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ABSTRACT

While deep learning through empirical risk minimization (ERM) has succeeded at
achieving human-level performance at a variety of complex tasks, ERM generalizes
poorly to distribution shift. This is partly explained by overfitting to spurious fea-
tures such as background in images or named entities in natural language. Synthetic
data augmentation followed by empirical risk minimization (DA-ERM) is a simple
and widely used solution to remedy this problem. In addition, consistency regular-
ization could be applied to further promote model performance to be consistent
on the augmented sample and the original one. In this paper, we propose data
augmented invariant regularization (DAIR), a simple form of consistency regular-
ization that is applied directly on the loss function rather than intermediate features.
Through extensive empirical experiments, we show that DAIR consistently per-
forms well in a variety of settings. We apply DAIR to multiple real-world learning
problems, namely robust regression, visual question answering, robust deep neural
network training, and neural task-oriented dialog modeling. Our experiments show
that DAIR consistently outperforms ERM and DA-ERM with little marginal cost
and sets new state-of-the-art results in several benchmarks.

1 INTRODUCTION

Deep neural networks are widely used in various applications ranging from computer vision to
language processing. While deep learning has surpassed human-level performance in numerous tasks,
neural networks are extremely vulnerable to overfitting to spurious correlations and therefore fail
to generalize even under slight perturbations of the test distribution (Arjovsky et al., 2019). This
observation motivated the research community to tackle the problem of domain generalization (see
(Ribeiro et al., 2020) for a detailed literature review). Recent benchmark datasets, such as Rotated
MNIST (Arjovsky et al., 2019), Colored MNIST (Arjovsky et al., 2019), PACS (Li et al., 2017),
VLCS (Fang et al., 2013), Office-Home (Venkateswara et al., 2017), Terra Incognita (Beery et al.,
2018) and DomainNet (Peng et al., 2019), have shown difficulties for the generalization of deep
neural network models under distribution shifts, and have sparked invention of many new algorithmic
frameworks to address domain generalization.

A standard approach for improving out-of-distribution performance is to guarantee that learned
models are invariant to certain transformations. For example, trained models for computer vision
should generally be invariant to rotations, changes in color, or background.

Geometric deep learning bakes such invariances into the neural network architecture. For example,
convolutional layers (Lecun et al., 1998) are fundamentally preserving translations. There are other
specifically designed networks to maintain invariances: Zaheer et al. (2017) studied the problem
of designing models for machine learning tasks defined on sets and characterized the permutation
invariant functions. Bloem-Reddy & Teh (2020) obtained generative functional representations of
probability distributions that are invariant under the action of a compact group. Finzi et al. (2021)
provided an algorithm for solving for the equivariant layers of matrix groups.

Data augmentation promotes invariances in models by curating synthetic examples that exhibit the
desired invariances. Tensmeyer & Martinez (2016) showed simple image transformations affect the
CNN representations. Mixup (Zhang et al., 2017), CutMix (Yun et al., 2019) and Cutout (DeVries
& Taylor, 2017) showed linear combination and random blocking features improves generalization
of state-of-the-art neural network architectures. Volpi et al. (2018); Zhou et al. (2020) showed data
augmentation with adversarial images could make the label classifier more robust to unknown domain
shifts. Cubuk et al. (2018); Lim et al. (2019) introduced a procedure which automatically searches for
improved data augmentation policies. Zhou et al. (2020) showed data augmentation with adversarial
images could make the label classifier more robust to unknown domain shifts. Nam et al. (2021)
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improved domain generalization by reducing the intrinsic style bias of CNNs through training a
separate network for randomizing the style of images and generating augmented data during training.

Consistency regularization can be further applied on top of data augmentation to enhance invari-
ance by enforcing similarities on the model. Engstrom et al. (2018); Kannan et al. (2018); Zhang
et al. (2019) utilized consistency regularization to train robust neural networks against adversarial
attacks. This has been applied to unsupervised learning (Sinha & Dieng, 2021), self-supervised
learning (Chen et al., 2020; von Kügelgen et al., 2021), and semi-supervised learning to exploit
unlabeled data (Bachman et al., 2014; Laine & Aila, 2016; Sohn et al., 2020; Xie et al., 2020).

Besides the directions mentioned above, researchers have proposed numerous algorithmic solutions
to impose invariance and improve domain generalization such as DANN (Ganin et al., 2016),
IRM (Ghifary et al., 2015), DRO (Sagawa et al., 2019), MLDG (Li et al., 2018a), CORAL (Sun
& Saenko, 2016), MMD (Li et al., 2018b) and CDANN (Li et al., 2018c) and REx (Krueger et al.,
2021). The approaches listed above are more complex than simple training mechanisms such as
empirical risk minimization (ERM) and hence they cannot be readily applied to involved tasks with
non-trivial model architectures. For example, in generative language models imposing a constraint
on the intermediate data representations is non-trivial, which is required by CORAL (Sun & Saenko,
2016). Recently, Gulrajani & Lopez-Paz (2020) demonstrated that ERM may even outperform many
such complex methods in real-world scenarios, while ERM itself is known to generalizes poorly to
distribution shift. For example, in learning neural dialog models, Qian et al. (2021) showed up to
29% performance drop due to the memorization of named entities. Ribeiro et al. (2020) showed that
both commercial and state-of-art language models fail on up to 76.4% of the generalization tests.

In this paper, we propose a consistency regularization technique, called data augmented invariant
regularization (DAIR). DAIR is applicable when data augmentation results in pairs of data samples
expecting consistent performance, it specifically penalizes the inconsistency of loss on augmented
samples with respect to the original ones. This is in contrast to many feature consistency regularizers
that apply on an intermediate embedding space. As a result, DAIR only requires marginal additional
cost on top of data augmentation, and is simple and broadly applicable to a wide host of supervised
and unsupervised learning tasks, including generative models. We introduce the DAIR formulation,
motivate it, and theoretically prove some of its properties in Section 2. We empirically evaluate
DAIR on a variety of problem setups ranging from defense against adversarial attacks to domain
generalization in the presence of environment shift in Section 3, where our experimental results show
that DAIR is competitive with or even outperforms state-of-the-art algorithms specifically designed
for imposing invariance in these problems.

2 DAIR: DATA AUGMENTED INVARIANT REGULARIZATION

For a data sample z = (x, y), let ℓ(z; θ) be its parametric loss function, where θ is the set of model
parameters (e.g., network weights). The popular Empirical Risk Minimization (ERM) framework
trains the model by minimizing the expected value of the following loss over the training data:

fERM(z; θ) = ℓ(z; θ). (ERM)

We assume that we have access to a (potentially randomized) data augmenter function A(·). Examples
for A include (random) rotation, change of background, or change of entity names. Such augmenters
aim at capturing the transformations against which we wish to be invariant to. Given a sample z,
let z̃ = (x̃, ỹ) = A(z) denote an augmented sample. Previous work has used both original and
augmented examples during training, which leads to the following standard objective function, called
Data Augmented Empirical Risk Minimization (DA-ERM):

fDA-ERM(z, z̃; θ) =
1

2
ℓ(z; θ) +

1

2
ℓ(z̃; θ). (DA-ERM)

