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Abstract

Open-vocabulary semantic segmentation (OVSS) aims to segment unseen
classes without corresponding labels. Existing Vision-Language Model (VLM)-
based methods leverage VLM’s rich knowledge to enhance additional explicit
segmentation-specific networks, yielding competitive results, but at the cost of
extensive training cost. To reduce the cost, we attempt to enable VLM to directly
produce the segmentation results without any segmentation-specific networks.
Prompt learning offers a direct and parameter-efficient approach, yet it falls short
in guiding VLM for pixel-level visual classification. Therefore, we propose the
Relationship Prompt Module (RPM), which generates the relationship prompt that
directs VLM to extract pixel-level semantic embeddings suitable for OVSS. More-
over, RPM integrates with VLM to construct the Relationship Prompt Network
(RPN), achieving OVSS without any segmentation-specific networks. RPN attains
state-of-the-art performance with merely about 3M trainable parameters (2% of
total parameters).

1 Introduction

Open-vocabulary semantic segmentation (OVSS) [1–4] aims to segment novel classes without
corresponding training images, which is still a challenging task in computer vision. Vision-Language
Model (VLM) [5–7] has emerged as a powerful approach, acquiring comprehensive knowledge via
large-scale image-caption matching training. Several VLM-based OVSS methods [8–10] achieve
promising results. These methods employ the rich image-text representation knowledge inherent
in VLM to improve segmentation performance and are categorized into two types: two-stage and
one-stage methods. Two-stage methods [11–14] first generate image-level masks without semantics
via a well-designed mask proposal network [15–18] and then classify these masks via the image-level
classification ability of VLM. One-stage methods [19, 20] employ a semantic decoding network
to distill VLM’s comprehensive knowledge from the image to the pixel level, thereby producing
pixel-level segmentation results.

However, both of these VLM-based methods rely on additional explicit segmentation-specific net-
works to obtain segmentation results, resulting in extensive training cost. To reduce the training cost,
an intuitive idea is to make VLM directly produce segmentation results without these segmentation-
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Figure 1: Visualization of relationship attention map m from the well-trained RPN. The degree
of attention from low to high is marked by colors from dark blue to red. The more attention, the darker
red; the less attention, the darker blue. As the layers deepen, the attention maps exhibit increasingly
precise pixel-level semantics. The images correspond to the attention maps for an aeroplane, a sheep,
and a train, respectively.

specific networks1. In this context, prompt learning [5, 21–23] emerges as a practical approach,
guiding VLM to transform image-text pair embeddings into pixel-level semantic embeddings suitable
for OVSS, thereby directly achieving OVSS.

Without explicit segmentation-specific networks, applying prompt learning solely to VLM for OVSS
is straightforward yet challenging. Typically, existing prompt learning methods fine-tune task-specific
models to enhance performance on that task, yet they fail to secure cross-task performance gains.
These methods employ either fixed or trainable vision prompt tokens [24], or they construct complex
ViT-based networks for generating prompt [25, 26, 20, 27]. The limitations of such prompt include:
1) providing only image-level granularity, which restricts VLMs from performing tasks related
to pixel-level visual classification, and 2) a lack of an image-text relationship, which hinders the
exploration of VLMs’ potential for open-vocabulary scene understanding. Therefore, it is difficult
for these methods to enable VLM suitable for image-level classification to achieve open-vocabulary
semantic segmentation directly.

Figure 2: Our method vs existing VLM-based methods.
Our method employs VLM to directly perform OVSS
by prompt learning, while the other methods relies on
additional explicit segmentation-specific networks.

In summary, addressing the above-
mentioned issue lies in refining the gran-
ularity of prompt and strengthening the
image-text relationship within them. By
analyzing the outputs of VLM’s encoder
layer, we find they can construct an
image-text relationship attention map via
the attention mechanism, guiding the en-
coder to focus on relevant pixels. Thus,
we propose the Relationship Prompt
Module (RPM) that utilizes the outputs
of image and text encoding layers to
enable pixel-level relationship prompt-
ing, enhancing prompt’s granularity and
image-text relationship. Moreover, we
implement a layer-by-layer guidance mode in VLM, enabling a progressive transfer of embeddings
from the image to pixel level. As illustrated in Figure 1, each layer’s relationship attention map
is continuously refined following an image-to-pixel attention scheme. To obtain the segmentation
results, we propose the Linear Projection Module (LPM) comprising merely two individual linear
layers, which maps the image and text feature into a shared space, and then computes their Matrix
product to produce the results. Finally, we propose the Relationship Prompt Network (RPN), which
consists of RPM, LPM and VLM. Figure 2 shows the comparison between RPN and other OVSS
methods. RPN employs VLM to directly output pixel-level predictions by prompt learning, while
other methods use VLM to assist explicit segmentation-specific networks to obtain predictions. In
these VLM-based methods, VLM transfers its rich knowledge to the mask proposal network by
knowledge distillation or enables the semantic decoder to output segmentation masks by feature
adaptation. The key difference between RPN and existing VLM-based methods is that RPN does

1To achieve the idea, some works train the VLM from scratch using pixel-level supervision, which relies
on large-scale pixel-level pre-training. Note that we aim to employ a parameter-efficient fine-tuning method to
reduce the need for additional segmentation-specific networks and large-scale pre-training.
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not require any explicit segmentation-specific networks; it only adapts VLM to perform OVSS. Our
contributions are summarized as follows:

• We propose the Relationship Prompt Module (RPM), which generates pixel-level relation-
ship prompt to guide VLM in transforming image-level embeddings to pixel-level ones
suitable for OVSS.

• We propose the Relationship Prompt Network (RPN), employing prompt learning solely to
adapt VLM for OVSS without explicit segmentation-specific networks.

• RPN attains state-of-the-art results on four public benchmarks by optimizing about 3M
trainable parameters (2% of total parameters).

2 Related Works

Open-Vocabulary Semantic Segmentation. Open-vocabulary semantic segmentation [28, 29]
aims to leverage the knowledge from representation distributions of seen categories to classify unseen
categories. Existing methods can be divided into two types: generative and discriminative. Generative
methods [30, 31, 28, 32] require the segmentation network to be aware of which categories are unseen
during training, while discriminative methods [11, 8, 19, 33] directly transfer semantics from seen
to unseen categories, which is more straightforward. SPNet [33] introduces the zero-shot task for
the first time and proposes an end-to-end training paradigm, in which the visual embeddings are
composed with the uniform semantic word embeddings to obtain the semantic logits. ZS3Net [31]
utilizes a generative approach to project the text embeddings into visual space and generate visual
embeddings for unseen categories. Subsequently, many works following the generative method
have been proposed. STRICT [34] assumes that the pixels of unseen categories can be present
during training the model and adopts the self-training strategy to optimize the model for classifying
the unseen categories. GaCNet [30] proposes a novel context-aware feature generation method
based on ZS3Net, in which pixel-wise contextual knowledge can be utilized to guide the feature
generation process of unseen categories. CLIP-based approaches have also made great progress.
ZegFormer [11] proposes two sub-tasks, i.e., class-agnostic grouping and segment-level zero-shot
classification and presents the CLIP-based method for the first time. MaskCLIP [8] utilizes the frozen
CLIP to make a minimal adaptation by fine-tuning a lightweight classifier and replacing it with that of
the segmentation network. Zsseg [12] proposes a two-stage CLIP-based method, in which a proposal
generator is used to generate binary masks and CLIP is required to classify them. ZegCLIP [19]
presents a one-stage method in which CLIP directly transfers knowledge to a lightweight decoder.

