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ABSTRACT
Federated learning (FL) is a popular distributed deep learning framework which enables personalized experiences
across a wide range of web clients & mobile/IoT devices. However, FL-based methods are challenged by the
compute resources on client devices given the exploding growth in size of state-of-the-art models (eg. billion
parameter models). Split Learning (SL), a recent framework, reduces client compute load by splitting model
training between client and server. This flexibility is useful for low-compute setups but is achieved at the cost of
massive increase in bandwidth consumption. This split also results in sub-optimal performance, especially when
data across clients is heterogeneous. The goal of this paper is to make SL a viable alternative to FL. Specifically,
we introduce adaptive split learning (AdaSplit) which enables efficiently scaling SL to low-resource scenarios
by reducing bandwidth consumption and improving performance across heterogenous clients. We validate the
effectiveness of AdaSplit under limited resources through extensive experimental comparison with strong federated
and split learning baselines. Finally, we also present sensitivity analyses of key design choices in AdaSplit which
highlight the ability of AdaSplit to adapt to variable resource budgets. We anonymously release our code here.

1 INTRODUCTION

Distributed machine (deep) learning is characterized by a
setting where many clients (web browsers, mobile/IoT de-
vices) collaboratively train a model under the orchestration
of a central server (eg. service provider), while keeping the
training data decentralized. As strict regulations emerge
for data capture and storage, such as GDPR (Goddard,
2017) and CCPA (Stallings, 2020), distributed deep learn-
ing is being used to enable privacy-aware personalization
across a wide range of web clients and smart edge devices
with varying resource constraints. For instance, distributed
deep learning is replacing third-party cookies in the chrome
browser for ad-personalization (Epasto et al., 2021), en-
abling next-word prediction on mobile devices (Hard et al.,
2018), speaker verification on smart home assistants (Gu-
liani et al., 2021), HIPPA-compliant diagnosis on clinical
devices (Rieke et al., 2020) and real-time navigation in
vehicles (Elbir et al., 2020).

A general distributed deep learning pipeline involves mul-
tiple rounds of training and synchronization steps where a
model is trained with local client data in each round and
updates made by multiple clients are synchronized by the
server into a global model. Techniques have been proposed
with the goal to maximize accuracy under constraints on
resource (bandwidth, compute) consumption. Figure 1
compares our proposed AdaSplit (in yellow) with strong
baselines (McMahan et al., 2016; Li et al., 2020; Karim-
ireddy et al., 2021; Wang et al., 2020; Gupta & Raskar,
2018; Thapa et al., 2022) along these dimensions.

Figure 1. AdaSplit achieves improved accuracy under limited re-
sources (bandwidth & compute) and can also adapt to variable
resource budgets. Results on Mixed-NonIID dataset.
Federated Learning (FL) (McMahan et al., 2016) is one
widely studied framework (McMahan et al., 2016; Li et al.,
2020; Wang et al., 2020; He et al., 2020; Yu et al., 2021;
Yang et al., 2021; Li & Zhan, 2021; Cheng et al., 2017). In
each round of FL, first, all clients train a copy of the model
locally on their device for several iterations and communi-
cate the final model parameters with the server. The server
then synchronizes updates across clients by averaging all
clients model parameters and shares back the unified global
model for next training round (figure 2). With entire model
training done on each client, FL is challenged by the com-
pute budgets of client devices. Specifically, i.) on-device
model training needs resource-intensive clients (with high-
performance GPUs to avoid stragglers) and is increasingly
becoming impractical due to exploding growth in model
sizes (eg. billion parameter models for language and image
modeling (Radford et al., 2019; Devlin et al., 2018; Zhai
et al., 2021)). ii.) as number of clients (and/or model sizes)
scales, bandwidth requirements for the system may worsen
as entire models need to be communicated between client
and server. iii.) storing the entire trained model on-client

https://drive.google.com/file/d/1Ir6Uds_0pRntG72xcOQou56N7lAvu1KI/view
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can often have intellectual property implications that limit
real-world usability.

Split Learning (SL) (Gupta & Raskar, 2018; Thapa et al.,
2022; Poirot et al., 2019; Vepakomma et al., 2018) has
emerged recently as a framework to alleviate some of the key
concerns faced by FL. SL reduces client computation load
by actively involving the server in the training process. In
each round, clients take turns to interact with the server for
multiple iterations where they update parameters of a local
model on the client and a (shared) global model residing on
the server. Specifically, at each iteration, the client model
generates input activations that are communicated to the
server. On the server, the activations are passed through the
server model to make predictions and compute gradients for
training both the server model (on server) and client model
(by transmitting to the client). This is visualized in figure
2. While client computation is significantly reduced in SL
versus FL, this comes at the cost of an increase in client-
server communication and often sub-optimal performance.
Specifically, i) communication budgets increase as the client
interacts with the server in every iteration of a round (vs
once-per-round in FL), as it is dependent upon the server
to generate gradient updates for training the client model.
This also blocks the server to train synchronously with each
client. ii) as clients sequentially update shared parameters
on the server, convergence may be inefficient or sub-optimal,
especially when the data across clients is heterogeneous.

Contributions: The focus of this paper is to alleviate the
above concerns and make SL a viable alternative to FL.
We introduce AdaSplit, which enables SL to scale to low-
resource scenarios. First, a key insight in AdaSplit is to
eliminate client dependence on server gradients, which re-
duces communication cost and enables asynchronous (client-
server) training. Next, motivated by the fact that neural
networks are vastly overparameterized, AdaSplit is able to
improve performance by constraining the heterogeneous
clients to only update sparse partitions of the server model.
As shown in figure 1, this enables AdaSplit to not only
achieve improved performance under fixed resources (higher
accuracy when similar bandwidth and compute), but also
adapt to variable resource budgets (the trade-off curve). Ad-
ditionally, to unify evaluation along these multiple metrics
for distributed deep learning (DDL), we propose C3-Score
to jointly benchmark performance under resource budgets.
We validate the effectiveness of AdaSplit through extensive
comparisons with state-of-the-art baselines (Table 1, 2) and
sensitivity analyses of key design choices (Tables 3, 4, 5, 6).