While DA-ERM has been successful in many applications, one natural question is whether we can
further improve upon it using the knowledge that the performance on augmented samples should
be consistent with the original ones. Consistency regularization further penalizes DA-ERM for any
such inconsistency at the feature/loss level: fConsistency,D,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λD(z, z̃; θ),
where D(z, z̃; θ) is a proper divergence between the original sample representation and the augmented
sample representation, and where the goal of the regularizer applied at some intermediate feature
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space is to maintain the performance of the model on z and z̃ consistent. In this paper, we focus on a
specific type of such regularization, called data augmented invariant regularization (DAIR):

fDAIR,R,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λD(z, z̃; θ)

=
1

2
ℓ(z; θ) +

1

2
ℓ(z̃; θ) + λR(ℓ(z; θ), ℓ(z̃; θ)), (DAIR)

where the regularization is directly applied to the loss. The idea behind DAIR is to simply promote
ℓ(z; θ) ≈ ℓ(z̃; θ), and ignore the features or even the rest of the possible outcomes of y and simply fo-
cus on the current sample’s loss. Hence, DAIR is a relatively weak form of consistency regularization
only enforcing an original sample and an augmented one to be equally likely under the learned model
(assuming loss is a log-likelihood function). This weaker form of consistency is suitable for problems
where feature consistency may not be conceptually meaningful. For instance, in language modeling
when a pair of sentences differ in their corresponding named entities, it is not clear why we should
enforce their embeddings to be similar, however, loss consistency is still meaningful promoting the
probability of label given input to be the same on the original and the augmented samples.

We remark that DAIR requires pairing information between original and augmented samples, which
may not always be available (e.g., DomainBed (Gulrajani & Lopez-Paz, 2020)). However, we show
that this simple approach is still broadly applicable to various real-world problems regardless of
model architecture, and is indeed competitive with state-of-the-art methods for imposing invariance.
As it turns out, we are particularly interested in a particular form of the DAIR regularizer:

Rsq(ℓ(z; θ), ℓ(z̃; θ)) :=
(√

ℓ(z; θ)−
√
ℓ(z̃; θ)

)2
, (SQ Regularizer)

and we call this variant DAIR-SQ. Note that Rsq has the same scale as the loss function ℓ, making it
easier to tune λ. Empirically we observe that the optimal λ for all the experiments mentioned later in
the paper falls in [0.2, 100], across various tasks (from regression to sequence-to-sequence generative
modeling). Further justification on DAIR-SQ will be provided through the rest of this section.

Finally, in most (real-world) applications performance is measured through 0-1 metrics other than the
loss function. For example, we are usually concerned with accuracy in image classification while
we optimize cross-entropy loss. Let F (z; θ) ∈ {0, 1} denote a 0-1 evaluation performance metric of
interest, e.g., accuracy. Given the sample z (or z̃), the model performance is captured by F (z; θ) (or
F (z̃; θ)). For any z such that F (z; θ) = 1, we define the corresponding consistency metric as:

CM(z, z̃; θ) = I{F (z̃; θ) = 1 | F (z; θ) = 1}. (Consistency Metric)

Notice that similarly to the original performance metric, which is only used for model evaluation, we
use the consistency metric at evaluation time only.

2.1 WHAT DOES DAIR OFFER BEYOND DA-ERM?

Figure 1: The plot of the optimal, ERM,
DA-ERM and DAIR-SQ (λ = 100).

To motivate DAIR, we consider a toy example through which
we demonstrate that DAIR can fundamentally outperform DA-
ERM, even in the limit of infinite training samples (no overfit-
ting due to finite samples). Consider a linear regression prob-
lem where at the training time the input is xtrain = (x, s = y)
and the label y, i.e., ztrain = (xtrain, y). Here, x ∼ N (0, σ2

x),
and y = x+ε, where ε is independent of x and ε ∼ N (0, σ2

ε).
In this example, the target is explicitly provided as a spurious
feature to the learner at the training time. At test time, the
spurious feature is absent, i.e., xtest = (x, s = 0).

Clearly, in this toy example, the optimal regressor is w⋆ =
(w⋆

1 , w
⋆
2)

⊤ = (1, 0)⊤. However, absent the knowledge of
the spurious feature vanilla ERM will learn wERM ≈ (0, 1)⊤, completely overfitting the spurious
feature. We assume that the learner has access to a data augmentation module that generates
z̃ = A(z; a, σ2

n) = (xaug, y), such that xaug = (x, s = ay+n) where n ∼ N (0, σ2
n). The augmented

data will encourage the learned model to become invariant to the spurious feature. In Figure 1, we
perform simulations with a = 0.5, σ2

x = 1, σ2
ε = 0.25, σ2

n = 0.1 and plot four lines associated
with each regressor with the slope of their respective w1. We ignore w2 as the second spurious feature
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is absent at test time and hence w2 does not impact test performance. The optimal regressor is shown
as the blue line, with a slope of 1. ERM (red line) completely fails due to the overfitting to the
spurious feature. DA-ERM (orange line) significantly improves over ERM but still is far from optimal
performance. DAIR-SQ (purple line) almost recovers the optimal solution. This is not a coincidence.
We prove that DAIR-SQ is optimal for a class of linear regression problems, while DA-ERM does
not approach optimal performance even in the limit of infinite samples. In other words, DAIR can
lead to better generalizing models beyond simply offering better sample complexity.
Proposition 1. Consider the class of linear regression problems described above with a spurious
feature (highly correlated with the output). Assume that the learner has access to a data augmentation
module that perturbs the spurious feature. Then, for any value of a and σn, DAIR-SQ achieves
optimal test error as number of samples grows and λ → ∞. On the other hand, DA-ERM cannot
recover optimal performance even in the limit of infinite training data unless σn → ∞.

The proof of Proposition 1 is relegated to Appendix A. One can show that simple data independent
regularization methods (e.g. weight decay) cannot help close the gap between the performance of
DA-ERM and DAIR (see Proposition 2) in Appendix A. While we only analyzed DAIR-SQ, we
believe the content of this proposition extends to other variants of DAIR as well. Note that when
σn → ∞, DA-ERM could also recover w⋆. One can interpret that as σn → ∞, the augmenter
becomes stronger and forces w2 to vanish. On the other hand, DAIR recovers w⋆ with a much weaker
augmenter. This is crucial since in real-world applications, designing strong augmentation schemes
requires careful design. We will expand on this in Section 2.2.

2.2 VARIANTS OF DAIR VS OTHER CONSISTENCY REGULARIZATION TECHNIQUES

In this section, we empirically compare ERM, DA-ERM and some variants of consistency regulariza-
tion, including two DAIR variants on two classification tasks using CNNs. Let q(z; θ) be the output
of the model right after the softmax layer. If we treat the loss function as (un-normalized) negative
log-likelihood of the output distribution, and let q(z; θ) ∝ e−ℓ(z;θ). In addition to DAIR variants, we
consider the regularizer to be any proper divergence between the output distributions q(z; θ) and
q(z̃; θ), such as L2 distance or KL divergence, which will promote q(z; θ) ≈ q(z̃; θ).

Rotated MNIST (Ghifary et al., 2015) is a dataset where MNIST digits are rotated. We work with two
different sets of degrees of rotation for Rotated MNIST. The first one is Weak Rotation where the digits
are rotated uniformly at random [0, π

6 ) radians. In Strong Rotation the digits are rotated uniformly
at random [0, 2π) radians. To evaluate the robustness of the methods, we further add label noise at
training time where the label is replaced with a digit chosen from {0,. . . ,9} uniformly at random with
a certain probability. No label noise is added at test time. Detailed setup is in Appendix D.

