIV BACE MUV
No Pre-train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 75.3±1.9 70.1±5.4 71.8±2.5

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 78.47±1.22 75.38±1.44 69.80±2.66

+MGSE 72.26±0.65 75.89±0.33 64.57±0.34 61.44±0.68 78.67±2.89 79.07±0.72 79.22±0.93 71.46±1.45

Perf. (↑) +2.58 (3.7%) +2.02 (2.7%) +2.17 (3.5%) +0.91 (1.5%) +2.68 (3.5%) +0.60 (0.8%) +3.84 (5.1%) +1.66 (2.4%)

RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.90 77.90±0.80 76.03±0.77 76.66±0.99

+MGSE 71.65±0.78 76.82±0.62 64.85±0.20 63.72±0.63 84.88±2.01 78.33±0.85 77.40±1.27 77.18±0.81

Perf. (↑) +0.23 (0.3%) +1.62 (2.2%) +1.52 (2.4%) +2.34 (3.8%) +1.50 (1.8%) +0.43 (0.6%) +1.37 (1.8%) +0.52 (0.7%)

AD-GCL 70.00±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 78.28±0.97 78.51±0.80 72.30±1.61

+MGSE 70.44±0.70 76.80±0.80 64.60±0.59 63.50±0.92 83.05±2.64 78.91±0.57 79.65±1.07 74.32±0.85

Perf. (↑) +0.44 (0.6%) +0.26 (0.3%) +1.53 (2.4%) +0.22 (0.3%) +3.27 (4.1%) +0.63 (0.8%) +1.14 (1.5%) +2.02 (2.8%)

JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 76.73±1.23 77.34±0.48 71.66±1.43

+MGSE 71.93±0.50 76.20±0.33 64.26±0.27 61.02±0.86 83.30±2.44 77.50±0.67 79.82±0.71 73.52±0.62

Perf. (↑) +1.71 (2.4%) 1.22 (1.6%) +1.32 (2.1%) +1.05 (1.8%) +1.98 (2.4%) +0.77 (1.0%) +2.48 (3.2%) +1.86 (2.6%)

GraphMAE 72.0±0.6 75.5±0.6 64.1±0.3 60.3±1.1 82.3±1.2 77.20±1.0 83.1±0.9 76.3±2.4

+MGSE 71.62±0.51 76.52±0.48 65.31±0.38 62.46±0.52 84.41±2.20 78.03±0.70 82.92±0.75 77.15±0.75

Perf. (↑) -0.38 (-0.5%) +1.02 (1.4%) +1.21 (1.9%) +2.16 (3.6%) +2.11 (2.6%) +0.83 (1.1%) -0.18 (-0.2%) +0.85 (1.1%)

GraphLoG 72.5±0.8 75.7±0.5 63.5±0.7 61.2±1.1 76.7±3.3 77.8±0.8 83.5±1.2 76.0±1.1

+MGSE 72.57±1.13 76.84±0.58 64.88±0.39 63.08±0.86 83.72±2.02 78.64±0.80 83.18±1.24 77.22±0.94

Perf. (↑) +0.07 (0.1%) +1.14 (1.5%) +1.38 (2.2%) +1.88 (3.1%) +7.02 (9.2%) +0.84 (1.1%) -0.32 (-0.4%) +1.22 (1.6%)

Avg. Perf. (↑) +0.78 (1.1%) +1.21 (1.6%) +1.52 (2.4%) +1.43 (2.3%) +3.09 (3.9%) +0.68 (0.9%) +1.39 (1.8%) +1.36 (1.9%)

where the downstream dataset is split according to the species. For the node-level tasks, we follow
the SSL evaluation setting of the BGRL and GraphMAE to evaluate our proposed model in Cora,
Pubmed (Yang et al., 2016) and ogbn-arxiv (Hu et al., 2020a). More detailed datasets statistics are
demonstrated in Appendix D.

Baselines. To fully demonstrate the capability of our proposed MGSE in improving the performance
of existing graph SSL paradigms under the transfer learning setting, we implement multiple state-of-
the-art contrastive and generative graph SSL models as the teacher models, including GraphCL (You
et al., 2020), JOAO (You et al., 2021), AD-GCl (Suresh et al., 2021), GraphLoG (Xu et al., 2021),
RGCL (Li et al., 2022), GraphMAE (Hou et al., 2022) and BGRL (Thakoor et al., 2022). We explore
the same setting as recommended by the authors.

