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Abstract— Safety is a critical requirement for the real-
world deployment of robotic systems. Unfortunately, while
current robot foundation models show promising generalization
capabilities across a wide variety of tasks, they fail to address
safety, an important aspect for ensuring long-term operation.
Current robot foundation models assume that safe behavior
should emerge by learning from a sufficiently large dataset of
demonstrations. However, this approach has two clear major
drawbacks. Firstly, there are no formal safety guarantees for
a behavior cloning policy trained using supervised learning.
Secondly, without explicit knowledge of any safety constraints,
the policy may require an unreasonable number of additional
demonstrations to even approximate the desired constrained
behavior. To solve these key issues, we show how we can instead
combine robot foundation models with geometric inductive
biases using ATACOM, a safety layer placed after the foundation
policy that ensures safe state transitions by enforcing action
constraints. With this approach, we can ensure formal safety
guarantees for generalist policies without providing extensive
demonstrations of safe behavior, and without requiring any
specific fine-tuning for safety. Our experiments show that our
approach can be beneficial both for classical manipulation
tasks, where we avoid unwanted collisions with irrelevant
objects, and for dynamic tasks, such as the robot air hockey
environment, where we can generate fast trajectories respect-
ing complex tasks and joint space constraints. For exper-
imental results, see https://sites.google.com/view/
safe-robot-foundation-models.

I. INTRODUCTION

Robot foundation models (RFMs) [1], [2], [3], [4] have
shown a promising direction to carry out a large set of
tasks across a wide range of robotics systems using textual
commands as task descriptions. The current developments
of RFMs focus on enhancing the generalization across tasks,
data modalities, and robot embodiments. In contrast, other
key practical properties of robotic systems, such as safety,
are not considered in depth. The key assumption behind this
choice is that the emergent behavior will be inherently safe
since RFMs are trained using behavior cloning (BC). If the
data distribution only contains safe trajectories, one would
expect the learned behavior to also be safe. However, while
this assumption may hold in simple pick-and-place scenarios,
we argue that in general settings and dynamic environments,
this assumption may be limiting for many key reasons.
Firstly, there is no way to ensure any formal theoretical
guarantees that a RFM will satisfy any safety constraint.
Scaling the amount of data will move us closer and closer to
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the demonstrator distribution, but this does not guarantee that
the policy will not generate dangerous behavior. Secondly,
often safety constraints such as collision avoidance, joint
limits, or any other geometric constraints are both common
in robotics applications and can be easily enforced. While it
would be possible to learn a policy able to deal with these
safety constraints, it may require an unreasonable amount
of data, particularly to make the policy robust to out of
distribution objects, distractors, or unexpected disturbances
of the workspace, such as a human or an animal entering the
working area of the robot. In some cases, generating this data
would not be even possible, due to the danger of allowing
living beings in the work area of the robot, particularly if
the robot’s embodiment is not intrinsically safe, as happens
in the setting of self-driving cars or heavy industrial robots.

For this reason, we believe that empowering robots with
the knowledge of safety constraints and enforcing them
directly at the policy level is extremely beneficial both in
terms of formal safety guarantees — fundamental for the
acceptance of robotics systems in society —and in terms of
amount of data and computation needed to operate safely. To
reach this objective, we rely on the key concept of inductive
biases: instead of collecting demonstrations to account for
the full space of possible solutions that RFMs can generate,
we restrict our policy to only generate safe trajectories.
Furthermore, we can rely on the fact that robots interact with
the physical world, where the geometry of the rigid objects
plays a crucial role. Using the information coming from the
object geometry, which can be easily extracted from off-the-
shelf perception pipelines, we can robustly generate safety
geometric constraints that can be combined with existing
prior knowledge about the robot to ensure safety with formal
guarantees.

To achieve this ambitious goal, we propose a modular
safety layer based on the ATACOM approach [5], [6], which
translates known safety constraints into a constraint manifold
to ensure safe actions. Due to the design of ATACOM, we
can easily combine this safety layer with any RFM and
enforce safe behavior w.r.t. a given set of safety constraints.
Furthermore, assuming proper constraint evaluation ATACOM
provides safety guarantees [6] in terms of forward invariance
and input-to-state stability w.r.t. the safe set.

