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Abstract

In this paper we derive a Probably Approximately
Correct(PAC)-Bayesian error bound for linear
time-invariant (LTI) stochastic dynamical systems
with inputs. Such bounds are widespread in ma-
chine learning, and they are useful for characteriz-
ing the predictive power of models learned from
finitely many data points. In particular, the bound
derived in this paper relates future average pre-
diction errors with the prediction error generated
by the model on the data used for learning. In
turn, this allows us to provide finite-sample er-
ror bounds for a wide class of learning/system
identification algorithms. Furthermore, as LTI
systems are a sub-class of recurrent neural net-
works (RNNs), these error bounds could be a first
step towards PAC-Bayesian bounds for RNNs.

1. Introduction
Motivation PAC and PAC-Bayesian bounds have been a
major tool for analyzing learning algorithms. They provide
bounds on the generalization error in terms of the empirical
error, in a manner which is independent of the learning al-
gorithm. Hence, these bounds can be used to analyze and
explain a wide variety of learning algorithms. In particu-
lar, PAC-Bayesian error bounds turned out to be useful for
providing non-vacuous error bounds for neural networks
(Dziugaite & Roy, 2017).

While there is a wealth of literature on PAC (Shalev-Shwartz
& Ben-David, 2014) and PAC-Bayesian (Alquier, 2021;
Guedj, 2019), bounds for static models, much less is known
on dynamical systems.
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Contribution In this paper we consider stochastic LTI state-
space representations (LTI systems for short) in innovation
form. In accordance with the standard practice in system
identification, we view stochastic LTI systems as predictors,
which take past inputs and outputs and generate predictions
for the current output. We assume that the data used for
learning are generated by stochastic LTI systems in innova-
tion form. Learning/identifying an LTI system then amounts
to finding the predictor, which results in the smallest predic-
tion error for the training data, i.e., the smallest empirical
loss. However, for decision making (fault detection,control,
etc.), the quality of the learned model is determined by the
generalization error, i.e., the average prediction error for
future, unseen data. The PAC-Bayesian bound of this paper
says that with a high probability (probability at least 1− δ),
the generalization error is smaller than the empirical loss
plus an error term. The error term depends on the number
of data points N and on parameter (learning rate λ). In this
paper we provide explicit formulas for the error term. We
show that the error term converges to a constant as N → ∞.
The constant depends on the confidence level δ and the dis-
tance between prior and posterior densities on models. If
we assume that the data used for learning is generated by an
LTI system with bounded noise, we can show that the error
term converges to 0 as N → ∞. The rate of convergence
is O( 1√

N
), which is consistent with most of finite-sample

bounds available in the literature for various, not necessarily
LTI, models. This suggests that the obtained error bound is
likely to be asymptotically sharp for bounded signals.

Related work PAC bounds for sub-classes of linear dynam-
ical systems in autoregressive form and with bounded sig-
nals were proposed in (Campi & Weyer, 2002; Vidyasagar
& Karandikar, 2006). In (Alquier & Wintenberger, 2012;
Alquier et al., 2013) PAC-Bayesian bounds for auto-
regressive models without exogenous inputs were consid-
ered, and the variables were either assumed to be bounded
or the loss function was assumed to be Lipschitz.

In contrast to (Campi & Weyer, 2002; Vidyasagar &
Karandikar, 2006; Alquier et al., 2013; Alquier & Winten-
berger, 2012), we consider state-space models with inputs,
we also handle unbounded variables (although the results are
weaker than for the bounded case) and quadratic loss func-
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tions. However, results from (Alquier et al., 2013; Alquier
& Wintenberger, 2012) were used in this paper. Another
related work is (Massucci et al., 2021), where PAC bounds
for switched autoregressive systems were derived, but again
those results do not apply to stochastic LTI state-space rep-
resentations.

Recently, several publications on finite-sample bounds
for learning linear dynamical systems were derived, with-
out claiming completeness (Simchowitz et al., 2019; Sim-
chowitz, 2021; Oymak & Ozay, 2022; Lale et al., 2020;
Foster & Simchowitz, 2020; Hazan et al., 2018; Tsiamis
& Pappas, 2019; Sarkar et al., 2021). First, all the cited
papers propose a bound which is valid only for models
generated by a specific learning algorithm. In particular,
these bounds do not relate the generalization loss with the
empirical loss for arbitrary models, i.e., they are not PAC(-
Bayesian) bounds. This means that in contrast to the results
of this paper, the bounds of the cited papers cannot be used
for analyzing algorithms others than for which they were
derived. Second, many of the cited papers do not derive
bounds on the infinite horizon prediction error. PAC bounds
for recurrent neural networks, of which LTI state-space rep-
resentations are a subclass, were developed in (Koiran &
Sontag, 1998; Sontag, 1998; Chen et al., 2020) using VC
dimension, and in (Joukovsky et al., 2021; Chen et al., 2020)
using Rademacher complexity, and in (Zhang, 2006; Dziu-
gaite & Roy, 2017) using PAC-Bayesian bounds approach.
However, all the cited papers assume noiseless models, a
fixed number of time-steps, that the training data are i.i.d
sampled time-series, and the signals are bounded. In con-
trast, we consider (1) noisy models, (2) prediction error
defined on infinite time horizon, (3) only one single time se-
ries available for training data, and (4) we allow unbounded
signals.

In (Eringis et al., 2021) PAC-Bayesian error bounds were
developed for autonomous LTI state-space systems without
exogenous input. In contrast to (Eringis et al., 2021), in the
current paper we consider systems with exogenous inputs.
Moreover, the error bound of this paper is much tighter than
that of (Eringis et al., 2021): in contrast to (Eringis et al.,
2021), with the growth of the number of observations, the
error bounds of this paper converge either to zero (in the
case of bounded innovation noise) or to a constant involving
KL-divergence. Finally, the proof technique is completely
different from that of (Eringis et al., 2021).

