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Abstract001

The field of visually-rich document understand-002
ing, which involves interacting with visually-003
rich documents (whether scanned or born-004
digital), is rapidly evolving and still lacks con-005
sensus on several key aspects of the processing006
pipeline. In this work, we provide a compre-007
hensive overview of state-of-the-art approaches,008
emphasizing their strengths and limitations,009
pointing out the main challenges in the field,010
and proposing promising research directions.011

1 Introduction012

Visually-rich documents (VRDs) combine complex013

information, blending text with visual elements like014

graphics, diagrams, and tables to convey detailed015

content effectively (Ding et al., 2024). Unlike tra-016

ditional text documents, VRDs have two main fea-017

tures: text associated with typographic details (e.g.,018

font, size, style, color), layout that organize in-019

formation spatially, and visual elements, such as020

charts and figures, which enhance comprehension021

(Huang et al., 2024a). These documents can be022

either native digital files (e.g., PDFs) containing023

searchable text and layout metadata, or scanned024

images requiring OCR to extract text and layout.025

Visually-rich Document Understanding (VrDU) is026

a rapidly evolving field at the intersection of com-027

puter vision and natural language processing, tack-028

ling both perception (document parsing, i.e. identi-029

fication and extraction of objects within the docu-030

ment) and interpretation (downstream tasks using031

the document features, such as answering questions032

or information extraction) (Zhang et al., 2024c).033

We provide a comprehensive analysis of how034

Visual Document Understanding (VrDU) models035

represent visually rich documents (VrDs) and use036

these features on downstream tasks, which often037

contain multiple elements—such as charts, tables,038

figures, and text—and span multiple pages (see Ta-039

ble 4 in appendix). Current VrDU approaches typi-040

cally follow a two-step pipeline: document parsing041

followed by downstream tasks like question an- 042

swering. We analyze how this two-step pipeline 043

operates, looking first at how VrDU models encode 044

VrDs, and then how large language models (LLMs) 045

decode those features for downstream tasks. 046

We first take a deep dive into current approaches 047

for processing and leveraging tokens and bound- 048

ing boxes (extracted from OCR or PDF metadata) 049

and linking textual and visual features within docu- 050

ments. Recent innovations aim to enable LLMs to 051

handle the 2D positioning of elements in VrDs at 052

different granularities and to process both textual 053

and visual features from those documents, thereby 054

improving their understanding of the structure and 055

content of VrDs (Section 2). 056

Additionally, we examine how Large Vision- 057

Language Models (LVLMs), which are increas- 058

ingly recognized for their combined perception 059

and reasoning capabilities, currently dominate the 060

VrDU domain. Recent innovations focus on balanc- 061

ing coarse- and fine-grained visual representations 062

of VrDs while limiting computational cost. De- 063

spite their growing popularity, we show that current 064

LVLM architectures are still ill-suited to the spe- 065

cific challenges of VrDU, particularly in handling 066

multi-page documents (Section 3). 067

Next, we analyze how VrDU approaches handle 068

multi-page documents, exploring recent page-by- 069

page strategies, strategies relying on sparse atten- 070

tion mechanisms to maintain connections across 071

pages, and we finally examine retrieval-augmented 072

generation (RAG) approaches that reduce the prob- 073

lem to a single-page context by retrieving relevant 074

information from other pages, while giving insights 075

on future promising directions (Section 4). 076

Finally, we compare the different approaches 077

to optimally inject those visual information into a 078

LLM to be processed optimally for downstream 079

tasks, comparing self-attention and cross-attention- 080

based approaches (Section 5). 081
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2 Encoding VrDs from structured082