Evaluation Protocol. We follow the settings adopted by previous works (You et al., 2020; 2021)
and adopt ROC-AUC as the evaluation metrics of graph-level tasks. Each experiment is repeated 10
times with a different random initialization. In the meantime, we follow the previous works to (Hou
et al., 2022; Thakoor et al., 2022) to use the accuracy score as the evaluation metrics of the node-level
tasks and repeat each experiment 5 times. We report both the mean metric score and its standard
deviations as the final evaluation results.

5.2 RESULTS ANALYSIS

Overall Performance Comparison in Graph-level Tasks. In Table 1, we report the performance
of the six teacher models and their corresponding multi-granular graph semantic ensemble trained
by our proposed MGSE framework on the eight chemistry domain datasets. Specifically, we also
add the experimental results without SSL (denoted as “No pre-train”), where a randomly initialized
5-layer-GIN model is trained from scratch to conduct inference on the eight datasets. From the table
we can reach three observations: (1) Our proposed MGSE can consistently boost the performance of
existing graph SSL models by an obvious margin, which demonstrates the effectiveness of learning
multi-granular representations under the transfer learning setting. The dataset shift between the
pre-train phase and fine-tuning phase causes a divergence between the knowledge learned from
pre-train tasks and the knowledge useful for downstream tasks. This issue can be further deteriorated
by the split strategy (i.e., splitting according to the scaffold) which mimics an out-of-distribution
setting. In this case, low-level fine-grained features are not general enough to adapt to various tasks
and consistently achieve good performances. On the contrary, the multi-granular representations can
abstract the data distribution in multiple hierarchies and granularities, thereby being less affected
by the out-of-distribution setting. This conclusion is also supported by the superior performance of
GraphLoG over most of the other baselines, which is based on the prototypical contrastive learning
method. (2) The performance improvement brought by our proposed MGSE is more significant on
the multi-label classification problem, including Tox21, ToxCast, SIDER, ClinTox, and MUV. The
relative performance improvements on these five datasets are 1.6% ∼ 3.9% and 0.9% ∼ 1.8% on
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Table 2: Performance of the four state-of-
the-art SSL frameworks on the biology
domain dataset, where "*" stands for our
reproduced results due to the different
experimental settings employed in the
original works.

Dataset GraphCL AD-GCL JOAO GraphLoG*

PPI
67.88±0.85 68.83±1.26 64.43±1.38 66.95±1.32

+MGSE
69.11±0.70 68.95±0.83 65.37±0.96 68.26±1.06

Perf. (↑) 1.23 (1.8%) 0.12 (0.2%) 0.96 (1.5%) 1.31 (2.0%)
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Figure 3: Impacts of different prototypes initialization
strategies (left), and single-granularity versus multi-
granularity (right).

the other three datasets with single-label. This observation can be used to support our claim that
it is necessary to utilize multi-granular semantic information to analyze and explain the property
of a graph. A graph might own multiple properties and they could be determined by either coarse
features or fine-grained features. Therefore it is more comprehensive to explain a graph by multiple
granularities from coarse to fine. (3) The performance improvements over the baselines with trainable
augmentation operation on the graph structure, including AD-GCL and RGCL, are relatively limited
compared to the others. Those baselines implement strong regularization on the graph topology
information by deleting nodes or edges to push the optimized representations focusing on the most
salient and coarse features. Such a strategy could improve the performance robustness to some extent,
especially when the data distribution shift is not obvious. However, it may not suit the multi-label
classification scenario where we need the features in different aspects and granularities. Besides,
we demonstrate the experimental results on the biology domain dataset in Table 2, from which we
can find similar observations as we analyzed above. Our knowledge distillation framework can still
consistently boost the performance of the adopted teacher model, and the performance improvements
are more obvious for the teacher model without strong augmentation. More experimental results of
the node-level tasks can are provided in Appendix F.

Importance of Random Prototype Initialization Strategy. In our proposed MGSE, we randomly
initialize the prototypes and train them for multi-granular representation clustering. Besides the
random initialization strategy, we can also run the K-means algorithm based on the output of the
teacher model to compute the cluster centroids and initialize them as prototypes, denoted as K-Means
Proto. For the prototypical graph self-supervised teacher model, i.e., GraphLoG, we can also reuse
the pre-trained prototypes for distillation, denoted as Old Proto. Specifically, the parameter of
pre-trained prototypes will be frozen together with the teacher model. We demonstrate the empirical
result of the two prototype strategies and MGSE (New Proto) in the left subplot of Figure 3, from
which we can find that the performance is much better when we use the new prototypes for the
teacher model. A possible explanation is that the pre-trained prototypes could prohibit the student
models from learning features in different granularities, and thus the distilled student models can not
outperform or even perform on par with the teacher model.