Paper Outline We start by defining the problem formulation
in Section 2, where all the assumptions and important quan-
tities are defined. Then we will discuss the PAC-Bayesian
framework in Section 3, then we will present the main re-
sults of the paper in Section 4, then we will present some
auxiliary results for systems driven by bounded noise in
Section 5, Finally, a short numerical example is presented

in Section 6.

2. Problem formulation
Notation and terminology

We occasionally use ≜ to denote ”defined by”. Let F denote
a σ-algebra on the set Ω and P be a probability measure
on F. Unless otherwise stated all probabilistic considera-
tions will be with respect to the probability space (Ω,F,P),
and we let E(z) denote expectation of the stochastic vari-
able z. We use bold face letters to indicate stochastic vari-
ables/processes. Each euclidean space is associated with
the topology generated by the 2-norm ∥ · ∥2, and the Borel
σ-algebra generated by the open sets. The induced matrix
2-norm is also denoted ∥ · ∥2. We say that a random variable
z taking values in Rn is essentially bounded, if for some
constant C > 0, ∥z∥2 < C holds with probability one.

A stochastic linear-time invariant (LTI) systems with inputs
in state-space form (Lindquist & Picci, 2015, Chapter 17)
is a dynamical system of the form

x(t+ 1) = Ax(t) +Bu(t) + ν(t),

y(t) = Cx(t) +Du(t) + η(t)
(1)

defined for all t ∈ Z, where A,B,C,D are n × n,
n × nu, ny × n and ny × nu matrices respectively, A
is a Schur matrix (a square matrix with all its eigenvalues
inside the unit disk), ν,η are zero-mean Gaussian i.i.d pro-
cesses, u, x, are zero-mean stationary Gaussian processes,
u(t) and

[
ηT (t),νT (t)

]T
are independent, and x(t) and[

νT (t),ηT (t)
]T

are independent. The process x is called
the state process, ν is called the process noise and η is the
measurement noise. If B,D are absent from (1), then we
say that (1) is an autonomous stochastic LTI system

Let us fix stochastic processes y(t) ∈ Rny , and u(t) ∈ Rnu ,
that share a time axis t ∈ Z, that is, for any t ∈ Z, y(t) :
Ω → Rny ;ω 7→ y(t)(ω), and u(t) : Ω → Rnu ;ω 7→
u(t)(ω) are random vectors on (Ω,F,P). The goal is to
estimate y(t) from current and past values of u(t), for this
we need a structure connecting y(t) and u(t), thus we have

Assumption 2.1. Let y(t) and u(t) be generated by an
autonomous stochastic LTI system

x(t+ 1) = Agx(t) +Kgeg(t), (2a)[
y(t)
u(t)

]
= Cgx(t) + eg(t) (2b)

where Ag ∈ Rn×n,Kg ∈ Rn×m, Cg ∈ Rm×n for n > 0,
m = ny + nu ≥ 2. Furthermore, we require that

• Ag and Ag −KgCg are Schur (all its eigenvalues are
inside the open unit circle), and
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• eg is an i.i.d process and eg(t) is a zero mean sub-
Gaussian variable for all t ∈ Z with covariance
E[eg(t)e

T
g (t)] = Qe,

• x(t) has finite variance, and eg(t) is independent of
x(t), for all t ∈ Z.

We identify the system (2) with the tuple Σgen ≜
(Ag,Kg, Cg, I)

Note: For learning, we assume to have the training data
set DN = {{y(s)(ω),u(s)(ω)}}N−1

s=0 , i.e. a single trajec-
tory of [yT (t),uT (t)]T , but no knowledge of the matrices
Ag,Kg, Cg and noise process eg. The system (2) only de-
fines the assumptions on the data generating process.

The goal is to use the past and present of u(t), or past of
y(t), to estimate y(t). Note that y and u are stationary
processes by (Caines, 1988, Theorem 1.4). Moreover, from
classical theory of LTI systems it follows that y(t) and
u(t), t ∈ Z are essentially bounded if the noise eg(s) is
essentially bounded for all s ∈ Z

We wish to consider LTI predictors,

x̂(t+ 1) = Âx̂(t) + B̂u(t) + L̂y(t), x̂(0) = 0 (3a)

ŷ(t) = Ĉx̂(t) + D̂u(t) (3b)

where matrices Â, B̂, L̂, Ĉ, D̂ are of appropriate size, and
Â is Schur (all its eigenvalues are inside the unit disk).

Note: In this paper, we will allow a more general form
of predictors, where L̂ can be set to 0, i.e. we may wish
to estimate y(t) only from measurements u(t), when past
values of the process y(t) is not available. In order to
accommodate this let us define a stochastic process w(t) ∈
Rnw , by two cases

• w(t) =
[
yT (t) uT (t)

]T
, nw = ny + nu

• w(t) = u(t), nw = nu

Note that, one can define w(t), to consist of some of the
components of y(t), i.e. w(t) does not need to contain all
of y.

Class of predictors (hypotheses) In this paper, we will be
interested in the following hypothesis class, consisting of
predictors realizable by LTI systems.