information083

VrDs can be represented through three distinct084

but interconnected features: text and layout, de-085

rived from native digital formats or OCR extraction,086

and the overall visual appearance of the document,087

obtained by generating a screenshot of the docu-088

ment page. The most important layout features are089

bounding boxes around text and structural elements090

(e.g., tables). The visual modality captures the doc-091

ument page appearance, encompassing the overall092

structure and visual context of the document as a093

whole. The main problematic in VRD encoding094

is to represent and merge the information coming095

from these three distinct modalities. Table 1 sum-096

marizes models from this category that we detail in097

this section.098

2.1 Integrating the Layout information099

The positions and sizes of elements within a doc-100

ument can vary in granularity, from individual to-101

kens (Garncarek et al., 2020; Xu et al., 2019) to102

larger blocks like cells, tables, images, or para-103

graphs (Li et al., 2021a,b). This layout information104

can be represented within VrDU models in three105

ways: through absolute positional embeddings of106

the 2D position, as an attention bias / rotation de-107

pending on the spatial distance of the tokens, or108

directly within the text, as special tokens.109

The simplest approach, which does not require110

any architectural change, is to include layout infor-111

mation as special tokens, directly within the text112

(Lu et al., 2024; Mao et al., 2024). The global113

text-layout sequence is based on an extended vo-114

cabulary V̂ = V ∪[BBOX], where V is the original115

text vocabulary. This approach not only increases116

the sequence length, overloading the model’s con-117

text window, but also limits the ability to capture118

complex spatial interactions between elements in119

the document.120

This is why the VrDU community has focused121

on developing optimal methods to incorporate spa-122

tial information of tokens within documents. One123

way is to extend the 1D absolute positional encod-124

ing of tokens in transformers to 2D (see Table 1) by125

embedding the spatial coordinates (x, y) of each126

token’s bounding box. For example, LayoutLM127

(Xu et al., 2019) embeds the discretized x and y128

coordinates separately and sums them. DocFormer129

(Appalaraju et al., 2021) further includes embed-130

dings for the bounding box dimensions (height131

and width), while UNITER (Chen et al., 2020) 132

adds an embedding for the area of each bound- 133

ing box. These embeddings can be learned or 134

fixed (function-based, e.g., sinusoidal (Hong et al., 135

2022)). 136

However, absolute positional encoding is lim- 137

ited, as they are added at the input only (Chen et al., 138

2021). Recent models hence apply positional en- 139

coding directly within the attention mechanism for 140

improved performance and flexibility. In partic- 141

ular, they extend the relative positional encoding 142

(Press et al., 2022; Raffel et al., 2023), applied on 143

every self-attention layers, to a 2D space. Such 144

approaches either encode the 2D distance as a bias 145

term added before the softmax, representing the 146

horizontal and vertical distances between tokens 147

within the document (Xu et al., 2022; Powalski 148

et al., 2021), or as a rotation applied to the queries 149

and keys vectors, depending on the absolute po- 150

sition of each token, inspired from 1D-RoPE (Su 151

et al., 2023), with a rotation of the attention score 152

depending on the horizontal position of the token 153

(e.g. position within a table row), and another on 154

the vertical one (e.g. position within the columns 155

of the table), with both scores weighted by a gating 156

model (Li et al., 2024a). Pondering the attention 157

score with the 2D distance of the tokens is still lim- 158

ited, as token semantics, like "total" in tables, often 159

dictate specific spatial interactions beyond mere 160

positional proximity. To ensure that the model 161

pays particular attention to tokens located at the 162

same horizontal position of some meaningful to- 163

kens (like "total" in a table), ERNIE-Layout (Peng 164

et al., 2022) introduces three relative position at- 165

tention biases (disentangled attention), capturing 166

respectively how the semantic meaning of a token 167

interacts with its sequential, horizontal and vertical 168

relative distance to the other token. FormNet (Lee 169

et al., 2022) goes further in this direction by al- 170

lowing more complex interactions, using functions 171

that combine semantic and position information 172

between tokens. 173

To conclude, in a world where documents are 174

increasingly digital-native, with direct access to 175

text and bounding boxes, enabling LLMs to handle 176

such structures is crucial. However, the community 177

has mostly focused on adapting either 1D absolute 178

positional encodings or relative 1D positional bias 179

to the 2D space, while little attention has been given 180

to extending RoPE to 2D—despite most current 181

models relying on it. 182

To the best of our knowledge, only a few studies 183
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Model EText EVis EPos ECross DText MP

Interaction of text and visual features within self-attention after modalities concatenation

LayoutLMv2 2022 UniLMv2 ResNeXt-101-FPN emb. tables + attn bias transformer
LayoutXLM 2021 XLM-R ResNeXt-101-FPN emb. tables + attn bias transformer
UNITER 2020 BERT Faster R-CNN emb. tables (7D) transformer
LayoutLMv3 2022 RoBERTa ViT attn bias transformer
DocFormerv2 2023 T5 encoder ViT emb. tables. T5
GRAM 2024 DocFormerv2(2023) DocFormerv2(2023) emb. tables DocFormerv2(2023) ✓
LayoutLLM 2024 LayoutLMv3(2022) LayoutLMv3(2022) LayoutLMv3(2022) Llama-7B
DocLayLLM 2024 LayoutLMv3(2022) LayoutLMv3(2022) LayoutLMv3(2022) Llama3-8BInstruct

Interaction of text and visual features within cross-attention

DocFormer 2021 LayoutLM(2019) ResNet50 emb. tables visual-spatial attn transformer
SelfDoc 2021b Sentence BERT Faster R-CNN emb. tables intra&inter-modal attn transformer
ERNIE-Layout 2022 BERT Faster R-CNN emb. tables Disentangled attn (2021) transformer
HiVT5 2023 T5 encoder DiT (2022) emb. tables VT5 encoder VT5 decoder ✓
DocTr 2023 LayoutLM(2019) DETR (2020) special tokens Deformable DETR (2021) LayoutLM
InstructDr 2024 FlanT5 encoder CLIP VIT-L/14 emb. tables Document-Former FlanT5 ✓
RM-T5 2024a T5 encoder DiT (2022) emb. tables RMT (2022) T5 decoder ✓
Arctic-TILT 2024 T5 encoder U-Net (per RoI) attn bias Tensor Product T5 ✓

Summing aligned text and visual features via ROI-pooling

TILT 2021 T5 encoder U-Net attn bias T5
Pramanik et al. (2022) Longformer ResNet50 + FPN sinusoidal emb. transformer ✓
UDOP 2023 T5 encoder MAE encoder attn bias T5&MAE decoder

Table 1: Comparison of VrDU models handling the three modalities (T+L+V), detailing encoding of text EText,
visuals EVis, and position EPos, fusion layers ECross, decoder DText, and multi-page (MP) support ✓.