Importance of Multi-granularity Prototypes Setting. To demonstrate the improvement of our
methods gained from multi-granularity features (different student models are trained with prototypes
in different granularities), we add two variants for comparison: (1) Single-granularity with only
single granularity (Dk = 50) but the same student number, where each student is independently
initialized; (2) Multi-teacher with different dropout ratios (0.2, 0.5, 0.8) during the fine-tuning
procedure and average their output for the final prediction. In this experiment, we take GraphCL
as the teacher model, the experimental results of the two variants and our proposed MGSE (Multi-
granularity) are shown in the right subplot of Figure 3. Though the two variants based on model
ensemble can also boost the teacher model’s performance to some extent, the improvement over
MGSE is obviously larger, indicating the effectiveness of considering multiple granularities other
than the model ensemble. Meanwhile, it is fair to say that the multi-granularity semantics can not be
obtained by directly setting different dropout ratios for the teacher model.

How Prototype Regularization Enable Multi-granularity Semantics Extraction? In the proposed
MGSE, we add the ME-MAX regularization and apply the sharpening operation on the target
probability distribution to avoid trivial collapsing of the trainable prototype sets. To evaluate the
effectiveness of our design, we perform ablation studies by creating two model variants: (1) w/o.
sharpen, the target probability distribution is not sharpen; (2) w/o. ME-MAX, the regularization
weight λ is set as 0.0. We show the experimental results in Table 3, from which we can find omitting
either one of the components could fail to boost the performance of the teacher model. During
distillation, the trainable prototypes are responsible for mapping the instances with various semantics
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Table 3: Ablation study of the proposed
MGSE with three teacher models

Dataset BBBP Tox21 ToxCast SIDER
w/o. sharpen 70.91±0.89 74.26±0.65 63.49±0.45 60.21±0.70

w/o. ME-MAX 70.45±1.04 73.85±0.74 63.10±0.37 60.08±0.82

GraphCL+GMSE 72.26±0.65 75.89±0.33 64.57±0.34 61.44±0.68

w/o. sharpen 69.37±0.87 74.17±0.52 64.00±0.41 59.53±1.01

w/o. ME-MAX 68.88±0.59 73.68±0.60 63.62±0.38 59.48±0.90

JOAO+GMSE 71.93±0.50 76.20±0.33 64.26±0.27 61.02±0.86

w/o. sharpen 70.58±0.86 74.85±0.79 64.10±0.54 61.16±1.28

w/o. ME-MAX 71.05±0.64 74.24±0.66 63.76±0.60 60.51±1.44

GraphLoG+GMSE 72.57±1.13 76.84±0.58 64.88±0.39 63.08±0.86

1 2 3 4 5
Ls

68

70

72

74

76

RO
C-

AU
C(

%
)

Student Model Depth

GraphCL
GraphCL+GMSE
GraphLoG
GraphLoG+GMSE

BBBP Tox21 ToxCast SIDER
Dataset

60

65

70

75

RO
C-

AU
C(

%
)

Model Ensemble
Average
Stack

Figure 4: Impacts of different model ensemble
strategies (left) and student model depth Ls (right).

into different probability distributions (clustering). Without the sharpen operation, it is usually the
case the student model tends to map graph instances into probability distributions with low confidence.
Consequently, many instances with different semantics fall into indiscriminative representations.
Meanwhile, by enforcing the full set of prototypes utilized with ME-MAX regularization, the target
prototypes will be optimized to learn more discriminative features to push instances with different
semantics away from each other in hidden space, thereby avoiding trivial collapsing.

Importance of Average Model Ensemble Strategy. Besides averaging the prediction of multiple
student models for evaluation, we also conduct experiments by the stacking ensemble strategy, where
we concatenate the outputs of all the student models and append a trainable linear transformation
layer. The comparison results based on GraphCL are shown in the left subplot of Figure 4. We can
observe that the averaging ensemble can generally outperform the stacking ensemble strategy on the
four datasets. Thus we believe that for some tasks and datasets, essential features for the training
graphs differ from those for the testing graphs, and hence the prediction computed from multiple
independently optimized models tends to cause more robust performance.

Potential of Reducing Computation Cost. We conduct experiments to explore the potential of
MGSE to reduce computation costs by using lighter student model architectures and smaller student
numbers. Though not the research focus of this work, model compression is a byproduct of MGSE
based on knowledge distillation. We vary the layer number of each student model from 1 to 5
and report the results on Tox21 dataset in the right part of Figure 4, similar observations can be
found in other datasets. We can see larger model architecture always has a positive effect on the
final performance, and our framework can approximate or even surpass the performance of the
over-parameterized teacher model with multiple lighter student models. Thus, the results demonstrate
that the extra computation cost brought by incorporating multiple student models can be alleviated by
the comparable results with a lighter student model architecture.
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Figure 5: Impacts of different student
numbers over BBBP and ToxCast.