Vision-Language Models for Vision Tasks. Vision-language models for vision tasks [5, 21–23]
are optimized with a large scale of image-text pair data on the internet. There are three categories:
contrastive, generative, and aligned objectives. CLIP [5] first proposes the paradigm of pre-trained
vision-language model. DeCLIP [35] argues that CLIP is data-intensive and proposes a data-efficient
training paradigm. UniCL [36] combines the two data sources to build a new image-text-label
field and proposes unified contrastive learning. ZeroVL [21] proposes debiased sampling to deal
with biased representation distributions and a new mixup method for the image and text models.
OTTER [22] uses optimal transport to find the soft label for contrastive learning and handle the
problem of noisy image-text pairs.

Visual Prompt Learning. Visual Prompt Learning [37–39] is a technique that assists in adapting
CLIP-like vision-language models for various visual tasks. CoOp [40] adopts trainable vectors as
word prompt to adapt CLIP for vision classification. VP [41] utilizes perturbations as visual prompt.
VPT [24] proposes trainable visual prompt to adapt each layer of the visual embeddings. UPT [38]
constructs unified prompt modeling to extract trainable visual and textual prompt for adapting CLIP.
MaPLe [39] adopts trainable prompt to guide both visual and textual embeddings and proposes a
coupling function as a bridge to build a multi-modal prompt. DenseCLIP [26] uses the contextual
information from the image to prompt the language model. Probabilistic prompt [20] applies multiple
prompt sampled from probabilistic text embeddings to better understand the image. SegPrompt [27]
proposes a category-level prompt to improve the model’s class-agnostic segmentation ability.
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Figure 3: Overview of RPN. The end-to-end architecture is delineated into four principal compo-
nents: 1) the frozen plain encoder, which adopts ViT architecture to encode visual knowledge with
relationship prompt; 2) the frozen text encoder, which adopts CLIP text encoder architecture to
encode class knowledge with text templates; 3) Relationship Prompt Module (RPM), which generates
relationship prompt to guide the plain encoder to output pixel-level semantic embeddings; 4) Linear
Projection Module (LPM), which consists of two individual linear layers to output OVSS results.

3 Approach

Overview. Our objective is to adopt prompt learning to develop a VLM-based OVSS method
without any explicit segmentation-specific networks, thereby reducing training cost. As shown in
Figure 3, the Relationship Prompt Network (RPN) is an end-to-end system comprising text, image
and image-text relationship prompt branches. In the text branch, the text encoder inputs text to yield
the class embeddings t ∈ RC×d, where C and d represent the number of classes and dimension,
respectively. In the image branch, the plain encoder inputs images to obtain the image embeddings
v ∈ R(N+1)×d, which includes the patch embeddings p ∈ RN×d and the [CLS] token g ∈ R1×d,
with N representing the number of patches. Concurrently, in the image-text relationship prompt
branch, the proposed Relationship Prompt Module (RPM) alongside the encoder takes the class and
image embeddings to generate pixel-level relationship prompt, which is subsequently concatenated
with the image embeddings to serve as the input for the next image layer. To obtain segmentation
results, the last class and image embeddings are fed into the proposed Linear Projection Module
(LPM) to calculate their Matrix product.

Relationship Prompt Module. RPM can guide the plain encoder of VLM to directly produce
pixel-level semantic embeddings suitable for OVSS, due to its acquisition of three distinct types
of knowledge. Firstly, it acquires multi-scale vision knowledge to locate objectives at distinct
scales. Secondly, its image-text relationship knowledge enables the plain encoder to learn open-
vocabulary semantics from text features. Thirdly, it introduces dynamic pixel-level knowledge, which
is adaptive for the relationship knowledge, enabling pixel-level relationship prompt learning and thus
transforming VLM’s image-level embeddings into pixel-level ones. Therefore, RPM comprises three
blocks, each dedicated to capturing one of the aforementioned knowledge types.

Figure 4: M2oE. ⊗ and ⊕ denote matrix product and addi-
tion.

It is crucial for OVSS to obtain multi-
scale image embeddings to locate
targets of different scales. How-
ever, the image embeddings main-
tain a consistent scale across each
image layer. Therefore, we pro-
pose multi-scale mixture-of-experts
(M2oE) block to aggregate the patch
embeddings across distinct scales. As
illustrated in Figure 4, M2oE com-
prises a gating network and several

4



expert networks as in [42, 43]. The gating network aims to dynamically activate different experts,
each responsible for scaling the input to various extents. M2oE of the i-th layer is formulated as
follows:

pi ← pi +

n∑
j=1

G(pi)jLinear
r→d

(Ej(p
i)) (1)

where G(·) and Ej(·) represent the gating network and the j-th expert of all n experts, respectively.
Note that the patch embeddings first reduce the dimension from d to r = 3. And Linear

r→d
(·) maps the

output of each expert back to the original dimension d. See Appendix B for more details on M2oE.

Figure 5: ITP and APG. Expand, Einsum
and Mul denote expanding class dimension,
Hadamard product and Matrix product.

It is crucial for OVSS to fuse the image embeddings
with open-vocabulary semantics of the class embed-
dings. The key is to construct the image-text rela-
tionship that bridges the class and image embeddings.
To achieve this, we propose image-to-pixel seman-
tic attention (ITP) block, which utilizes the image
embeddings and the last class embeddings to form
the relationship attention map m ∈ RN×C . As illus-
trated in Figure 5, we first calculate the Hadamard
product between the [CLS] token g and the last
class embeddings t after dimension alignment. Then,
the Matrix product between the Hadamard product
result and the patch embeddings p yields the relation-
ship attention map m. Consequently, the relationship
attention map mi of the i-th layer is formulated as
follows:

mi = pi · (t⊙ gi)⊤ (2)
Intuitively, the first Hadamard product operation assigns weights to images in a batch, with their sum
being one (the more important the image, the larger the weight), by fusing the class embeddings
used to identify different classes and the [CLS] token used to identify each image in a batch, thus
attaining image-level attention. The subsequent Matrix product operation weights the pixels, with
the sum of pixel weights normalized to one (the more important the pixel, the larger the weight), by
integrating the patch embeddings that contain pixel-level visual information, thus securing pixel-level
attention. Therefore, we refer to the training-free operation (i.e., Eq. 2) as the image-to-pixel attention
scheme, in which the first and the subsequent products extract image-level and pixel-level information,
respectively. As illustrated in Figure 1, the relationship attention map construction process from the
shallow to the deep layer demonstrates the effectiveness of the image-to-pixel attention scheme.