2 PRELIMINARIES

Here, we formalise the protocol and notation for the Split
Learning (SL) framework. This is also visualized in figure
2 (bottom-left). For completeness, we also summarize the
FL protocol in figure 2 (top-left). Due to limited space here,

we refer the reader to (Kairouz et al., 2019) for a review of
the FL protocol and to (Gupta & Raskar, 2018) for more
background on SL.

SL - Protocol and Notations: Consider a distributed learn-
ing setup with N participating clients and one coordinating
server. The key idea of split learning (SL) is to distribute (or
split) the parameters of the training model across client and
server. Each client i, for i ∈ [1, 2, ..., N ] is characterized by
a local client dataset Di, local client model M c

i and a single
server model Ms which is updated by all the clients. The
training protocol is executed over R rounds of T iterations
each. In each round, the N clients sequentially obtain ac-
cess to interact with the server for model training over T
iterations. In each iteration j (for j ∈ [1, 2, , .., T ]), client i
updates the parameters of both Ms and M c

i . First, a mini-
batch (xi, yi) is sampled from Di and passed through layers
of client model M c

i to generate activations ai (= M c
i (xi)).

We may refer to ai as split activations. Second, the pair of
(ai, yi) is transmitted to the server. Third, at the server, ai
is passed through layers of server model Ms to generate
predictions ŷi (= Ms(ai)). The loss function L(yi, ŷi) is
computed to generate gradients which are used to locally
update parameters of Ms and then transmitted to the client
to update parameters of M c

i . In the classical setup, clients
follow a round-robin mechanism where client i+1 can start
interacting with the server only after client i has completed
its T iterations for the round. The global model is synchro-
nized implicitly across clients by updating weights of the
shared server model Ms. Furthermore, in some variants of
SL, clients’ models are transmitted between pairs of clients
during a round (Gupta & Raskar, 2018) or averaged over all
clients after the round ends (Thapa et al., 2022). Extensive
research is focused on privacy in SL and, while beyond
scope of this paper, we briefly discuss that in Section 8.

3 SETUP AND MOTIVATION - 3C
While the FL and SL protocols may appear different, we
posit that they are motivated by the same goal - to maxi-
mize performance (accuracy) of the global model, under
constraints on resource consumption. Here, we make a step
towards unifying their design choices along three key design
dimensions which focus on how i) models are trained on
local client data (Computation) and, ii) updates across the
clients are synchronized, via the server, into a global model
(Communication and Collaboration). This helps motivate
our proposed AdaSplit for improving SL.

1. Computation: This governs how the model training us-
ing data at each client is executed. The computation cost
can be defined as the total floating-point operations (FLOPs)
executed across the client and server. FL and SL differ in
where the computation happens. For N clients, this cost
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Figure 2. Training protocols with N=3 clients for federated learning (FL), split learning (SL) and our proposed AdaSplit which builds
upon split learning framework. AdaSplit improves i) Computation using the local client gradient (with Lclient) and training the server
intermittently (using gate G(.) parameterized by κ), ii) Communication by reducing payload size (no gradient flow from server-client)
and interaction frequency (using O(.) parameterized by η) and iii) Collaboration by allowing each client to update sparse partition of
server parameters (on edges with active gradient flow). Specifically, in this figure, client (b) is in local phase and client (a,c) are in global
phase. Client (a) is selected to train and it only updates a sparse partition of server model parameters corresponding to edges with active
gradients on the server. The protocol is detailed in Section 4.

(C1) can be represented as:

C1 =
∑N

i=1
R ∗ (F c

i ∗ T c
i + F s

i ∗ T s
i ) (1)

where, F c
i are the FLOPs executed on client for T c

i itera-
tions, F s

i are FLOPs executed on server for T s
i iterations

when training with data for client i and R is number of
rounds. F c

i and F s
i increase (or decrease) monotonically

with increase (or decrease) in size of client model M c
i and

server model Ms respectively. i) In FL, F s
i = 0 and T s

i = 0
since the entire model is executed on client device (Ms = 0).
In constrast, ii) SL allows to split the model and distribute
F c
i and F s

i between client and server, based on resource
availability. This flexibility of SL is key for scaling to low-
resource setups where clients are compute constrained (but
servers may scale horizontally). To motivate AdaSplit,
we note that, in classical SL, this may increase computa-
tion load on the server and also block the server to train
synchronously with each client.

2. Communication: This governs how client-and-server
interact with each other. The communication cost can be
defined as the total payload that is transmitted between each
of the N client-server pairs over multiple rounds of training.
FL and SL differ in the type of payload and frequency of
communication. Without loss of generality, this cost (C2)
can be represented as:

C2 =
∑N

i=1

∑R

j=1

∑T

k=1
(Pis + Psi) ∗ σ(i, j, k) (2)

where N is number of clients, R is training rounds and T
is iterations per round. Pis is the payload transmitted from
client i to server s and Psi is the payload transmitted from
server s to client i. σ(i, j, k) denotes if client i interacts with
server during iteration k of round j. i) In FL, client-server
interact using model weights once-per-round. Hence, size
of each Pis, Psi is size of the total model and σ(i, j, k) =
1 only for k = T (last iteration of every round). ii) In
SL, Pis, Psi is size of a batch of activations and gradients
respectively and σ(i, j, k) = 1 ∀i, j, k since client depends
upon server for gradient. To motivate AdaSplit, we note
that, even with smaller payload for SL (one activation batch
vs full model), the high frequency of communication results
in more bandwidth consumption than FL.