We also vary the student number K to evaluate its ef-
fects on different datasets and the experimental results
are shown in Figure 5. We can see that multi-label datasets
(ToxCast in the figure) tend to gain more benefits from
more student models (more semantic granularities), while
such diversified semantics could be unnecessary for single-
label datasets (BBBP). Hence, it is reasonable to assert
that our proposed method incurs a lower computational
cost when applied to datasets characterized by simpler se-
mantics. This observation additionally bolsters our argument that a wider spectrum of semantic
granularities holds greater promise in effectively addressing various downstream tasks.

6 CONCLUSION

In this paper, we study the problem of learning multi-granular representations for graphs. Inspired by
the capabilities of knowledge distillation on extracting well-encoded and structural graph semantics,
we propose Multi-granularity Graph Semantic Ensemble via Knowledge Distillation, namely MGSE,
a plug-and-play graph knowledge distillation framework that can be easily applied to any existing
graph SSL framework to enhance its performance by incorporating the concept of multi-granularity.
We theoretically analyze the reason why our framework design can effectively transfer knowledge
from the teacher model and further enhance its performance. Besides, we conduct extensive experi-
ments on graph datasets across different domains, where we apply MGSE to different state-of-the-art
graph SSL methods. Experimental results prove that MGSE can consistently improve the performance
of all SSL methods by incorporating the concept of multi-granularity by large improvement margins
up to 9.2%. More discussions on the limitations and potential impacts are provided in Appendix H.
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A DISCUSSION ON THE RELATIONSHIP WITH CONTRASTIVE LEARNING

In the case when τt → 0, the target probability distribution pt
k will approach to one-hot vector, and the

objective in Equation (3) can be regarded as the ProtoNCE loss to maximize the mutual information
between the output of teacher model and student model in cluster-level. And both ProtoNCE and our
objective can be divided into aligning term and uniformity term. For ProtoNCE loss, we have:

LProtoNCE =

N∑
i=1

− log
exp (zi · qi/τ)∑

qj∼q exp (zi · qj/τ)
=

N∑
i

[−zi · qi/τ︸ ︷︷ ︸
alignment

+ log
∑
qj∼q

exp (zi · qj/τ)︸ ︷︷ ︸
uniformity

].

(7)
And our objective function achieves similar effect:

D
(
pt,ps

)
=

1

N

N∑
i

softmax

(
zti · q
τt

)
· softmax

(
zsi · q
τs

)

=
1

N

N∑
i

wt
i · [−zi · qi/τs︸ ︷︷ ︸

alignment

+ log
∑
qj∼q

exp (zi · qj/τs)︸ ︷︷ ︸
uniformity

],
(8)

where wt
i is the soft label produced by the teacher model, we can regard it as the weight of the loss

term since the teacher model is frozen.

B PROOF OF PROPOSITION 1

PROPOSITION 1. Given the sharpened target probability distribution pt
k produced by the teacher

model and the anchor probability distribution pt
k produced by the student model, ∥∇D (pt

k,p
s
k)∥+

∥∇H(p̄s
k)∥ > 0 if there exist representation collaps, i.e., pt

i,k = ps
j,k for ∀Gi, Gj ∈ G.

Proof. As we introduced, the normalized probability distribution pt
i,k ∈ RDk of teacher model in the

k-th granularity can be computed by:

[
pt
i,k

]
d
=

exp
(
z̄ti,k · [q̄k]d /τt

)
∑Dk

d′=1 exp
(
z̄ti,k · [q̄k]d′ /τt

) , (9)

where d ∈ [Dk], k ∈ [K] and i ∈ [N ]. Since the parameter of the pre-trained teacher model is
frozen, it is safe to assume that it will not produce the same representations for different instances
Gi, Gj ∈ G. So, we have:

∀Gi, Gj ∈ G, if zti,k ̸= ztj,k =⇒ zti,k · qk ̸= ztj,k · qk

=⇒ pt
i,k ̸= pt

j,k =⇒ pt
i,k,p

t
j,k ̸= 1

Dk
1Dk

.
(10)

In this case, the sharpen operation will make the target probability distribution far more away from
the uniform distribution. Then we have pt

i,k ̸= ps
j,k and ∥∇D (pt

k,p
s
k)∥ > 0 when ps

i,k = ps
j,k =

1
Dk

1Dk
. Similarly, in the case of the ps

i,k = ps
j,k ̸= 1

Dk
1Dk

for Gi, Gj ∈ G, we have:

p̄s
k =

1

N

N∑
i=1

ps
i,k ̸= 1

Dk
1Dk

. (11)

Therefore we can get ∥∇H(p̄s
k)∥ > 0 to force all the prototypes are utilized so that the instance with

different semantics will not collapse into the same cluster (prototype).