The construction of the adaptive image-text relationship for each pixel enables VLM to directly
output pixel-level semantic embeddings. To achieve pixel-level dynamic tuning, we propose adaptive
prompt generation (APG) block. As illustrated in Figure 5, we first initialize a trainable parameter
h ∈ RN×d, representing the dynamic pixel-level knowledge. The adaptive relationship prompt
m̄ ∈ RC×d for each pixel is then derived from the Matrix product between the dynamic pixel-level
knowledge h and the relationship attention map m. Consequently, the adaptive relationship prompt
m̄i of the i-th layer is formulated as follows:

m̄i = mi⊤ · hi (3)

The role of the dynamic pixel-level knowledge h is twofold: 1) it projects the relationship attention
map from a lower to a higher dimension to serve as an input for the plain encoder, 2) it fine-tunes the
relationship prompt for each pixel. It is the fine-tuning of the relationship prompt for each pixel in a
high-dimensional space that enables the plain encoder to directly obtain pixel-level semantics.

In addition, we integrate RPM in parallel within each layer of VLM. The image embeddings and the
last class embeddings are fed into RPM to generate the relationship prompt, which is then merged
with the image embeddings and fed into the next image layer. The prompt output from the image
layer is discarded. The processing of each image layer is formulated as follows:

[vi, _] = Layeri([vi−1, m̄i−1]) (4)

The notation [, ] represents the concatenation operation. See Appendix C for more details on RPM.
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Figure 6: Three kinds of LPMs. ⊙ and ⊗ denote element-
wise product and matrix product.

Linear Projection Module. Given
that RPM enables the plain encoder
to directly obtain pixel-level seman-
tics, LPM aims to map the last image
and class embeddings into a common
space and calculate their Matrix prod-
uct as the segmentation results. To this
end, there are three intuitive designs
as illustrated in Figure 6. All three de-
signs share a common structure, con-
sisting of an image branch and a text
branch, each equipped with a linear
layer and a normalization layer. The
image branch processing (the blue solid line) remains consistent, with the last patch embeddings p
sequentially passing through the linear layer and the normalization layer. The difference lies in the
text branch processing (the orange solid line). In LPMa (as shown in Figure 6 (a)), only the last class
embeddings t are factored into the text branch. In LPMb (as shown in Figure 6 (b)), the last class
embeddings t and the last [CLS] token g first produce the Hadamard product before entering into the
linear layer. In LPMc (as shown in Figure 6 (c)), the last class embeddings t is concatenated with the
Hadamard product result and then fed into the linear layer. Thus, the segmentation results Oa, Ob

and Oc of them are defined as follows:

Oa = Linear(p) · Linear(t)⊤ (5)

Ob = Linear(p) · Linear(t⊙ g)⊤ (6)

Oc = Linear(p) · Linear([t⊙ g, t])⊤ (7)

For simplicity, the normalization layers are omitted. We select LPMc as the proposed LPM experi-
mentally (as shown in Table 6).

Optimization. There are two types of loss functions: the cross-entropy loss with the Softmax
function and the combination loss between the focal loss and the dice loss with the Sigmoid function.
The former employs one-hot encoding to render the class distribution as mutually exclusive in the
embedding space, while the latter utilizes multi-label encoding to permit class distribution overlap.
Practically, these losses are typically selected based on the used semantic decoders, such as the
former with FPN[44] and the latter with a transformer decoder[45]. Considering that we employ
LPM (comprising just two individual linear layers) to obtain the final segmentation results without
any well-designed semantic decoders, we evaluate the aforementioned two loss functions. We refer
to the former as the Softmax loss and the latter as the Sigmoid loss. We select the Sigmoid loss
experimentally (as shown in Table 6).

The Softmax loss is formulated as follows:

Lsoftmax = −
h×w∑
k=1

yk · log ŷk (8)

where yk and ŷk are the ground truth and the prediction vectors, respectively, and h and w represent
the height and width of the input image. The Sigmoid loss is formulated as follows:

Lfocal = −
h×w∑
k=1

α · (1− ŷk)
γ · yk · log(ŷk) (9)

Ldice = 1−
2
∑h×w

k=1 ŷk · y⊤k∑h×w
k=1 ŷk · ŷ⊤k +

∑h×w
k=1 yk · y⊤k

(10)

Lsigmoid = λ1Lfocal + λ2Ldice (11)

where α, γ, λ1 and λ2 are hyperparameters. In Eq. 9, when yk equals the zero vector, yk and ŷk are
substituted with 1− yi and 1− ŷi, respectively.
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4 Experiments

We evaluate our method in both zero-shot and open-vocabulary settings. See Appendix D for more
details on the settings.

4.1 Implementation Details

Table 1: Efficiency comparison with state-of-the-art meth-
ods. #Params(M) represents the total number of trainable
parameters.

Methods #Params(M) FLOPs(G) FPS
VOC

ZegFormer [11] 60.3 1829.3 1.7
ZegCLIP [19] 13.8 110.4 9.0

RPN(ours) 3.2 84.2 10.6
COCO

ZegFormer [11] 60.3 1875.1 1.5
ZegCLIP [19] 14.6 123.9 6.7

RPN(ours) 3.2 101.3 10.2

Datasets and Evaluation Metrics.
ADE20K[46] consists of 25k images
for training and 2k images for valida-
tion. Pascal VOC 2012[47] includes
10,582 augmented training images
and 1,449 validation images. COCO-
Stuff164K[48] contains 118,287 train-
ing images and 5,000 validation im-
ages, with 171 classes in total. Pas-
cal Context[49] consists of 10,100 im-
ages, of which 4,996 are used for train-
ing and 5,104 for validation, cover-
ing 60 classes. We employ pixel-wise
classification accuracy (pAcc) and the mean of class-wise intersection over union (mIoU) for seen
classes (mIoUs), unseen classes (mIoUu), and their harmonic mean (hIoU).

Training Strategy. We conduct all experiments on eight NVIDIA GTX 3090 GPUs using the
MMSegmentation tool [50]. If not specified, we employ the pre-trained CLIP ViT-B/16 model for
both the plain encoder and the text encoder. We set the batch size of 4 for each GPU and set the
input resolution to 512× 512 pixels. The data augmentation strategy adheres to the default settings in
MMSegmentation, which includes random image resizing with a short-side range of [256, 1024] and
a crop size of 512× 512. The optimizer is AdamW, initialized with a learning rate of 2× 10−5 and a
weight decay of 1× 10−2. The learning rate follows a polynomial decay schedule with a power of
0.9. The number of iterations is set to 20K for the VOC dataset, 80K for the COCO dataset, and 40K
for the Context dataset. We set λ1 and λ2 in Eq. 11 to 100 and 1, respectively.