Assumption 2.2 (Parameterised hypothesis class). The hy-
pothesis class F is a parametrized set of LTI predictors, with
Σ(θ) = (Â(θ), B̂(θ), Ĉ(θ), D̂(θ)):

x̂(t+ 1) = Â(θ)x̂(t) + B̂(θ)w(t), x̂(0) = 0, (4a)

fΣ(θ)({w(s)}ts=0) = Ĉ(θ)x̂(t) + D̂(θ)w(t). (4b)

F = {fΣ(θ) | γ(Â(θ)) < 1, θ ∈ Θ}

with γ(Â(θ)) the spectral radius of Â(θ), i.e. the largest
modulus of eigenvalues of Â(θ). Set Θ ⊂ Rnθ is a compact
set, and Â(θ),B̂(θ), Ĉ(θ), D̂(θ) are continuous functions of
θ taking values in the sets of n̂ × n̂, n̂ × nw, ny × n̂ and
ny × nw matrices respectively. If w(t) = [yT (t),uT (t)]T ,
then D̂ = [0, D̂u] for some ny×nu matrix D̂u, i.e., D̂w(t)
depends only on u(t)1.

We will identify the system (4) with the tuple (Â, B̂, Ĉ, D̂).
For the sake of notation, throughout the paper we will use
f , to denote fΣ(θ), for some arbitrary θ ∈ Θ.

Under assumption 2.2, we can use probability densities on
the set of predictors F . The latter will be essential for using
the PAC-Bayesian framework.

Next, we define the notions of empirical and generalization
loss for predictors which are realized by LTI systems.

Assumption 2.3 (Quadratic loss function).
We will consider quadratic loss functions ℓ : Rny × Rny ∋
(y, y′) 7→ ∥y − y′∥22 = (y − y′)T (y − y′) ∈ [0,∞).

The empirical loss of a predictor for the data DN =
{y(t),w(t)}Nt=0 is defined as follows: we define the random
variable

ŷf (t | s) ≜ f(w(s), . . . ,w(t))

which represents the estimate of y(t) based on random vari-
ables {w(s), . . . ,w(t)} . The empirical loss for a predictor
f and processes (y,w) is then defined by

L̂N (f) ≜
1

N

N−1∑
i=0

ℓ(ŷf (i | 0),y(i)). (5)

The definition of the generalization loss is a bit more in-
volved. Namely, we are using varying number of inputs for
predictions and hence the expectation E[ℓ(ŷf (t | 0),y(t))]
depends on t. This will hold true even if the processes y
and w are stationary. Note that this issue is specific for
state-space models: autoregressive models always use the
same number of inputs to make a prediction. In this paper
we will opt for looking at the case when the size of the past
used for the prediction is infinite.

Lemma 2.4 ((Hannan & Deistler, 1988)). The limit ŷf (t) =
lims→−∞ ŷf (t | s) exists in the mean-square sense for all
t, the process ŷf (t) is stationary, and E[ℓ(ŷf (t),y(t))] =
lims→−∞ E[ℓ(ŷf (t | s),y(t))].

This motivates us to introduce the quantity

L(f) = E[ℓ(ŷf (t),y(t))] = lim
s→−∞

E[ℓ(ŷf (t | s),y(t))]

1The latter assumption is necessary, since otherwise we would
be using the components of y(t) to predict y(t), which is not
meaningful.
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which is called the generalization loss of the predictor f
when applied to process (y,w).

Intuitively, ŷf (t) can be interpreted as the prediction of y(t)
generated by the predictor f based on all (infinite) past and
present values of w. As stated in Lemma 2.4 we consider the
special case when ŷf (t) is the mean-square limit of ŷf (t | s)
as s → −∞. Clearly, for large enough t− s, the empirical
loss, is close to the generalization loss. In fact, it is standard
practice in learning dynamical systems (Ljung, 1999) to use
L(f) as the measure of fitness of the predictor. With these
definitions in mind, the learning problem considered in this
paper can be stated as follows.
Problem 2.1 (Learning problem). Compute a predictor
f ∈ F from a sample DN = {y(t)(ω),w(t)(ω)}Nt=0 of
the random variables {y(t),w(t)}Nt=0 such that the general-
ization loss L(f) is small.
Remark 2.5 (Relationship with parameter estimation). The
learning problem above can be interpreted as a parameter
estimation problem as follows. Assume that there is no
feedback from y to u in the sense of (Lindquist & Picci,
2015, Definition 17.1.1). Then from (Eringis et al., 2022) it
follows that the data generator Σgen gives rise to a predictor
f(Σgen) with w =

[
yT uT

]T
, such that generalization

error L(f(Σgen)) is the smallest possible among all the pre-
dictors. Moreover, the correspondence between the matrices
of Σgen and f(Σgen) is one-to-one and continuous. Hence,
if the predictor f(Σgen) arising from the data generator
Σgen belongs to the hypothesis class, then the solution of
the learning problem will be the predictor f(Σgen) which
arises from the data generator, moreover, the matrices of
the predictor can be used to compute the matrices of the
data generator (Eringis et al., 2022). That is, the problem
of finding a predictor with minimal generalization error is
equivalent to finding the data generator. Moreover, if the
hypothesis class satisfies some regularity conditions (e.g.,
identifiability, etc.), then any predictor with a sufficiently
small generalization error will have matrices which are close
to the matrices of the optimal predictor, and hence can be
used to compute an approximation of the data generator.

3. PAC-Bayesian Framework
Below we recall the PAC-Bayesian framework. To this end,
let BΘ be the σ-algebra of Lebesque-measurable subsets of
the parameter set Θ ⊆ Rnθ , and m denote the Lebesque
measure on Rnθ . We then define

E
f∼ρ

g(f) ≜
∫
θ∈Θ

ρ(θ)g(fΣ(θ))dm(θ) (6)

with ρ a probability density function on the measure space
(Θ, Bθ,m), and g : F → R a map such that Θ ∋ θ 7→
g(fΣ(θ)) is measurable and absolutely integrable. The
essence of the PAC-Bayesian approach is to prove that for

any density π on F , and any δ ∈ (0, 1],

P

({
ω ∈ Ω | ∀ρ̂ ∈ Mπ : E

f∼ρ̂
L(f) ≤

E
f∼ρ̂

L̂N (f)(ω) + rN (λ, ρ̂, δ)