C PROOF OF THEOREM 1

THEOREM 1. For a graph dataset G and multiple student model {fs
k}

K
k=1 with the different initialized

knowledge, the ensemble of their predictions can reduce the error rate compared with the prediction
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of any single model, i.e,

E
G

[
1
(
f̂s(G) = y

)]
≥ E

G
[1 (fs

k(G) = y)] ∀k ∈ [K] ,

where y is the ground truth label of instance G.

Proof. In the work, we train K student models to extract features in different granularities, so each
student model will utilize information from different views or levels to make predictions. Here, we
denote the feature sets utilized by the K student models as {Mk}Kk=1. For classification problems,
the final prediction of the bagging ensemble can be obtained through majority voting:

f̂s(G) = argmax (Σ (1 [fs
k(G) = y] /K)) . (12)

To get the conclusion in Theorem 1, we start with the definition of expected prediction error:

EPE(G) = E
[
(y − f̂(G))2

]
= E

[
y2 − 2yf̂(G)− f̂(G)2

]
= E

[
y2
]
− E

[
2yf̂(G)

]
− E

[
f̂(G)2

]
.

(13)

Given the equation above, we can decompose the expected prediction error into three parts. First of
all, since we model y = f + ϵ, then we have:

E
[
y2
]
= E

[
(f+ϵ)2

]
= E

[
f2

]
+ 2E[f ϵ] + E

[
ϵ2
]

= f2 + 2fE [ϵ] + E
[
ϵ2
]
,

(14)

where ϵ has zero mean and variance σ2, so we can reach to E
[
y2
]
= f+σ2. Then, the second term

in Equation 13 can be derived into:

E[yf̂ ] = E[(f + ϵ)f̂ ] = E[ff̂ ] + E[ϵf̂ ]

= E[ff̂ ] + E[ϵ]E[f̂ ] = fE[f̂ ].
(15)

Thirdly, based on the definition of the variable variance, we show that:

E
[
f̂2

]
= Var(f̂) + E[f̂ ]2. (16)

Therefore, by combining Equation 14, 15 and 16 together, we can get prediction error of of classifier
f̂ as:

EPE(G) = E
[
(y − f̂(G))2

]
= f2 + σ2 − 2fE[f̂ ] + Var[f̂ ] + E[f̂ ]2

= (f − E[f̂ ])2︸ ︷︷ ︸
Bias

+Var[f̂ ]︸ ︷︷ ︸
Variance

+ σ2︸︷︷︸
Noise

.
(17)

Our goal is to reduce the variance term, given the relation between of and expectation and variance,
we can get the variance of the ensemble predictions based on Equation 12:

Var(f̂s(G)) = E
[
(f̂s(G)− E[f̂s(G)])2

]
= E

[(
argmax (Σ (1 [fs

k(G) = y] /K))− E [argmax (Σ (1 [fs
k(G) = y] /K))]

2
)]

= Var(fs
k(G))/K.

(18)

Given the assumption that each prediction task is a binary classification problem, we can set the p as
the probability that the ground truth label for graph instance G and the 1− p as the probability that
the ground truth label is 1. Then we can reach the variance of the ensemble model by combining
Equation 18 and Taylor series expansion:

Var(fs
k(G)) = p× (1− p)/K. (19)

Therefore, the variance between the observation f̂s and the optimal model f∗ based on the training
set will be reduced when the number of the classifiers increases. Due to the reason that each student
model fs

k is trained on the same training set, we have the E
[
f̂s

]
= E [fs

k ] for any k ∈ [K]. Therefore,
the bias term of the expected prediction error generated by each classifier is equal. In that case, the
ensemble model f̂s with a lower variance will produce lower prediction error:

E
[
(y − f̂s(G))2

]
≤ E

[
(y − fs

k(G))2
]

∀k ∈ [K] . (20)

Thus, the conclusion in Theorem 1 is proved.
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D DATASET STATISTICS

Table 4: Statistics of MoleculeNet datasets and protein-protein interaction network datasets.