To further demonstrate the generality of this approach, we
present a semi-automated pipeline based on SAM2 [7] to
automatically build box constraints for collision avoidance
with any object. This allows our method to go beyond
user-defined constraints, e.g., workspace constraints or self-
collision avoidance. While our proposed solution is not a
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Fig. 1: Our proposed safety layer can be added to the output of an arbitrary RFM, e.g., π0. (left) Without the added ATACOM
safety layer, the vanilla π0 policy crashes the robot into the table. We highlight the importance of the safety layer by plotting
the impact of the π0 action on the end effector’s vertical velocity. While vanilla π0 corrects the z position after the impact
(red), the safety layer would have engaged earlier to circumvent crashing into the table. (right) Deployment with the safety
layer results in a safe rollout without pronounced z-correction.

fully-fledged automatic constraint generation methodology, it
shows that this module could be, in principle, implemented
robustly and reliably.

We extensively evaluate our approach both in simulation
and in real-world platforms, using two different RFMs, π0

and OCTO. Specifically, we focus on two different platforms,
solving two very different types of tasks: a classical manip-
ulation setup using the Franka robot, and a dynamic task,
where we train a Kuka IIWA robot to perform a hitting
motion on the air hockey game. We want to prove that our
methodology is both flexible and computationally efficient
while ensuring safety. Our results show that our safety layer
approach, despite the lack of specific fine-tuning data, is not
considerably affecting the success rate, while ensuring safe
policy execution both in the dynamics and quasistatic tasks.

II. A SAFETY MODULE FOR ROBOT FOUNDATION
MODELS

In the following, we explain in detail how to combine an
arbitrary RFM with the ATACOM safety layer. Our approach
follows a different framework w.r.t. existing approaches,
as most approaches neglect the safety issue, assuming that
enough safe data is provided to the model. Prior attempts at
safety perform post-training alignment of RFMs to make the
models safer [8]. In contrast to these approaches, we seek
to make the model inherently safe on an architectural level,
under the assumption of known explicit safety constraints.
In principle, it is possible to use an arbitrary safety layer,
however, ATACOM is a good choice in terms of robustness
and simplicity.

To achieve safety through the ATACOM safety layer, we
require two key assumptions.

Assumption 1: Access to the system’s state s and a control
affine system ṡ = f(s) +G(s)a.

This assumption appears quite restrictive as we require access
to the model of the robot and its state. However, for most
tasks considered so far for RFMs, only the kinematic model
is required, and therefore, many settings of interest can
be described in terms of control-affine systems. Moreover,
even if kinematic knowledge is not strictly required by the
foundation model, this information is normally used further
down the control stack and therefore readily available.

Assumption 2: The safety conditions can be described as
continuously differentiable constraints 0 ≥ g(x) ∈ C1. The
constraint function should be known analytically.

While this assumption is quite strong, it holds in most practi-
cal scenarios, particularly when safety is critical. In general,
some constraints are trivial to impose, e.g., workspace limits.
We show in Section II-B how we can easily generate safety
constraints for simple visual manipulation tasks. Similar
approaches can be used to generate arbitrary constraints, or it
could be possible to exploit common-sense knowledge com-
ing from a general-purpose large language model. In general,
to generate arbitrary safety constraints, it is necessary to
learn them automatically from environment interaction. This
problem is an active research topic, and many solutions
already exist in the literature [9], [10], [11], including how
to deal with constraint uncertainty [12], [13]. However, in
this paper, we consider only the setting where constraints
are known, leaving more advanced automatic approaches for
future work.



Fig. 2: (left) Spheres cover the robot’s hull at critical areas to formulate distance-based constraints ensuring safe executions of
the vision-language-actions (VLAs) action predictions. (middle) Bounding boxes of obstacles are generated from 2D instance
segmentation and depth information. (right) We calculate the distance between the covering spheres and the obstacle’s
bounding box by projecting the sphere’s center into the bounding box’s coordinate frame and estimating the distance to the
bounding box’s hull.