})
> 1− δ, (7)

i.e., the inequality E
f∼ρ̂

L(f) ≤ E
f∼ρ̂

L̂N (f) + rN (λ, ρ̂, δ)

holds with probability at least 1− δ, where

rN (λ, ρ̂, δ) =
1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+Ψπ(λ,N)

]
, (8)

where λ > 0 and DKL(ρ̂ | π) ≜ Ef∼ρ̂ ln
ρ̂(f)
π(f) is the KL-

divergence between π and ρ̂, and

Ψπ(λ,N) ≜ lnEf∼πE[eλ(L(f)−L̂N (f))] (9)

Mπ is the set of all absolutely continuous densities w.r.t π,
and rN (λ, ρ̂, δ) is the error term. That is, the PAC-Bayesian
bound holds for every posterior ρ̂ in Mπ , simultaneously.

We may think of π as a prior distribution density function
and ρ̂ as any candidate to a posterior distribution on the
space of predictors. The inequality (7) says that the average
generalization loss for models sampled from the posterior
distribution is smaller than the average empirical loss for
the posterior distribution plus the error terms rN , with arbi-
trarily high probability.

A learning algorithm can be thought of as fixing a prior π
and then choosing a posterior ρ̂ for which the right-hand
side of the inequality (7) is small. The latter can be viewed
as a cost function involving the empirical loss and the reg-
ularization term rN . The learned model is either sampled
from the posterior density ρ̂, or it is chosen as the one with
maximal likelihood w.r.t. ρ̂. Inequality (7) then gives guar-
antees on the generalization loss of the learned model. For
more details on using PAC-Bayesian bounds see (Alquier,
2021).

The density which minimizes E
f∼ρ̂

L̂N (f)(ω) + rN (λ, ρ̂, δ)

is known as the Gibbs-posterior (Alquier, 2021) and it can
be explicitly computed, i.e.

ρGibbs(f) ≜ Z−1π(f) exp(−λL̂N (f)), (10)

Z ≜ Ef∼π exp(−λL̂N (f)).

In particular, using standard techniques (Alquier, 2021) it
follows that

E
f∼ρGibbs

L(f) ≤ inf
ρ̂∈Mπ

(
E

f∼ρ̂
L̂N (f) + rN (λ, ρ̂, δ)

)
with probability at least 1 − δ. One can also use PAC-
Bayesian bounds, in order to choose the prior π or the hy-
pothesis class F , s.t. the difference between generalised
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loss and empirical loss is within some acceptable level, i.e.
Ef∼ρ

(
L(f)− L̂N (f)

)
≤ rN (λ, ρ̂, δ) ≤ ϵ, after which

one can proceed with more standard Bayesian learning ap-
proach on just the empirical loss L̂N (f).

From the discussion above it follows that it is desirable for
the bound (7) to be tight. In particular, as the empirical loss
converges to the generalization loss as N → ∞, we expect
that for tight bounds the term rN (λ, ρ̂, δ) should converge
to a small, preferably zero, constant as N → ∞.

4. Main Results
In this paper we derive PAC-Bayesian bounds (7) for LTI
systems. The main idea is to use the change of measure
inequality from (Germain et al., 2016, Theorem 3). The
major challenge is to bound the corresponding moment gen-
erating function/higher-order moments of (L(f)− L̂N (f)).
However this brings some technical challenges. Namely,
the processes involved are not i.i.d.. Moreover, they are not
bounded, and the quadratic loss function is not Lipschitz.
In addition, the empirical loss L̂N (f) is not an unbiased
estimate of the generalization loss L(f). This is specific
to state-space representations, for auto-regressive models
considered in (Alquier & Wintenberger, 2012; Alquier et al.,
2013; Alquier & Guedj, 2018) this problem does not occur.
All these issues make it impossible to directly apply existing
techniques (Alquier & Wintenberger, 2012; Alquier et al.,
2013; Alquier & Guedj, 2018).
As the first step, we replace the empirical loss L̂N (f) by

VN (f) ≜
1

N

N−1∑
i=0

(y(i)− ŷf (i))
2 (11)

where the finite-horizon prediction ŷf (t | 0) is replaced
by the infinite horizon prediction ŷf (t) defined in Lemma
2.4. The advantage of VN (f) over L̂N (f) is that VN (f) is
an unbiased estimate of the generalization loss L(f), i.e.,
E[VN (f)] = L(f). Indeed, since y(t)− ŷf (t) is a station-
ary process, E[∥y(i)−ŷf (i)∥22] = L(f) does not depend on
i, and hence E[VN (f)] = 1

N

∑N−1
i=0 E[∥y(i)− ŷf (i)∥22] =

L(f). Usual techniques for deriving error bounds are eas-
ier to extend to VN (f) than to L̂N (f). In order to derive
upper bounds on the errors of the type (8), we will first
derive upper bounds of the type (8), for L(f) − VN (f),
secondly we will derive upper bounds for VN (f)− L̂N (f),
then we will combine them using union bound. Doing
this might seem counter-productive, however it is signifi-
cantly easier to bound moments, E[(L(f)− VN (f))r], and
E[(VN (f)− L̂N (f))r].