Dataset #Graphs Avg #Nodes Avg Degree #Tasks (Class) Metric Category
ZINC15 2,000,000 26.62 57.72 - - biochemical

PPI-306K 306925 39.82 729.62 - - Protein-Protein Intersection Networks

BBBP 2,039 24.06 51.90 1 ROC-AUC biochemical
Tox21 7,813 18.57 38.58 12 ROC-AUC biochemical

ToxCast 8,576 18.78 38.62 617 ROC-AUC biochemical
SIDER 1,427 33.64 70.71 27 ROC-AUC biochemical
ClinTox 1,477 26.15 55.76 2 ROC-AUC biochemical
MUV 93,087 24.23 52.55 17 ROC-AUC biochemical
HIV 41,127 25.51 54.93 1 ROC-AUC biochemical

BACE 1,513 34.08 73.71 1 ROC-AUC biochemical
PPI 88000 49.35 890.77 40 ROC-AUC Protein-Protein Intersection Networks

Cora 1 2,708 5,429 7 Accuracy Citation Networks
Pubmed 1 19,717 44,338 3 Accuracy Citation Networks

ogbn-arxiv 1 169,343 1,166,243 40 Accuracy Citation Networks

In the work, we use the data from the chemistry domain, biology domain, and academia domain for
evaluation. For the graph-level tasks, we will do the pre-training and distillation on a large unlabeled
dataset, correspondingly. Then, the model will be finetuned on eight chemistry datasets and one
biology dataset for evaluation. The chemistry datasets are sampled from MoleculeNet (Wu et al.,
2018) and the biology dataset comes form protein ego-networks. For the node-level tasks, we follow
the SSL evaluation setting adopted in previous work (Hou et al., 2022; Thakoor et al., 2022) and
evaluate our proposed method in three citation network datasets. The statistics of these datasets are
shown in Table 4.

E IMPLEMENTATION DETAILS

Architectures. In the work, we follow the previous works to choose the model architectures in
different tasks. For the graph-level tasks, we follow (You et al., 2020; Xu et al., 2021; Suresh et al.,
2021) on this setting to use a 5-layer-GIN encoder (Xu et al., 2018) followed by a 2-layer MLP as
the architecture of the teacher model and student model. Specifically, we set ReLU as the activation
function and BathNorm as the normalization function. In the node-level tasks, we follow (Hou et al.,
2022; Thakoor et al., 2022) to select a 2-layer GCN encoder as the student as the model architecture
of student models and teacher models.

Training Details. All the teacher models are pre-trained based on the provided settings of the original
authors. During the distillation process, the parameters of the teacher model are frozen and we
randomly initialize K student models with the same architecture as the teacher model. Meanwhile, K
sets of the prototypes are also randomly initialized for the self-supervised prototypical contrastive
distillation. We set K = 3 and the prototype number (i.e., {Dk}Kk=1) to {50, 21, 2}. The student
temperature hyper-parameter and the sharpening parameter are as τs = 0.1 and P = 0.25 and we
train the student models for 100 epochs. During the fine-tuning phase, we still follow the previous
works to append a 1-layer MLP at the end of the GNN encoders for all student models and train
them to adapt to the downstream tasks for 100 epochs. We use the Adma optimizer for the gradient
descent of both knowledge distillation and fine-tuning, and the cosine decay learning rate scheduler
is used in the knowledge distillation process. To guarantee the generalization of the framework, some
commonly used graph augmentation techniques are used in this work, including edge perturbation,
node dropping, and subgraph sampling.

Key Hyper-parameters. As we introduced, the experimental results in the overall performance
table are conducted with ( student models (3 semantic levels), and their corresponding granularities
are {2, 21, 50} respectively. Meanwhile, more experiments about the performance sensitivity on
student model (semantic level) numbers are also conducted and introduced in the experiment section.
Another hyper-parameter λ (ME-MAX regularization weight) introduced by our method is 1.0. For
other important hyper-parameters in this work, we set the learning rate is fixed as 0.001, the weight
decay is set as 0.0005, the dropout ratio as 0 during knowledge distillation and 0.5 in fin-tuning,
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the warmup epoch as 10, the student temperature hyper-parameter as τs = 0.1 and the sharpening
parameter as P = 0.25.

F EXTRA EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results on additional datasets that were not included in the
paper due to page limitations. Besides that, more empirical analysis will be demonstrated to further
prove the clarifications in the paper.

Table 5: Ablation study of the proposed MGSE with three teacher models on other four chemistry
domain datasets and the biology domain dataset.