3. Collaboration: This governs how learning (or updates)
from local data across the clients is synchronized in the
global model. Unlike communication and computation, the
cost is non-trivial to define but the impact is measured from
the converged accuracy. If the client datasets Di for i ∈
[1, 2, .., N ] could be centralized, the unified dataset D (=
D1 ∪D2... ∪DN ) can be used to train a performant model
with gradient descent by sampling iid batches b ∼ D. FL
and SL require mechanisms to achieve convergence when
this data is decentralized. FL and SL differ in the input
and protocol used by the server to aggregate updates
across clients. Abstractly, i) FL executes this by averaging
client model parameters (or gradients) on the server after
each round, and ii) SL executes this by requiring all clients
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to (sequentially) update shared parameters of the server
during the round.

In federated training, the global model in a round r and
consequently updated client models (M c

i ) are obtained as:

Mg =
∑N

i=1
(M c

i ∗ pri ); M c
i = Mg,∀i ∈ [1, 2, ..., N ]

(3)
where pri is a weight assigned to client i in round r.

In split training during each round r, the server model (Ms)
is updated sequentially by all client i for ∀i ∈ [1, 2, ..., N ]
as:

Ms = Ms − α ∗ ▽L̂(Ms(ai), yi) (4)

In some variants of SL such as (Thapa et al., 2022), local
client models are also synchronized, at end of each round, as
in FL using equation 3. Then, the global model is obtained
by stacking the server and (averaged) client models. To
motivate AdaSplit, we note that when data across clients
is non-iid (common in real-world setup), inefficient or sub-
optimal converged accuracy is observed. We posit that
this happens since (gradient of) non-iid client activations
sequentially update the same parameters in Ms, which is
inconsistent with ERM (Vapnik, 1992).

4 ADASPLIT

Here, we delineate the design choices of AdaSplit along
each of the three dimensions. The architecture is visualized
in Fig. 2 (right). We also discuss corresponding trade-offs
that enable AdaSplit to adapt to variable resource (commu-
nication, computation) budgets. The text follows the same
notation as defined in Sec. 2.

4.1 Computation

Recall from Sec. 3 that in classical SL, splitting model be-
tween client and server decreases client computation load
(vs FL) but increases computation load on the server and
also blocks the server to train synchronously with each client
as they depend on the server for gradient. AdaSplit alleviates
this by: i) eliminating the dependence of the client model
on server for gradient and ii) only training the server inter-
mittently. AdaSplit has the same on-client computation as
SL but lower server computation by decreasing Ts (compute
iterations on the server) – reducing total computation.

Local Client Gradient: First, AdaSplit generates the gra-
dient for training client model on-client itself using a local
objective function Lclient which is a supervised version of
NT-Xent Loss (Sohn, 2016). Given an input batch, b ∼ Di,
then for each input (xi, yi) ∼ b, Lclient is applied on a pro-
jection (H(.)) of the activations ai generated by the client
model (= M c

i (xi)). Let qi = H(ai) be the corresponding
embedding of an input xi, and Qi

+ be the set of embeddings

of other inputs with the same class as xi in the batch b, the
loss can be represented as below:

Lclient =
∑|b|

i=0

∑
q+∈Qi

+

− log
exp(qi · q+/τ)∑|b|
j ̸=i exp(qi · qj/τ)

(5)

Here, τ is a hyperparameter, which controls the ”margin”
of closeness between embeddings. We set τ = 0.07 in all
our experiments. The pairs (anchor qi, positive inputs q+)
required in Lclient are sampled using the ground truth labels
(yi) locally on client.

Intermittent Server Training: Second, AdaSplit also splits
the R round training into two phases: A) Local Phase B)
Global Phase. Local Phase lasts for the first κ rounds when
only the client model is trained, asynchronously and without
interacting with the server, using Lclient. After κ rounds
(till end), the Global Phase starts where client continues
to train locally and also interacts with the server by trans-
mitting activations. The server model only now starts being
trained using activations received from the clients. The
server model Ms is optimized using a server loss function
(Lserver) which is cross-entropy (Lce) for classification
tasks. We note that in global phase (when server is training
Ms), the client does not receive any gradient from the server
but still continues to (asynchronously) train its client model
M c

i using only the local client loss Lclient.

Discussion: AdaSplit can adapt to variable computation
budgets by regulating two key hyperparameters: i) size of
the client model (µ) (for client compute), ii) duration of
local phase (κ) (for server compute). To clarify, µ helps
regulate client (and server) computation, and κ regulates
server computation but does not affect the client at all. We
study the specific impact of these design choices in Sec. 7.
In practice, we observe considerable reductions in total
computation since κ can take relatively large values (0.8*R),
where R is total training rounds, without significant loss of
performance. We corroborate this with results in Sec. 6.

4.2 Communication

Recall from Sec. 3 that in classical SL, the high client-
server interaction can be prohibitive for communication
cost. AdaSplit alleviates this problem by reducing: i) the
frequency of communications; and ii) the payload size.

Smaller Payload: First, we would like to highlight that
eliminating client dependence on server gradient can poten-
tially also reduce communication cost, in addition to the
computation overhead. Unlike SL, in AdaSplit the server
does not transmit gradients to the client and hence Psi = 0
(in equation 2 in Sec. 3) throughout training for each client
i. Through sensitivity analysis in Sec. 7, we validate that
this design choice marginally drops the performance while
significantly reducing communication.
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Infrequent Communication: Second, we note that two-
phase training (introduced in Sec. 4.1) is also beneficial for
reducing communication. In the Local Phase, there is no
client-to-server communication and thus the payload Pis =
0 for all clients i (in equation 2 in Sec. 3). In the Global
Phase, clients may start transmitting activations to the server.
In this phase, only a subset of clients communicates with
the server in each round. Specifically, we introduce an
Orchestrator (O) which resides on the server and uses a
running statistic of local client losses to select ηN (for some
0 ≤ η ≤ 1) clients in each iteration, that communicate with
the server. In AdaSplit, O uses a UCB (Auer, 2003) strategy
to prioritize clients who need the server model to improve
performance on their data (exploitation) while also ensuring
that the final global model can generalize well to different
client data distributions (exploration).