A. Acting on the Tangent Space of the Constraint Manifold

Under assumptions 1 and 2, we can couple any arbitrary
RFM with the ATACOM [5] safety layer. The key idea of
ATACOM is to generate a safe action space where we can
sample arbitrary actions, while ensuring the satisfaction
of the safety constraints. This satisfaction is achieved by
constructing the so-called constraint manifold, computing
the tangent space at the current robot configuration, and
using this tangent space as a safe action space. By taking
actions on the tangent space of the constraint manifold,
we generate paths moving on the manifold, corresponding
to safe trajectories of the robot. Under mild assumptions,
this approach ensures theoretical guarantees in terms of
forward invariance of the constraint manifold and input-to-
state stability [6], ensuring that safety is achieved even under
disturbances.

The ATACOM safety layer takes as input an arbitrary
action, i.e., the action aRFM sampled from the RFM, and
produces a safe action to apply to the system by constraining
the input action when necessary. We refer to [6] for the
technical details. At a high level, the ATACOM action can
be decomposed into three components as follows

asafe = adrift(s) + aerr(s) +B(s)aRFM, (1)

where adrift(s) is a state-dependant compensation term that
compensates for the change of the constraint function due
to the affine component of our system (the ”drift” of the
system), aerr(s) is an additional error correction term that is
active only in case of constraint violations (e.g., in case of
disturbance), bringing the system back to the safe set. The
last component represents the tangent space basis B(s) in
the current state, having the effect of morphing the action
sampled from the RFM to avoid constraint violations. While
the ATACOM action space can, in principle, have a different
physical meaning w.r.t. the vanilla action space, the B matrix
can be chosen such that the morphing retains as much as
possible the action semantics. This allows us to combine the
safety layer with any RFM without performing a safety-layer
specific fine tuning.

Another important issue is that satisfying safety constraints

may require a higher control frequency than what is possible
with current RFM due to their slower latency compared to
simpler robot policies. This requirement is because the safety
constraint depends on the robot’s state, which may evolve
at a faster timescale than the action frequency. However,
the computation needed for the ATACOM safety layer can
be performed at a much higher frequency, as we only
require computing the drift term, the error correction term,
and the basis matrix B using the state and the analytical
constraints. In practice, we sample the action from the RFM
at a fixed rate, e.g., 15Hz, repeating the single action or
predicting a series of actions. The action is then applied to
the ATACOM layer, where the basis, error correction, and drift
compensation terms change at a higher frequency, e.g., 60Hz.

Using the ATACOM framework, we can impose a wide
variety of constraints. Several core safety constraints can be
defined using only the robot’s kinematic model to ensure
a general notion of safety. Joint limit constraints prevent
the robot from exceeding its mechanical bounds while still
allowing control near those limits, enabling high flexibility.
Workspace constraints allow the positioning of cameras and
other essential components within the scene. Self-collision
constraints are implemented by approximating safety-critical
parts of the robot with geometric volumes (e.g., spheres) that
enclose the mesh. ATACOM efficiently handles a large number
of constraints through parallelization of the constraint com-
putations. If the geometry of the obstacles in the environment
is available, it is possible to impose complex collision
avoidance constraints. This capability can be achieved by
defining the constraint as a signed distance field (SDF) [14],
[15]. However, if it is not necessary to operate with extreme
precision around a given obstacle, it is always possible to
define a bounding box as constraints around the object. In the
next section, we will explain how to easily generate bounding
box constraints from visual input.

B. Visual Constraint Generation

Manual definition of constraints for the RFM is time-
consuming and often requires expert knowledge and envi-
ronmental information. State-based environments offer all the
necessary information out of the box to specify safety con-



straints. However, RFMs usually only observe visual informa-
tion about the environment they operate in order to generalize
to arbitrary real-world environments. As such, occlusions can
lead to partial observability, and the 2D camera stream needs
to be mapped into the 3D task space of the robot to infer and
define constraints effectively. While the definition of static
workspace constraints and joint constraints is trivial, the
definition of constraints for non-static objects in the scene is
tedious and non-trivial. Technologies like OptiTrack could be
used, but reliance on such specialized hardware would pose a
significant limitation and only work in lab environments. As
such, we provide an intuitive, cost-effective, and lightweight
approach to automatic constraint generation in the visual
space.

