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ABSTRACT

Using zero-cost (ZC) metrics as proxies for network performance is currently
trendy in Neural Architecture Search (NAS) because the low computing cost
of these metrics allows search algorithms to thoroughly explore the architecture
search space. Nevertheless, recent studies indicate that relying exclusively on ZC
proxies appears to be less effective than using traditional training-based metrics,
such as validation accuracy, in seeking high-performance networks. Training-
based metrics are preferred as the main search objective to guide search algorithms
to approach truly good architectures while ZC proxies could be used as low-cost
surrogates to accelerate the search process. ZC proxies with high rank-correlations
to network test accuracy are supposed to bring better search results than metrics
with lower correlations. In this study, we investigate the effectiveness of ZC prox-
ies in NAS by taking a deeper look into their fitness landscapes rather than focus-
ing only on rank correlations. We construct fitness landscapes of ZC proxy-based
local searches by utilizing the Local Optima Network (LON), which is a powerful
visualization tool to analyze combinatorial optimization problems. Our findings
exhibit that a high correlation does not guarantee finding high-performance archi-
tectures, and ZC proxies with low correlations could still be better in certain sit-
uations. Our results further consolidate the suggestion of favoring training-based
metrics over ZC proxies as the search objective. Although we could figure out
the architectures having the optimal ZC proxy scores, their true performance is
often poor. We then utilize insights from our landscape analysis to propose Multi-
Fidelity Neural Architecture Search (MF-NAS), which is a novel framework that
makes use of the efficiency of ZC proxies and the efficacy of training-based met-
rics. Experimental results on a wide range of NAS benchmarks, i.e., NAS-Bench-
101, NAS-Bench-201, and NAS-Bench-ASR, demonstrate the superiority of our
proposed approach to state-of-the-art NAS methods under a strict budget.

1 INTRODUCTION

Neural architecture search (NAS) has demonstrated its potential in designing powerful neural net-
works when network models found by NAS might surpass the manually-designed ones (Zoph & Le,
2017; Tan & Le, 2019; Chebykin et al., 2022). In NAS, the performance evaluation strategy, which
estimates the true performance of architectures (e.g., test accuracy), plays a vital role in guiding the
search algorithms toward high-quality architectures. Many metrics have been utilized as proxies for
test performance and they could be divided into two categories: training-based (Xie & Yuille, 2017;
Ru et al., 2021) and training-free (Tanaka et al., 2020; Mellor et al., 2021; Abdelfattah et al., 2021).

One of the commonly-used training-based metrics is validation accuracy (Xie & Yuille, 2017; Zoph
& Le, 2017; White et al., 2021a). Although the computing cost of training-based metrics are high
(due to expensive network training to obtain proper network weights before evaluating on the val-
idation set), these metrics are reliable and highly correlated to the test accuracy. Some techniques
have been proposed to deal with the high cost of training-based metrics such as learning curve
extrapolation (Yan et al., 2021) or using training-free metrics (Tanaka et al., 2020; Mellor et al.,
2021; Abdelfattah et al., 2021). Training-free metrics (also known as zero-cost proxies in the lit-
erature) are performance indicators that can be computed with a single pass through the network
(i.e., without a typical training procedure of many iterations); the costs for obtaining their values
are thus trivial (Mellor et al., 2021; Krishnakumar et al., 2022). The number of parameters and the
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floating-point operations per second (FLOPS) are also considered as the baselines among zero-cost
(ZC) proxies (Ning et al., 2021; White et al., 2022; Krishnakumar et al., 2022). In addition to the
number of parameters and FLOPs, many ZC proxies have been proposed and have shown promising
Spearman’s rank correlations with network accuracy such as Synaptic Flow (Tanaka et al., 2020)
or NWOT (Mellor et al., 2021). However, recent studies indicate that using solely ZC proxies as
the search objective seems to be ineffective in finding truly good architectures. Instead, ZC prox-
ies are suggested to be used to accelerate the NAS process, and training-based metrics should still
be the main objective to guide the search algorithms (Abdelfattah et al., 2021; White et al., 2022;
Krishnakumar et al., 2022).

In this study, we first investigate the capability of ZC proxies to search for top-performing archi-
tectures. While previous studies mainly focus on rank correlations between ZC proxies and test
performance, we put more attention on the fitness landscapes of these training-free metrics. We
construct fitness landscapes by utilizing Local Optima Network (LON) (Ochoa et al., 2008), which
is a visualization tool for the analysis of combinatorial optimization problems (Baioletti et al., 2019;
Zou et al., 2022). Based on insights derived from our analysis, we then propose a novel multi-fidelity
NAS framework that makes use of the strengths of both training-free and training-based metrics. Our
contributions are summarized as follows:

• This study is the pioneer that evaluates the effectiveness of ZC proxies by visualizing and
analyzing their fitness landscapes via Local Optima Networks (LONs). Our analysis high-
lights the failure of ZC proxies in obtaining high-quality architectures because the majority
of the networks that attain optimal ZC proxy scores actually yield poor test performance.
High correlations of ZC proxies with test performance might not guarantee that ZC proxy-
based search would discover powerful architectures. Nevertheless, the insights from LONs
demonstrate the suitability of the fitness landscapes of ZC proxies for a typical local search
with a simple escape operator to straightforwardly approach the regions containing promis-
ing networks.

• We introduce an efficient two-stage Multi-Fidelity NAS (MF-NAS) framework. The first
stage involves exploring the search space using a local search algorithm guided by a ZC
proxy. In the second stage, the top-scored candidate architectures obtained in the first
stage are evaluated using a training-based metric in an efficient manner via the Successive
Halving procedure. The network with the highest validation accuracy is selected as the
final NAS result, yielding both the architecture together with its network weights.

• We perform rigorous experiments to compare MF-NAS with many state-of-the-art NAS
methods in NAS-Bench-101/201/ASR search spaces.