4.2 System Level Comparison

Efficiency Comparison. We present an efficiency comparison with state-of-the-art methods in
Table 1. The results of compared methods are derived from [19]. To ensure a fair comparison, we
report our results based on the open-source code from [19] and evaluate them with an input resolution
of 512× 512 on a single NVIDIA GTX 1080 Ti GPU. Our method outperforms the other methods in
efficiency, achieving the lowest number of trainable parameters and the smallest FLOPs.

Comparison in the Zero-Shot Setting. We show the performance comparison with the state-of-
the-art methods in the zero-shot setting in Table 2, and conduct the comparison under three scenarios:
without self-training, with self-training, and fully supervised. In the absence of self-training, our
method surpasses FreeSeg [10] with +6.0% mIoUu on the VOC dataset and +0.6% mIoUu on the
COCO dataset. With self-training, our method outperforms ZegCLIP [19] with +3.7% mIoUu on
the VOC dataset, +1.3% mIoUu on the COCO dataset, and +2.3% mIoUu on the Context dataset.
Under the fully supervised scenario, our method exceeds ZegCLIP [19] with an average of +2.0%
mIoUu across the three datasets. We attribute the modest improvement on the COCO dataset to the
bias from the extremely unbalanced training and validation set ratios (more training data and less
validation data), which contrasts with the performance on the Context dataset (less training data and
more validation data), reflecting the robust zero-shot learning ability of our method.

Comparison in the Open-Vocabulary Setting. We show the performance comparison with the
state-of-the-art methods in the open-vocabulary setting in Table 3. Our method does not require an
additional training dataset. The results indicate that no method can consistently outperform others
across all validation datasets; however, our method attains state-of-the-art performance on the A-847,
A-150 and the PAS-20 datasets. As analyzed in [53], the Context dataset and the ADE20K dataset
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Table 2: Performance comparison in the zero-shot setting (unit:%). Here, the best results are
shown in bold and the second-best results are underlined. The self-training represents applying
self-training via generating pseudo labels on all unlabeled pixels like in [19, 8]. The symbol ‘†‘
indicates pseudo labels are merely annotated on unseen classes pixels excluding the ignore part.

Methods VOC COCO Context
pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

w/o self-training
ZegFormer [11] - 86.4 63.6 73.3 - 36.6 33.2 34.8 - - - -

ZegFormer+MAFT [51] - 91.5 80.7 85.7 - 36.4 40.1 38.1 - - - -
ZSSeg [12] 90.0 83.5 72.5 77.5 60.3 39.3 36.3 37.8 - - - -

ZSSeg +MAFT [51] - 87.1 76.1 81.2 - 36.1 35.9 36.0 - - - -
ZegCLIP [19] 94.6 91.9 77.8 84.3 62.0 40.2 41.4 40.8 76.2 46.0 54.6 49.9
FreeSeg [10] - 91.9 78.6 84.7 - 42.4 42.2 42.3 - - - -
RPN(ours) 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8 76.4 47.7 58.7 52.6

w/ self-training
ZegCLIP [19] 95.1 91.8 82.2 86.7 68.8 40.6 54.8 46.6 77.2 46.6 65.4 54.4

MaskCLIP† [8] - 88.8 86.1 87.4 - 38.1 54.7 45.0 - 44.4 66.7 53.3
ZegCLIP† [19] 96.2 92.3 89.9 91.1 69.2 40.7 59.9 48.5 77.3 46.8 68.5 55.6

RPN†(ours) 97.1 93.1 93.6 93.3 69.3 40.6 61.2 48.8 78.3 48.1 70.8 57.3
fully supervised

ZegCLIP [19] 96.3 92.4 90.9 91.6 69.9 40.7 63.2 49.6 77.5 46.5 78.7 56.9
RPN(ours) 97.2 94.0 94.6 94.3 70.8 41.1 64.1 50.5 78.7 48.5 80.1 60.4

Table 3: Performance comparison in the open-vocabulary setting (unit:%). Here, the best results
are shown in bold and the second-best results are underlined.

Methods VLM Training Set A-847 PC-459 A-150 PC-59 PAS-20
OVSeg [14] ViT-B/16 COCO-Stuff+COCO Caption 7.1 11.0 24.8 53.3 92.6
CAT-Seg[52] ViT-B/16 COCO-Stuff 8.4 16.6 27.2 57.5 93.7

SAN[53] ViT-B/16 COCO-Stuff 10.1 12.6 27.5 53.8 94.0
SED[54] ConvNeXt-B COCO-Stuff 11.4 18.6 31.6 57.3 94.4

RPN(ours) ViT-B/16 COCO-Stuff 11.4 17.3 31.5 57.1 95.2
OVSeg [14] ViT-L/14 COCO-Stuff+COCO Caption 9.0 12.4 29.6 55.7 94.5
CAT-Seg[52] ViT-L/14 COCO-Stuff 10.8 20.4 31.5 62.0 96.6

SAN[53] ViT-L/14 COCO-Stuff 13.7 17.1 33.3 60.2 95.5
FC-CLIP[55] ConvNeXt-L COCO Panoptic 14.8 18.2 34.1 58.4 95.4

SED[54] ConvNeXt-L COCO-Stuff 13.9 22.6 35.2 60.6 96.1
RPN(ours) ViT-L/14 COCO-Stuff 14.9 22.1 36.4 61.9 96.6

exhibit the highest and lowest label-set similarities with the training dataset, respectively. Therefore,
our method showcases a more comprehensive open-vocabulary learning ability.

4.3 Ablation Study

We conduct the ablation experiments on the VOC and the COCO datasets. If not specified, most are
conducted on the VOC dataset. See Appendix D for more details on the experiments.

Image-to-Pixel Attention Scheme. RPM aims to transform image-level embeddings from VLM
into pixel-level semantic embeddings, enabling direct OVSS. To illuminate its functionality, we
employ the Mean Attention Distance (MAD) [56, 57] as a metric, reflecting the granularity of
information aggregated within the self-attention head. As illustrated in Figure 7, we analyze MAD of
each self-attention head during the initial and advanced stages of training. A higher point indicates a
larger receptive field, and greater point spacing signifies richer feature diversity. In the initial training
phase, shallow and deep layer information exhibit marked differences: the former concentrates on the
local field with fine granularity and high diversity, while the latter focuses on the global field with
coarse granularity and limited diversity. During training with RPM, deep layer information maintains
attention on both local and global fields without sacrificing granularity or diversity. Clearly, deep layer
information, augmented with relationship prompt learning, is more suitable for pixel-level semantic
segmentation tasks, thereby diminishing the need for additional segmentation-specific networks. In
addition, we visualize the relationship attention map in Figure 1. The first line denote the relationship
attention maps for seen classes across each layer; the last two lines for unseen classes. For seen
classes, the model has prior pixel-level semantic, so the relationship attention map only needs to focus
on a few pixels to guide the model to make predictions for these pixels (e.g., the relationship attention
map for airplane has fewer highlighted areas). For unseen classes, the model lacks corresponding
semantic, so the relationship attention map needs to focus on more pixels to provide the model with
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Figure 7: Mean Attention Distance of each self-attention head.