Model Cora Pubmed ogbn-arxiv
GraphCL 81.74±0.45 79.22±0.32 -
GraphCL+MGSE 82.42±0.38 81.04±0.33 -

GraphMAE 82.42±0.64 80.78±0.68 70.55±0.16

GraphMAE+MGSE 83.12±0.47 81.58±0.35 71.68±0.22

BGRL 82.80±0.53 80.52±0.18 71.20±0.21

BGRL+GMSE 83.13±0.26 81.47±0.40 72.21±0.15

Overall Performance Comparison in Node-level Task. We conduct experiments on three node-level
datasets, including Cora, PubMed, and Ogbn-Arxiv. We take GraphCL, GraphMAE, and BGRL as
the teacher model and still use the same architecture as the teacher model (a two-layer GCN) for
the distilled student models. The results are shown in Table 5, from the results above we can find
our proposed MGSE can consistently boost the performance of the teacher model. Specifically, the
improvements on the larger datasets are more obvious, which is aligned with our expectations since
large datasets usually include more complex semantic patterns.

Table 6: Ablation study of the proposed MGSE with three teacher models on other four chemistry
domain datasets and the biology domain dataset.

Model ClinTox HIV BACE MUV PPI
w/o. sharpen 76.59±3.05 78.05±0.97 78.50±1.25 70.32±0.91 67.46±1.02

w/o. ME-MAX 75.75±2.70 78.40±0.99 77.75±1.10 70.10±1.22 67.20±0.86

GraphCL+GMSE 78.67±2.89 79.07±0.72 79.22±0.93 71.46±1.45 69.11±0.70

w/o. sharpen 82.10±3.15 76.14±1.02 78.74±1.34 72.10±0.84 64.51±1.14

w/o. ME-MAX 81.45±3.44 76.35±1.25 78.15±0.95 72.43±1.15 64.02±1.20

JOAO+GMSE 83.30±2.44 77.50±0.67 79.82±0.71 73.52±0.62 65.37±0.96

w/o. sharpen 82.15±2.33 77.10±1.34 81.74±1.30 75.90±0.87 67.11±1.12

w/o. ME-MAX 81.78±2.86 76.77±0.96 82.02±1.75 75.36±1.20 66.42±1.56

GraphLoG+GMSE 83.72±2.02 78.64±0.80 83.18±1.24 77.22±0.94 68.26±1.06

Ablation Study on Prototype Optimization. First, we show the ablation study results on the other
five datasets (including the other four chemistry domain datasets and the biology domain dataset)
in Table 6, from which we can generally get similar observations with the results on other four
datasets, i.e., MGSE can consistently outperform the two variants, and both of the components are
significant in boosting the performance of teacher model. Therefore, it is fair to say our design can
help the whole framework to extract multi-granularity semantic features and produce discriminative
representations for each graph instance.

Performance Analysis on Prototype Initialization Strategy. The left subplot of Figure 6 is experi-
mental results with different prototype initialization strategies on another four datasets, including
ClinTox, BACE, HIV, and MUV. Still, the experimental results are quite similar to what is observed
in the other four datasets. Thus, we believe that the newly initialized prototypes could improve the
model generalization ability based on the teacher model and train the student models with higher
potentials.
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Figure 6: The impacts of different prototype initialization strategies (left), single-granularity versus
multi-granularity (middle left), model ensemble strategies (middle right), and with versus without
graph augmentation (right).

Performance Analysis on Multi-granularity Semantic Features. The middle left subplot presents
the additional experimental results about single-granularity versus multi-granularity, which can
further prove the conclusion we draw in the paper. Models with diversified semantics granularities
can represent the graph in a more comprehensive manner, thereby resulting in a larger performance
boost compared with the single-granularity variant. Moreover, the ensemble of teacher model outputs
with different dropout ratios also yields sub-optimal performance compared with MGSE. We think
the reason behind the phenomenon could be two-fold: (1) High dropout ratio may change the sample
identity of each graph so that the generated representations contain insufficient information to make
the correct prediction. On the other hand, a low dropout ratio could make the fine-tuned model
overfitting on the trivial details and thereby have low generalization ability on the testing datasets,
especially on the out-of-distribution setting (split by scaffold). Consequently, neither of them will
produce positive effects on the final predictions; (2) The trained student models can benefit from the
knowledge distillation.

Performance Analysis on Model Ensemble Strategy. The experimental results shown in the
middle right subplot of Figure 6 are the additional results of the model ensemble strategy on another
four datasets. As we can find in the figure, the experimental results are almost consistent with
that of the other four datasets we demonstrate in the paper except for the ClinTox dataset. One
possible explanation is that the classification task of ClinTox might need to consider the information
across different granularity levels simultaneously. For example, some properties of a molecule are
determined by a few functional groups (subgraph) but those functional groups belong to different
granularities. In this case, a graph representation that contains information from different semantic
levels could make better predictions.