We leverage instance segmentation in 2D using SAM2 [7]
and lift obtained multi-view segmentation masks into 3D
using the pinhole camera equation and the camera intrin-
sics. Based on the 3D instance segmentation, we calculate
minimum bounding boxes for each object in the scene.
We draw the bounding boxes ourselves to obtain reliable
bounding boxes for every evaluation run. This process can
be automated in future work by incorporating more grounded
segmentation masks, for example, following the approaches
in [16], [17].

We calculate the distance between points on the mesh of
the robot and the bounding box planes. We parameterize the
oriented bounding box (bb) through its center in the world
frame basexcenter, its rotation baseRbb, and its extent in the
bounding boxes frame bbh. To obtain distance estimates
between the robot and the segmented objects, we spawn
spheres at key robot positions that cover the manipulator’s
hull (Figure 2). Each sphere is parameterized by its center
position and radius (x, r). To ensure safety, ATACOM guar-
antees that the distance between each sphere’s hull and the
obstacle’s bounding box remains positive. This is done by
projecting the sphere’s center into the oriented bounding box
frame bbx = bbRbase

basex + bbxcenter. We then calculate
the distance between the sphere and the closest point on the
bounding boxes surface

dbb = ||αbbx− p∥; (2)

pi = clip(αbbxi,−bbhi/2,
bbhi/2); (3)

α = 1− r/∥bbx∥. (4)

Here, p denotes the closest point of the bounding box to
the sphere and can be obtained by clipping the sphere’s
reach onto the bounding box’s limits, and α projects the
sphere’s center to its boundary. With that, we have a simple
and effective method to estimate a bounding box constraint
gbb(x) = −dbb with an analytical gradient estimation.

III. EXPERIMENTS

We provide several experiments in two different envi-
ronments to evaluate the behavior of RFMs from a safety
perspective. First, we set up a quasi-static pick-and-place
environment, most commonly represented in current large-
scale training datasets [1], [18]. Here, a Franka Research

3 (FR3) needs to be controlled to accomplish the task of
picking and placing various items while not colliding with
the workspace or obstacles within the workspace (Figure 3).
Next, we use the air hockey environment [19] to showcase
the highly dynamic task of puck hitting with a Kuka LBR
IIWA 14, which comes with its own safety challenges.

A. Quasi-Static Pick-and-Place Environment

We evaluate the effectiveness of our proposed safety
layer with visual constraints (Section II-B) on pick-and-
place tasks on a Franka FR3 platform. In these tasks, the
RFM is prompted to ”grab the [object] and put it into
the box” where object is taken from the set {apple,
strawberry, banana, pear, tennis ball,
baseball}. As such, the goal is to safely grab the desired
object from the table surface and place it into the box.
We evaluate three versions of this task with varying task
complexity: pick-fruit-easy, pick-ball-medium,
pick-object-hard (see Section VII-B for more task
details. This common pick-and-place task represents various
potential safety hazards, e.g., the robot can crash into
the table while picking up the object, it can collide with
obstacles in the scene, or attempt to leave the workspace.

We fine-tune π0 [4] on expert demonstrations of our above
pick-and-place tasks to adapt it to the new environment. We
collect 300 expert demonstrations via teleoperation following
the data collection protocol from [18]. During data collection
and evaluation, we randomize the position and orientation of
the fruits and the box. Further, we add and remove various
distractor objects within the scene (e.g., different boxes,
cans, and bottles). We outline further details on the setup
in Appendix VII.

The results for all of these experiments are presented
in Figure 4. First, we evaluate each task’s success rate,
disregarding any safety considerations. Here, the success rate
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Fig. 3: Video frame extracts from a rollout on three different
tasks. Difficulty is dictated by the number of obstacles in the
scene.