Table 4: Impact of different modules (unit:%). Methods without LPM represent eliminating the
linear layers in LPM, i.e., discarding Linear(·) in Eq.7.

RPM LPM VOC COCO
w/ M2oE w/o M2oE pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

77.1 76.3 14.3 24.1 48.3 31.8 16.4 21.6
✓ 94.7 92.1 81.2 86.3 63.3 39.2 40.3 39.7

✓ 95.1 92.4 81.7 86.7 63.7 39.5 40.3 39.9
✓ 88.8 87.3 45.3 59.6 49.3 31.3 20.3 24.6

✓ ✓ 95.6 92.9 83.4 87.9 64.1 39.7 41.6 40.6
✓ ✓ 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8

more sufficient pixel-level semantic (e.g., the relationship attention map for sheep highlights the
complete semantic at shallow layers).

Impact of Different Modules. Table 4 shows the impact of various modules. RPM (the first
line) denotes the combination of M2oE, ITP and APG. RPM without M2oE (the second line)
denotes the ablation about APG and ITP. Utilizing RPM and LPM yields the best performance. The
performance improvement attributed to RPM (+62.6%) is significantly greater than that of LPM
(+35.5%). Furthermore, integrating LPM on top of RPM yields a modest performance gain of 1.9%.
In contrast, incorporating RPM based on LPM results in a substantial 29% improvement. Therefore,
we conclude that VLM with relationship prompt learning is enough for OVSS without any explicit
segmentation-specific networks.

Table 5: Ablation study on different designs in RPM
(unit:%).

ITP

Attention pAcc mIoUs mIoUu hIoU

w/o image-level 73.1 74.2 21.4 33.2
w/o pixel-level 87.7 77.6 68.1 72.5

w/ both 95.8 93.1 84.6 88.6

APG

Modes pAcc mIoUs mIoUu hIoU

nn.Linear 95.1 92.1 80.6 86.0
nn.Parameter 95.8 93.1 84.6 88.6

M2oE

Dimension pAcc mIoUs mIoUu hIoU

r = 3 95.8 93.1 84.6 88.6
r = 6 95.8 93.4 84.5 88.7
r = 12 95.9 93.8 84.3 88.8

Modes pAcc mIoUs mIoUu hIoU

Multi-Scale 94.9 92.8 84.1 88.2
M2oE 95.8 93.1 84.6 88.6

Exploration of Different Designs
in RPM. Firstly, we explore vari-
ous designs of the ITP block. As
discussed in Section 3, removing
the patch embeddings, which contain
pixel-level visual information, results
in a loss of pixel-level attention for
ITP. Conversely, omitting the [CLS]
token, responsible for identifying each
image, results in a loss of image-
level attention. To assess the sig-
nificance of the image-to-pixel atten-
tion scheme, we define the ‘without
pixel-level attention’ and the ‘without
image-level attention’ scenarios by ex-
cluding the patch embeddings pi and
the [CLS] token gi from Eq. 2, re-
spectively. Note that employing the
‘without pixel-level attention’ scenario
necessitates altering the dimension of
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the trainable parameter hi from RN×d to Rd×d. The results presented in Table 5 (ITP) corroborate
the efficacy of the image-to-pixel attention scheme. Secondly, we explore different configurations of
the APG block and evaluate two distinct trainable modes: nn.Linear and nn.Parameter. The outcomes
in Table 5 (APG) advocate for the implementation of the nn.Parameter mode. Thirdly, we explore the
dimension r of M2oE and different multi-scale aggregation modes in Table 5 (M2oE). The results
show that performance enhancements are marginal with increasing dimensions. Given the trade-off
between performance gain and parameter increase, we adopt r = 3. The ‘Multi-Scale’ mode refers to
removing the gating network and directly aggregating the features processed by all expert networks
(See Appendix B for more details).

Table 6: Ablation study on three different LPMs using
Softmax and Sigmoid losses (unit:%).

LPMa LPMb LPMc pAcc mIoUs mIoUu hIoU
Using Softmax loss

✓ 70.6 67.3 19.6 30.3
✓ 89.4 88.6 55.5 68.2

✓ 90.4 89.5 59.3 71.4
Using Sigmoid loss

✓ 87.5 84.6 61.4 71.2
✓ 95.3 93.1 83.6 88.1

✓ 95.8 93.1 84.6 88.6

Exploration of Different Designs in
LPM. We evaluate three different
LPM designs (shown in Figure 6)
using Softmax and Sigmoid losses.
The results in Table 6 reveal that
LPMc with Sigmoid loss is the most
effective strategy. In addition, using
Sigmoid loss is significantly better
than using Softmax loss. This reflects
that the relationship prompt does not
directly focus on pixels, but follows
the image-to-pixel process.

Table 7: Ablation study on three different training-free
projection modules (unit:%).

TFPMa TFPMb TFPMc pAcc mIoUs mIoUu hIoU
✓ 86.8 83.5 58.7 68.9

✓ 94.5 92.4 77.6 84.4
✓ 95.1 92.4 81.7 86.7

Impact of Training-Free Projec-
tion Modules. Note that our method
comprises two trainable modules:
RPM and LPM. To further explore the
performance of RPM, we eliminate
all linear layers in LPM to construct
three variants of training-free projec-
tion networks. Following the sequence depicted in Figure 6, we denote the training-free projection
modules as TFPMa, TFPMb and TFPMc. The results in Table 7 demonstrate that both TFPMb and
TFPMc can achieve the state-of-the-art performance. The suboptimal results with TFPMa suggests
that the relationship prompt guides the plain encoder to perform pixel-level classifications by encoding
semantics in the [CLS] token, which should not be disregarded when obtaining segmentation results.

5 Conclusion

In this work, we propose the Relationship Prompt Module (RPM) to guide VLM to transform its
image-level embeddings into pixel-level semantic ones. RPM and VLM combine to form Relationship
Prompt Network (RPN), a VLM-based OVSS method that directly performs OVSS without any
explicit segmentation-specific networks. To the best of our knowledge, we are the first to give a
straightforward solution for OVSS that applies prompt learning solely to VLM. We evaluate our
method on four public benchmark datasets in both zero-shot and open-vocabulary settings, and
achieve the state-of-the-art performance with only about 3M trainable parameters (2% of total
parameters). Therefore, it is concluded that VLM with relationship prompt learning is enough for
open-vocabulary semantic segmentation without any explicit segmentation-specific networks.