2 RELATED WORK

Zero-Cost Proxy Analysis Some ZC proxies have been found to exhibit biases for larger-sized
networks (Ning et al., 2021), narrower networks, or networks with wider channels (Chen et al.,
2021a). Relying solely on these metrics could divert the search algorithm from its primary goal
of discovering high-performance architectures. Several studies evaluated the effectiveness of ZC
metrics in finding top candidate architectures through their rank correlations with the test accuracy
and suggested using these training-free metrics as “low-cost surrogates” to accelerate the search
process rather than the main objective for guiding the search algorithm (Abdelfattah et al., 2021;
White et al., 2022; Krishnakumar et al., 2022).

NAS Landscapes Analysis Conducting fitness landscape analysis1 is an intuitive approach to gain
useful insights from NAS search spaces. White et al. (2021b) analyzed the loss landscape and
suggested using local search as a strong baseline algorithm in NAS. They also indicated the search
difficulty would reduce if the noise in the training pipeline could be decreased. Similar conclusions
about local search were given in Ochoa & Veerapen (2022) and Thomson et al. (2023), where the

1A fitness landscape is composed of three components: (1) a set of all feasible solutions in the search space
S, (2) a neighborhood function N : S → 2S that assigns a set of neighboring solutions to every s ∈ S, and
(3) a fitness function f : S → R that maps solutions to their corresponding coordinates in the objective space.
(Reidys & Stadler, 2001)
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fitness landscapes were also visualized with local optima networks (LONs)2, and local search was
deemed preferable to other algorithms in NAS. However, Ochoa & Veerapen (2022) and Thomson
et al. (2023) considered only the case when the validation accuracy after 200 training epochs was
the search objective. To our knowledge, there is no study so far that analyzes the landscapes of ZC
proxies as the objective and uses LONs for visualizing these training-free metrics’ fitness landscapes.

Successive Halving Successive Halving (SH) (Jamieson & Talwalkar, 2016) is a multi-fidelity
mechanism that is often employed in NAS (Baker et al., 2018; Wang et al., 2021). Inputting a set
of candidate architectures, SH first scores all of them using a training-based metric at a low fidelity
(i.e., architectures are trained for just a few epochs and then evaluated for validation accuracy or
training loss). Subsequently, the half of candidates having worse scores is discarded while the better
half undergoes higher-fidelity evaluations (i.e., the survived networks are trained for more epochs).
This process is iterated until there remains only one candidate or the allocated computing budget is
exhausted. The core concept behind SH is that the most promising candidates receive progressively
higher-fidelity evaluations. The last surviving candidates are deemed the best solutions, and they are
evaluated with the highest fidelity. In our MF-NAS, we utilize SH as the selection algorithm in the
second stage to return the best candidate architecture.

3 FAILURE OF ZC PROXIES IN SEEKING TOP-PERFORMING ARCHITECTURES

We explore the NAS-Bench-201 search space (Dong & Yang, 2020; Dong et al., 2022) using the
best-improvement hill climbing algorithm (i.e., at each iteration, moving to the best solution in
the 1-opt neighborhood of the current solution if the new solution is better) with 13 zero-cost NAS
proxies in NAS-Bench-Suite-Zero (Krishnakumar et al., 2022) as the search objective: EPE-NAS
(Lopes et al., 2021), Fisher (Turner et al., 2020), Grad-norm (Abdelfattah et al., 2021), Grasp
(Wang et al., 2020), L2-norm (Abdelfattah et al., 2021), Jacov (Mellor et al., 2021), NWOT (Mellor
et al., 2021), Plain (Abdelfattah et al., 2021), Synflow (Tanaka et al., 2020), Snip (Lee et al., 2019),
Zen (Lin et al., 2021), FLOPS, and Params (i.e., the number of parameters). We also experiment
with three training-based metrics (i.e., validation accuracy, validation loss, and training loss) for
comparisons. Since early stopping is typically used in real-world NAS to avoid having to train each
candidate architecture for hundreds of epochs, we here also query the benchmark at the 12th epoch
for all training-based metric evaluations.

For each metric, we perform 15,625 attempts of hill climbing corresponding to using all 15,625
architectures in the search space as the initial solutions. Whenever the algorithm cannot find any
improvement over an architecture x within its 1-opt neighborhood, we would consider x a local
optimum in the search space. We further check whether there exist transitions between these optima
by performing an escape operator. If the hill climbing is stuck at a local optimum x, we randomly
sample another solution x′ in the 2-opt neighborhood of x and then execute the hill climbing process
again using x′ as the initial solution. This escape procedure is performed on all solutions in the 2-
opt neighborhood to completely evaluate the possibility of reaching the global optimum from an
arbitrary initial solution. We employ the Monotonic Local Optima Network (MLON) (Ochoa et al.,
2017), which is a type of LON that only exhibits the connections from low-value nodes to high-
value nodes, to visualize the exploration results. The nodes symbolize the optima, and the edges
represent the transitions between optima using the escape operator. The size and color of each
node are proportional to the total number of edges coming towards that node and its metric value,
respectively. The width of an edge eij is proportional to the number of architectures in the 2-opt
neighborhood of the solution at node i that can lead the hill climbing to the solution at node j.

Fig. 1 and Fig. 2a present that the landscapes of FLOPS and Params are uni-modal with respect
to all three datasets, as well as the Synflow metric for CIFAR-100 and ImageNet16-120. These
LONs indicate that when we use these metrics as the search objective, given enough runtime, hill
climbing always reaches the architecture having the maximum number of parameters or the greatest
FLOPs in NAS-Bench-201 without invoking the escape operator. In contrast, the LONs of other
metrics exhibit that their fitness landscapes are multi-modal. Some landscapes are sparse, as seen

2Local optima network (LON) is defined as a weighted-oriented graph used to structure the fitness land-
scape. Nodes in an LON represent local optima, and the edge eij from node i to node j presents that we can
move from the optimum i to the optimum j via a pre-defined escape operator. (Ochoa et al., 2008)
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in NWOT and GRASP, while others are dense such as Jacov, EPE-NAS, and Plain. The MLONs
in Fig. 1 further present that there always exists direct (or indirect) connections from a low-value
optimum to higher-value optima. Therefore, when we conduct NAS with one of these ZC proxies
as the search objective, we are guaranteed to always figure out the optimal architecture with respect
to that metric in NAS-Bench-201 by using a local search algorithm with a simple escape operator
despite the landscapes being multi-modal.