Let St
i be a binary flag denoting if client i is selected to

transmit activations to the server at iteration t and Lt
i de-

note the server loss from activations (ai) for the iteration.
At each iteration t, selected clients (i.e. St

i = 1) transmit
input activations to update server model and the loss Lt

i

is stored. For unselected clients (i.e. St
i = 0), Lt

i is de-
fined the average of their loss value in previous iterations

(Lt
i =

Lt−1
i +Lt−2

i

2 ), as in (Auer, 2003). Here, we note that
Lt
i is only used for selection and the client model contin-

ues to train locally with Lclient. Finally, O assigns a new
score to each client using the advantage function described
in the following and clients with the top-η scores are se-
lected for the next iteration. The advantage function (Ai)

for (Auer, 2003) is defined as Ai =
li
si

+
√

2 log T
si

; where,

li =
∑T

t=0 γ
T−1−t · Lt

i, si =
∑T

t=0 γ
T−1−t · St

i and T is
total iterations in the round. γ ∈ [0, 1] is a hyperparame-
ter that determines the importance of historical losses. We
initialize Lt

i = 100 for all clients for t = 0 and t = 1.

We make a few statements here. First, note that subset
selection has previously been used in FL to regulate commu-
nication cost (McMahan et al., 2016; Li et al., 2020; Cho
et al., 2020b) where the global model after a round may be
obtained from few clients only (pri in equation 3). However,
classical SL does not have a similar infrastructure since each
client is entirely dependent on the server for gradient during
each training iteration (of every round). Eliminating client
dependence on the server gradient in AdaSplit helps unlock
this benefit. Finally, we mention that this orchestrator is spe-
cialized for AdaSplit where it needs to be invoked in each
iteration (vs rounds in FL) and selects client to transmit
activations for training (vs model averaging in FL).

Discussion: AdaSplit can adapt to variable communica-
tion budgets by regulating two key hyperparameters: i) the
fraction of selected clients (η), ii) the duration of the local
phase (κ). We study the specific impact of these design

choices in Sec. 7. In practice, we observe considerable re-
ductions in communication cost since κ, η can assume large
values (κ = 0.8 ∗ R, η = 0.6) without significant loss of
performance. We corroborate this with results in Sec. 6.

4.3 Collaboration

AdaSplit, like SL, synchronizes updates in the global model
by requiring clients to sequentially update shared server
model parameters. Recall from Sec. 3 that when inter-client
data is heterogeneous, this often results in the global model
converging to sub-optimal accuracy. To alleviate this, the
intuitive goal is to prevent clients with different data distri-
butions from ”interfering” with each other during training
of the server model. To achieve this, the key idea of AdaS-
plit is to have each client update only a partition of the
server model (Ms) parameters. The motivating insight is
that neural network models are vastly over-parameterized
(Neyshabur et al., 2018) and only a small proportion of the
parameters can learn each (client’s) task with little loss in
performance (Golkar et al., 2019; LeCun et al., 1990). Con-
ventionally, this is used for model compression; in contrast,
we leverage it to reduce interference in distributed DL with
heterogeneous (non-iid) data across clients.

Update Sparse Partitions of Server Model: During the
global phase, we add an L1 weight regulator to promote
sparsity in the server model Ms. Specifically, instead of
pruning the network, we learn a client (i) specific multiplica-
tive mask mi which constrains the subset of Ms parameters
client i can update. Given batch of activations ai from client
i, server model Ms is updated as:

Ms = Ms − α ∗mi ∗ ▽L̂(Ms(ai), yi) (6)

This simulates relative sparsity (for each client) in Ms

without pruning any parameters since the goal is to in-
crease server model capacity (to accommodate many di-
verse clients) rather than achieving compression. Here, mi

evolves during training and is forced to be extremely sparse
using the below loss function on the server:

Lserver = Lce(ŷi, yi) + λ ∗ ω(mi) (7)

where, ω(.) is an L1 regularizer, ŷi = Ms(M c
i (xi)) and

Lce(.; .) is the cross entropy loss. The λ hyperparameter
regulates sparsity of the masks and can be intuitively visu-
alized as controlling the extent of collaboration between
clients, via the server. At inference, the effective server
model for client i is Ms ∗mi where mi is a highly sparse
binary mask and can potentially be stored on client device.
Results in Sec. 6 show that this strategy of regulating col-
laboration significantly improves performance. Finally, we
note similarities between each round of collaboration in
SL (and AdaSplit) and continual learning (Golkar et al.,
2019), albeit AdaSplit works in activation space and is itera-
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tive. However, we anticipate exploring this connection may
present interesting directions of future work.

4.4 Summary of Claims

Here, we briefly summarize key takeaways from this Sec-
tion. To reiterate, the goal of AdaSplit is to improve SL,
so that it can become a competitive alternative to FL. Con-
ventional SL methods reduce on-client computation, which
is a key bottleneck to FL, but increase server-computation,
communication overhead and often achieve lower accuracy
when compared to FL methods. AdaSplit is designed to
help alleviate these concerns.
AdaSplit introduces the following ideas to SL: local client
gradients (sec 4.1), intermittent server training (sec 4.1),
infrequent communication with smaller payloads (sec 4.2)
and sparse updates of the server model (sec 4.3). Next,
sec 6 & 7 present results to show that these ideas enable
AdaSplit to i) preserve the low on-client computation as
other SL methods (the only shared aspect), ii) reduce server
(and hence, total) computation cost (sec 4.1), iii) reduce
communication cost (sec 4.2) and iv) improve collaboration
between clients, evident via better accuracy (sec 4.3).

5 EXPERIMENTAL SETUP

Here, we specify the datasets and baselines used, the eval-
uation protocols and implementation details for the results
presented in this work. All our code is released here.