In the first experiment, we use Weak Rotation for data augmentation while at test time we use Strong
Rotation. Thus, some test time rotations have not been observed at training time. Figure 2 shows
the test performance of all algorithms (averaged over three runs) as a function of λ. As can be seen,
ERM (with no data augmentation) does not generalize to rotated test images and performs poorly.
DA-ERM offers significant performance improvement over ERM. When λ is very small all variants
of consistency regularization are virtually the same as DA-ERM. DAIR-SQ and KL regularizer
outperform other regularizers and are the only two variants that offer improvement over DA-ERM as
λ increases. As the label noise level becomes larger, DAIR-SQ is more robust than KL and offers the
best performance.

Figure 2: Test accuracy as a function of λ for different noise levels for Weak Rotation augmentation.

Besides DAIR-SQ and KL regularizer, it is noteworthy that the other consistency regularization
variants did not offer improvement over DA-ERM and they converged to poor local minima with
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10% test accuracy (random) for large λ. We were not able to remedy this by tuning of their step size.
See Section 2.3 for further justification of this phenomenon. We also observe that the performance of
both DAIR-SQ and KL regularizer achieves a sweet spot for some finite λ, i.e., the performance starts
to drop for large values of λ. This is not theoretically expected and can be attributed to the practical
issues with solving the consistency regularization problem. We further investigate this phenomenon
in Appendix B and provide some explanations.

The setup for the second experiment is the same as the first one, except we also use Strong Rotation
in training for augmentation, so there is no distribution shift for DA-ERM. As can be seen in Figure 3,
data augmentation achieves very good performance in this case and none of the DAIR regularizers
offer any improvement beyond data augmentation. We suspect this to be true in general; if the data
augmentation is well-devised and optimized the resulting model could become invariant to the desired
transformations at test time. This also agrees with findings of Section 2.1, where observed that with
strong augmentation, DA-ERM could potentially result in similar performance as DAIR. Additional
experiments on consistency metric can be found in Appendix E.1.

Figure 3: Test accuracy as a function of λ for different noise levels for Strong Rotation augmentation.

Colored MNIST (Arjovsky et al., 2019) is a binary classification task built on the MNSIT dataset.
Digits 0-4 are labeled 1; whereas digits 5-9 are labeled 0. Additionally, 25% label noise is added,
i.e., the labels are flipped with probability 0.25, both at train and test time, capping the achievable
test accuracy to 75%. In this dataset, each digit is RGB colored. During training, label 1 is given the
color green with probability 0.9 and red with probability 0.1. On the other hand, label 0 is given red
color with probability 0.9 and green with probability 0.1. This introduces a high degree of spurious
correlation between color and the label. Thus, ERM is expected to significantly overfit to color for
predicting the label.

At test time, the correlation with color is reversed for digits. Hence, vanilla ERM is expected to
perform worse than 50% coin flip at test time. We explore two data augmentation schemes in
this experiment. For the Adversarial Augmentation (Adv. Aug.) setup, the augmented images will
have their color flipped (from red to green or vice versa) with probability 0.1. For the Random
Augmentation (Rnd. Aug.) setup, the augmented images are colored uniformly at random. Detailed
description of the setup and additional experiments can be found in Appendix D and Appendix E.1,
respectively.

Figure 4: Test accuracy vs λ on Colored MNIST
for Adversarial Color augmentation and Random
Color augmentation.

Figure 4 suggests that DAIR-SQ and KL consistency
regularization achieve ∼ 72% test accuracy using
both augmentation schemes, outperforming the state-
of-the-art 68% test accuracy reported by invariant
risk minimization (IRM) (Arjovsky et al., 2019), and
almost reaching the 75% cap. We note however that
this comparison may be unfair because IRM does not
have access to any pairing information between the
original and the augmented samples. As we observe
in the next section, such information is readily avail-
able in several real-world benchmarks and DAIR can
exploit it to achieve new state-of-the-art results. We also notice that neither variant of DA-ERM
achieves test performance better than 50% coin flip in this experiment, while Adversarial Augmenta-
tion seems to fare better than Random Augmentation.

Following the experiments, we conclude that DAIR-SQ is more stable and robust than other ones
followed by KL divergence consistency regularization. Additionally, DAIR-SQ enjoys the simplicity
and computational efficiency, especially when the cardinality of the output is large, e.g., language
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models where output vector dimension is the same as the vocabulary size. As opposed to KL
divergence, DAIR-SQ is also readily applicable to regression with uncountable output.

2.3 FURTHER JUSTIFICATION OF DAIR-SQ AND PRACTICAL CONSIDERATIONS

While we have already compared DAIR-SQ with several consistency regularization alterna-
tives, we want to specifically focus on a closely related DAIR variant called DAIR-L1, i.e.,
R1(ℓ(z; θ), ℓ(z̃; θ)) = |ℓ(z; θ) − ℓ(z̃; θ)|. As we already observed in Section 2.2, DAIR-L1 ei-
ther outright failed or was unstable on majority of the experiments we have performed so far. The
following lemma further investigates the discrepancy between DAIR-SQ and DAIR-L1:
Lemma 1. For any non-negative loss function ℓ,

R1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√
min{ℓ(z; θ), ℓ(z̃; θ)}Rsq(z, z̃; θ) ≥ 0.

Thus, R1(z, z̃; θ) ≥ Rsq(z, z̃; θ) with equality iff ℓ(z̃; θ) = 0 or ℓ(z; θ) = 0 or ℓ(z̃; θ) = ℓ(z; θ).

Figure 5: The plot of
R1(z, z̃; θ)−Rsq(z, z̃; θ).

The proof of Lemma 1 appears in Appendix A. The difference is de-
picted in Figure 5. This suggests that Rsq(z, z̃; θ) incurs a much smaller
penalty when ℓ(z; θ) is large. On the other hand, when ℓ(z; θ) ≈ 0
the regularizer is much stronger and almost equivalent to R1. Why
does this matter? At the beginning of training when the network is not
yet trained, the loss values on the original samples are large, and the
Rsq regularizer is weak letting the training to proceed towards a good
solution for the original samples. As the network is being trained on
original samples and their loss is vanishing, the regulairzer starts to
force the network to become invariant on the augmented samples.

We empirically verify this conjecture on Colored MNIST with Ad-
versarial Augmentation. Figure 6 depicts the classification loss and
regularization of the first 10 and last 140 iterations. One observes that at the beginning of training,
regularization term of DAIR-SQ impacts the training dynamics less while DAIR-L1 starts optimizing
the regularizer right away, which dominates the entire training procedure and therefore leads the
model to a poor local minimum. The left panel of Figure 6 confirms that the classification loss of
DAIR-L1 remains large and unchanged (that of a random classifier).

Figure 6: Training DA-ERM loss and (SQ Regularizer) for first 10 and last 140 iterations on Colored MNIST
with Adv Aug for DAIR (λ = 100). The regularizer loss on DA-ERM grows large as it is uncontrolled. DAIR-L1
is optimizing an L1 regularizer, but for unified illustration we evaluate it using (SQ Regularizer).

This same property of DAIR-SQ also weakens the regularizer on training samples with high losses at
the later stages of training. These samples are likely noisy, which makes DAIR-SQ more robust to
noisy samples, as we already observed in Section 2.2.

2.4 THE IMPACT OF PARTIAL AUGMENTATION

Figure 7: Test accuracy vs fraction of
augmented samples on Rotated MNIST.