Figure 1: MLONs of the best-improvement hill climbing algorithm with escape for CIFAR-10 on
NAS-Bench-201. The MLONs for CIFAR-100 and ImageNet16-120 are in Appendix A.1.1.

Fig. 2b exhibits a notable difference in the test performance between optimal solutions, especially
for the ones found by ZC proxies. For training-based metrics, the global optima on the training loss
landscapes are the best at the test accuracy. Together with the insight from MLONs, this finding
helps clarify the results in Ru et al. (2021) that the training loss outperforms other training-based
metrics on NAS-Bench-201. On the other hand, most architectures at global optima on the land-
scapes of ZC proxies yield poor test accuracy and are worse than the ones on the training-based
metrics’ landscapes. High rank correlation to the test accuracy is not the main factor in ensuring
the finding of top-performing architectures. For instance, the NWOT metric has a Spearman’s cor-
relation of approximately 0.8, which is the highest correlation among ZC proxies, but the optimal
solutions found by NWOT-guided local search are not the best ones in terms of test performance
compared to those of other ZC proxies (see Fig. 2b and Fig. 2c). Some ZC proxies such as Snip and
Grad-norm have a correlation of approximately 0.6 but their optimal solutions are worse than the
ones found by Zen, which only has a correlation of approximately 0.3. We also found that none of
the solutions at the global optima achieve the optimal test accuracy (see Fig. 2b).

We additionally discover that the regions of top-1% networks in terms of ZC proxy scores con-
tain few top-performing architectures (see Fig. 3) and almost all the global optima on ZC proxies’
landscapes are not in the top-1% most-accurate architectures. These findings indicate that even if
we could approach the regions of top-1% in terms of ZC proxy scores, obtaining the architectures
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(a) The number of optima on the fitness landscapes of each metric.
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(b) The test accuracy of architectures at the global optima on the fitness landscapes of each metric.
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(c) The Spearman’s rank correlation between the test accuracy values and the scores of each metric.

Figure 2: The results of exploring different fitness landscapes on NAS-Bench-201.
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Figure 3: The number of top-1% most-accurate architectures (i.e., 156 best networks) within the
top-1% architectures returned by each metric.

that truly have the highest test accuracy is difficult. NAS algorithms using these training-free met-
rics as the search objective might overlook the truly good architectures and return the poorer ones.
We then perform experiments with first-improvement hill climbing (i.e., at each iteration, moving
randomly to the first better solution in the 1-opt neighborhood of the current solution) on NAS-
Bench-201. The effect of ZC proxies on the search behavior of the hill climbing algorithm with
escape is demonstrated in Fig. 4. We can see that the search processes using Grasp, Grad-norm, or
Snip as the objective function have found top-performing architectures quite early but then overlook
them and finally converge at the ones having poorer performance. Despite incurring much more
computation cost, using training-based metrics is more effective than using training-free metrics in
seeking top-performing architectures.
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Figure 4: The average performance trends of the first-improvement hill climbing algorithm with
escape regarding 3 training-based metrics and 13 ZC proxies over 5,000 evaluations on CIFAR-10.
We repeat the search process 500 times for each metric. The results for CIFAR-100 and ImageNet16-
120 can be found in Appendix A.1.1.

4 MULTI-FIDELITY NEURAL ARCHITECTURE SEARCH (MF-NAS)

We have two observations about the two categories of NAS metrics, i.e., training-based metrics and
ZC proxies, via our landscape analysis in Section 3: (1) The characteristics of performance metrics’
landscapes enable local search-based algorithms to reach the regions that potentially contain high-
performing architectures. (2) Finding top-performing architectures by using solely ZC proxies is
hard. Meanwhile, it is more straightforward if we utilize training-based metrics.

We propose to take advantage of ZC proxies with their low computation costs to guide the search
algorithm toward the region of promising architectures, and then employ training-based metrics
such as validation accuracy to seek for the most-accurate architecture in this region. We introduce
the Multi-Fidelity Neural Architecture Search framework (MF-NAS), in which the search process
is divided into two separate stages (see Appendix A.2 for pseudocode). The first stage is to explore
the search space by the first-improvement hill climbing algorithm with escape that uses a ZC
proxy Z as the search objective (i.e., the low-fidelity stage). The purpose of this stage is to guide the
algorithm toward search space regions containing promising architectures with a trivial cost. The
budget of the local search stage is M architecture evaluations, i.e., computing ZC proxy scores for
M candidate architectures. We log the ZC proxy values of all M architectures found during the local
search trajectory and then select the top-k architectures having the highest scores to form a candidate
pool P at the end. This first stage is similar to the Zero-Cost Warmup procedure in Abdelfattah et al.
(2021), but we note that they use Random Search to sample M random architectures while we use a
local search algorithm instead.

The architectures in the candidate pool P are then evaluated using a training-based metric T to
identify the best one at the second stage (i.e., the high-fidelity stage). Specifically, we deploy the
Successive Halving mechanism to reduce the expensive cost of network training. At the beginning
of the second stage, all architectures in the candidate pool P are evaluated for their training-based
metric values after undergoing a few training epochs. The better half of the candidate pool with
the highest training-based metric scores are kept while the worse half are eliminated from P . The
selected architectures are then trained for more epochs (i.e., increasingly higher fidelity), and we
repeat this evaluation-and-selection process on P till the computing budget is exhausted or there
remains only one architecture in P . In case the budget runs out before the pool P is narrowed
down to a single candidate, the architecture having the highest training-based metric value so far is
considered the resulting solution found by the algorithm.
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5 EXPERIMENTS

We evaluate MF-NAS on three NAS benchmarks: NAS-Bench-101 (Ying et al., 2019), NAS-Bench-
201 (Dong & Yang, 2020; Dong et al., 2022), and NAS-Bench-ASR (Mehrotra et al., 2021). We also
experiment with other NAS algorithms: Random search (RS), Local search (LS), Successive Halv-
ing (SH), Regularized evolution algorithm (REA) (Real et al., 2019), REA using the Warmup method
(REA+W) (Abdelfattah et al., 2021), and FreeREA (Cavagnero et al., 2023). Hyperparameters for
all algorithms are listed in Appendix A.3. Each algorithm is run 500 times independently as in Ying
et al. (2019); Mellor et al. (2021); Dong et al. (2022). Comparisons with other state-of-the-art NAS
algorithms can be found in Appendix A.4.