5.1 Datasets

To validate the efficacy of AdaSplit, we conduct extensive
experiments on benchmark datasets and simulate varying
levels of inter-client heterogeneity. Specifically, we use
two experimental protocols, as described next: a) Mixed-
CIFAR: We divide the 10 classes of CIFAR-10 into 5 sub-
sets of 2 distinct classes each. Every client is assigned
data from one of the 5 subsets. In this protocol, there
is low and consistent heterogeneity between data across
all pairs of clients. b) Mixed-NonIID: We use 5 bench-
mark datasets: i) MNIST ii) CIFAR-10 iii) FMNIST iv)
CIFAR-100 v) Not-MNIST and each client receives sam-
ples from exactly one dataset. In this protocol, there is high
and variable inter-client heterogeneity between client pairs.
For instance, clients with FMNIST and MNIST have lower
pairwise-heterogeneity between each other and high pair-
wise heterogeneity with clients containing CIFAR-100. For
all experiments, the RGB images are scaled to 32x32 and
grayscale images (in MNIST) stacked along channels.

5.2 Baselines

The key motivation behind AdaSplit is to make SL a viable
alternative to FL. We compare with state-of-the-art SL and

FL techniques. Specifically, for SL, we compare with SL-
basic (Gupta & Raskar, 2018) and SplitFed (Thapa et al.,
2022). To ensure validity of analysis and highlight efficacy
of results, we also compare with popular FL techniques:
FedAvg (McMahan et al., 2016), FedNova (Wang et al.,
2020), Scaffold (Karimireddy et al., 2021) and FedProx
(Li et al., 2020). These techniques are specially designed
for heterogenous (non-iid) setups and provide strong bench-
marking for the efficacy of AdaSplit.

5.3 Evaluation Metrics

We evaluate performance, both independently along multi-
ple standard metrics as well as jointly using a unified metric.

i) Independent Evaluation: To evaluate along the design
dimensions, we report the results using three metrics, Ac-
curacy, Bandwidth and Compute. Accuracy is reported as
mean and standard deviation over multiple independent runs
with different seeds. Bandwidth is reported in GB and Com-
pute in TFLOPS. We note that in many real-world cases,
servers may scale horizontally and the bottleneck is often
at the client side. For completeness, we seperately report
both client compute and total (clients+server) compute. We
highlight here that, to ensure fair comparison, we ensure
results reported in Sec. 6 (Tables 1, 2) and Sec. 7 (Tables
3to 6) allow for independent comparison along each of these
metrics.

ii) Joint Evaluation: For an effective distributed deep learn-
ing method, the goal is to maximize performance through-
put, e.g., accuracy, while minimizing resource (bandwidth,
compute) consumption. For practical use, however, we often
need to jointly adhere to constraints on resource (bandwidth,
compute) consumption and the achieved performance (accu-
racy). For instance, a 50% decrease in bandwidth use could
be more important than a 5% increase in accuracy. Hence, it
would help to use a unified metric that can encapsulate these
three different metrics. We make a step towards introducing
one such metric for distributed DL.

Properties: While not exhaustive, some desirable proper-
ties for such a metric are: i) Flexible: explicitly incorpo-
rating resource budgets is important for practical use as it
helps identifying the best technique for a given resource
budget. For instance, research in differential privacy uses
privacy budgets (defined via ϵ− δ parameters) to contextu-
alize comparison between different privacy mechanisms. ii)
Normalized: the output score for every method should be
bounded, for ease of comparison. iii) Extensible: it should
be easy to extend to other resource dimensions. For instance,
while we consider two resource budgets (bandwidth, com-
pute) here, including privacy budget is an interesting future
direction with techniques such as DP-SGD (Abadi et al.,
2016) becoming relevant for FL and SL.

Realization: C3-Score is one such simple metric, that we

https://drive.google.com/file/d/1Ir6Uds_0pRntG72xcOQou56N7lAvu1KI/view
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Table 1. Results on Mixed-NonIID dataset. AdaSplit achieves improved performance while reducing resource (bandwidth, compute)
consumption. This is corroborated by the C3-Score (higher is better). Compute is reported as client (client + server).

Method Accuracy
Bandwidth

(GB)
Compute

(TFLOPS) C3-Score

FedAvg (McMahan et al., 2016) 82.21± 0.19 2.39 17.13 (17.13) 0.72
FedProx (Li et al., 2020) 85.09 ± 0.29 2.39 17.13 (17.13) 0.75
Scaffold (Karimireddy et al., 2021) 84.73± 0.17 4.78 17.13 (17.13) 0.74
FedNova (Wang et al., 2020) 82.71± 0.27 2.39 17.13 (17.13) 0.73

SL-basic (Gupta & Raskar, 2018) 84.65± 0.32 84.54 3.76 (15.14) 0.72
SplitFed (Thapa et al., 2022) 84.67± 0.24 84.64 3.76 (15.14) 0.73

AdaSplit (κ=0.6, η=0.6) 88.88 ± 0.27 9.71 5.38 (8.82) 0.85
AdaSplit(κ=0.75, η=0.6) 87.11 ± 0.59 2.43 5.38 (10.88) 0.83

Table 2. Results on Mixed-CIFAR dataset. AdaSplit achieves improved performance while reducing resource (bandwidth, compute)
consumption. This is corroborated by the C3-Score (higher is better). Compute is reported as client (client + server).

Method Accuracy
Bandwidth

(GB)
Compute

(TFLOPS) C3-Score

FedAvg (McMahan et al., 2016) 91.31± 0.49 2.39 11.77 (11.77) 0.79
FedProx (Li et al., 2020) 92.54 ± 0.48 2.39 11.77 (11.77) 0.81
Scaffold (Karimireddy et al., 2021) 87.30± 1.36 4.79 11.77 (11.77) 0.76
FedNova (Wang et al., 2020) 88.94± 0.32 2.39 11.77 (11.77) 0.77

SL-basic (Gupta & Raskar, 2018) 67.90± 3.52 34.88 1.66 (13.76) 0.59
SplitFed (Thapa et al., 2022) 71.46± 2.13 35.94 1.66 (13.76) 0.62