We explore the impact of partial augmentation, where we
only augment a certain fraction of the training samples. The
experiment revisits noiseless Rotated MNIST with weak rota-
tion data augmentation and Colored MNIST with Adversarial
augmentation. This experiment emulates situations where an
augmentation function is only applicable to certain examples
or where augmentation is expensive and we would like to
decrease the augmentation cost.
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In Figure 7, we report the experiment results for DA-ERM and DAIR-SQ by applying augmentation
only {10%, 20%, 30%, 50%, 100%} of the training samples, averaged on three runs. In Rotated
MNIST experiment, as can be seen, DAIR-SQ with augmentation on only 20-30% of the samples
performs similar to full augmentation. On the other hand, DA-ERM is more sensitive to partial
augmentation and is subject to a steeper performance drop. This could be viewed as further evidence
that DAIR-SQ could reach its best performance using weak augmenter functions. It is also noteworthy
that in this example, DAIR-SQ with only 10% partial augmentation still outperforms DA-ERM with
100% augmentation. One can draw similar conclustion in the Colored MNIST experiment as only
10% augmentation gives comparable performance to full augmentation.

3 EXPERIMENTS ON REAL-WORLD TASKS

3.1 ROBUST REGRESSION: SIMULTANEOUS DOMAIN SHIFT AND LABEL NOISE

In this experiment, we consider a regression task to minimize the root mean square error (RMSE)
of the predicted values on samples from the Drug Discovery dataset. The task is to predict the
bioactivities given a set of chemical compounds (binary features). We follow the setup of Li et al.
(2021) to introduce random noise to corrupt the targets. Furthermore, similar to Colored MNIST,
we add a spurious binary feature to the original setup. At training time, the spurious feature is set
to 1 if a particular target is above the median of the all the targets in the training samples, and 0
otherwise. At test time, this condition is reversed leading to poor generalization. We compare using
ERM, DA-ERM and DAIR-SQ formulations under 0%, 20% and 40% noise levels on three baselines:
L2 loss, Huber loss, and negatively tilted loss (Li et al., 2021), which is called tilted empirical risk
minimization (TERM) and is designed for robust regression. For each of these baselines, we perform
data augmentation by randomly assigning the spurious feature as 0 or 1 with equal probability. Finally,
we apply the DAIR-SQ regularizer to each of these loss functions with λ = 10.

Algorithms Test RMSE (Drug Discovery dataset)

0% Noise 20% Noise 40% Noise Clean

- DA- DAIR - DA- DAIR - DA- DAIR -
L2 loss 1.97 (0.00) 1.36 (0.00) 1.23 (0.00) 4.33 (0.04) 2.52 (0.05) 2.04 (0.06) 5.30 (0.04) 3.47 (0.07) 2.99 (0.09) 1.23 (0.00)

Huber (Huber, 1964) 1.84 (0.00) 1.27 (0.00) 1.24 (0.00) 2.93 (0.05) 1.50 (0.02) 1.39 (0.02) 4.40 (0.07) 2.18 (0.04) 1.70 (0.05) 1.16 (0.00)

TERM (Li et al., 2021) 1.74 (0.00) 1.26 (0.00) 1.25 (0.00) 1.87 (0.01) 1.27 (0.01) 1.27 (0.01) 2.01 (0.02) 1.33 (0.01) 1.31 (0.01) 1.23 (0.00)

Table 1: Test RMSE for varying degrees of label noise for ERM, DA-ERM, and DAIR using different losses.

The results of this experiment are reported in Table 1. In the last column of the table we report results
on the clean dataset without any spurious features for comparison purposes. As can be seen, without
data augmentation all methods fall prey to spurious features and perform poorly, especially as the
noise level is increased. It is noteworthy that while TERM is not designed for domain shift, it slightly
outperforms the other baselines in the presence of spurious features showing that TERM has some
inherent robustness to the domain shift. By adopting data augmentation, testing error decreases but
is still quite large as compared to the Clean ERM setup for high values of noise. Notably, DAIR is
able to reduce the testing error across all objectives and noise levels with the gap between DAIR
and other approaches increasing with the degree of noise. For the 0% noise setup, DAIR is able to
almost recover the Clean ERM accuracy for all three objectives. The gains achieved with DAIR are
prominent for L2 and Huber, but marginal for TERM. Finally, data augmentation/DAIR combined
with TERM can simultaneously handle domain shift and noisy labels as can be seen in this table.

3.2 INVARIANT VISUAL QUESTION ANSWERING

Visual Question Answering (VQA) has diverse applications ranging from visual chatbots to assistants
for the visually impaired. In such real-world settings, it is desirable for VQA models to be robust to
variations in the input modalities. In this spirit, recent works (Agarwal et al., 2020; Shah et al., 2019;
Ray et al., 2019) have studied the robustness and consistency of VQA models under linguistic and
visual variations. In this paper, we focus on the InVariant VQA (IV-VQA) dataset which contains
semantically edited images corresponding to a subset of the original images from VQA v2 (Goyal
et al., 2017). For each image in this subset, IV-VQA contains one or more edited images constructed
by removing an object which is irrelevant to answering the question. A robust model should be
invariant to such edits by making the same predictions on the edited image.
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We choose the attention based SAAA (Kazemi & Elqursh, 2017) model to match the original setup
from Agarwal et al. (2020). Using DAIR, we enforce consistency in predictions between the original
and edited samples. Wherever the edited image is not available, the DAIR formulation reduces to
ERM. We use the standard VQA accuracy along with the consistency metrics proposed in Agarwal
et al. (2020) to compare our results against the ERM setup and the DA-ERM approach discussed in
Agarwal et al. (2020).

Algorithm ERM (%)
(Kazemi & Elqursh, 2017)

DA-ERM (%)
(Agarwal et al., 2020) DAIR-SQ (%)

VQA v2 val 57.10 57.30 57.54
Predictions flipped 11.84 11.68 10.37
pos → neg 4.58 4.40 3.80
neg → pos 5.17 5.14 4.65
neg → neg 2.08 2.14 1.91

Table 2: Accuracy and Consistency metrics on VQA v2 val &
IV-VQA test set.

The results are reported in Table 2.
We measure the accuracy on the orig-
inal VQA v2 ‘val’ set and the consis-
tency metrics across edited IV-VQA
instances and their corresponding real
instances from VQA v2 ‘val’ set. The
consistency metrics measure the three
types of flips namely, pos → neg, neg
→ pos and neg → neg. A pos → neg
flip indicates that the answer predicted with the original image was correct but was wrong with the
corresponding edited image. A neg → neg flip indicates that the answer changes from original to
edited image but is wrong for both. The accuracy of DAIR on the VQA v2 ‘val’ set is higher as
compared to others, while improving over all baselines by a minimum of 1.3% under the ‘Predictions
flipped’ metric which is the sum of the three types of flips. This improvement is significant given that
the model needs to predict the answer correctly from 3000 candidate answers. While applying DAIR
to this task, we observe a trade-off between the VQA accuracy on ‘val’ and the ‘Predictions flipped’
percentage controlled by the λ parameter. By increasing λ, the ‘Predictions flipped’ percentage
decreases, and drops to as low as 7-8% when λ is at 10, albeit sacrificing the VQA accuracy by
5-6%. Thus, for moderate values of λ, DAIR is able to maintain the predictive power while enforcing
consistency across variations in the visual space.