focus on the granularity of positional information,184

distinguishing between intra-region positions (e.g.,185

the position of a cell within a table or a token within186

a paragraph) and page-level positions (e.g., the po-187

sition of a token or a region within the entire page).188

Region-level models fail to capture cross-region189

and word-level interactions, while page-level mod-190

els (with token-wise positions) suffer from exces-191

sive contextualization (Li et al., 2021b). We sug-192

gest that combining these two levels of granularity193

could enhance performance (Wang et al., 2022).194

2.2 Integrating the visual information195

In all the works we reviewed, the visual modality196

is transmitted as a set of visual “tokens” (vectors),197

computed by a visual encoder. Initially based on198

CNNs (Xu et al., 2022), these encoders have transi-199

tioned to Visual Transformers (ViTs) (Huang et al.,200

2022).201

Fusing text and visual features for unified doc-202

ument encoding is challenging due to the differ-203

ences between visual and text tokens (see Table 1).204

The integration of the two modalities can be done205

locally (per regions or the document) or globally206

(within the whole document).207

Global modality alignment involves considering208

both the visual and textual features of the entire209

document rather than specific regions. A simple210

method to align those modalities globally involves211

concatenating them (Xu et al., 2022). A trans-212

former encoder then allows interaction through213

standard self-attention mechanisms (Appalaraju 214

et al., 2023; Huang et al., 2022). However, such ap- 215

proaches require intensive pretraining for features 216

(visual and textual) alignment (Huang et al., 2022), 217

since these two feature types form a unit within 218

the document, sometimes representing the same 219

elements (e.g., an image of a piece of text versus 220

the text itself). 221

Local modality alignment refers to aligning text 222

and visual features specifically within localized re- 223

gions of the document, focusing solely on the text 224

and visual attributes from those regions. These 225

regions can be either inferred using visual informa- 226

tion, i.e. determined by an object detection module 227

(Carion et al., 2020; Ren et al., 2016) or deter- 228

mined by the textual information, i.e. considering 229

the bounding boxes of text tokens (Powalski et al., 230

2021). A simple method to locally align modali- 231

ties involves summing the two representations per 232

region (Powalski et al., 2021). Note that regions 233

without associated text only have a vision-only rep- 234

resentation (Tang et al., 2023). However, this ap- 235

proach constrains the interaction between visual 236

and textual modalities, thereby limiting the com- 237

prehensive understanding of the document region 238

(Li et al., 2021b). 239

To capture interactions between textual and vi- 240

sual features from a region of the document, Self- 241

Doc (Li et al., 2021b) uses two cross-attentions: 242

from the visual to textual tokens and vice-versa, 243
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e.g. allowing the textual semantic representation244