5.1 RESULTS ON NAS-BENCH-201

We first verify the efficacy of MF-NAS on NAS-Bench-201. We experiment with a total of 13
MF-NAS variants by trying out all ZC proxies considered in Section 3 as the ZC proxy Z. All
variants employ validation accuracy as the training-based metric T for the second stage. For the
local search stage, we set the maximum number of evaluations M to 2,000 and select out top-32
solutions (i.e., k = 32) that have the highest ZC proxy scores for the next stage. We set the total
allowed computation budget B following the experimental settings in Dong et al. (2022), i.e., 20,000
seconds for CIFAR-10, 40,000 seconds for CIFAR-100, and 120,000 seconds for ImageNet16-120.
The settings for Successive Halving in MF-NAS are listed in Appendix A.3.

5.1.1 EFFECTIVENESS OF SUCCESSIVE HALVING IN SELECTING TOP-PERFORMING
ARCHITECTURES
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Figure 5: The average test accuracy performance of the best architectures returned at the end of the
1st stage (LS) and the 2nd stage (SH) of MF-NAS over 500 trials on NAS-Bench-201.

Fig. 5 exhibits the average test accuracy of the best architectures found at the two stages of MF-NAS.
The performance gaps between the architectures having the best ZC proxy scores in the local search
stage (i.e., the square markers) and the optimal test accuracy (i.e., the dashed lines) are substantial.
However, the gaps are clearly reduced after the Successive Halving stage (i.e., the gap between the
circle markers and the dashed lines). Fig. 5 also shows the large variance in the performance between
architectures found by local search with different ZC proxies. In contrast, the two-stage MF-NAS
exhibits impressive stability in the sense that all MF-NAS variants perform consistently well even
though they utilize different ZC proxies for exploring the search space.
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We consider the effectiveness of Successive Halving (SH) in selecting truly top-performing archi-
tectures by comparing the test accuracy between the architectures chosen by SH and the true best
architectures from the input candidate pool (see Table 4, Appendix A.1.2). The majority of the
architectures selected by SH are in the top three most-accurate architectures out of 32 input candi-
dates. However, there are instances where SH returns poor candidates, such as in the case of the
Zen metric on CIFAR-10. We then experiment with training loss as the training-based metric T for
the second stage of MF-NAS, and this change leads to an improvement in the quality of architecture
selections for most cases (see Table 5). Training loss indeed exhibits a higher rank correlation with
test accuracy compared to validation accuracy (see Fig. 2c).

5.1.2 EFFECTIVENESS OF LOCAL SEARCH IN EXPLORING THE SEARCH SPACE

We assess the impact of the first-improvement local search on the overall performance of the MF-
NAS framework by comparing with the MF-NAS variants that use random search in the first stage.
Using random search with ZC proxies to sample the search space is exactly the Zero-Cost Warmup
method in Abdelfattah et al. (2021).

Table 1 exhibits that random search (RS) brings better results than local search (LS) in the case of
Plain, Fisher, and Zen while local search is better for Synflow, Params, and FLOPs. The differ-
ences are because the top regions of the latter metrics consist of a great number of high-performance
architectures while the former metrics do not have such networks in their top regions (see Fig. 3). LS
is demonstrated as effective in approaching the top regions of ZC proxies but the non-existence of
truly top-performing architectures in these regions makes its exploration less useful than RS, which
randomly samples from the search space and possibly figures out more promising solutions.

Table 1: The average test accuracy of MF-NAS variants using random search (RS) and local search
(LS) in the first stage. We experiment with the three worst-performance ZC proxies (i.e., Plain,
Fisher, Zen) and the three best-performance ZC proxies (i.e., Synflow, FLOPs, Params). Bold results
indicate the better method between RS and LS when using the same metric.

Dataset Plain Fisher Zen Synflow FLOPs Params

RS LS RS LS RS LS RS LS RS LS RS LS

CIFAR-10 92.45 92.11 93.20 90.98 88.77 88.35 94.01 94.36 93.99 94.36 93.98 94.36
CIFAR-100 69.64 68.93 70.07 65.67 60.24 60.70 72.17 73.51 72.52 73.51 72.53 73.51
ImageNet16-120 43.29 42.74 44.79 35.97 35.66 40.77 46.24 46.34 45.93 46.34 45.89 46.34

5.1.3 COMPARISONS TO OTHER NAS METHODS

Table 2: Test accuracies (mean± std) of best architectures found by algorithms on NAS-Bench-201.
We only report the performance of the best three MF-NAS variants. The results of the remaining
variants can be found in Table 6. The highest accuracies are presented in bold.

Algorithm Metrics CIFAR-10 CIFAR-100 ImageNet16-120

Random search Validation accuracy 93.35 ± 0.66 70.93 ± 1.18 44.82 ± 1.23
Local search Validation accuracy 93.64 ± 0.52 71.43 ± 0.84 44.98 ± 0.61
SH (Jamieson & Talwalkar, 2016) Validation accuracy 93.06 ± 0.74 70.36 ± 1.18 43.96 ± 1.50
REA (Real et al., 2019) Validation accuracy 93.45 ± 0.68 71.20 ± 1.16 45.20 ± 0.98
REA+W (Abdelfattah et al., 2021) Synflow & Validation accuracy 93.86 ± 0.36 71.69 ± 0.73 45.74 ± 0.71
FreeREA (Cavagnero et al., 2023) logSynflow + NWOT + Skip 94.27 ± 0.20 73.10 ± 0.49 46.18 ± 0.32

MF-NAS (Synflow) Synflow & Validation accuracy 94.36 ± 0.00 73.51 ± 0.05 46.34 ± 0.00
MF-NAS (FLOPS) FLOPS & Validation accuracy 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
MF-NAS (Params) Params & Validation accuracy 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00

Optimal (in the benchmark) - 94.37 73.51 47.31

Table 2 shows the superiority of MF-NAS to other non-weight sharing approaches. MF-NAS vari-
ants also exhibit an impressive stability since their variances are extremely small. Besides, the results
indicate that MF-NAS is significantly more effective than running solely local search or Successive
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Halving. MF-NAS also outperforms REA+W, which is an NAS algorithm using simultaneously
both a ZC proxy and the validation accuracy metric. All results of the competing algorithms in
Table 2 are reproduced by ourselves in our experiments. We also compare our MF-NAS to other
state-of-the-art non-weight sharing methods in Appendix A.4 and find that ours is the best among
all methods.