3.3 TRAINING ROBUST DEEP NETWORKS AGAINST ADVERSARIAL ATTACKS

In this section, we demonstrate that our regularizer can be applied to train robust neural networks
and it achieves comparable or better results than baseline models from state-of-the-art approaches
which are specifically designed for this task. In our approach, the augmented examples z̃ can be
generated by a certain strong attack, such as Projected Gradient Descent (PGD) (Madry et al., 2018)
or CW (Carlini & Wagner, 2017).We conduct our experiments on CIFAR-10 dataset and compare our
approach with several other state-of-the-art baselines.

The performance of our algorithm against FGSM and variants of PGD, is summarized in Table 3,
which shows that our results are competitive with the baselines. We report the performance of
DAIR-SQ in Table 3 based on the configurations that give the best Clean accuracy (row 3) and the
best Robust accuracy against PGD20 (row 6). The trade-off curve shown in Figure 8 suggests that by
sweeping the value of λ, DAIR-SQ can achieve a better clean accuracy but a slightly lower PGD20
accuracy, and dominates most of the baseline, while it achieves a similar performance with TRADES.
Note that the formulation in TRADES is equivalent to consistency regularization with KL divergence
between the logits of the original and adversarial images. As opposed to our setup, the regularizer
term in TRADES is also used in solving the maximization problem to generate adversarial images,
whereas we only use the original loss for generating the adversarial examples.

We also report the accuracy consistency metric (CM) in this experiment in Table 3. CM captures the
consistency of accuracy on PGD20 attack compared to clean examples. We observe that DAIR-SQ
outperforms all baselines, which is in line with its best generalization to different attacks.

# Algorithm Clean (%) FGSM (%) PGD20 (%) CM (%)

1 PGD Training (Madry et al., 2018) 82.89 55.38 48.40 –
2 APART (Li et al., 2020) 82.45 55.33 48.95 60.05
3 DAIR-SQ (λ = 6) 83.04 57.57 50.68 62.66
4 TRADES + ATTA (Zheng et al., 2020) 78.98 55.58 52.30 60.56
5 TRADES (Zhang et al., 2019) 81.67 57.78 52.90 63.14
6 DAIR-SQ (λ = 16.7) 81.29 58.58 53.37 67.51

Table 3: CIFAR-10 test accuracies under no attack (clean), FGSM, and
PGD20 attacks, and accuracy consistency metric between original and
PGD20 attack.

Figure 8: PGD20/Clean Acc.
trade-off by sweeping λ.

8



Under review as a conference paper at ICLR 2022

3.4 NEURAL TASK-ORIENTED DIALOG MODELING

Virtual digital assistants that engage in conversations with human users are rapidly gaining popularity.
These devices require the modelling of task-oriented dialog systems that can communicate with
users through natural language to accomplish a wide range of tasks. One of the main objectives
in task-oriented dialog systems is the Dialog State Tracking (DST), which refers to keeping track
of the user goals as the conversation progresses. Among task-oriented dialog datasets, MultiWOZ
(Budzianowski et al., 2018) has gained the most popularity owing to the availability of 10k+ realistic
dialogs across 8 different domains, and has been improved several times (Wu et al., 2019; Eric et al.,
2019; Zang et al., 2020; Han et al., 2021; Qian et al., 2021).

Recently, SimpleTOD (Hosseini-Asl et al., 2020) achieved state-of-the-art results on MultiWOZ using
a neural end-to-end modeling approach. However, Qian et al. (2021) observed that the performance
of SimpleTOD drops significantly when the test set named entities (which are places in the UK)
are replaced with new ones never observed during training (with new entities all based in the US),
perhaps due to the memorization of named entities during training. We leverage DAIR-SQ to promote
invariance of the dialog policy to named entities in the dialog flow. Here, the data augmentation
scheme is a simple one. We replace named entities in the training set with their randomly scrambled
version. For example, “cambridge” could be turned into “bmcedrgia.” Details on training data,
augmentation schemes and hyper-parameters can be found in Appendix H.

The results are presented in Table 4, where performance is measured in Joint Goal Accuracy (JGA).
JGA is a binary metric, and is equal to 1 if the predictions of all dialog states in a turn are correct. As
such it is a difficult metric to get right too. As can be seen, both DA-ERM and DAIR outperform
SimpleTOD (Hosseini-Asl et al., 2020) on MultiWOZ 2.2 w/ SGD entities (Qian et al., 2021).
Perhaps, more surprisingly, DAIR also outperforms SimpleTOD on the original MultiWOZ 2.2 test
set with no distribution shift, which we attribute to better robustness to the named entity memorization
problem observed by Qian et al. (2021). Finally, we also observe that DAIR significantly improves
the JGA consistency metric compared to the DA-ERM baseline.

MultiWOZ 2.2 Test JGA MultiWOZ 2.2 Test JGA CMw/ SGD entities
SimpleTOD (Hosseini-Asl et al., 2020) 0.5483 0.4844 –
SimpleTOD (DA-) 0.5915 (0.0055) 0.5311 (0.0074) 0.8354
SimpleTOD (DAIR) 0.5998 (0.0030) 0.5609 (0.0074) 0.8902

Table 4: Joint Goal Accuracy (JGA) for different approaches on the SimpleTOD model. DAIR achieves
state-of-the-art results on the original MultiWOZ 2.2 test set (Zang et al., 2020) and well as the MultiWOZ 2.2
test set w/ named entities replaced with SGD (Qian et al., 2021).

4 CONCLUSION

In this paper, we proposed a simple yet effective consistency regularization technique, called data
augmented invariant regularization (DAIR). DAIR is applicable when data augmentation is used to
promote performance invariance across pairs of original and augmented samples, and it enforces
the loss to be similar on the original and the augmented samples. As such, DAIR requires access to
pairs of original and augmented examples. We also provided motivation and justification for DAIR,
and particularly showed that it can recover the optimal solution in a certain regression task where
data augmentation alone is insufficient. We also compared DAIR with several other consistency
regularizers on several toy problems and showed that it is more stable and results in better performance.
We empirically evaluated DAIR in four real-world machine learning tasks, namely robust regression,
invariant visual question answering, training robust deep neural networks, and task-oriented dialog
modeling. This is a major benefit of DAIR as some of other consistency regularizers cannot be
applied broadly. Empirically, DAIR performed well on all these tasks and set new state-of-the-art
results in these benchmarks.

Several problems remain open for future research: An in-depth theoretical understanding of the
properties of DAIR that lead to its superior empirical performance on broad applications is an
important open question. Further, automated hyperparameter tuning techniques for the strength of the
regularizer is another avenue for future research. Finally, while we showed that DAIR boosts existing
performance metrics, such as accuracy, the interplay of DAIR with other metrics, especially group
fairness, is another important area for future research.
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A PROOFS

Proof of Proposition 1. First let us present the DA-ERM solution:
fDA-ERM(w) =E
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Hence, the solution of w⋆
DA-ERM = argminw fDA-ERM(w) is given by
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We then evaluate the testing loss assuming the spurious feature is absent, i.e., xtest = (x, s = 0).

ℓDAIR(xtest;w
⋆
DAIR) = E

[
(w⋆

DAIR
⊤xtest − y)2

]
= E

[
(x− (x+ ε))2

]
= σ2

ε .