For every predictor f we define a number of constants
which will be used in the PAC-Bayesian error bound. Let
Ag,Kg, Cg be the matrices of the data generator from As-
sumption 2.1. Let us define the matrices (Ae,Ke, Ce, De)

as De = I − D̂w,

Ae =

[
Ag 0

B̂Cw Â

]
,Ke =

[
Kg

B̂w

]
, Ce =

[
(C1 − D̂Cw)

T

−ĈT

]T
where Cg =

[
CT

1 CT
2

]T
and C1 has ny rows and C2 has

nu rows; and

(Cw, B̂w, D̂w) =

(C2,
[
0 B̂

]
,
[
0 D̂

]
) if w = u ,

(Cg, B̂, D̂) if w =

[
y
u

]
The matrices Ae,Ke, Ce, De represent the LTI system
driven by the innovation process eg of (yT ,wT )T , output
of which is y − ŷf , i.e.,

x̃(t+ 1) = Aex̃(t) +Keeg(t),

y(t)− ŷf (t) = Cex̃(t) +Deeg(t)
(12)

Next, choose M̂(f) > 1, and let γ̂(f) ∈ [γ̂∗(f), 1), such
that ∥Âk∥2 ≤ M̂(f)γ̂k(f), where γ̂∗(Â) is the spectral
radius of Â.

Definition 4.1 (Constants Ḡf (f), Ge(f)). With these defi-
nitions,

Ge(f)≜∥(Ae,Ke, Ce, De)∥ℓ1≜∥De∥2+
∞∑
k=0

∥CeA
k
eKe∥2

Ge,1(f) ≜ ∥De∥2 +
∞∑
k=0

(k + 1)∥CeA
k
eKe∥2

∥Σgen∥ℓ1 ≜ 1 +

∞∑
k=0

∥CgA
k−1
g Kg∥2

Ḡf (f) ≜

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)
M̂∥Ĉ∥∥B̂∥
(1− γ̂)1.5

The interpretation of the various terms appearing in Defini-
tion 4.1 is as follows.
Remark 4.2 (Interpretation of constants).
The term Ge(f) is the ℓ1 norm of the error system, it
relates high-order moments of the infinite past predic-
tion error and the high-order moments of the innovation
noise eg of the data generator, i.e., E[∥y(t) − ŷ(t)∥r2] ≤
Gr

e(f)E[∥eg(t)∥r2].
The term Ge,1(f) characterizes mixing properties (short
memory condition) (Alquier et al., 2013) of the prediction
error y(t) − ŷ(t). Intuitively,the smaller Ge,1(f) is, the
more the prediction error behaves like an i.i.d process. This
constant is related to stability of the error system, i.e., the
smaller the spectral radius of Ae is, the smaller this constant
is.
The term ∥Σgen∥ℓ1 is the ℓ1 norm of the data generator, it
relates high-order moments of y and u with those of the
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noise, i.e., E[∥[yT (t),uT (t)]T ∥r2] ≤ ∥Σgen∥rℓ1E[∥eg(t)∥r2].
The term Ḡf (f) depends only the predictor f , and it
gives an upper bound on high-order moments of the dif-
ference of empirical losses VN (f) − LN (f) in terms
of high-order moments of y and u, i.e, it is shown
in (Eringis et al., 2023) that E[|VN (f) − LN (f)|r∥ ≤
2r√
N
Ḡf (f)

rE[∥[yT (t),uT (t)]T ∥r]. This terms decreases
with the spectral radius of the predictor, the more stable the
predictor, the smaller is Ḡf (f).
Theorem 4.3. Let Mπ denote the set of all absolutely con-
tinuous densities w.r.t π. Let µmax(Qe) be the maximal
eigenvalue of the covariance matrix Qe = E[eg(t)e

T
g (t)]

of the noise eg from Assumption 2.1. Then for any density π
on hypothesis class F , any δ ∈ (0, 1], and

0 < λ <
(
sup
f∈F

max{8(ny + nu)ḠgenḠf (f),

6(ny + nu + 1)nyµmax(Qe)Ge(f)
2}
)−1

(13)

the following inequality holds with probability at least 1−2δ

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) + rN (λ,N),

(14)

with

rN (λ, ρ̂, δ) ≜
1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+ Ψ̂π(λ,N)

]
Ψ̂π(λ,N) ≜

1

2

(
ln E

f∼π
Ψ̂1(f) + ln E

f∼π
Ψ̂2(f)

)
Ψ̂1(f) ≜ 1 +

2(m+ 1)!
(
6λnyµmax(Qe)Ge(f)

2
)2

N(1− 6(m+ 1)λnyµmax(Qe)Ge(f)2)

Ψ̂2(f) ≜ 1+
8(m!)λḠf (f)∥Σgen∥2ℓ1µmax(Qe)√

N
(
1− 8λmḠf (f)∥Σgen∥2ℓ1µmax(Qe)

)
Sketch of the proof of Theorem 4.3. Below we will skecth
the basic steps, for a detailed proof of Theorem 4.3, see
(Eringis et al., 2023, Proof A.17). The main idea of the
proof is to show that for i = 1, 2

∀ρ ∈Mπ : Ef∼ρ̂Yi(f) ≤ Ef∼ρ̂Xi(f)+

1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+ lnEf∼πΨ̂N,i(0.5λ, f)

]
,

with probability 1 − δ, where Y1(f) = L(f), Y2(f) =
X1(f) = VN (f), X2(f) = L̂N (f), and then combine
these two inequalities to derive (14). In order to derive these
two inequalities, we use the Donsker-Varadhan change of
measure inequality applied to Yi(f) − Xi(f), i = 1, 2
and the following inequalities on the moment generating
function of L(f)− VN (f) and VN (f)− LN (f)

E
[
eλ(L(f)−VN (f))

]
≤ Ψ̂N,1(0.5λ, f) (15)

E[eλ(VN (f)−L̂N (f))] ≤ Ψ̂N,2(0.5λ, f) (16)

In order to prove (15) – (16), we use the following bounds
on the high-order moments of L(f)− VN (f) and VN (f)−
LN (f):

E[(L(f)− VN (f))r] ≤ σ(r)

N
4(r − 1)nr

yGe(f)
2r

(17)