Limitations. Although we meticulously design an effective prompt learning method for directly
using VLM to achieve pixel-level OVSS, there are several ways for prompt learning to achieve further
improvement: 1) directly acting on the attention map (more direct); 2) dynamically reorganizing
multi-head attention map (more lightweight).
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Appendix

A Our Structure vs Existing Structures

We show the comparison of our method and the existing VLM-based methods in Figure 8. In our
method, we abandon the explicit segmentation-specific networks, i.e., the mask proposal network and
the semantic decoder and guide VLM to directly output the segmentation results. In existing VLM-
based methods, the entire OVSS framework consists of VLM, the mask proposal network and the
semantic decoder, incurring extensive training cost. As illustrated in Section 1, the two-stage methods
usually adopt knowledge distillation to transfer zero-shot learning ability to the segmentation-specific
network, and the one-stage methods utilize feature adaptation to train the semantic decoder. In
summary, prompt learning acts as the engine to drive VLM to directly achieve OVSS in our method.
Conversely, in the existing VLM-based methods, VLM acts as the engine to drive the segmentation-
specific network to indirectly achieve OVSS. Therefore, our method is more straightforward and
more parameter-efficient.

Figure 8: Our method vs existing VLM-based methods. Figure 9: Multi-Scale.

B M2oE

Details The role of the gating network is to select the right expert for each sample in a batch. Thus,
we need to calculate the gating scores G(x) ∈ RB×n, i.e., the scores for B samples in a batch to
n experts. For simplicity, let the input, i.e., the patch embeddings p, be denoted by x ∈ RB×N×d,
where N = h× w. The input x is first directed into a common linear to reduce the dimension d to r,
and then is reshaped to the size of RB×r after global average pooling (as Eq. 12). Like in [42, 43],
the value H(x) ∈ RB×n is calculated as follows:

xa = Reshape(AvgPool(Linear
d→r

(x)), (B, r)) (12)

H(x) = (xa ·Wg) + StandardNormal() · Softplus(xa ·Wnoise) (13)
where Wg ∈ Rr×n and Wnoise ∈ Rr×n represent the trainable gating weight and the noise term,
respectively. We select only the top k values on H(x) and set the rest to −∞. After ‘Softmax’
operation, the gating scores G(x) can be calculated as follows:

G(x) = Softmax(KeepTopK(H(x), k)) (14)

The role of the experts is to extract feature with multi-scale, which consist of Interpolate operation
at a specific scale, DWConv3×3 and Upsample operation to map the feature to the original scale.
Let i-th expert be Ei with scale si =

1
2i−1 , where i = 1, 2, 3, 4. The expert Ei processes the input x

as follows:
Ei(x) = UpSample(DWConv3×3(Interpolate(Linear

d→r
(x), si))) (15)

Finally, we obtain the output according to Eq. 1.

Multi-Scale An intuitive alternative is applying a multi-scale strategy, which utilizes n branches to
extract features with different scales. The structural difference with M2oE is its lack of the gating
network, as illustrated in Figure 9. The absence brings a higher parameter consumption, due to the
fact that the gating network helps selectively activate sparse experts.
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Figure 10: Relationship prompt. (a) LoRA. (b) VLM LoRA in a common-bypass mode. (c) VLM
relationship prompt tuning. (d) Details of A and B. Note that A and B refer to ours IPT and APG.

C Motivation behind the design of RPM

The motivation behind the design of RPM is inspired by LoRA [58]. As illustrated in Figure 10
(a), considering that the main components of large models lie in a low intrinsic dimension, LoRA
introduces dimensionality reduction matrix A and dimensionality enhancement matrix B into the
bypass to fit the frozen weights. This approach enables fine-tuning the model with minimal training
costs, thereby improving performance for specific tasks without changing the original parameters.
Given that VLM has two branches to process image and text data, we initially adopt a common-bypass
mode as shown in Figure 10 (b). The distinction between LoRA and VLM LoRA lies in the fact that
matrix A in VLM LoRA accepts two types of modal inputs and it is training-free. It is important to
note that we do not connect the output of matrix B with the embeddings from the text module for two
reasons: their dimensions do not match and the relationship attention map from matrix A performs
more effectively as a visual prompt rather than a textual prompt, as illustrated in Figure 1. However,
the performance of implementing VLM LoRA was suboptimal. We discovered that a direct skip
connection with the output of the current image weights that bypasses matrices A and B, achieves
the same effect. Our analysis suggests that merely tuning the lightweight matrix B in a post-tuning
model is found to be insufficient for adapting parameter-intensive weights. Consequently, we propose
a prefix-tuning architecture as illustrated in Figure 10 (c). We position the two matrices between
the preceding and current weights and established a skip connection with the original output of the
preceding image weights rather than the current image weights. This circumvents the need to fit
the parameter-intensive image weights. In light of this prefix-tuning architecture, we categorize this
model into the category of prompt learning rather than adaptation, and thereby naming it relationship
prompt learning. In addition, we consider three operations between the output of the preceding image
weights and the output of matrix B: concatenation, addition, and Hadamard product. Following a
quantitative analysis (shown in Table 14), we select the concatenation operation.

D More Details about Experiments

Zero-Shot Semantic Segmentation Setting We adopt the popular zero-shot setting as follows
in[13, 9, 4, 3, 1, 31]. In the setting, we divide all classes into seen and unseen, only the seen classes
are used in training. For the VOC dataset, we select 15 seen classes and 5 unseen classes, with the
‘background’ class excluded. For the COCO dataset, we divide all classes into 156 seen classes and
15 unseen classes. For the Context dataset, we select 50 seen classes (including ‘background’) and 10
unseen classes. These unseen classes are defined as follows:

Dataset Unseen Classes
VOC pottedplant, sheep, sofa, train, tvmonitor

COCO cow, giraffe, suitcase, frisbee, skateboard carrot, scissors, cardboard, clouds,
grass playingfield, river, road, tree, wall concrete

Context cow, motorbike, sofa, cat, boat, fence bird, tv monitor, keyboard, aeroplane

Open-Vocabulary Semantic Segmentation Setting We employ the open-vocabulary setting as
follows in[14, 12, 51, 53]. In this setting, we train our model on the COCO dataset and evaluate it on
other datasets, including the VOC dataset with 20 classes (PAS-20), the Context dataset with 59 and
459 classes (PC-59 and PC-459), the ADE20K dataset with 150 and 847 classes (A-150 and A-847).
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Text Prompt Templates For the VOC dataset, we apply a single template ‘A photo of a {}’. For
the Context and COCO dataset, we apply multiple templates as follows:

‘A photo of a {}.’ ; ‘A photo of a small {}.’ ; ‘A photo of a medium {}.’ ; ‘A photo of a large {}.’
‘This is a photo of a {}.’ ; ‘This is a photo of a small {}.’ ; ‘This is a photo of a medium {}.’ ; ‘This is a photo of a large {}.’