AdaSplit (κ=0.6, η=0.6) 91.92 ± 1.88 2.85 2.38 (4.81) 0.89
AdaSplit (κ=0.3, η=0.6) 92.91 ± 0.91 6.57 2.38 (6.63) 0.88

propose here. Let Bmax, Cmax be the maximum resource
budgets for bandwidth and client compute as defined by the
evaluator. Then, for a method m with accuracy Am, band-
width consumption Bm and client compute consumption
Cm, the C3-Score is defined as below:

C3−Score(Am, Bm, Cm) = (Am)∗e−(B̂m+Ĉm)/T , (8)

where B̂m = Bm/Bmax, Ĉm = Cm/Cmax and T is the
temperature ( = 10 for all methods and experiments). With
this definition, the C3-Score metric is bounded between 0
and 1 and monotonic where a higher score represents a better
(more efficient) method. We would like to note that the
above C3-Score metric exponents the resource (bandwidth,
compute) dimensions to: i) allow some separation between
controllable (resources) and uncontrollable (performance)
dimensions and ii) avoid collapse (if Ĉm or B̂m → 0),
while ensuring a multiplicative form of the metric for easy
extensibility. However, we would like to highlight that this
is not a unique metric, but just one simple form that captures
the desired properties. Thus, to ensure validity and integrity
of our study, we only use this C3-Score as an additional
point of comparison in Table 1 and 2.

5.4 Implementation Details

All methods are trained for (R=20) rounds with 1 epoch per
round using the same convolutional (LeNet) backbone. Re-
sults are reported for 5 (=N) clients, and over 5 runs. For the
FL baselines, we use open-source implementations provided
in (Li et al.). For robust comparison, we also tuned param-
eters for these baselines and note some performance gain
was observed (over default values) which is then used for
comparison. For all SL methods (including AdaSplit), we
set the default client model size to 20% (µ = 0.2) and use
Adam optimizer with a learning rate of 1e-3, for both client
and server. For AdaSplit, the default parameters are: a) κ =
0.6, η = 0.6, γ = 0.87, λ = 1e-5 (for Mixed-CIFAR) and 1e-3
(for Mixed-NonIID). For our study, we set Cmax, Bmax to
be the respective costs for the worst-performing baselines
on the corresponding datasets.

6 RESULTS

We report performance on Mixed-NonIID in Table 1 and
Mixed-CIFAR in Table 2. For purpose of our study here,
we set the bandwidth and compute budgets for C3-Score
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to be Bmax = 35.94 GB and Cmax = 11.77 TLFOPS on
Mixed-CIFAR and Bmax = 84.64 GB and Cmax = 17.13
TFLOPS on Mixed-NonIID. These values correspond to
the max bandwidth and compute of all the methods on the
specific datasets. The results on both datasets consistently
support the following key observations:

1 AdaSplit outperforms other split learning techniques
and achieves significantly better accuracy while also reduc-
ing bandwidth consumption. For instance, on Mixed-CIFAR
(Table 2), in comparison to SL-basic, AdaSplit improves
performance by 24% and consumes 89% lower bandwidth.
Also, total compute decreases significantly in AdaSplit to
4.81 TFLOPS (versus 13.76), the marginal increase in client
compute (2.38 vs 1.66) can be attributed to Lclient. This
is corroborated by an increase in C3-Score from 0.59 for
SL-basic (Gupta & Raskar, 2018) to 0.89 for AdaSplit.
Furthermore, similar trend is observed on Mixed-NonIID
(Table 1). Specifically, AdaSplit achieves accuracy of 88.88
against 84.67 for SplitFed while consuming 75 GB less
bandwidth. The corresponding trend is also captured by
the C3-Score which is 0.85 for AdaSplit as against 0.73 for
SplitFed (Thapa et al., 2022).

2 AdaSplit makes split learning a competitive alterna-
tive to federated learning. On both datasets, we observe
that AdaSplit consistently achieves higher (or similar) ac-
curacy with significantly lower client compute and simi-
lar bandwidth. For instance, on Mixed-NonIID, AdaSplit
achieves 87.11% accuracy with 2.43 GB bandwidth and
5.38 TFLOPS compute. In comparison, the closest FL base-
line, FedProx, achieves 85% accuracy but consumes 17.13
TFLOPS (3x of AdaSplit) and similar bandwidth (2.39 GB).
This is corroborated with a better C3-Score of 0.85 AdaSplit
against 0.75 for FedProx.

3 AdaSplit consistently provides the best trade-off among
all of federated and split learning baselines. For instance,
on Mixed-CIFAR, AdaSplit achieves a C3-Score of 0.89
with the closest FL baseline (FedProx) (Li et al., 2020) is at
0.81, FedAvg (McMahan et al., 2016) at 0.79 and SplitFed
at 0.62. Furthermore, similar trend is observed on Mixed-
NonIID where AdaSplit achieves a C3-Score of 0.85 with
the closest baseline FedProx at 0.75, Scaffold (Karimireddy
et al., 2021) at 0.74 and SL-basic (Gupta & Raskar, 2018)
at 0.72.

4 AdaSplit can adapt to variable resource budgets. From
results on Mixed-NonIID (Table 5), we can see that given
a higher communication budget (13.36 GB), AdaSplit can
further improve accuracy to 89.77% which corresponds to
a 5% improvement over FedProx (Li et al., 2020). Figure
1 visualizes how AdaSplit allows to trade-off accuracy by
(seperately) varying bandwidth and compute budgets.

Note on Figure 1: First, please note that these trade-

Table 3. Results on Mixed-CIFAR10. Varying number of client
layers (µ) enables AdaSplit to adapt to variable client computation
budgets. Compute is reported as client (client + server).

µ Accuracy
Bandwidth

(GB)
Compute

(TFLOPS)

0.2 91.92 ± 1.88 2.85 2.38 (4.81)
0.4 92.12 ± 1.61 1.18 9.04 (9.85)
0.6 86.37 ± 6.74 1.08 11.58 (11.68)
0.8 90.14 ± 2.80 1.05 11.95 (11.97)

off curves over bandwidth and compute are obtained while
respectively keeping compute and bandwidth budgets fixed.
Second, we only vary design parameters that are unique
to AdaSplit and hence, the same curves cannot be realised
for FL or SL baselines. Specifically, we vary duration of
local phase (κ), presence of client gradient, and activation
sparsity which we discuss in more detail in the next section.
For instance, client model size (µ) and number of clients (η)
are design parameter shared between AdaSplit and other SL
methods, and are hence fixed (η = 0.6, µ = 0.2) for figure
1.