E[∥VN (f)− L̂N (f)∥r] ≤ σ̄(r)√
N

(
4Ḡf (f)∥Σgen∥2ℓ1

)r
(18)

where σ(r) and σ̄(r) satisfies

σ(r) = sup
t,k,j

E [∥e(t, k, j)∥r2] ,

e(t, k, j) ≜ E[eg(t− k)eTg (t− j)]− eg(t− k)eTg (t− j)

σ̄(r) ≥ E[∥eg(t)∥r2]

If eg(t) is sub-Gaussian, then σ(r) ≤ 3rµmax(Qe)
r(m +

r− 1)!, and σ̄(r) ≤ 2rµmax(Qe)
r(m+ r− 1)!. Using this

observation after some manipulation, we can derive from
(17)-(18) the inequalities (15)-(16)

Discussion on the error bound The error bound of Theo-
rem 4.3 is relatively intuitive: it is increasing with the noise
covariance of the generator system, and with the ℓ1 norm
of the generator system, the error system, and the predictor.
The higher the noise covariance is, the noisier is the gener-
ated data, and the more difficult it is to predict it. The higher
the various norms and constants are, the less the generator,
error system and the predictors are able to suppress the ef-
fects of the noise. In particular, the smaller is the spectral
radius of the predictors and of the generator, the smaller is
the error bound.

Note that, as N → ∞ the PAC-Bayesian er-
ror term rN (λ, ρ̂, δ) converges to the constant
1
λ

(
DKL(ρ̂|π) + ln

(
1
δ

))
for any posterior ρ̂ and λ > 0.

That is, irrespective of ρ̂, π, the error rN ≥ 1
λ ln

(
1
δ

)
.

Usually, one chooses λ = λN as an increasing function of
N , which then allows the PAC-Bayesian error rN (λN , ρ̂, δ)
to converge to 0 for any posterior ρ̂ and confidence level
δ > 0. However, since by Theorem 4.3, λ is bounded by a
constant, we can not control the term 1

λ ln
(
1
δ

)
, and hence

rN (λ, ρ̂, δ) will not converge to zero.

A similar problem was already observed for PAC-Bayesian
bounds for linear regression with unbounded signals and
Gaussian noise (Shalaeva et al., 2020). In the next section,
we eliminate this problem for the case when the noise eg of
the data generator is bounded.
Remark 4.4 (Relationship with bounds from (Shalaeva et al.,
2020; Eringis et al., 2021)). Note that the bound above
not only applies to a more general class of models than
(Eringis et al., 2021; Shalaeva et al., 2020), but it is also
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asymptotically tighter that the bounds of (Eringis et al.,
2021; Shalaeva et al., 2020). Indeed, the latter bounds
converge to 1

λ

[
DKL(ρ̂|π) + ln

(
1
δ

)]
+ c as N → ∞ for

some constant c > 0, while the bound of Theorem 4.3
converges to the same expression but with c = 0.

5. Bounded case
As it was mentioned above, for the case of bounded sig-
nals Theorem 4.3 can be improved. More precisely, in this
section we will use the following assumption.

Assumption 5.1. The noise eg(t) from Assumption
2.1 is essentially bounded, i.e. with probability 1,
maxi=1,...,m |eg,i(t)| ≤ ce, for some ce > 0. Moreover,
∥eg(t)∥2 ≤ C ≜ ce

√
m

With the assumption above y(t) and u(t) are essentially
bounded for all t ∈ Z. This then allows us to derive the
following sharper bounds.

Theorem 5.2. Let Mπ denote the set of all absolutely con-
tinuous densities w.r.t π. Under assumption 5.1 it holds true
that for any density π on hypothesis class F , any δ ∈ (0, 1],
and λ > 0 the following inequality holds with probability
at least 1− 2δ

∀ρ̂ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) + r̄N (λ, ρ̂, δ)
(19)

with the constants

r̄N (λ, ρ̂, δ) ≜
1

λ

[
DKL(ρ̂||π) + ln

1

δ
+ Ψ̄π(λ,N)

]
Ψ̄π(λ,N) ≜

1

2

(
ln E

f∼π
Ψ̄1(f) + ln E

f∼π
Ψ̄2(f)

)
Ψ̄1(f) ≜ 1 +

1

N
eλ8nyC

2Ge(f)
2

Ψ̄2(f) ≜ 1 +
1√
N

eλ4∥Σgen∥2
ℓ1

C2Ḡf (f)

Sketch of the proof of Theorem 5.2. The proof is similar to
that of Theorem 5.2, but σ(r) and σ̄(r) can be taken as
(2C)r and Cr respectively, for a detailed proof see (Eringis
et al., 2023, Corollary A.3).

Discussion on the bound The intuitive interpretation of
the bound of Theorem 5.2 in terms of the effect of the
noise levels of the data generator, various system norms and
stability is analogous to that of Theorem 4.3. However, in
contrast to Theorem 4.3, λ is not bounded in Theorem 5.2,
and as such we can choose λ = λN an increasing function
of N , in order to control the term 1

λN
ln δ−1:

Corollary 5.3 (Bounds converging to zero). With the as-
sumptions and notation of Theorem 5.2, then for any given

posterior ρ̂, limN→∞ r̄N (λN , ρ̂, δ) = 0, where

λN =
ln

√
N

C2 supf∈F max{8nyGe(f)2, 4∥Σgen∥2ℓ1Ḡf (f)}
,

If one chooses λN as in Corollary 5.3, and considers
posteriors ρ̂N which depend on N , for example Gibbs
posteriors (10), then it is hard to say what will happen
with λ−1

N (DKL(ρ̂N∥π). This is a general issue with PAC-
Bayesian bounds. However, simulations indicate that
if λN is any reasonable increasing function of N , then
λ−1
N DKL(ρ̂N∥π), will converge to some problem depen-

dant constant.