5.2 RESULTS ON OTHER SEARCH SPACES

We evaluate our methods on NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-ASR (Mehrotra
et al., 2021) search spaces. Table 3 exhibits that when searching under the same budgets (i.e., 20,000
seconds for NAS-Bench-101 and 300 training epochs for NAS-Bench-ASR), there is no approach
that obtains comparable performance to our MF-NAS variants. We also compare MF-NAS to other
state-of-the-art methods and find that there is no method that uses less computational costs but
performs better than ours (see Appendix A.4).

Table 3: Test accuracies and test phoneme error rates (PER) (mean± std) of best architectures found
by algorithms on NAS-Bench-101 and NAS-Bench-ASR, respectively. The highest accuracy and the
lowest PER are presented in bold.

Algorithm Metrics NAS-Bench-101 NAS-Bench-ASR

Random search Validation accuracy 93.16 ± 0.26 22.15 ± 0.45
Local search Validation accuracy 93.16 ± 0.56 22.51 ± 2.85
SH (Jamieson & Talwalkar, 2016) Validation accuracy 93.19 ± 0.46 22.29 ± 0.60
REA (Real et al., 2019) Validation accuracy 93.24 ± 0.27 22.32 ± 0.71
REA+W (Abdelfattah et al., 2021) Synflow + Validation accuracy 93.22 ± 0.28 22.02 ± 0.25
FreeREA (Cavagnero et al., 2023) logSynflow + NWOT + Skip 93.53 ± 0.70 -

MF-NAS (Synflow) Synflow & Validation accuracy 93.82 ± 0.56 21.77 ± 0.00
MF-NAS (FLOPS) FLOPS & Validation accuracy 93.88 ± 0.25 21.80 ± 0.37
MF-NAS (Params) Params & Validation accuracy 93.89 ± 0.25 21.81 ± 0.26

Optimal (in the benchmark) - 94.37 21.40

6 CONCLUSION

In this study, we investigated the effectiveness of zero-cost (ZC) proxies in guiding a typical local
search algorithm to seek for top-performing neural network architectures. Fitness landscape analy-
ses for a series of ZC proxies showed that using solely ZC proxies was not effective and the obtained
architectures were inferior compared to using training-based metrics such as validation accuracy or
training loss. The accuracy values of architectures at the global optima of ZC proxy landscapes are
much lower than the optimal accuracy, and there are few architectures that simultaneously have high
ZC proxy scores and high test accuracies. It explains why NAS algorithms using a ZC proxy as the
search objective might return subpar architectures although they figure out the networks that have
high ZC proxy scores. Next, we observed that the landscapes of ZC proxies allowed local search
algorithms to approach easily and efficiently the regions containing top-performing architectures
although the landscapes are multi-modal. Based on these insights, we introduced the novel Multi-
Fidelity Neural Architecture Search (MF-NAS) framework, which makes use of both ZC metrics
and training-based metrics to find high-performance architectures with an acceptable cost. MF-
NAS first explores the search space using a ZC-proxy-guided local search and the architectures that
have the highest ZC proxy scores are then forwarded to the Successive Halving procedure that uses
a training-based metric to yield a final best architecture with its associated network weights. Exten-
sive experiments on NAS-Bench-101, NAS-Bench-201, and NAS-Bench-ASR benchmarks demon-
strated the consistent efficacy and efficiency of our MF-NAS in achieving high-quality architectures
compared to all state-of-the-art training-free NAS algorithms.
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A APPENDIX

A.1 ABLATION RESULTS

A.1.1 FULL ANALYSIS RESULTS ON NAS-BENCH-201

Figure 6: MLONs of the best-improvement hill climbing algorithm with escape for CIFAR-100 on
NAS-Bench-201.
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Figure 7: MLONs of the best-improvement hill climbing algorithm with escape for ImageNet16-120
on NAS-Bench-201.
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Figure 8: The average performance trends of the first-improvement hill climbing algorithm with
escape regarding 3 training-based metrics and 13 ZC proxies over 5,000 evaluations on (a) CIFAR-
100 and (b) ImageNet16-120. We repeat the search process 500 times for each metric.
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A.1.2 FULL RESULTS OF MF-NAS VARIANTS

Table 4: The average test accuracy (·/) of the architectures chosen by Successive Halving (SH) and
the true best architectures in the top-32 candidate architectures over 500 runs of MF-NAS on NAS-
Bench-201. For the results of SH, we also report the average rank (/·) of the selected architecture
out of 32 candidates (rank 1 is the best).