Fig. 4: Results in the manipulation tasks. Dashed histograms indicate the RFM combined with the ATACOM safety layers,
while the solid ones represent the vanilla π0 model. We report success rate, success rate for safe trajectories, percentage
of safe trajectories among the successful ones, and normalized execution time. Results show that the safety layer does not
impact heavily the success rate, while ensuring safety.

is evaluated visually, given the simplicity of the considered
tasks. In general, our safety layer does not affect the per-
formance heavily in terms of success rate. On average, the
success rate is similar to that of the vanilla policy. Curiously,
the safety layer increases the success rate in the pick-fruit-
easy task. This counterintuitive result is because the safety
constraint prevents collision with the table, allowing for a
better grasp alignment. In two other tasks, the success rate
is slightly lower, and it is particularly evident in the pick-
object-hard task. This is reasonable, as imposing complex
safety constraints makes the task execution harder.

To prove the benefits in terms of safety, we evaluate the
task in terms of the success rate of safe trajectories (i.e., the
ratio of safe trajectories that complete the task) and the safety
rate of successful trajectories (i.e., the ratio of successful
trajectories that are also safe). Results clearly show that our
approach always ensures safe trajectories, while vanilla π0

presents many constraint violations: in the pick-fruit-easy
task, the model frequently collides with the table, whereas
in the other two tasks, although the objectives are achieved,
the robot often knocks over obstacles during execution.

TABLE I: Average time to
task completion. Safe execution
sometimes prolongs task dura-
tion.

π0
safeπ0

pick-fruit-easy 26s 24s
pick-ball-medium 23s 30s
pick-object-hard 22s 22s

Average 23s 25s

We also evaluate the
performance in terms
of execution time. The
results are reported in
Table I. Specifically,
we measure the ex-
ecution time of suc-
cessful trajectories. As
expected, on average,
the trajectories with the
safety layer are slightly
longer, particularly in
the pick-ball-medium task. Again, we observe some perfor-
mance gain in the pick-fruit-easy task, due to the lack of
collisions with the table, which may cause the robot’s end
effector to drift, making the task harder for the unsafe policy.

B. Dynamic Air Hockey Environment

We empirically evaluate the proposed approach on a robot
air hockey task. The objective is to hit a puck into the goal
while adhering to multiple safety constraints, such as keeping
the end-effector on the table surface, preventing the arm from
colliding with the table, and ensuring joint position limits.
We refer to [6] for a detailed description of the experimental
setup. The policy’s observation consists of language instruc-
tions, a goal image of the scene, and proprioceptive data in
the form of joint positions, joint velocities, puck position,
and puck velocity. While not needed for safety, we fine-
tune a pre-trained OCTO [3] policy using behavior cloning
in a simulated MUJOCO [20] environment. Importantly, we
obtain the fine-tuning data by an expert policy that does not
leverage ATACOM. The policy outputs desired end-effector
velocities in the x-y plane of the table surface, which are
converted to joint velocities using inverse kinematics. The
ATACOM layer then maps these joint velocities to safe ones
before passing them to a joint-space controller. We compare
our safety-aware approach to an unsafe baseline, where the
joint-space controller directly executes the unfiltered joint
velocities. We evaluate the safety module for various fine-
tuning checkpoints of OCTO on the simulated system. Several
deployment videos of OCTO playing air hockey can be found
on our project page.

Our experimental results, presented in Figure 5, show that
the OCTO agent with the added safety module does not
violate the safety constraints at deployment time. On the con-
trary, OCTO without the added safety layer heavily violates
the constraints, even though the fine-tuning data contains safe
expert demonstrations. Looking at the success rate, it is clear
that using the safety module does not affect performance, as
both approaches show similar behavior during the training
phase. Importantly, while the fine-tuning data is not obtained
with ATACOM, we still obtain high success rates, suggesting
that ATACOM does not generate overly conservative control
actions.