Performance Analysis on Graph Augmentation. In the proposed MGSE, we incorporate graph
augmentations in the framework because we believe augmentation is helpful and necessary to improve
the model’s generalization ability. Though equipped with a multi-granular knowledge distillation
module, MGSE essentially is a self-supervised framework without external supervision signals.
Hence, augmentation helps the model (either the student or teacher models) to learn representations
invariant to perturbations, which aligns with the philosophy of all self-supervised-based frameworks.
To empirically support our claim, we conduct additional experiments w.r.t. whether using graph
augmentations or not over four datasets, the results are demonstrated in the right subplot of Figure 6,
from which we observe that moderate augmentation will enhance the model performance.
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Figure 7: The impacts of different selections of the number of students over the other four chemistry
domain datasets.
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Performance Analysis on Student Number. Figure 7 above is experimental results with different
numbers of students (the number of semantic granularities) on another four datase1ts, including
Tox21, SIDER, ClinTox, BACE. Generally, the empirical observations on BBBP and ToxCast can
be also applied to other datasets. For those multi-label datasets, i.e., Tox21, SIDER, and ClinTox,
we can generally achieve better performance with a relatively large K. However, this advantage of
multi-student models is less obvious in the single-label task, i.e., BACE. Once again, the phenomenon
demonstrates that we need more comprehensive features from different views and perspectives
(different semantic granularities) to handle various downstream applications, especially those multi-
label classification problems.

G CASE STUDY

Dexamfetamine Acetaminophen Pemoline Gabapentin O-acetyl-L-serin Tizanidine Sotalol Furfural

Figure 8: Embedding visualization results generated by student models with different granularities
(K = 21 and K = 50) on BBBP (left) and Tox21 (right) datasets and the example molecules in the
two datasets, the common substructures of molecules from the same dataset are highlighted in red.
The four demonstrated example molecules of each dataset are all positive samples (labeled as 1) and
all molecules sharing the same label as them in the dataset are represented in purple (otherwise in
yellow) in the embedding visualization results.

In this section, we investigate the impact of knowledge in different granularities on diverse down-
stream tasks. To this end, we employ the t-SNE algorithm to visualize the embeddings generated by
student models trained with varying granularities (K = 21 and K = 50). We use the BBBP dataset
for a single-label task and the Tox21 dataset for a multi-label task as case studies to illustrate the differ-
ences. In Figure 8, the results show that the cluster-wise distance of visualization results from models
trained with coarse-granularity (K = 21) is larger than those from fine-granularity (K = 50) on the
BBBP dataset, which suggests that coarse-granularity information is more informative for classifying
the BBBP dataset. Meanwhile, in the case of the Tox21 dataset, models trained with fine-granularity
(K = 50) exhibit larger cluster-wise distances than those trained with coarse-granularity (K = 21),
indicating fine-granularity information is more beneficial for the classification of the Tox21 dataset.
To provide further insights into the represented information, we highlight four positive-labeled sam-
ples (purple) from each dataset (BBBP and Tox21) and identify their common substructures with
red coloring. Despite lacking biological background, we can observe that the common substructure
size of positive samples from the BBBP dataset is larger than that from the Tox21 dataset. This
implies that the classification of BBBP relies on high-level abstract features, whereas fine-grained
substructure information is more helpful to the classification of the Tox21 dataset.

H LIMITATION AND POTENTIAL IMPACT

Limitation. In this work, we focus on incorporating the multi-granularity semantic features to
improve the model generalization ability on tasks like molecular and protein property predictions.
Besides that, we can explore the effectiveness of the proposed MGSE in more domains, including but
not limited to the analysis of social networks and brain networks. Moreover, the study about further
decreasing the model architecture size with more advanced knowledge distillation techniques is also
worthwhile for further exploration.
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Potential Impact. As a plug-in framework to further increase the generalization ability of the
current graph SSL methods across different downstream applications, we believe MGSE will not
cause any societal negative impacts. On the other hand, MGSE can be helpful in the research on the
explainability of the graph learning community. With the multi-granularity semantic features extracted
by MGSE, we can provide a more precise and understandable depiction for each graph instance.
Another promising direction could be the development of the fundamental model across different
domains with the concept of multi-granularity features, where the 1-vs-K knowledge distillation
framework can be extended into the N-vs-K form to further increase the capacity of the trained model.
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