to be contextualized by visual information such245

as color, bold elements, and position. For exam-246

ple, a large, bolded, centered text block is likely to247

serve as a title or header. By incorporating these248

visual cues, the model refines the semantic rep-249

resentation of text, ensuring that its meaning is250

informed by its visual context within the docu-251

ment. Rather than relying on costly cross-attention252

for modality fusion and interaction, Arctic-TILT253

(Borchmann et al., 2024) introduces a lightweight254

attention mechanism after the transformer feed-255

forward layer to integrate visual information using256

a learnable role bias for text tokens, inspired by257

TP-Attention (Schlag et al., 2020).258

To conclude, the effect of the visual features,259

at least in the way it is utilized in such models260

(i.e. enriching the textual features’ representation),261

appears small and may primarily introduce redun-262

dancy to the textual elements: as shown by Tang263

et al. (2023), adding visual features brings little264

to no improvement on datasets without images or265

visual components, and only marginally enhances266

performance on highly visual tasks like Infograph-267

icsVQA (Mathew et al., 2021a).268

3 Vision-Only Encoding of VrDs269

In the previous section, we discussed techniques270

that integrate visual and textual information. These271

models however remain complex because the seg-272

mentation between modalities in a document is273

not straightforward and may introduce redundancy,274

lead to information loss and require pretraining for275

modalities alignment.276

Many recent works consider VrDs as images,277

which brings the advantage of dealing with a sin-278

gle modality, relying on a LLM decoder to handle279

different tasks. A summary of this type of model280

we detail below is provided in Table 2.281

Such approaches, commonly named Large282

Visual-Language Models (LVLMs), demand a283

highly capable visual encoder to capture all tex-284

tual, layout, and visual details within the docu-285

ment. However, ViTs themselves are not capa-286

ble to capture fine details like text (Zhang et al.,287

2025). Indeed, in ViTs, the visual input (e.g., a doc-288

ument page) is divided into fixed-size patches, each289

becoming a "vision token" (e.g., 14x14 or 16x16290

pixels). If patches are too large, they may cover291

too much content, like multiple lines or text frag-292

ments, and miss fine details. Using smaller patches293

or increasing the image resolution creates more 294

patches, enabling the model to capture finer details 295

and better encode the document’s textual content 296

(Lee et al., 2023), but at the cost of efficiency. 297

Indeed, ViTs have a maximum context size (num- 298

ber of patches) they can manage (Lee et al., 2023). 299

This is why research in vision-only VrDU focuses 300

on architectural modifications to ViTs to enable the 301

processing of high-resolution images (Section 3.1). 302

An effective alternative is to use a set of pre-trained 303

ViTs, each handling a different part of the image, 304

thereby allowing the processing of high-resolution 305

images more efficiently (Section 3.2). In this case, 306

it is necessary to ensure coherence between the 307

cropped regions of the page. 308

3.1 Architectural changes to ViT 309

A number of approaches leverage CNN architec- 310

tures, which capture local information more effi- 311

ciently than ViTs due to their intrinsic design based 312

on convolutions, exploiting locality bias in images. 313

Dhouib et al. (2023) proposes a sequential architec- 314

ture combining CNN and ViT components, where 315

ConvNext blocks are used to extract local features, 316

and their output is fed into a ViT for modeling 317

global dependencies. 318

Due to the complexity of combining two net- 319

works without losing information, other approaches 320

(Kim et al., 2022; Blecher et al., 2023) draw in- 321

spiration from the local window mechanism of 322

CNNs and incorporate it into ViTs, enabling them 323

to process numerous patches effectively. These 324

approaches restrict attention to a local window 325

of patches with a Swin Transformers (Liu et al., 326

2021), which applies self-attention within local 327

windows, shifting these windows across layers 328

to efficiently integrate cross-window information. 329

However, Swin ViTs progressively reduce the reso- 330

lution of the tokens through token merging steps, 331

which decrease the number of tokens. DocPedia 332

(Feng et al., 2024) removes this downsampling step, 333

keeping the full token resolution throughout the 334

processing pipeline by leveraging the frequency 335

domain rather than spatially merging patches as 336

done in Swin. More precisely, they represent an 337

image in the frequency domain, using the Discrete 338

Cosine Transform (Liu et al., 2022a), allowing to 339

process larger patches without loosing important 340

high resolution information. However, restricting 341

the attention to local windows, even if shifted, in- 342

troduces a locality bias to ViTs, similar to CNNs. 343

More recent approaches avoid introducing a lo- 344
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Model Res. EVis PEV→DT
DText MP

Encoder: HR image – Decoder: Tiny Decoder

DONUT (Kim et al., 2022) 2560x1920 SwinT (2021) MLP BART
DESSURT (Davis et al., 2022) 1152x768 Attn-Based CNN MLP BART with Swin attn
Pix2Struct (Lee et al., 2023) 1024x1024 ViT MLP BART
SeRum (Cao et al., 2023) 1280x960 SwinT 2021 MLP mBART
Kosmos2.5 (Lv et al., 2024) 224x224 Pix2Struct 2023’s ViT Perceiver Resampler Transformer

Encoder: LR image – Decoder: LLM

LLaVAR (Zhang et al., 2024d) 336x336 CLIP VIT-L/14 MLP Vicuna13B
Unidoc (Feng et al., 2023) 336x336 CLIP VIT-L/14 MLP Vicuna13B
mPLUG-DocOwl (Ye et al., 2023a) 224x224 CLIP VIT-L/14 Visual Abstractor Llama-7b
QwenVL (Bai et al., 2023) 448x448 CLIP-VIT-G/14 Cross-attn layer Qwen-7b

Encoder: HR image – Decoder: LLM thanks to HR image in subimages division (Section 3.2)

SPHINX (Lin et al., 2023) 1344x896
VIT & ConvNext &

MLP Llama2-7B
DINO & QFormer

UREADER (Ye et al., 2023b) 2240x1792 CLIP ViT-L/14 MLP Vicuna13B
Monkey (Li et al., 2024d) 1344x896 CLIP Vit-BigG Perceiver Resampler Qwen-7B
TextMonkey (Liu et al., 2024b) 1344x896 CLIP Vit-BigG Shared Perceiver Resampler Qwen-7B
mPLUG-DocOwl1.5 (Hu et al., 2024a) 2560x1920 EVA-CLIP H-Reducer Llama-7b + MAM
LLaVA-UHD (Xu et al., 2024a) 672x1088 CLIP-ViT-L Shared perceiver Resampler Vicuna-13B
InternLMXC2-4KHD (Dong et al., 2024b) 3840x1600 CLIP-ViT-L PLoRA matrix InternLM2-7B
Idefics2 (Laurençon et al., 2024) 980x980 SigLIP-SO400M MLP Mistral-7B-v0.1
TextHawk (Yu et al., 2024) 1344x1344 SigLIP-SO Perceiver Resampler InternLM-7B
TokenPacker (Li et al., 2024b) 1344x1344 CLIP-ViT-L TokenPacker Vicuna-13B
mPLUG-DocOwl2 (Hu et al., 2024b) 504x504 EVA-CLIP H-Reducer+DocCompressor Llama-7b + MAM ✓

Encoder: HR image – Decoder: LLM thanks to adaptation of ViT to capture fine-grained details (Section 3.1)

DocPedia (Feng et al., 2024) 2560x2560 SwinT 2022b MLP Vicuna-13B
LLaVA-PruMerge (Shang et al., 2024) 336x336 CLIP-ViT MLP Vicuna13B
CogAgent (Hong et al., 2024) 1120x1120 EVA2-CLIP & CogVLM Cross-attn layer & MLP Vicuna-13B
Vary (Wei et al., 2023) 1024x1024 ViTDet & CLIP-ViT-L MLP Qwen-7B
Mini-Gemini (Li et al., 2024c) 2048x2048 ConvNeXt & ViT-L/14 MLP Mistral-7B
LLaVA-HR (Luo et al., 2024) 1024x1024 CLIP-ConvNeXt & ViT-L MLP & MR-Adapter Llama2-7B
TinyChart (Zhang et al., 2024b) 768x768 SigLIP MLP Phi-2
HRVDA (Liu et al., 2024a) 1536x1536 SwinT (2022b) MLP Llama2-7B
DocKylin (Zhang et al., 2024a) 1728x1728 SwinT (2022b) MLP Qwen-7B

Table 2: Comparison of vision-only VrDU models, detailing the input image resolution (Res), visual encoding EVis,
vision-to-text projection PEV→DT