Finally, we deploy the safe policy in the real-world system.
While the real-world deployment is affected by the sim-
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Fig. 5: Safety violations of the OCTO policy w/o the safety
module on the air hockey hitting task for different check-
points during the training phase. We report the maximum
constraint violation and the success rate of the robot hitting
the puck into the goal over 500 episodes in simulation.
When the ATACOM safety module is added, the policy
remains compliant with safety constraints throughout fine-
tuning, whereas the unmodified OCTO policy continues to
breach safety limits. Both policies progressively improve
their success rates over the number of fine-tuning steps.

to-real gap, we still achieve reasonable performance while
strictly enforcing the safety constraints. This shows that the
approach is viable even in dynamic tasks and using nominal
constraints, demonstrating the robustness of our approach
against modeling errors.

IV. RELATED WORK

This work considers ensuring safety during the deploy-
ment of robotic foundation models, which has been identified
as an important open problem in the development of these
policies [21]. As a robotic foundation model is abstractly like
any other robot policy, albeit more capable, many existing
safe control techniques can be directly applied. In this
work, we use ATACOM [5], [6], which augments the policy
architecture to ensure safety in the action space. [8] fine-
tune a foundation policy using safe reinforcement learning
techniques, which augment the objective with the constraints
and Lagrangian multipliers. Since safety is incorporated as
an auxiliary objective, there is no guarantee that a constraint
is obeyed at runtime and instead the policy pays a penalty for
constraint violation. Moreover, since a sample-inefficient on-
policy RL method is used, the policy is trained and evaluated
in simulation rather than the real world.

For complex multimodal policies, safety can also be
interpreted as the performance of the policy to natural non-
stationary perturbations of the real world during deployment.
[22] approach safety from this robustness direction, and use
generative models to achieve adversarial data augmentation
to make the policy robust to sensing environmental factors
like lighting; however, it does not adapt its behavior to dy-
namic environments. [23] use gradient information between
the action and observations to augment the training data
to alleviate the policy’s sensitivity to the input space, as a
proxy for robustness. This line of research also extends to
language conditioning, and ensuring safety via robustness to
jailbreaking the language model component [24].

A separate line of work uses foundation models to ensure
safety, using their real-world grounding to incorporate no-
tions of ‘semantic’ safety. [25] use an large Language model
(LLM) from semantic task descriptions to generate state
and action constraints that are then enforced using control
barrier function and safety filters. This approach is validated
for actions generated from teleoperation and also diffusion
policies. [26] use a VLA to generate a cost map for motion
planning, where the cost map automatically incorporates
acceptable tolerances for practical obstacle avoidance. This
is relevant for navigating complex cluttered scenes where
certain objects, e.g., brittle and fragile, require greater care
over objects that are soft or rugged.

V. DISCUSSION

We propose a safety module that can be added as the
final layer of an robot foundation model (RFM) by leveraging
domain-specific knowledge of the safe operation constraints.
We have shown that this layer can be added to a variety of
existing robot foundation model (RFM) architectures across
a range of tasks, and ensure consistently safe execution
with only small potential impacts to task performance. We
demonstrate the effectiveness of the safety layer by eval-
uating a vision-language-action (VLA) policy with BC on
an air hockey hitting task for which it is critical not to
crash with the tabletop, and object manipulation tasks with
obstacles. We believe this architecture extension is necessary
and crucial in the application of RFMs for everyday tasks and
real-world deployment.

Leveraging domain knowledge may seem counterintuitive
for RFMs, as they show that rich behaviors can be obtained
purely through large-scale datasets rather than handcrafted
policies. We believe that safety is inherently contextual
information for a given task and robot configuration. How-
ever, data-driven approaches leveraging this contextual cue
are undesirable, as they would require collecting unsafe
demonstrations in order for the policy to learn the difference
between unsafe and safe behaviour. Therefore, we believe
inductive biases are a more practical means of incorporating
this contextual information, using minimal computational
adjustments such as our proposed safety layer.

While we emphasize that ensuring safety requires domain
expertise, it can also be a demanding task to manually
formulate all necessary safety constraints for a given task.