7 DISCUSSION

In this section, we conduct sensitivity analyses of key design
choices in AdaSplit and analyze the consequent impact on
accuracy and resource consumption. Results validate the
ability of AdaSplit to efficiently adapt to variable resource
budgets. Unless specified otherwise, the hyperparameters
used are κ = 0.6, η = 0.6, µ = 0.2.

1 Varying Size of Client Model: Table 3 presents results
from varying number of layers on client for Mixed-CIFAR10
dataset. We observe that Computation on client increases
monotonically with the number of client layers. We also
observe a decrease in Communication cost as evident from
lower bandwidth. This can be attributed to the convolu-
tion design of the model where split activations becomes
smaller with depth (reducing payload Pis). Also, we note
marginal gain in performance for larger server model since
it provides more parameters for Collaboration. We observe
similar trends on Mixed-NonIID and include results in the
appendix. Hence, AdaSplit adapts to variable client compu-
tation budgets.

2 Varying Duration of Local Phase: Table 4 presents
results from varying κ on Mixed-CIFAR10 dataset. We
observe that Communication cost decreases as k increases.
This is because Pis = 0 for all rounds r < κ on given
client i. Computation cost of the server also decreases on
increasing κ though client compute is unchanged. Note
that marginal decrease in accuracy is due to the fact that
larger κ allows for fewer training iterations of the server
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model. Specifically, increasing κ from 0.3 to 0.9 decrease
accuracy from 89.80% to 87.11%, while bandwidth falls
drastically from 17.22 GB to 2.43 GB. This trend is also
corroborated on Mixed-NonIID dataset, as shown in Table
5. Hence, AdaSplit adapts to variable communication and
server computation budgets.

3 Eliminating Gradient Dependence: Table 5 studies
the impact of training client model without gradient from
server on Mixed-CIFAR10 dataset. We observe Communi-
cation cost decreases significantly with bandwidth reduced
by one-half. We observe accuracy is generally insensitive
though there is slight increase in standard deviation. Hence,
AdaSplit adapts to variable communication budget and pro-
vides consistent performance.

4 Further Reducing Payload Size: While we sparsify
server model parameters to improve collaboration in AdaS-
plit, here we consider sparsification of split activations to re-
duce communication. Specifically, we train the client model
with an additional L1 regularizer that regulates magnitude of
split activations. Results are presented on Mixed-NonIID in
Table 6. Computation remains unchanged. Communication
decreases as payload (Pij) becomes sparse. For instance,
AdaSplit can train with only 0.76 GB of bandwidth and
achieve 85.79% accuracy. From Table 1, (Li et al., 2020)
achieves 85.09% and consumes 2.39 GB budget. Hence,
AdaSplit adapts to extremely low communication budgets.

8 RELATED WORK

Here, we review the general landscape of literature in dis-
tributed deep learning, along the three dimensions from
section 3, as well as delineate specific research and applica-
tions in split learning.

Distributed Deep Learning Federated Learning (FL)
(McMahan et al., 2016; Kairouz et al., 2019; Karimireddy
et al., 2021; Li et al., 2020) and Split Learning (SL) (Gupta
& Raskar, 2018; Poirot et al., 2019; Thapa et al., 2022;
Singh et al., 2021) are the two main paradigms. While our

Table 4. Results on Mixed-CIFAR10. Varying duration of local
phase (κ) enables AdaSplit to adapt to variable communication and
server computation budget. Compute is reported as client (client +
server).

κ Accuracy
Bandwidth

(GB)
Compute

(TFLOPS)

0.3 92.91 ± 0.91 6.57 2.38 (6.63)
0.45 90.97 ± 1.02 4.72 2.38 (5.72)
0.6 89.77 ± 1.62 3.56 2.38 (4.81)
0.75 88.62 ± 3.68 2.15 2.38 (3.90)
0.90 88.02 ± 0.91 0.89 2.38 (2.98)

Table 5. Results on Mixed-NonIID. In each Accuracy cell, Row-1
trains client with Lclient and Row-2 trains client with Lclient +
Lserver . Accuracy is largely insensitive to server gradient across
various κ

κ Accuracy Bandwidth (GB)

0.3 89.80 ± 0.38 17.22
89.96 ± 0.23 34.84

0.45 89.77 ± 0.34 13.36
89.47 ± 0.21 27.18

0.60 89.08 ± 0.38 9.65
89.03 ± 0.28 19.79

0.75 88.17 ± 0.59 6.10
88.31 ± 0.40 12.06

0.90 87.11 ± 0.45 2.43
87.05 ± 0.39 4.89

research contributions are primarily focused on SL, we in-
clude relevant literature in both FL and SL and organize
the same in context to the three design choices introduced
in Sec 3. We refer the reader to (Kairouz et al., 2019)
for an extensive review of recent progress and open prob-
lems in FL (including a brief survey of SL) and to (Thapa
et al., 2021) for a detailed review of SL along with extensive
comparisons to FL.

1. Computation: In conventional FL (McMahan et al.,
2016; Li et al., 2020; Wang et al., 2020; Karimireddy et al.,
2021), computation at each client involves model training
during a round, and computation at the server involves syn-
chronization (averaging) of the multiple clients’ models
after every round. Hence, FL-based methods are challenged
by compute resources on client devices given the exploding
growth in the size of state-of-the-art models. Some recent
work has sought to reduce total computation by training
only a part of the model in every round (Diao et al., 2020),
pruning the clients’ models (Li et al., 2022; Zhou et al.,
2021; Jiang et al., 2020) and training the model intermit-

Table 6. Results on Mixed-CIFAR10 dataset. Sparsification of split
activations enables AdaSplit to adapt to extremely low communi-
cation budgets.