Metric CIFAR-10 CIFAR-100 ImageNet16-120

Top-32 SH Top-32 SH Top-32 SH

Jacov 93.82 93.63 / 2.2 71.91 71.73 / 1.9 45.33 44.40 / 4.3
Plain 92.49 92.11 / 2.3 69.14 68.93 / 1.5 43.40 42.74 / 1.9
Grasp 93.11 92.77 / 2.4 69.47 69.42 / 1.2 42.87 42.77 / 1.2
Fisher 92.35 90.98 / 15.3 66.72 65.67 / 6.0 38.83 35.97 / 2.9
EPE-NAS 93.89 93.40 / 5.7 71.76 71.51 / 2.1 44.94 44.12 / 3.1
Grad-norm 93.13 92.58 / 2.1 68.85 68.82 / 1.1 38.83 35.97 / 3.1
Snip 93.13 93.13 / 1.0 69.33 69.28 / 1.1 38.83 35.97 / 3.5
Synflow 94.37 94.36 / 2.0 73.51 73.51 / 1.0 46.48 46.34 / 2.6
L2-norm 93.76 93.32 / 14.8 71.59 70.80 / 10.4 46.53 46.48 / 1.3
Zen 90.74 88.35 / 20.8 68.55 60.70 / 21.7 40.77 40.77 / 1.0
NWOT 93.89 93.33 / 14.1 71.74 71.16 / 5.2 46.55 45.32 / 13.0
Params 94.36 94.36 / 1.0 73.51 73.51 / 1.0 46.34 46.34 / 1.0
FLOPs 94.36 94.36 / 1.0 73.51 73.51 / 1.0 46.34 46.34 / 1.0

Table 5: Performance of MF-NAS variants using the validation accuracy and training loss in the SH
procedure (both metrics are queried at the 12-th epoch). The enhanced performance obtained by
replacing the validation accuracy with the training loss is presented in bold.

Metric CIFAR-10 CIFAR-100 ImageNet16-120

Metric Val Acc Train Loss Val Acc Train Loss Val Acc Train Loss

Jacov 93.63 ± 0.43 93.78 ± 0.23 71.73 ± 0.67 71.79 ± 0.50 44.40 ± 0.90 44.47 ± 1.01
Plain 92.11 ± 0.96 92.42 ± 0.63 68.93 ± 1.15 68.61 ± 1.18 42.74 ± 2.35 42.83 ± 2.04
Grasp 92.77 ± 0.32 93.09 ± 0.12 69.42 ± 0.17 69.35 ± 0.13 42.77 ± 1.42 42.87 ± 1.13
Fisher 90.98 ± 1.07 92.21 ± 0.62 65.67 ± 0.91 65.72 ± 0.73 35.97 ± 0.00 38.83 ± 0.00
EPE-NAS 93.40 ± 0.61 93.98 ± 0.29 71.51 ± 1.14 71.58 ± 0.98 44.12 ± 1.19 44.34 ± 1.02
Grad-norm 92.58 ± 0.44 93.13 ± 0.06 68.82 ± 0.77 68.25 ± 1.59 35.97 ± 0.00 38.83 ± 0.00
Snip 93.13 ± 0.00 93.13 ± 0.00 69.28 ± 0.34 69.33 ± 0.00 35.97 ± 0.00 38.83 ± 0.00
Synflow 94.36 ± 0.00 94.35 ± 0.04 73.51 ± 0.05 73.51 ± 0.00 46.34 ± 0.00 46.34 ± 0.00
L2-norm 93.32 ± 0.03 93.67 ± 0.04 70.80 ± 0.37 71.15 ± 0.12 46.48 ± 0.21 46.53 ± 0.04
Zen 88.35 ± 0.55 90.64 ± 0.00 60.70 ± 0.76 66.11 ± 0.00 40.77 ± 0.00 40.32 ± 0.00
NWOT 93.35 ± 0.07 93.56 ± 0.01 71.16 ± 0.46 71.28 ± 0.25 45.32 ± 0.06 46.53 ± 0.05
Params 94.36 ± 0.00 94.36 ± 0.00 73.51 ± 0.00 73.51 ± 0.00 46.34 ± 0.00 46.34 ± 0.00
FLOPS 94.36 ± 0.00 94.36 ± 0.00 73.51 ± 0.00 73.51 ± 0.00 46.34 ± 0.00 46.34 ± 0.00
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Table 6: Performance of MF-NAS variants with different zero-cost metrics on NAS-Bench-201.

Metric CIFAR-10 CIFAR-100 ImageNet16-120

Jacov 93.63 ± 0.43 71.73 ± 0.67 44.40 ± 0.90
Plain 92.11 ± 0.96 68.93 ± 1.15 42.74 ± 2.35
Grasp 92.77 ± 0.32 69.42 ± 0.17 42.77 ± 1.42
Fisher 90.98 ± 1.07 65.67 ± 0.91 35.97 ± 0.00
EPE-NAS 93.40 ± 0.61 71.51 ± 1.14 44.12 ± 1.19
Grad-norm 92.58 ± 0.44 68.82 ± 0.77 35.97 ± 0.00
Snip 93.13 ± 0.00 69.28 ± 0.34 35.97 ± 0.00
Synflow 94.36 ± 0.00 73.51 ± 0.05 46.34 ± 0.00
L2-norm 93.32 ± 0.03 70.80 ± 0.37 46.48 ± 0.21
Zen 88.35 ± 0.55 60.70 ± 0.76 40.77 ± 0.00
NWOT 93.35 ± 0.07 71.16 ± 0.46 45.32 ± 0.06
Params 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
FLOPS 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
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A.2 PSEUDOCODE OF MULTI-FIDELITY NEURAL ARCHITECTURE SEARCH FRAMEWORK

Algorithm 1: Multi-Fidelity Local Search Successive Halving (MF-NAS)
Input: Zero-Cost proxy Z

Training-based metric T
Maximum number of evaluations in the first stage M
The number of top architectures for selection to the second stage k
Total budget B (in seconds)

Output: The best architecture found so far x∗.
1 H, B ← Zero-Cost-Local-Search(Z, M , B) // First stage: Exploring search

space using First-improvement Hill Climbing with zero-cost metric Z.
2 P ← Get-TopK-Solutions(H, k)
3 x∗ ← Successive-Halving(P , T , B) // Second stage: Selecting the best

architecture x∗ from the candidate pool P using Successive Halving
with the training-based metric T.

4 return x∗
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A.3 EXPERIMENTAL DETAILS

Random search (SH) In our experiment, the RS iterates the process of randomly sampling the ar-
chitectures from the search space and evaluating their validation accuracy (or PER for NAS-Bench-
ASR) at the 12th epoch till the allowed budget runs out. The architecture that has the highest
accuracy so far is the one returned by RS when the search finishes.