‘A {} in the scene.’ ; ‘A photo of a {} in the scene.’
‘There is a {} in the scene.’ ; ‘There is the {} in the scene.’

‘This is a {} in the scene.’ ; ‘This is the {} in the scene.’ ; ‘This is one {} in the scene.’

Full Experiment Results We show the full performance comparison of existing methods in the
zero-shot and open-vocabulary semantic segmentation settings in Table 8 and Table 9.

Comparison with PEFT Methods We explore some parameter-efficient fine-tuning (PEFT) meth-
ods with baseline (i.e., the CLIP with LPM): 1) fine-tuning entire baseline; 2) only fine-tuning
LPM; 3) BitFit [70], a sparse-fine-tuning method where only the bias-terms of the model (or a
subset of them) are modified; 4) Adapter [71], which inserts a trainable adapter module between
the transformer layers. 5) VPT [24], which inserts trainable tokens to the input feature of each
transformer layer; 6) LST [72], which trains a ladder-side network, a small and separate network that
takes intermediate activations as input via shortcut connections (called ladders) from the backbone
networks and makes predictions. 7) SSF [73], which trains scale and shift parameters to modulate
the visual features. 8) LoRA [58], which inserts a trainable dimensionality reduction matrix and a
dimensionality enhancement matrix in parallel to the frozen weights. As illustrated in Table 10, our
method shows significant improvements compared to PEFT methods. This is attributed to the fact
that these PEFT methods only focus on how to train the baseline with fewer parameters, suitable only
for image-level feature representation tasks, while our method not only trains the baseline with fewer
parameters, but also focuses on applying capabilities suitable for image-level feature representation
tasks directly to pixel-level semantic segmentation tasks. In summary, existing PEFT methods mainly
focus on fine-tuning the task-specific model to improve performance on that task, while our method
enables VLM to directly perform semantic segmentation.

Combination with VPT We explore the combination of our method and VPT in Table 11. When
using VPT alone and in combination with our method, the number of trainable tokens in each layer is
400 and 40 respectively. Considering the impact of parameter initialization in VPT, the performance
change after the combination is negligible.

Table 8: Full performance comparison in the zero-shot setting (unit:%). Here, the best results are
shown in bold and the second-best results are underlined.

Methods VOC COCO Context
pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

w/o self-training
SPNet [33] - 78.0 15.6 26.1 - 35.2 8.7 14.0 - - - -

ZS3Net [31] - 77.3 17.7 28.7 - 34.7 9.5 15.0 52.8 20.8 12.7 15.8
CaGNet [30] 80.7 78.4 26.6 39.7 56.6 33.5 12.2 18.2 - 24.1 18.5 21.2
SIGN [28] - 75.4 28.9 41.7 - 32.3 15.5 20.9 - - - -
Joint [29] - 77.7 32.5 45.9 - - - - - 33.0 14.9 20.5

ZegFormer [11] - 86.4 63.6 73.3 - 36.6 33.2 34.8 - - - -
ZegFormer+MAFT [51] - 91.5 80.7 85.7 - 36.4 40.1 38.1 - - - -

ZSSeg [12] 90.0 83.5 72.5 77.5 60.3 39.3 36.3 37.8 - - - -
ZSSeg +MAFT [51] - 87.1 76.1 81.2 - 36.1 35.9 36.0 - - - -

ZegCLIP [19] 94.6 91.9 77.8 84.3 62.0 40.2 41.4 40.8 76.2 46.0 54.6 49.9
FreeSeg [10] - 91.9 78.6 84.7 - 42.4 42.2 42.3 - - - -
RPN(ours) 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8 76.4 47.7 58.7 52.6

w/ self-training
SPNet [33] - 77.8 25.8 38.8 - 34.6 26.9 30.3 - - - -

ZS5Net [31] - 78.0 21.2 33.3 - 34.9 10.6 16.2 49.5 27.0 20.7 23.4
CaGNet [30] 81.6 78.6 30.3 43.7 56.8 35.6 13.4 19.5 - - - -
STRICT [34] - 82.7 35.6 49.8 - 35.3 30.3 34.8 - - - -
DiffMask [32] - 71.4 65.0 68.1 - - - - - - - -

ZSSeg [12] 88.7 79.2 78.1 79.3 63.8 39.6 43.6 41.5 - - - -
ZegCLIP [19] 95.1 91.8 82.2 86.7 68.8 40.6 54.8 46.6 77.2 46.6 65.4 54.4

MaskCLIP† [8] - 88.8 86.1 87.4 - 38.1 54.7 45.0 - 44.4 66.7 53.3
ZegCLIP† [19] 96.2 92.3 89.9 91.1 69.2 40.7 59.9 48.5 77.3 46.8 68.5 55.6

RPN†(ours) 97.1 93.1 93.6 93.3 69.3 40.6 61.2 48.8 78.3 48.1 70.8 57.3
fully supervised

ZegCLIP [19] 96.3 92.4 90.9 91.6 69.9 40.7 63.2 49.6 77.5 46.5 78.7 56.9
RPN(ours) 97.2 94.0 94.6 94.3 70.8 41.1 64.1 50.5 78.7 48.5 80.1 60.4
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Table 9: Full performance comparison in the open-vocabulary setting (unit:%). Here, the best
results are shown in bold and the second-best results are underlined.

Methods VLM Training Set A-847 PC-459 A-150 PC-59 PAS-20
SPNet [33] - VOC - - - 24.3 18.3
ZS3Net[31] - VOC - - - 19.4 38.3

LSeg[59] ViT-B/32 VOC-15 - - - - 47.4
LSeg+[60] ALIGN COCO-Stuff 2.5 5.2 13.0 36.0 -

Han et al.[61] ViT-B/16 COCO Panoptic [62] 3.5 7.1 18.8 45.2 83.2
GroupViT[63] ViT-S/16 GCC[64]+YFCC[65] 4.3 4.9 10.6 25.9 50.7
ZegFormer[11] ViT-B/16 COCO-Stuff 5.6 10.4 18.0 45.5 89.5
OpenSeg [60] ALIGN COCO Panoptic+Loc. Narr.[66] 4.4 7.9 17.5 40.1 -
FreeSeg [10] - COCO-Stuff 7.1 6.4 17.9 34.4 85.6

FreeSeg+MAFT [51] - COCO-Stuff 10.1 12.8 29.1 53.5 90.0
OVSeg [14] ViT-B/16 COCO-Stuff+COCO Caption 7.1 11.0 24.8 53.3 92.6
CAT-Seg[52] ViT-B/16 COCO-Stuff 8.4 16.6 27.2 57.5 93.7

SAN[53] ViT-B/16 COCO-Stuff 10.1 12.6 27.5 53.8 94.0
SED[54] ConvNeXt-B COCO-Stuff 11.4 18.6 31.6 57.3 94.4