ℓDA-ERM(xtest;w
⋆
DA-ERM) = E

[
(w⋆

DA-ERM
⊤xtest − y)2

]
= E

[(
a2(σ2

x + σ2
ε)− 2a(σ2

x + σ2
ε) + σ2

x + σ2
ε + 2σ2

n

a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n)

x− (x+ ε)

)2
]

= σ2
ε +

(a+ 1)4σ4
εσ

2
x

(a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n))

2

≥ ℓDAIR.

14



Under review as a conference paper at ICLR 2022

Proposition 2. It is not hard to check that even using the weight decay regularizer γ
2 (w

2
1+w2

2) would
not close the gap between the performance of DA-ERM and DAIR. In particular, this regularizer
would result in

w⋆
DA-ERM-WD =


a2(σ2

ε+σ2
x)−2a(σ2

ε+σ2
x)+2γ+σ2

ε+2σ2
n+σ2

x

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x

(a+1)(γ(σ2
ε+σ2

x)+2σ2
ε)

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x
)

 ,

which is not equal to w⋆ = (1, 0) unless σ2
n → ∞ and γ = 0.

Proof of Proposition 2. The proof follows the same idea of Proposition 1 and therefore it is omitted
here.

Proof of Lemma 1. We proceed as follows:
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We break it into two cases: if ℓ(z̃; θ) > ℓ(z; θ):

R1(z, z̃; θ)−Rsq(z, z̃; θ) = ℓ(z̃; θ)− ℓ(z; θ)− (
√
ℓ(z̃; θ)−

√
ℓ(z; θ))2

= ℓ(z̃; θ)− ℓ(z; θ)− ℓ(z̃; θ)− ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= −2ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= 2
√
ℓ(z; θ)(

√
ℓ(z̃; θ)−

√
ℓ(z; θ)).

If ℓ(z̃; θ) ≤ ℓ(z; θ):

R1(z, z̃; θ)−Rsq(z, z̃; θ) = ℓ(z; θ)− ℓ(z̃; θ)− (
√
ℓ(z̃; θ)−

√
ℓ(z; θ))2

= ℓ(z; θ)− ℓ(z̃; θ)− ℓ(z̃; θ)− ℓ(z; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= −2ℓ(z̃; θ) + 2
√
ℓ(z̃; θ)

√
ℓ(z; θ)

= 2
√
ℓ(z̃; θ)(

√
ℓ(z; θ)−

√
ℓ(z̃; θ)).

If we combine the two cases, we have:

R1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√

min{ℓ(z; θ), ℓ(z̃; θ)}
∣∣∣√ℓ(z̃; θ)−

√
ℓ(z; θ)

∣∣∣ .
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B PRACTICAL CONSIDERATIONS WHEN DAIR IS USED IN TRAINING

In this section, we investigate the reason why we see a sweet spot for the performance of DAIR-SQ
as a function of λ. As shown in Figure 2, we see a sweet spot for λ, where the performance takes
its maximum and starts to decrease for larger values of λ. There are a few explanations for this
performance degradation.

1. It is observed that a large λ requires a relatively longer time for convergence. To show
empirically this is true, we added another example in Appendix B.1. Theoretically, this is in
line with the classical results in the optimization literature where larger Lipschitz constants
(resulting from adding a regularizer) slows down the convergence rate. Thus, as we are
training all models for a certain number of epochs, we will end up with underfitting.

2. A larger λ is more likely to guide the optimization trajectory towards a spurious poor
local minimum with poor generalization performance, when the optimization trajectory is
non-convex. We have experimentally verified this in Section 2.3 (Figure 6) as the reason for
the poor performance of DAIR-L1 in Figure 2.

3. With a finite number of samples our regularizer does not necessarily lead to the best possible
performance in the infinite sample setting (with weak domain shift). Hence, we might
expect to observe the classical approximation-estimation tradeoff. This is especially true
in real-world scenarios where one might expect that the difficulty of the example may not
necessarily be preserved through data augmentation, and hence forcing the loss to be equal
on both samples might be detrimental to the overall performance, which may lead to a
practical sweet spot for λ.

We dig into the experiment in Figure 2 specifically and try to understand which case is the responsible
for the sweet spot in Figure 2. We extend the number of training epochs from 40 to 160, and report
the accuracy for λ ∈ {1.43, 8.85, 16.23, 100}.1 Table 5 suggests that, when we increase the number
of training epochs, the sweet spot of λ moves from 8.85 to 16.23 and in fact we can achieve an even
better performing model with accuracy 89.22 as compared to the previously reported 85.89, while the
performance does not change much for the smaller values of λ. We also observe a big performance
boost for larger values of λ. This suggests that in this experiment the sweet spot for λ is caused by
capping the training epochs to a finite value. Having said that, we believe that we are practically
interested in using DAIR with marginal computational overhead over ERM and hence we would
expect to observe such sweet spot in performance in practice as λ → ∞.

λ Acc at Epoch 40 Acc at Epoch 160

1.43 79.09 80.19
8.85 85.89 86.60
16.23 82.66 89.22
100 46.95 69.37

Table 5: Testing accuracy of Rotated MNIST, Weak Augmentaion. We see the accuracy increases as we extend
the number of training epochs.

B.1 ADDITIONAL EVIDENCE ON GROWING COST OF TRAINING WITH THE REGULARIZATION
STRENGTH

We also provide further evidence for the growing cost of training with λ on a toy problem where
we can reliably measure the gradient norm and ensure convergence. We study the following simple
binary logistic classification problem which mirrors the MNIST experiments: at the training time the
input is xtrain = (x, s = 2y − 1 + t1) and the label y, i.e., ztrain = (xtrain, y). Here, x ∼ N (0, σ2

x),
and P (y = 1|x) = 1

1+e−x , where t1 is independent of x and t1 ∼ N (0, σ2
1). In this example, we

intentionally provide feature s which is highly correlated with the label during training. Again,
clearly, w⋆ = (1, 0)⊤, but w⋆

ERM will converge to (0, 1)⊤ due to the overfitting to the spurious
feature. We introduce an augmenter which generates the augmented example such as xaug = (x, s =
2y − 1 + t1 + t2) where t2 ∼ N (0, σ2

2). We use this data augmenter for DAIR training and test on

1Note these values comes from log10 sweeping of λ.
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xtest = (x, s = 1 − 2y). We summarize the steps need for convergences and the testing accuracy
in Table 6 as well. We can find that the required number of iteration to convergence increases as λ
increase.

For this tiny toy example, there is a factor of 10x increase in the required number of iterations when
λ is chosen to be 10,000 as opposed to 0.5. Note that this is using ADAM and the gap is significantly
larger if we use vanilla gradient descent; as we were not able to even converge in 108 steps. This is
provided as further evidence for the practical sweet spot for DAIR as λ → ∞.

λ Iterations to Converge

0.5 81.35± 6.07
1 91.05± 2.53
2 89.10± 2.41
5 101.65± 2.87

10 107.70± 5.77
100 151.75± 4.28

1,000 195.85± 4.54
10,000 802.60± 7.58

Table 6: Iteration needed for the logistic model to converge with different λ. The model is converged when the
L2 norm of the gradient is less than 10−7.
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C MODEL ARCHITECTURE AND TRAINING PARAMETERS FOR MNIST
EXPERIMENTS

We use a Convolutional Neural Network (CNN) with three convolutional layers followed by two fully
connected layers. The last layer output size for Colored MNIST experiments is set to 1, and 10 for
the Rotated MNIST experiments. For training we follow a two stage schedule with a learning rate of
0.005 for the first 20 epochs and a learning rate of 0.0005 for the next 20. We choose a batch size of
64 for all experiments. The architectural details and training parameters can be found in Table 7 and
Table 8.