β Accuracy Bandwidth (GB)

0 91.09 ± 1.48 3.45
1e-7 90.52 ± 2.16 3.25
1e-6 91.92 ± 1.89 2.85
5e-6 87.6 ± 4.82 1.19
1e-5 85.79 ± 4.10 0.76
0.0001 79.18 ± 4.81 0.08
0.1 51.00 ± 0.42 0.0044
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tently (McMahan et al., 2016). These methods improve
the overall efficiency of training (or inference) but still need
compute-intensive clients to store and train large models -
even if intermittently or iteratively execute the add-on com-
pression logic. Recent work is exploring methods to allow
heterogeneous models across clients (Li & Wang, 2019),
but in the process increases computation load on the server,
which now needs to train models (i.e., model distillation)
for synchronization. In contrast, SL (Gupta & Raskar,
2018; Thapa et al., 2022) is more flexible and significantly
reduces on-client computation by splitting the model be-
tween the client and server. In conventional SL (Thapa
et al., 2022; Abedi & Khan, 2020; Gupta & Raskar, 2018),
however, this benefit is achieved at the cost of an increase
in server computation. AdaSplit reduces server computa-
tion, while preserving the low on-client computation of SL,
by introducing local client gradient and training the server
intermittently.

2. Communication: In FL, client and server communicate
once every training round, and this is executed through
weights (or gradients) of the local clients’ models. This cost
scales with the size of the model and the number of clients
in the system, which can become prohibitive. Methods
have been proposed to reduce this through compression on
client (Konečnỳ et al., 2016; Malekijoo et al., 2021; Hamer
et al., 2020), client subset selection (Cho et al., 2020a;
Nishio & Yonetani, 2019; Balakrishnan et al., 2020) as well
as greedy federated training of client models (Nishio &
Yonetani, 2019; Mo et al., 2021). In SL (Gupta & Raskar,
2018; Vepakomma et al., 2018; Poirot et al., 2019), the
client and server communicate in each training iteration (of
every round) using mini-batch activations and transmit the
client models’ during (Gupta & Raskar, 2018) or after the
round (Thapa et al., 2022; Gawali et al., 2021). AdaSplit
significantly reduces communication cost in SL by reducing
payload size and frequency of client-server interaction.

3. Collaboration: Conventional FL methods (McMahan
et al., 2016; Li et al., 2020; Jiang et al., 2020) execute this by
averaging models’ parameters (or gradients) on the server,
after each round. Recent work in heterogenous FL relies on
model distillation training on the server (Li & Wang, 2019).
The key challenge is with non-iid clients, and this has been
extensively investigated in federated learning, where several
techniques have proposed (Li & Wang, 2019; Wang et al.,
2020; Li et al., 2020; Karimireddy et al., 2021; Zhao et al.,
2018). Similar challenges are also observed for conventional
SL methods (Gupta & Raskar, 2018; Thapa et al., 2022;
2021) which perform poorly in non-iid setups as evident
from sub-optimal or inefficient performance. We posit that
this happens since (gradients from) non-iid client activations
sequentially update shared parameters on the server model.
AdaSplit improves performance by constraining clients to
only update sparse partitions of the server model.

Split Learning: Research and Applications Split Learn-
ing (SL), first introduced in (Gupta & Raskar, 2018;
Vepakomma et al., 2018), has become an active direction
of research with work across systems (Gupta & Raskar,
2018; Vepakomma et al., 2018; Thapa et al., 2022; Abedi
& Khan, 2020), privacy (Pasquini et al., 2020; Singh et al.,
2021) and applications (Sharma et al., 2019; Palanisamy
et al., 2021; Park et al., 2020; Poirot et al., 2019). In par-
ticular, (Vepakomma et al., 2018) summarizes several con-
figurations for model splitting - for executing forward and
backward passes, and (Romanini et al., 2021) explores re-
search for (horizontal and vertical) data splitting. Recent
works have also integrated federated and split learning ar-
chitectures (Thapa et al., 2022; Gawali et al., 2021; Abedi
& Khan, 2020) to achieve better trade-offs. We refer the
reader to (Thapa et al., 2021) for a detailed comparison
between the design of FL and SL and (Singh et al., 2019)
for a comparison on the communication efficiency of the
two protocols. Beyond systems research mentioned here
and discussed throughout our paper, split learning also en-
ables distributed/split inference which is not possible with
federated learning. Consequently, there is interest in protect-
ing the privacy of both training and testing data with active
research in attack (Pasquini et al., 2020; Madaan et al.,
2021) and defense (Mireshghallah et al., 2019; Vepakomma
et al., 2020; Singh et al., 2021; Samragh et al., 2020) mech-
anisms. Finally, this has resulted in diverse applications
across healthcare (Poirot et al., 2019), model selection
(Sharma et al., 2019), IoT (Park et al., 2020) and edge
computing (Palanisamy et al., 2021).

9 CONCLUSION

The goal of this paper is to make split learning (SL) a com-
petitive alternative for federated learning (FL). Conventional
SL methods reduce on-client computation, which is a crucial
bottleneck to FL, but increase server-computation commu-
nication overhead and often achieve lower accuracy when
compared to FL methods. Our adaptive split learning (AdaS-
plit) preserves the low on-client computation as other SL
methods while i) reducing server computation by eliminat-
ing client-dependence on server gradient and training the
server intermittently, ii) reducing communication overhead
by decreasing payload size and client-server interaction fre-
quency, and iii) improving collaboration by constraining the
heterogeneous client to only update sparse partitions of the
server model, enabling AdaSplit to improve performance un-
der limited resources and adapt to variable resource budgets.
Further, we also propose a metric (C3-Score) to evaluate
distributed deep learning methods under resource budgets
jointly. Finally, we validate the effectiveness of AdaSplit
through comparisons with strong FL and SL baselines as
well as via sensitivity analyses of key design choices.
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