Local search (LS) The local search algorithm implemented in our experiments is the first-
improvement hill-climbing algorithm that we employ in the first stage of MF-NAS but use the vali-
dation accuracy (or PER for NAS-Bench-ASR) at the 12th epoch as the search objective instead of a
ZC proxy. Similar to RS, the procedure of LS is performed till the allowed budget is exhausted and
the architecture that has the highest accuracy so far is considered the resulting solution found by LS.

Successive Halving (SH) We refer to Jamieson & Talwalkar (2016) to implement the SH method
in our experiments. For the variant that solely uses SH, the input architectures are randomly sampled
from the search space while the input candidates for SH in our MF-NAS framework are obtained via
the ZC proxy-guided local search. The number of input architectures k is set to 32 (for NAS-Bench-
201) and 16 (for NAS-Bench-101 and NAS-Bench-ASR). For NAS-Bench-201, the architectures
are evaluated for their validation accuracies at 5 different epochs: 12th, 25th, 50th, 100th, and
200th. For NAS-Bench-101 and NAS-Bench-ASR, we evaluate architectures at 4 different epoch:
4th, 12th, 36th, and 108th for NAS-Bench-101, and 10th, 20th, 30th and 40th for NAS-Bench-ASR.

Regularized Evolution (REA) REA (Real et al., 2019) is an evolution-based algorithm in which
individuals in the population represent architectures. In the beginning, REA randomly samples N
architectures (in which N is the population size) from the search space to form the initial population.
The individual that has the highest fitness (e.g., the highest accuracy (or PER for NAS-Bench-
ASR) at the 12th epoch) in the population is selected by using the tournament selection with the
tournament size s. The selected individual is then used to produce the new offspring via the mutation
operator with probability pM . The newly-created architecture is added to the population and the
oldest individual is eliminated from the population. REA iterates the process of producing and
eliminating architectures till the stopping condition is satisfied (e.g., reaching the maximum search
time). The individual that has the highest fitness so far during the search is considered as the optimal
architecture found by REA. In our experiments, the hyperparameters of REA are set as in Dong et al.
(2022); Dong & Yang (2020), i.e., population size N and tournament size s are 10, the mutation
probability pM is 1/l in which l is the length of encoded architecture.

Regularized Evolution + Warmup (REA+W) REA+W uses the Warmup procedure (Abdelfattah
et al., 2021) to create the initial population. Specifically, REA+W randomly samples a large number
of architectures from the search space and uses the Synaptic Flow metric (Synflow) to evaluate
sampled architectures for efficiency. The top-N (in which N is the population size of REA) networks
that have the highest Synflow scores are then selected as the individuals of the initial population of
REA. The remaining parts of REA+W are executed as in REA. We set the number of sampled
architectures in the Warmup stage to 2,000 for all cases.

FreeREA (Cavagnero et al., 2023) is a training-free evolution-based method that combines three
zero-cost metrics into a single search objective to guide the Regularized Evolution algorithm. We
refer the readers to Cavagnero et al. (2023) for more details on this method. The hyperparameters
of FreeREA are set at their default values in our experiments.
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A.4 COMPARISONS TO STATE-OF-THE-ART NAS METHODS

We further compare our MF-NAS to state-of-the-art non-weight-sharing and weight-sharing NAS
methods on NAS-Bench-101 and NAS-Bench-201 search spaces.

For NAS-Bench-201, Table 7 indicates that MF-NAS variants are the best at all three datasets re-
garding the test accuracies of the obtained architectures. In terms of the search cost, our methods
obviously have a higher cost compared to entirely training-free methods such as NASWOT, EPE-
NAS, or FreeREA. However, we note that the cost of our methods has included the time of fully
training the returned architecture (during the Successive Halving). That means when the search
is finished, the networks returned by MF-NAS are fully-trained and their network weights can be
straightforwardly employed. In contrast, training-free methods only return the topology of the net-
works and thus, a full training process is required to obtain the proper network weights.

Table 7: Test accuracy comparisons with other non-weight-sharing methods on NAS-Bench-201.
The results of competitive methods are taken from Yan et al. (2020); Mellor et al. (2021); Chen et al.
(2021b); Lopes et al. (2021; 2022); Dong et al. (2022); Yang et al. (2023). The first and second
blocks represent the algorithms using training-based metrics and training-free metrics as search
objective, respectively. The highest accuracies are presented in bold.

Algorithm CIFAR-10 CIFAR-100 ImageNet16-120

Search Cost
(seconds)

Accuracy
(%)

Search Cost
(seconds)

Accuracy
(%)

Search Cost
(seconds)

Accuracy
(%)

Random Search 20,000 93.73 ± 0.36 40,000 71.62 ± 0.91 120,000 45.30 ± 1.00
Local Search 20,000 94.03 ± 0.38 40,000 72.35 ± 0.93 120,000 45.94 ± 0.73
SH (Jamieson & Talwalkar, 2016) 20,000 93.22 ± 0.66 40,000 70.07 ± 1.41 120,000 43.59 ± 1.80
REA (Real et al., 2019) 20,000 93.85 ± 0.40 40,000 72.32 ± 0.81 120,000 45.72 ± 0.79
REA+W (Abdelfattah et al., 2021) 20,000 94.21 ± 0.20 40,000 72.75 ± 0.52 120,000 46.21 ± 0.52
REINFORCE (Williams, 1992) 20,000 93.85 ± 0.40 40,000 72.32 ± 0.81 120,000 45.72 ± 0.79
BOHB (Falkner et al., 2018) 20,000 93.85 ± 0.40 40,000 72.32 ± 0.81 120,000 45.72 ± 0.79
arch2vec-RL (Yan et al., 2020) 12,000 94.12 ± 0.42 - 73.15 ± 0.78 - 46.16 ± 0.38
arch2vec-BO (Yan et al., 2020) 12,000 94.18 ± 0.24 - 73.37 ± 0.30 - 46.27 ± 0.37
G-EA (Lopes et al., 2022) 26,911 93.99 ± 0.23 - 72.36 ± 0.66 - 46.04 ± 0.67
PRE-NAS (Peng et al., 2022) 20,000 94.04 ± 0.34 40,000 72.02 ± 1.22 120,000 45.34 ± 1.03