, decoder DText, and multi-page (MP) support ✓.

cality bias to ViTs, instead focusing on removing345

redundant information from ViT patches, as docu-346

ments often contain a significant amount of redun-347

dancies, such as borders, whitespace or decorations.348

These methods either use attention scores from349

the self-attention mechanism to prune or merge350

tokens (e.g., Zhang et al. (2024b); Shang et al.351

(2024); Chen et al. (2024)) or employ unsupervised352

techniques like Dual-Center K-Means Clustering353

(Zhang et al., 2024a) to select tokens. TinyChart354

(Zhang et al., 2024b) combines similar tokens after355

each ViT layer using methods like average pool-356

ing, while DocKylin (Zhang et al., 2024a) employs357

similarity-weighted summation based on token co-358

sine similarity ensuring that each token contributes359

proportionally to its relevance. Other approaches360

(Liu et al., 2024a) use a content detection module to361

filter out low-relevance areas (e.g., whitespace) and362

preserve meaningful regions (e.g., text or tables)363

by assigning probabilities to pixels and mapping364

them to patches.365

3.2 Several ViTs to process partitioned image 366

Recent works have explored pipelines leveraging 367

already pretrained ViTs to process high-resolution 368

images cut into slices. Each ViT handles a specific 369

portion of the image, and the resulting representa- 370

tions are combined (sequence of "image tokens") 371

as the unified document representation. 372

The way the original image is sliced into subim- 373

ages is crucial to prevent information loss. Padding 374

preserves the aspect ratio and prevents deformation 375

(Li et al., 2024b). Some approaches predict the opti- 376

mal way to cut the original image, with pre-defined 377

grid matching (Ye et al., 2023b) and a score func- 378

tion predicting the best partition (Xu et al., 2024b), 379

resulting in a varying amount of crop. Whatever 380

the method, models need to maintain the continuity 381

between the different subimages representations. 382

A simple way to do so is through a 2D crop 383

position encoding, which allows interaction be- 384

tween local images (Ye et al., 2023b). However, 385

this approach lacks information continuity between 386
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cropped images. To alleviate salient information387