Layer Type Shape

Convolution + ReLU 4× 4× 6
Max Pooling 2× 2
Convolution + ReLU 4× 4× 16
Max Pooling 2× 2
Convolution + ReLU 4× 4× 96
Fully Connected + ReLU 64
Fully Connected C

Table 7: Model Architecture, C = 1 for Colored MNIST and C = 10 for Rotated MNIST.

Parameter Value

Learning Rate 0.005 0.0005
Epochs First 20 Second 20
Batch-size 64

Table 8: Training parameter of MNIST experiments.
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D COLORED MNIST & ROTATED MNIST SETUP

We apply the proposed loss function (DAIR) on the following two datasets: Colored MNIST and
Rotated MNIST. We compare the performance of DAIR with plain data augmentation, and invariant
risk minimization (IRM) as a strong baseline. One crucial difference between our work and IRM is is
the motivation. IRM is designed to take two examples from two different environments and learn
representations that are invariant to the environment, e.g., in cases where we are aggregating multiple
datasets. On the other hand, we are interested in promoting invariance when we have a single dataset.
As such, we artificially generate the second environment in IRM using data augmentation. For a
given example z, we design an augmenter A(·) and use it to generate additional samples that adhere
to the invariance we have in mind. Hence, IRM will be applied in the same way that examples from
different environments are augmenting pairs.

Our Colored MNIST is an extension of the original Colored MNIST Arjovsky et al. (2019). The
label is a noisy function of both digit and color. The digit has a correlation of 0.75 with the label
and a certain correlation with the label depending on the color scheme. Besides the two colors in
the original dateset, we introduce fully random colored scheme to the dateset, which is the best
augmenter one can think of. The three color schemes are detailed in Table 9.

Our Rotated MNIST is a variant of the original Rotated MNIST (Ghifary et al., 2015). The original
dataset contains images of digits rotated d degrees, where d ∈ D ≜ {0, 15, 30, 45, 60, 75}. Similarly,
we introduce the random degree scheme here to serve as the best possible augmenter. To further
exploit the potential of the proposed algorithm, we make this dataset more difficult by introducing
more challenging degree scheme; The rotation schemes are summarized in Table 10.

Note all the augmented images are generated on the fly. Examples of images from some transformation
schemes are shown in Figures 9 to 14.

Scheme z Color | y = 0

C1 with p = 0.8, z = y Red
with p = 0.2, z = 1− y Green

C2 with p = 0.9, z = y Red
with p = 0.1, z = 1− y Green

C3 with p = 0.1, z = y Red
with p = 0.9, z = 1− y Green

C4 z = 2 Random

Table 9: Color schemes in Colored MNIST. Random color means that the value of each channel of the image is
uniformly random chosen from 0 to 255.

Scheme Rotation

R1 0◦

R2 90◦

R3 0◦, 180◦

R4 90◦, 270◦

R5 [0◦, 360◦]
R6 [22.5◦, 67.5◦], [202.5◦, 247.5◦]

Table 10: Rotation schemes in Rotated MNIST. [a, b] means that degrees are unformly random chosen between
a and b.
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Setup Name Train Aug Test λ

Adv. Aug. C1 C2 C3 1000
Rnd. Aug. C1 C4 C3 100

Table 11: Training procedure of Colored MNIST.

Setup Train Aug Test λ

Strong Aug. R1 R5 R2 1
Weak Aug. R4 R6 R3 10

Table 12: Training procedure of Rotated MNIST

Figure 9: C2 Figure 10: C3 Figure 11: C4 Figure 12: R4 Figure 13: R5 Figure 14: R6

Setup: We train a model consisted of three convolutional layers and two fully connected layers with
20,000 examples. For each dataset we are defining several different schemes on how the dataset
could be modified: Table 9 (Colored MNIST) and Table 10 (Rotated MNIST). Then, we define
several setups. Each setup is consisted of one original dataset, one augmentation dataset, and one
test dataset, each of which is selected among the defined schemes. These setups are provided in
Table 11 (Colored MNIST) and Table 12 (Rotated MNIST). For each setup, we train the model
with the following four algorithms and compare their performances: ERM, DA-ERM, DAIR and
Invariant Risk Minimization (IRM). Each experiment is repeated for 10 times; the mean and the
standard derivation are reported. The value of λ are chosen base on the validation results. Detailed
architectures and training parameters can be found in Appendix C.

D.1 COLORED MNIST

We conduct two sets of experiments for this dataset: Adversarial Augmentation Setup (Table 11)
follows the exact same color schemes from the original Colored MNIST Arjovsky et al. (2019). For
Random Augmentation Setup, we train the model with the strongest possible augmenter: uniformly
random color. The entire procedure is summarized in Table 11.

D.2 ROTATED MNIST

We start with the strongest augmenter case. One may notice that there is a chance that the augmented
images bear the same rotation degrees as the testing set. To make the task more difficult, we will use
R6 as the augmented test to test how the trained model generalize to entirely unseen domain. The
training procedure is summarized in Table 12.
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E ADDITIONAL RESULTS ON COLORED MNIST & ROTATED MNIST

E.1 COLORED MNIST

We show additional results on Colored MNIST and Rotated MNIST in Tables 13 and 14. Note that
each algorithm has been tuned for best performance. As mentioned in Section 2.2, DAIR outperforms
DA-ERM, ERM and other baseline models on classification accuracy. For accuracy consistency,
we use the training scheme as the original scheme and the testing scheme as the augmentation
scheme. We further compare DAIR with IRM (Arjovsky et al., 2019), DRO (Sagawa et al., 2019),
and REx (Krueger et al., 2021). In doing so, we feed all original examples as one environment
and all augmented examples as a second environment to these baselines. While we can see that
DAIR outperforms all baselines, we caution that the comparison may not be fair in that DAIR
exploits pairing information between original and augmented samples, which is not used by the other
baselines.

Algorithm Accuracy CM

ERM 32.70± 0.45 77.76± 1.01
DA-ERM 40.91± 0.45 84.60± 0.60

DAIR 72.58± 0.11 99.39± 0.11
IRM (Arjovsky et al., 2019) 66.90 –
DRO (Sagawa et al., 2019) 37.40 –
REx (Krueger et al., 2021) 68.70 –

Table 13: Accuracy and Accuracy Consistency Metric (CM) on Colored MNIST with Adversarial Augmentation.

Algorithm Accuracy CM

ERM 32.70± 0.45 63.50± 1.92
DA-ERM 29.61± 0.80 88.15± 0.18

DAIR 73.10± 0.12 99.88± 0.01

Table 14: Accuracy and Accuracy Consistency Metric (CM) on Colored MNIST with Random Augmentation.

21



Under review as a conference paper at ICLR 2022

E.2 ROTATED MNIST

We report the accuracy consistency on Rotated MNIST (weak augmentation) in Table 15. The
original training scheme here is Scheme R4 (Table 10), i.e., 90◦ and 270◦ rotated images, and the
augmentation scheme for training is R6 (weak rotation). At test time, we test with R1 (no rotation) and
we also use the augmentation scheme of 180◦ rotation to test the accuracy consistency metric. Note
that neither the un-rotated or 180◦ rotated images have been observed at training time. Hence, the
setup is difficult for ERM which struggles to generalize. As can be seen, since the digit 0 is “almost”
circularly symmetric, ERM actually does a decent job at classifying 0, however it significantly
struggles with all other digits. We see that DAIR outperforms ERM and DA-ERM by a large margin.
We observe that digits 6 and 9 are challenging to get right (as one would expect for them to be difficult
to tell apart). While we see 2− 3% drop on the consistency for digits 6 and 9 (when rotating them
by 180◦), the drop is smaller than expected perhaps due to the fact that the neural network learns to
classify these digits based on features that are harder to get for humans.