One intuitive research direction is to automate the process
by leveraging the inherent knowledge of vision-language
models (VLMs). However, so far, VLMs have only been used
to integrate semantic safety constraints such as ‘keep the
cup uprigh’ into an already existing set of constraints [27],
[25]. Beyond the formulation of safety constraints, it remains
an open research question of how a more generalizable
concept of safety can be formulated and applied across
different embodiments, environments, and tasks. One avenue,
based on our safety layer, is to extend the ‘code-as-policies’
paradigm [28] to a ‘code-as-safety’ approach, using LLMs to
automate the design of future safety layers.

VI. LIMITATIONS

The key limitation of our approach is that we assume the
safety constraints as known. This may limit the applicability
of the approach to open-world tasks, where it is not feasi-
ble to specify all the safety constraints a priori. However,
our basic pipeline could be in principle extended with a
simple object detection pipeline. Furthermore, it could be
in principle possible to exploit the capabilities of LLMs to
generate a set of reasonable set of safety constraints for
a given task. This generation can be carried out offline,
and therefore would not impact the execution time of the
RFM policy. Another limitation of this paper is the limited
evaluation of the policy to solve general tasks. While this
is a very important topic, our focus is mostly on guar-
anteeing the safe execution of the policy. We believe that
future models will generalize better across tasks and perform
smoother and faster manipulation movements. The last key
limitation is that the setup requires multiple depth cameras
to work properly and generate appropriate bounding boxes
directly from perception. While this limits the applicability
to general scenarios, many computer vision pipelines can
generate robust bounding boxes, exploiting a moving camera.
Furthermore, it may be necessary only to generate accurate
bounding boxes from the side of the object perceived by
the robot. For simplicity of the experimental setup, we left
complex perception problems to future work.

APPENDIX

VII. EXPERIMENTAL DETAILS: PICK-AND-PLACE TASKS
WITH FRANKA ROBOT

We perform our vision-based pick-and-place experiments
using a Franka Research 3 with a RH-P12-RN Robotis
gripper, three Zed X mini cameras for scene capture, and
a Meta Quest 3 with a single remote controller for data
collection. We follow the hardware setup of DROID [18]
and capture the scene with two external cameras to the left
and right of the Franka robot and one gripper camera. The
items to pick are selected from the classic YCB Benchmarks
– Object and Model Set [29].

A. Expert Data Collection

We adapt the open-source DROID pipeline [18]. Amongst
others, we replace Polymetis [30] with Franky [31] to control
our Franka robot. For our experiments, we collect over

300 trajectories using the Meta Quest for teleoperation and
showcasing pick-and-place behavior with different items in
cluttered scenes. Importantly, the data is collected without
ATACOM [5], [6], and while the trajectories showcase safe
behavior, the teleoperator was not aware of any downstream
safety constraints. We convert the collected data into a
LeRobot [32] dataset and perform full finetuning of the π0

base model [4] on a single A100 GPU for 10.000 training
steps with a batch size of 32.

For the experiments with joint space control, we collect
data in Cartesian velocity space using the Meta Quest remote
controller and extract joint velocity information from the
robot state to train the π0 base model [4]. Although joint
velocity state and action values are expected to differ slightly
due to the control pipeline, in practice, our finetuned joint
velocity π0 model performed well regardless.

B. Task Descriptions

a) pick-fruit-easy.: This task requires picking a speci-
fied (plastic) fruit off the table and placing it in the box. We
consider the task to be successful when the robot manages
to place the specified fruit into the box within the maximum
episode length of 1000 timesteps. The potential danger is to
collide with the table surface, especially with smaller fruits
like the strawberry.

b) pick-ball-medium.: This task requires picking up a
tennis ball off the table and placing it within the box. The
ball is placed close (∼ 10cm) from a large cardboard box,
which serves as an obstacle that the robot needs to avoid
during the pickup. The robot needs to avoid collisions with
the obstacle as well as the table simultaneously.

c) pick-object-hard.: This task requires the robot to
pick up a specified object off the table and place it in the
box. We add up to 3 obstacles into the workspace that the
robot needs to avoid during operation.
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