loss due to cropping, Liu et al. (2024b) introduces388

a Shifted Window Attention mechanism, enabling389

sliding window-based attention across subimage390

representations.391

A more efficient approach to maintain continuity392

between subimages is to leverage a low-resolution393

document representation to guide the integration394

of subimages. Through a cross-attention layer, To-395

kenPacker (Li et al., 2024b), and later mPLUG-396

DocOwl2 (Hu et al., 2024b), integrate the high-397

resolution representation of regions into the low-398

resolution representations using cross-attention,399

thus interpolating these low-resolution represen-400

tations with its multi-level region cues treated as401

reference keys and values to inject their finer infor-402

mation to global image view.403

To conclude on vision-only approaches, we think404

that slicing approaches using local information405

from cropped image regions to complement a low-406

resolution global view are promising, enabling407

compact and efficient representations with signifi-408

cantly fewer tokens while maintaining essential lay-409

out and semantic details (Hu et al., 2024b). How-410

ever, while this type of approach reduces compu-411

tational cost for single-page processing, it is not412

sufficient to handle multi-page (Hu et al., 2024b).413

4 Encoding multi-pages documents414

The principal challenge in VrDU is to handle multi-415

pages documents. Multi-page documents vary416

in length (e.g., 20 pages in SlideVQA (Tanaka417

et al., 2023)), amount of tokens per document (e.g.,418

21214 tokens per document in MMLongBench-419

Doc (Ma et al., 2024c)), and cross-page informa-420

tion, i.e. questions requiring information from421

several pages of the document (e.g. 2.1% in422

DUDE (Landeghem et al., 2023)). To encode multi-423

page documents, recent approaches use retrieval-424

augmented generation (RAG) techniques (Lewis425

et al., 2021) (Section 4.1). Other methods repre-426

sent the document page by page (Section 4.2), en-427

hanced with inter-page interactions inherited from428

long-sequence processing techniques (Section 4.3).429

4.1 Retrieval Approach to multi-page430

The retrieval approach to multi-page documents431

focuses on supplying to the VrDU decoder only the432

representation of pages with relevant information.433

Several levels can be used to identify the relevant434

element from the document: the retriever can ei-435

ther predict the entire relevant page (Naidu et al., 436

2024; Faysse et al., 2024; Ma et al., 2024b; Cho 437

et al., 2024) or focus on specific regions within the 438

page, such as paragraphs or images containing the 439

elements to answer the question (Xie et al., 2024). 440

These approaches inherently limit either the in- 441

teraction between pages or the interaction between 442

modalities, which does not allow cross-page anal- 443

ysis (Ma et al., 2024c), not mentioning that they 444

highly depend on the performance of the retriever. 445

4.2 Query-based approaches 446

HiVT5 (Tito et al., 2023), and later InstructDr 447

(Tanaka et al., 2024), encode each page of the doc- 448

ument separately, with a specific learnable token 449

added at the start of each page. HiVT5 (Tito et al., 450

2023) uses the specialized [PAGE] tokens to guide 451

the encoder in summarizing each document page 452

based on the given question, by processing sepa- 453

rately each page with the question, encoding all 454

the relevant information for the next processing 455

step into the [PAGE] token. These [PAGE] tokens 456

representations are then concatenated and passed 457

to the decoder to generate the final answer. To 458

our knowledge, the only vision-only model de- 459

signed for multi-page input is mPLUG-DocOwl2 460

(Hu et al., 2024b), which compresses each page rep- 461

resentation into 324 tokens and adds a page token 462

for each page. In vision-only approaches, the token 463

length of high-resolution images (i.e., document 464

pages) is typically too large for LLMs to handle 465

multi-page joint understanding, necessitating ex- 466

treme compression of each page representation and 467

thus degrading performance (Hu et al., 2024b). 468

However, query-based approaches only allow 469

limited cross-page reasoning, as the long sequence 470

and diluted information across pages make it chal- 471

lenging to capture specific inter-page relationships 472

(Ma et al., 2024c), the page token being not lever- 473

aged effectively. 474

4.3 Efficient encoding of multi-pages 475

Inspired by the ETC Global-Local Attention mech- 476

anism (Ainslie et al., 2020), GRAM (Blau et al., 477

2024) enables global reasoning across multiple 478

pages through a combination of page-dedicated 479

layers, which apply self-attention within each page 480

representation, and document-level layers, which 481

focus exclusively on page token embeddings in 482

their attention computations. 483

Another sparse attention approach is imple- 484

mented by Arctic-Tilt (Borchmann et al., 2024), 485
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employing a blockwise attention strategy limiting486

the attention to a chunk size, allowing to handle up487

to 500 pages (about 390k tokens, with 780 tokens488

per page on average). This method limits attention489

to a smaller, predefined neighborhood (≈2 pages),490

reducing complexity from quadratic to linear while491

representing cross-page information.492

An alternative to sparse attention for efficient493

multi-page documents processing is to use a recur-494

rent network. RM-T5 (Dong et al., 2024a) uses495

a Recurrent Memory Transformer (RMT) (Gupta496

et al., 2022) to process multi-page documents se-497

quentially, treating each page as part of a sequence.498

This allows the model to carry information across499

pages by utilizing hidden states from previous500

pages. The RMT selectively retains or forgets in-501

formation, capturing essential details from each502

page for the next encoder, with all memory cells503

concatenated for the decoder to generate the final504

answer. However, the drawbacks of RNNs are in-505

herited, such as the lack of parallelization and the506

limited possible interaction of two elements (here,507

pages) distant in the sequence.508

Overall, our view is that approaches that encode509

entire documents using sparse attention techniques,510

either global-local or blockwise, represent the fu-511

ture of the multi-page field, as they show great512

performance on cross-page reasoning (Ma et al.,513

2024c) over retrieval ones.514

5 Injecting visual features into the LLM515

In both approaches for encoding the VrD (struc-516

tured encoding in Section 2 versus vision-only en-517

coding in Section 3), the representation of the doc-518

ument contains visual features. Integrating visual519

features into an LLM decoder is not straightforward520

because it requires adapting the visual representa-521

tion space into an LLM-compatible representation522

without losing information, while preserving some523

computational efficiency. We detail here how this524

integration is done by current VrDU approaches,525

and what the future directions for visual features526

integration into LLMs are.527

5.1 Self-attention based approach528

This self-attention approach (Laurençon et al.,529

2024) consists in prepending the visual representa-530

tion to the prompt, allowing the model to process531

both visual features with the prompt together in its532

self-attention layers. In such approaches, visual533

features are projected into the LLM space via sev-534

eral approaches, and are optionally pooled into a 535

shorter sequence. 536

Those methods vary in complexity, ranging from 537

direct linear projection using a single layer to map 538

visual tokens to the expected input format of the 539

language model (Lee et al., 2023), which mini- 540

mizes the number of parameters; convolutional 541

approaches (Cha et al., 2024), which reduce the 542

dimensionality of the visual representation; to us- 543

ing learnable queries (Li et al., 2023a; Bai et al., 544

2023), used to retrieve relevant visual tokens. 545

Since interactions within visual tokens are al- 546

ready handled by the vision encoder in vision-only 547

approaches, Ma et al. (2024a) modify the self- 548

attention mechanism of the LLM by a Composite- 549

Attention, removing interactions within the LLM 550

within visual tokens; text tokens act as queries, 551

with both visual and text tokens serving as keys 552

and values. 553

These approaches are limited, considering raw 554

tokens of the textual prompt and visual tokens from 555

the document at the same level, without distinguish- 556

ing between their respective roles or significance. 557

5.2 Cross-attention based approach 558

In the cross-attention-based approach, visual hid- 559

den states encoded by the visual encoder are used 560

to condition a frozen LLM using freshly initial- 561

ized cross-attention layers which are interleaved be- 562

tween the pretrained LLM layers (Laurençon et al., 563

2024). Unlike self-attention, cross-attention ap- 564

proach enables a separate consideration of prompt 565

and visual document tokens. Flamingo (Alayrac 566

et al., 2022) pioneered this approach with its Per- 567

ceiver Resampler, which has since been adopted in 568

various VrDU models (see Table 2). 569

An advantage of using cross-attention is that it al- 570

lows to process longer sequences from the encoder, 571

and thus to use only high-resolution representa- 572

tions. For instance, CogAgent (Hong et al., 2024) 573

employs a high-resolution encoder connected to 574

the decoder through a cross-attention layer, while 575

using self-attention with a low resolution version 576

of the image. 577

In other words, cross-attention approaches for 578

integrating visual features into LLMs enable the 579

query/prompt tokens to explicitly interact with vi- 580

sual features, effectively leveraging the LLM’s ca- 581

pabilities. 582

However, these methods require the introduction 583

of many new parameters, as cross-attention layers 584

are interleaved with the LLM’s architecture, signifi- 585
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cantly increasing the overall model size (Laurençon586