Digit ERM DA-ERM DAIR
Acc. CM Acc. CM Acc. CM

0 86.19± 01.48 94.95± 01.53 95.61± 00.66 98.43± 00.21 98.44± 00.07 99.31± 00.15
1 00.15± 00.08 11.11± 11.11 82.79± 03.38 98.54± 00.43 96.09± 00.71 97.59± 01.28
2 29.84± 00.51 57.91± 02.76 76.68± 03.54 82.70± 03.27 86.21± 00.82 93.21± 01.32
3 00.63± 00.53 76.47± 23.53 78.84± 02.60 89.24± 01.26 86.60± 02.24 94.26± 00.36
4 01.97± 00.90 23.38± 13.49 51.09± 03.30 78.15± 02.73 79.67± 01.26 92.42± 00.41
5 05.53± 00.32 39.91± 04.59 65.02± 02.42 84.68± 03.71 83.26± 02.51 95.11± 01.46
6 00.66± 00.37 51.79± 25.13 67.43± 03.82 83.41± 05.74 84.79± 01.17 92.78± 01.71
7 16.67± 02.75 18.28± 06.65 56.29± 07.26 81.67± 06.90 78.11± 02.10 95.03± 01.21
8 10.92± 05.47 22.54± 05.46 74.50± 01.10 89.12± 01.69 90.55± 01.13 95.35± 00.47
9 17.08± 07.70 11.56± 00.62 69.54± 04.18 86.78± 01.08 80.84± 01.18 93.21± 01.39

All 16.85± 1.08 64.14± 2.69 71.98± 1.70 88.28± 0.27 86.57± 0.55 94.98± 0.29

Table 15: Rotated MNIST with 90◦ or 270◦ rotated original images and Weak Augmentation during training.
The test scheme is un-rotated original images. Consistency metric (CM) is computed between un-roated images
and ones with 180◦ rotation. It can be seen that CM is relatively small for 6 and 9 but the drop is smaller than
expected suggesting that CNNs learn from features different from how humans perceive the digits.
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F SETUP AND ADDITIONAL RESULTS FOR VISUAL QUESTION ANSWERING

All the approaches included in this paper use the original VQA v2 ‘train’ split for training, along with
the IV-VQA ‘train’ split for augmentation in the DAIR and DA-ERM(Agarwal et al., 2020) settings.
The ERM setup (Kazemi & Elqursh, 2017), represents a vanilla SAAA model trained on the VQA v2
‘train’ split. For the data augmentation methods, if an image from VQA v2 contains its corresponding
edited versions in IV-VQA, we randomly select one of them to serve as an augmentation during
training. We modify the official code released by Agarwal et al. (2020) to suit our formulation. All
the methods are trained for 40 epochs with a learning rate of 0.001 and a batch size of 48. The
baseline approaches that we compare with are trained and evaluated by us, using the same training
setup as DAIR.

λ VQA v2 val (%) Predictions flipped (%) pos → neg (%) neg → pos (%) neg → neg (%)

0.37 58.52 11.92 4.48 5.28 2.17
0.72 58.21 11.28 4.13 5.08 2.07
1.39 57.54 10.37 3.80 4.65 1.91
2.68 56.24 9.68 3.56 4.39 1.73
5.18 54.19 8.75 3.40 3.66 1.69
10 51.32 7.94 3.01 3.40 1.53

Table 16: Accuracy-Consistency Tradeoff on VQA v2 val and IV-VQA test set controlled by λ

Table 16 indicates a tradeoff between the accuracy on the VQA v2 ‘val’ set and the consistency
metrics. As the λ value increases, the consistency between the predictions increases, while the
accuracy on original examples decreases. For instance, A λ value of 10 strongly boosts consistency
thus lowering the ‘Predictions flipped’ percentage to only 7.9% but sacrifices the predictive power
causing the accuracy to drop to 51.3%.
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G DETAILS ON TRAINING ROBUST NEURAL NETWORKS

For all algorithms reported in Table 3, we use Pre-Activation ResNet-18 (He et al., 2016), with a
last-layer output size of 10 as the classification model. For training the DAIR model, the adversarial
examples are generated by L∞ based PGD attack with 11 iterations, ε (attack strength) set to 8/255
and attack step size to 2/255. We evaluate all the models against the standard FGSM attack and PGD
attack with 20 iterations of same perturbation sizes.
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H DETAILS ON NEURAL TASK-ORIENTED DIALOG MODELING

We provide details on the benchmark that we used in this experiment. Qian et al. (2021) proposed
a new test set for MultiWOZ 2.2, called MultiWOZ 2.2 with SGD entities, where named entities
are replaced with those from Schema Guided Dialog dataset (Rastogi et al., 2020) and showed that
SimpleTOD (Hosseini-Asl et al., 2020) endures more than 8% performance drop on the new test set.
Examples from the dataset are shown in Table 18. To address this problem, we define a new data
augmentation scheme for DAIR and DA-ERM by replacing the named entities from the MultiWOZ
2.2 training set with randomly scrambled versions of the named entities. For example, “warkworth
house” could be turned into “easrtokow hhrwu” (see Table 18). In all of our experiments, we utilize
the SimpleTOD model (Hosseini-Asl et al., 2020) and we apply DAIR to enforce invariance between
the named entities in the training examples and the scrambled entities from their corresponding
augmented samples. The model is trained with ParlAI (Miller et al., 2017) fine-tuned with the
pre-trained BART (Lewis et al., 2019). Training hyper-parameters can be found in Table 17.

Parameter Value

λ 0.5
Epochs 4

Batchsize 6
Optimizer AdamW

Learning rate 10−5

Table 17: Hyper-parameters used in training SimpleTOD.

User: can you help me book a
reservation at the wark-
worth house hotel?

Agent: yes i could! how many peo-
ple are staying, and what
days would fyou like to
stay?

User: it’s just for me, and i’ll
be staying for three nights
starting from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: warkworth
house

User: can you help me book
a reservation at the easr-
tokow hhrwu hotel?

Agent: yes i could! how many peo-
ple are staying, and what
days would fyou like to
stay?

User: it’s just for me, and i’ll
be staying for three nights
starting from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: easrtokow
hhrwu

User: can you help me book a
reservation at the clarion
inn & suites atlanta down-
town hotel?

Agent: yes i could! how many peo-
ple are staying, and what
days would fyou like to
stay?

User: it’s just for me, and i’ll
be staying for three nights
starting from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: clarion inn &
suites atlanta downtown

Table 18: Left: sample from the original MultiWOZ dataset. Middle: augmented sample generated by
scrambling. Right: synthetic sample with name entities from SGD. Comparing left and the middle example, we
are generating new named entities (marked in red) by scrambling. Comparing left and the right example, the
only difference is the named entity from different dataset, which is marked in red. Note that the SGD named
entities are not exposed to the model during training. Only the original named entities and scrambled named
entities from MultiWOZ are used during training.
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