The bound above has all the desired properties, but its rate
of convergence to zero as N → +∞ is very slow, it is
O( 1

ln
√
N
). In fact, using (Alquier et al., 2013), the results

of Theorem 5.2 can be sharpened as follows.

Theorem 5.4. Let Mπ denote the set of all absolutely con-
tinuous densities w.r.t π. Under assumption 5.1, for any den-
sity π on hypothesis class F , any δ ∈ (0, 1], and λ > 0 the
following inequality holds with probability at least 1− 2δ,

∀ρ̂ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) + r̃N (λ, ρ̂, δ)
(20)

where

r̃N (λ, ρ̂, δ) ≜
1

λ

[
DKL(ρ̂||π) + ln

1

δ
+ Ψ̃π(λ,N)

]
Ψ̃π(λ,N) ≜

1

2

(
ln E

f∼π
Ψ̃1(f) + ln E

f∼π
Ψ̃2(f)

)
Ψ̃1(f) ≜

(
1− C1,2(f) + C1,2(f)e

λ
N 2C1,1(f)

)
Ψ̃2(f) ≜

(
e

λ2

N 8(Ge(f)+Ge,1(f))
2C2(4Ge(f)C+1)2

)
C1,i(f) ≜ Ḡf,i(f)∥Σgen∥ℓ1C

Ḡf,1(f) ≜ M̂∥Ĉ∥2∥B̂∥2 (1− γ̂)
−1

,

Ḡf,2(f) ≜
(
1 + ∥D̂∥2 + Ḡf,1(f)

)
(1− γ̂)

−1

Sketch of the proof of Theorem 5.4. We repeat the steps of
the proof of Theorem 4.3. However, we replace (15)
by E[eλ(L(f)−VN (f))] ≤ Ψ̃N,1(0.5λ, f) which is de-
rived using the extension of Hoefding’s inequality in
(Alquier et al., 2013, Theorem 6.6). We then replace
(16) with E[eλ|VN (f)−L̂N (f)|] ≤ Ψ̃N,2(0.5λ, f). The
latter follows by using the bounds Ḡf,1(f)∥Σgen∥ℓ1C ·(

2∥Σgen∥ℓ1
C

N Ḡf,2(f)
)r

on the moments E[∥VN (f) −
L̂N (f)∥r] instead of (18). For the detailed proof see
(Eringis et al., 2023, Proof A.26).
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Discussion on the bound The intuition behind the role
of the noise level, system norms and stability for the bound
above is the same as for the bounds of the previous theorems.
The bound above has the advantage that it converges to zero
significantly faster than the convergence in Corollary 5.3:

Corollary 5.5 (Fast convergence O( 1√
N

). If λN =
√
N ,

then for any given posterior ρ̂, limN→∞ r̃N (λN , ρ̂, δ) = 0
with the rate of convergence O( 1√

N
).

As before, if the posterior ρ̂N depends on N , say, it is the
Gibbs posterior, then it is difficult to prove convergence
r̃N (λN , ρ̂N , δ) analytically. This is a general issue with
PAC-Bayesian bounds. However, if DKL(ρ̂N |π) grows
slower than 1√

N
, then the error bound r̃N (λN , ρ̂N , δ) will

still converge to zero as N → ∞ for λN =
√
N . Numerical

simulations reveal, for the Gibbs posterior this is the case.

6. Numerical example
For the sake of illustration let us assume that data is gener-
ated by

x(t+ 1) =

[
0.16 −0.3
0 −0.05

]
x(t) +

[
0.33 −0.75
0 −0.09

]
eg(t)[

y(t)
u(t)

]
=

[
1 1
0 1

]
x(t) + eg(t),

Following the two theorems in the paper, we will consider
two cases:
(1) Unbounded innovation noise: eg(t) ∼ N (0, Qe),

Qe =

[
0.054 0.018
0.018 0.248

]
,

(2) Bounded innovation noise: eg(t) is distributed accord-
ing to zero-mean truncated gaussian, s.t. ce = 1, and
E[eg(t)e

T
g (t)] ≈ Qe.

We will assume that the predictors are fully parametrised,
i.e all entries of matrices Â(θ), B̂(θ), Ĉ(θ), D̂(θ) are
parametrised, and all predictors are second-order systems,
i.e. Â(θ) ∈ R2×2. Moreover in the case of w(t) =
[yT (t),uT (t)]T , we take D̂(θ) =

[
0 θ9

]
. Thus, with

Σ(θ) = (Â(θ), B̂(θ), Ĉ(θ), D̂(θ)), we will define our hy-
pothesis class to be

F = {fΣ(θ)|γ(Â(θ)) < 1, Ḡf (fΣ(θ)) < 10, θ ∈ R11}

We shall use the prior, π(f) = Zπ exp(−Ḡf (f)), with Zπ

the normalisation term. This prior will act as regularisation,
penalising predictors with high ℓ1 norms. This in turn will
reduce the term Ef∼π(1 +

1√
N
eλGgen,2Ḡf (f)). We will use

the Gibbs posterior ρN (f) = Zρπ(f) exp(−λ(N)L̂N (f))
In order to compute the numerical value of rN , we can
use Markov-Chain Monte-Carlo methods, which means that
we only need to be able to evaluate π̂(f) ∝ π(f), and

ρ̂(f) ∝ ρ(f). More precisely one can approximate rN , by
only being able to evaluate π̂(f) and β(f) ≜ ρ̂(f)

π̂(f) ∝
ρ(f)
π(f)
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Figure 1. Numerical simulation of both cases (bounded and un-
bounded noise), solid lines depict case of w = u, dashed lines
show case of w = [yT ,uT ]T , λ∗ is found by numerical optimi-
sation, i.e. λ∗ = argminλ rN (λ,N), the black horizontal line
denotes a vacuous bound for the bounded noise case, i.e. any
bounds above that line are vacuous

In Fig. 1 we see the convergence of the error terms, for
the case of bounded noise. Note that the proposed function
λN is close to numerically optimal (blue line in Fig. 1),
i.e. asymptotically λN ∝ ln

√
N , seem to be optimal, one

could try to find a less conservative scale of λN . Note that,
in this example, for N ≤ 460, Theorem 5.2, yields vacuous
bounds, i.e. r̄N ( ln

√
N

g , ρ̂, δ) ≥ 2(C supf∈F Ge(f))
2, the

highest possible error. However for Theorem 5.4, only for
N ≤ 64, is the bound vacuous.