et al., 2024).587

5.3 Pretraining for visual features insertion588

Hu et al. (2024a) highlight that, to integrate vi-589

sual features into an LLM, VrDU models must be590

pretrained on document parsing tasks. Lee et al.591

(2023); Wei et al. (2023); Blecher et al. (2023); Hu592

et al. (2024a); Kim et al. (2022) exploit the fact that593

documents are often generated from a symbolic594

source document (e.g. HTML, latex, Markdown,595

extended Markdown format for table and charts596

or CSV/JSON) to convert document page screen-597

shot into structured text for pretraining. Hu et al.598

(2024a) implements a multi-format reconstruction599

task named Unified Structured Learning.600

6 Conclusion and Discussion601

While vision-only methods (Section 3) are gain-602

ing prominence in recent literature, they face sig-603

nificant challenges in balancing coarse and fine-604

grained VrD representations. This often results in605

excessive computational complexity or compres-606

sion issues, making these methods unsuitable for607

multi-page document processing without a retriever608

(see Table 3). For multi-page understanding, we ar-609

gue that multi-modal approaches—combining tex-610

tual, visual, and positional features—are more effi-611

cient (see Table 3).612

In addition to the computational cost aspect, our613

view is that the community should prioritize devel-614

oping methods to handle text, layout, and visual615

elements in documents, as we observe that doc-616

uments are increasingly becoming digital-native,617

with bounding boxes and text readily accessible.618

However, these approaches remain challenging due619

to the need for effective alignment across textual620

and visual features, and due to the need for LLM621

to handle 2D positional information efficiently.622

To reduce redundant information between tex-623

tual and visual features (Tang et al., 2023) and han-624

dle both information in an optimal way, we suggest625

focusing on integrating textual features within the626

visual representation using cross-attention mech-627

anisms (Li et al., 2021b) with text guiding the in-628

tegration (query) when visual elements are less629

prominent in the document (Borchmann et al.,630

2024), and visual features guiding when visual ele-631

ments are major in documents.632

Our view is that the community should focus633

on developing methods to effectively process 2D634

Models Doc Info DUDE MPDoc
VQA VQA VQA

T+L+V models (Section 2)

LayoutLMv3 2022 83.4 45.1 20.3² 55.3²
ERNIE-Layout 2022 88.4
DocFormerv2 2023 87.8 48.8 50.8² 76.8²
HiVT5 2023 23.0 62.0
GRAM 2024 86.0 53.4 80.3
LayoutLLM 2024 86.9
DocLayLLM 2024 78.4 40.9
TILT 2021 87.1
UDOP 2023 84.7 47.4
ViTLP 2024 65.9 28.7
Arctic-TILT 2024 90.2 57.0 58.1 81.2

Vision-only models (Section 3)

DONUT 2022 72.1 11.6
DESSURT 2022 63.2
Pix2Struct 2023 76.6 40.0 62.0*
SeRum 2023 77.9
Kosmos2.5 2024 81.1 41.3
LLaVAR 2024d 6.73 12.3
Unidoc 2023 7.70 14.7
DocPedia 2024 47.8 15.2
CogAgent 2024 81.6 44.5
Vary 2023 76.3
mPLUGDoc 2023a 62.2 38.2
QwenVL 2023 65.1 35.4 84.4*
UREADER 2023b 65.4 42.2
Monkey 2024d 66.5 36.1
TextSquare 2024 84.3 51.5
TextMonkey 2024b 73.0 28.6
mPLUGDoc1.5 2024a 82.2 50.7
ILMXC24KHD 2024b 90.0 68.6 56.1* 76.9*
Idefics2 2024 74.0 56.0*
TextHawk 2024 76.4 50.6
TokenPacker 2024b 70.0
mPLUGDoc2 2024b 80.7 46.4 46.8 69.4
HRVDA 2024a 72.1 43.5
DocKylin 2024a 77.3 46.6

Commercial Models

GPT-4V 88.4 75.1
GPT-4o 92.8 54.0 67.0

Table 3: Average Normalized Levenshtein Similar-
ity (ANLS) on single and multi-page VQA. ² de-
notes Single-page-native models concatenating page
representations for multi-page; * denotes models us-
ing a retriever (PDF-Wukong (Xie et al., 2024) for
InternLMXComposer2-4KHD, Naidu et al. (2024) for
Pix2Struct, M3DocRAG (Cho et al., 2024) for QwenVL
and Idefics2). The top-3 scores are in bold.

information, exploring aspects such as granular- 635

ity, the semantic connection to 2D positions, and 636

multi-level attention mechanisms—both between 637

semantically meaningful blocks and within those 638

blocks, and adapting 2D position encoding to re- 639

cent approaches (Su et al., 2023). As shown in 640

Table 3, models that make extensive use of po- 641

sitional features—such as ERNIE-Layout (Peng 642

et al., 2022) and Arctic-TILT (Borchmann et al., 643

2024) – have the best results. This indicates that 644

text and layout information are essential for answer- 645

ing questions, even in complex charts and figures, 646

making efficient layout handling critical. 647
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7 Limitations648