NASWOT (Mellor et al., 2021) 307 92.96 ± 0.81 307 69.98 ± 1.22 307 44.44 ± 2.10
EPE-NAS (Lopes et al., 2021) 207 91.31 ± 1.69 207 69.58 ± 0.83 207 41.84 ± 2.06
TE-NAS (Chen et al., 2021b) 1,558 93.90 ± 0.47 - 71.24 ± 0.56 - 42.38 ± 0.46
ST-NAS (Yang et al., 2023) 437 93.46 ± 0.59 - 70.58 ± 0.82 - 43.74 ± 1.48
FreeREA (Cavagnero et al., 2023) 45 94.27 ± 0.20 45 73.10 ± 0.49 45 46.18 ± 0.32

MF-NAS (Synflow) 20,000 94.36 ± 0.00 40,000 73.51 ± 0.05 120,000 46.34 ± 0.00
MF-NAS (FLOPS) 20,000 94.36 ± 0.00 40,000 73.51 ± 0.00 120,000 46.34 ± 0.00
MF-NAS (Params) 20,000 94.36 ± 0.00 40,000 73.51 ± 0.00 120,000 46.34 ± 0.00

Optimal (in the benchmark) - 94.37 - 73.51 - 47.31

Compared to weight-sharing NAS methods, MF-NAS variants are only worse than Shapley-NAS
(Xiao et al., 2022) on CIFAR-10 (94.36% compared to 94.37%) and ImageNet16-120 (46.34% com-
pared to 46.85%) (see Table 8). However, similar to training-free NAS approaches, the main draw-
back of weight-sharing methods is that the resulting architectures need to be trained from scratch, or
at least fine-tuning, to achieve their optimal weight values. We also emphasize that the computation
costs of weight-sharing methods are often much higher than non-weight-sharing methods like ours
because they need to pretrain a supernet and maintain it during the search.

In the case of NAS-Bench-101, Table 9 demonstrates that all MF-NAS variants significantly out-
perform weight-sharing methods and perform better than nearly all non-weight-sharing methods
(except for RankNOSH (Wang et al., 2021)). However, it is worth noting that RankNOSH incurs
a considerably higher search cost, requiring 8,400 training epochs, which is over 20 times greater
than ours (i.e., 368 epochs). We further re-run MF-NAS but adjust the checkpoints for evaluating
architectures in the Successive Halving procedure (denoted as MF-NAS† in Table 9). Remarkably,
MF-NAS† surpasses RankNOSH with a search cost that is 7 times less.
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Table 8: Test accuracy comparisons with weight-sharing methods on NAS-Bench-201. The results
of competitive methods are taken from Dong et al. (2022); Xiao et al. (2022). The highest accuracies
are presented in bold.

Algorithm CIFAR-10 CIFAR-100 ImageNet16-120

ENAS (Pham et al., 2018) 93.76 ± 0.00 70.67 ± 0.62 41.44 ± 0.00
RSPS (Li & Talwalkar, 2019) 91.05 ± 0.66 68.26 ± 0.96 40.69 ± 0.36
DARTS (1st) (Liu et al., 2019) 59.84 ± 7.84 61.26 ± 4.43 37.88 ± 2.91
DARTS (2nd) (Liu et al., 2019) 65.38 ± 7.84 60.49 ± 4.95 36.79 ± 7.59
GDAS (Dong & Yang, 2019a) 93.23 ± 0.58 68.17 ± 2.50 39.40 ± 0.00
SETN (Dong & Yang, 2019b) 92.72 ± 0.73 69.36 ± 1.72 39.51 ± 0.33
PC-DARTS (Xu et al., 2020) 93.76 ± 0.00 70.67 ± 0.62 41.44 ± 0.00
DrNAS (Chen et al., 2021c) 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
ShapleyNAS (Xiao et al., 2022) 94.37 ± 0.00 73.51 ± 0.00 46.85 ± 0.12

MF-NAS (Synflow) 94.36 ± 0.00 73.51 ± 0.05 46.34 ± 0.00
MF-NAS (FLOPS) 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
MF-NAS (Params) 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00

Optimal (in the benchmark) 94.37 73.51 47.31

Table 9: Test accuracy comparisons with state-of-the-art methods on NAS-Bench-101. The results
of state-of-the-art methods are taken from Yu et al. (2020); Mellor et al. (2021); Wang et al. (2021).
The highest accuracies are presented in bold.

Weight-sharing

Algorithm Accuracy (%) Search Cost (seconds)

ENAS (Pham et al., 2018) 91.83 ± 0.42 -
NAO (Luo et al., 2018) 92.59 ± 0.59 -
FBNet (Wu et al., 2019) 92.29 ± 1.25 -
DARTS (Liu et al., 2019) 92.21 ± 0.61 -
SPOS (Guo et al., 2020) 89.85 ± 3.80 -
FairNAS (Chu et al., 2021) 91.10 ± 1.84 -

Non weight-sharing

Random search 93.16 ± 0.26 20,000
Local search 93.16 ± 0.56 20,000
SH (Jamieson & Talwalkar, 2016) 93.19 ± 0.46 20,000
REA (Real et al., 2019) 93.24 ± 0.27 20,000
REA+W (Abdelfattah et al., 2021) 93.22 ± 0.28 20,000
RankNOSH (Wang et al., 2021) 93.97 8,400 epochs
NASWOT (Mellor et al., 2021) 91.77 ± 0.05 23
FreeREA (Cavagnero et al., 2023) 93.53 ± 0.70 750

MF-NAS (Synflow) 93.82 ± 0.56 14,742 (= 368 epochs)
MF-NAS (FLOPS) 93.88 ± 0.25 13,487 (= 368 epochs)
MF-NAS (Params) 93.89 ± 0.25 13,517 (= 368 epochs)
MF-NAS† (Params) 94.07 ± 0.20 42,924 (= 1,152 epochs)

Optimal (in the benchmark) 94.37 -
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