RPN(ours) ViT-B/16 COCO-Stuff 11.4 17.3 31.5 57.1 95.2
LSeg[59] ViT-B/32 VOC-15 - - - - 52.3

OpenSeg [60] ALIGN COCO Panoptic+Loc. Narr. 8.1 11.5 26.4 44.8 -
OVSeg [14] ViT-L/14 COCO-Stuff+COCO Caption 9.0 12.4 29.6 55.7 94.5

Ding et al.[67] ViT-L/14 COCO Panoptic 8.2 10.0 23.7 45.9 -
ODISE[68] ViT-L/14 COCO Panoptic 11.1 14.5 29.9 57.3 -
HIPIE[69] BERT-B COCO Panoptic - - 29.0 59.3 -

CAT-Seg[52] ViT-L/14 COCO-Stuff 10.8 20.4 31.5 62.0 96.6
SAN[53] ViT-L/14 COCO-Stuff 13.7 17.1 33.3 60.2 95.5

FC-CLIP[55] ConvNeXt-L COCO Panoptic 14.8 18.2 34.1 58.4 95.4
SED[54] ConvNeXt-L COCO-Stuff 13.9 22.6 35.2 60.6 96.1

RPN(ours) ViT-L/14 COCO-Stuff 14.9 22.1 36.4 61.9 96.6

Table 10: Performance comparison with PEFT methods (unit:%). Baseline represents the CLIP
model with LPM. #Params(M) represents the number of trainable parameters during training.

Methods #Params(M) VOC COCO
pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

Baseline 154.5 84.1 83.5 31.2 45.4 47.8 30.1 19.6 23.7
LPM-only 0.8 88.8 87.3 45.3 59.6 49.3 31.3 20.3 24.6
BitFit[70] 4.0 89.7 79.3 51.2 62.2 50.6 35.6 23.3 28.2

Adapter[71] 3.9 90.3 79.7 51.6 62.6 51.4 36.0 24.1 28.9
VPT[24] 4.0 90.9 81.0 52.9 64.0 51.9 37.5 25.9 30.6
LST[72] 11.5 88.6 78.7 50.4 61.4 50.1 34.8 22.6 27.4
SSF[73] 4.4 90.8 80.8 52.7 63.8 51.7 37.3 25.6 30.4

LoRA[58] 4.0 91.3 82.2 53.1 64.5 52.9 38.7 27.0 31.8
RPN(ours) 3.2 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8

Table 11: Performance of combining our method and VPT (unit:%). #Params(M) represents the
number of trainable parameters during training.

Methods #Params(M) VOC COCO
pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

VPT[24] 4.0 90.9 81.0 52.9 64.0 51.9 37.5 25.9 30.6
RPN(ours) 3.2 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8
RPN+VPT 3.6 95.8 93.1 84.2 88.4 64.4 40.3 43.1 41.7

Table 12: Impact of different pre-trained weights for the plain encoder (unit:%).

Weights VOC COCO
pAcc mIoUs mIoUu hIoU pAcc mIoUs mIoUu hIoU

ViT[56] 85.9 81.0 42.9 56.1 46.7 29.3 19.9 23.7
MAE[74] 87.1 82.4 43.7 57.1 48.2 30.8 21.5 25.3
CLIP[5] 95.8 93.1 84.6 88.6 64.4 40.8 42.8 41.8
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Table 13: Impact of RPM in different layers (unit:%). ‘Number’ represent the number of layer at
which RPM is applied. Note that ‘all’ do not include the last layer.

Datasets Number pAcc mIoUs mIoUu hIoU

VOC

1 93.1 88.4 74.1 80.6
11 92.8 88.7 70.3 78.4

{1,3,5,7,9,11} 93.9 89.4 80.9 84.9
{2,4,6,8,10} 93.9 89.1 80.1 84.4

all 95.8 93.1 84.6 88.6

COCO

1 60.2 39.8 35.8 37.7
11 60.1 39.4 33.6 36.3

{1,3,5,7,9,11} 61.9 40.2 38.5 39.3
{2,4,6,8,10} 61.9 40.1 38.4 39.2

all 64.4 40.8 42.8 41.8

Table 14: Ablation study on three kinds of prefix-tuning operations (unit:%).
Datasets Mul Add Cat pAcc mIoUs mIoUu hIoU

VOC
✓ 88.8 87.3 45.3 59.6

✓ 90.3 83.2 69.5 75.7
✓ 95.8 93.1 84.6 88.6

COCO
✓ 49.3 31.3 20.3 24.6

✓ 56.8 36.6 25.7 30.2
✓ 64.4 40.8 42.8 41.8

Impact of Different Pre-trained Weights for the Plain Encoder We explore different pre-trained
weights of the plain encoder in Table 12. These weights are from supervised learning, unsupervised
learning and weakly-supervised learning of text signals. ViT [56] applies supervised learning to
learn visual representation. MAE [74] applies self-supervised learning to learn rich semantics. The
two methods learn uni-modal knowledge. CLIP[5] applies text as a supervisory signal and adopts
contrastive learning to learn general visual representation. It is a multi-modal learning method. The
results show that our method has limitations in mining uni-modal visual knowledge. In addition,
compared to ViT and MAE, CLIP uses more data to pre-train the plain encoder. This also shows that
even though our method is superior, it still cannot get rid of the dependence on a large amount of data.

Impact of RPM in Different Layers We adopt a layer-by-layer guidance mode (i.e., all) as shown
in Table 13. Our method is evaluated across various network depths, including shallow layers, deep
layers, and interval layer mode. We find that the performance of single-layer mode (such as layers 1
or 11) are significantly worse than those of multi-layer modes. The layer-by-layer mode demonstrates
optimal performance on both the VOC and COCO datasets.

Impact of Different Prefix-tuning Operations We compare three prefix-tuning operations as
shown in Figure 10 (c): concatenation, addition, and Hadamard product. Results from Table 14
indicate that the relationship prompt should not directly modify the original feature (like addition
or Hadamard product), but rather should influence the model indirectly by computing the attention
between the prompt and the original feature (like concatenation).

E Visualization

Baseline represents the frozen CLIP model with LPM.
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(a) Image (b) Ground truth (c) Ours (d) Baseline

Figure 11: Qualitative analysis. The unseen classes include tree , frisbee , grass and road .
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(a) Image (b) Ground truth (c) Ours (d) Baseline

Figure 12: Qualitative analysis. The unseen classes include tree , clouds , skateboard ,
playingfield , wall-concrete , grass and road .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize our contributions and scope in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We show that even if our method is superior, it still cannot get rid of the
dependence on a large amount of data in Appnedix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of our settings in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide an anonymous URL in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of our settings in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide theses information in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper belongs to foundational research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper belongs to foundational research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly credited and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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