A first limitation of our survey lies in the lack of649

consistent evaluation across different techniques.650

While we discuss a range of methods—such as 2D651

position encoding strategies, approaches for inte-652

grating visual and textual information, projectors653

between the visual encoder output and the LLM de-654

coder, sparse attention approaches for multi-page655

document handling, ... – these techniques are eval-656

uated in their original experimental setups, which657

differ in terms of model architecture, training pro-658

tocols, and datasets. As a result, it is challenging to659

draw definitive conclusions about which technique660

performs best in a given scenario. Although a fairer661

and more scientifically rigorous comparison would662

require benchmarking all methods under the same663

conditions, this was beyond the scope of our survey664

due to time and resource limitations.665

A further limitation of this survey is that most of666

the comparisons in this survey are based on bench-667

marks for visual question answering (VQA), while668

we overlook several traditional document under-669

standing tasks. These tasks include key information670

extraction, document layout analysis, document671

classification, or reading order prediction (beyond672

others), which are essential for many real-world ap-673

plications such as automatic form processing, con-674

tract analysis, and archival document digitization.675

Our focus on VQA benchmarks is primarily mo-676

tivated by their widespread use in recent research677

as a comprehensive testbed for evaluating VrDU678

approaches both in their information extraction and679

reasoning capabilities.680

Additionally, we focus exclusively on681

transformer-based approaches. While this682

choice aligns with the current state of the art,683

it inevitably excludes earlier yet significant684

contributions. For instance, traditional methods685

leveraging LSTMs or Gated Recurrent Units have686

been widely used in VrDU. More recent work687

has also started exploring alternative architectures688

such as state space models (Hu et al., 2025).689

Graph-Based Relationship Modeling approaches,690

representing documents as hierarchical structures691

and employing graph neural networks (GNNs) to692

model relationships between document elements,693

are also extensively adopted by the community694

(Dai et al., 2024; Zhang et al., 2022; Li et al.,695

2023b). Due to space and scope constraints,696

we focused on transformers, which dominate697

current research and offer a unified framework for698

integrating visual and textual modalities. 699

Finally, this survey focuses primarily on generic 700

multi-element documents, such as PDFs and Power- 701

Point slides, as illustrated in Figure 1 in appendix, 702

rather than specific document types (e.g., tables, 703

charts, or diagrams). Our decision to concentrate 704

on general-purpose documents stems from the de- 705

sire to provide a broad overview that covers doc- 706

uments combining multiple data types rather than 707

diving into domain-specific challenges. Each spe- 708

cific domain—such as table understanding or chart 709

interpretation—presents its own unique challenges 710

and innovations, like cell, row and columns un- 711

derstanding for table, with approaches modeling 712

column-wise and row-wise self-attention (Yin et al., 713

2020; Deng et al., 2020), derendering tasks for 714

Charts, with approach converting chart image into 715

their Matplotlib code (Al-Shetairy et al., 2024) with 716

their associated JSON/CSV (Liu et al., 2023), or 717

structure analysis tasks for diagrams, aiming at 718

linking the legend to the diagram content (Huang 719

et al., 2024b), which are beyond the scope of this 720

survey. 721
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Document Characteristics (per document) Questions Characteristics
Datasets type #Pages #Tokens #Tab #Fig Crosspage Unans. Crossdoc #Regions Ans. length

VisualMRC 2021 Wikipedia pages 1.0 151.46 ? ? ✗ ✗ ✗ ✗ 9.55
DocVQA 2021b Industry Documents 1.0 182.8 ? ? ✗ ✗ ✗ ✗ 2.43
InfographicVQA 2021a Posters (Canva, ...) 1.2 217.9 ? ? ✗ ✗ ✗ ✗ 1.6
TAT-DQA 2022 Annual Reports 1.3 550.3 >1 ? ✗ ✗ ✗ ✗ 3.44
MP-DocVQA 2023 Industry Documents 8.3 2026.6 ? ? ✗ ✗ ✗ ✗ 2.2
DUDE 2023 archives, wikimedia 5.7 1831.5 ? ? ✓(2.1%) ✓(12.7%) ✗ ✗ 3.4
SlideVQA 2023 Slides from Slideshare 20.0 2030.5 ? ? ✓(13.9%) ✗ ✗ ✗ ≈1
MMLongBenchDoc 2024c ArXiv, Reports, Tuto 47.5 21214.1 25.4% 20.7% ✓(33.0%) ✓(22.5%) ✗ ✗ 2.8
M3DocVQA 2024 Wikipedia pages 12.2 ? ? ? ✓ ? ✓(2.4k) ✗ ?
M-LongDoc 2024 Manuals, Reports 210.8 120988 71.8 161.1 ✗ ✗ ✗ ✗ 180.3
MMDocBench 2024 Multi 1.0 ? ? ? ✗ ✗ ✗ 2.61 4.1
BoundingDocs 2025 Multi 237k ? ? ? ✓ ✗ ✗ >=1 >=1

Table 4: Overview of open-source Question-Answering VrDU datasets on PDFs or PPTs documents, summarizing
document characteristics (e.g., average pages, tokens, tabs, figures per document) and question characteristics
(e.g., presence of questions requiring cross-pages or cross-documents information, unanswerable questions, and
average answer length). #Region refers to the number of regions identified for answering questions in datasets with
coordinate annotations. Underlined datasets are standard benchmarks used for model comparison in Table 3.

Figure 1: Illustration of the datasets listed in this survey
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