For the case of unbounded innovation noise, as stated before
we see in Fig. 1 that it converges to a constant. Unfortu-
nately, since λ is bounded not much can be done. However,
since the noise is unbounded it is difficult to determine if
the bound is vacuous.

7. Conclusion
In this paper we have derived PAC-Bayesian error bounds
for stochastic LTI systems with inputs. For data generated
by an LTI system with sub-gaussian noise, the error bound
is asymptotically bounded from below, which indicates that
the bound is not tight. For data generated by an LTI system
with bounded innovation noise, the error bound converges
to zero at the rate O( 1√

N
), which is comparable to most of

PAC-Bayesian bounds.

Future research will be directed towards extending these
results to more general state-space representations and us-
ing the results of the paper for deriving oracle inequalities
(Alquier, 2021).
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A. Proofs
In this section we provide the proofs of theorem 4.3 and 5.2 under the assumptions stated in the main text. To do so we first
prove a series of lemmas.

Lemma A.1. For random variable eg(t) ∼ N (0, Qe), the following holds

E[∥eg(t)∥r2] ≤ µmax(Qe)
r
2E[∥z(t)∥r2]

z(t) ∼ N (0, I),

where Qe = E[eg(t)e
T
g (t)], and µmax(Qe) denotes the maximal eigen value of Qe.

Proof A.1 (Proof of Lemma A.1). First, note z(t) = Q
− 1

2
e eg(t), and

∥eg(t)∥22 = eTg (t)eg(t) = zT (t)Q
1
2
e Q

1
2
e z(t) = zT (t)Qez(t)

therefore

∥eg(t)∥22 ≤ µmax(Qe)∥z(t)∥22
∥eg(t)∥r2 ≤ µmax(Qe)

r
2 ∥z(t)∥r2

E[∥eg(t)∥r2] ≤ µmax(Qe)
r
2E[∥z(t)∥r2]

Finally, note that z(t) ∼ N (0, I).

Lemma A.2. If z(t) ∼ N (0, Im), then

E[∥z(t)∥r2]2 ≤ 4((m+ r − 1)!)

Proof A.2 (Proof of Lemma A.2). First, notice that the distribution of ∥z(t)∥2 =
√∑m

i=1 z
2
i (t) is chi- distribution, as such

E[∥z(t)∥r2] = 2
r
2
Γ(m+r

2 )

Γ(m2 )
(21)

We will use mathematical induction to prove the lemma.
For r = 0, lemma holds, since

E[∥z(t)∥02]2 =

(
2

0
2
Γ(m+0

2 )

Γ(m2 )

)2

= 1 ≤ 4(m− 1)!, ∀m ∈ N. (22)

for r = 1, lemma holds, as

E[∥z(t)∥12] = 2
1
2
Γ(m+1

2 )

Γ(m2 )
.

Notice that, for scalar x ∼ N (0, 1)

E[|x|k] = 2
k
2
Γ(k+1

2 )
√
π

It is also known that

E[|x|k] =

{
(k − 1)!!

√
2
π , k odd

(k − 1)!!, k even

therefore,

2
k
2
Γ(k+1

2 )
√
π

=

{
(k − 1)!!

√
2
π , k odd

(k − 1)!!, k even
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Applying this to k = m and k = m− 1, we obtain

2
m
2
Γ(m+1

2 )
√
π

=

{
(m− 1)!!

√
2
π , m odd

(m− 1)!!, m even

2
m−1

2
Γ(m2 )√

π
=

{
(m− 2)!!

√
2
π , (m− 1) odd, (m even)

(m− 2)!!, (m− 1) even, (m odd)

Now notice,

E[∥z(t)∥12] = 2
1
2
Γ(m+1

2 )

Γ(m2 )
=

2
m
2
Γ(m+1

2 )
√
π

2
m−1

2

Γ(m2 )√
π

=
(m− 1)!!

(m− 2)!!
cm

cm =

{√
2
π , m even√
π
2 , m odd

notice that cm ≤ 2 for all m, and therefore

E[∥z(t)∥12] ≤ 2
(m− 1)!!

(m− 2)!!
≤ 2(m− 1)!! (23)

Then

E[∥z(t)∥12]2 ≤ 4((m− 1)!!)2

Note that ((m − 1)!!)2 ≤ m!. We can see that by contradiction: assume that ((m − 1)!!)2 ≥ m!. Notice that m! =
m!!(m − 1)!! and hence ((m − 1)!!)2 ≥ m! implies (m − 1)!! ≥ m!!. As (m − 1)!! must be less than m!! we have a
contradiction. Therefore ((m− 1)!!)2 ≤ m! holds and we have

E[∥z(t)∥12]2 ≤ 4m!.

That is, we have shown that for r = 0 and r = 1 Lemma A.2 holds.
Now suppose that for all k ≥ 2 and for all 0 ≤ r ≤ k

2
r
2
Γ(m+r

2 )

Γ(m2 )
≤ 4(m+ r − 1)!, (24)

We will show that (24) holds for r = k + 1 too. To this end, notice that

Γ

(
m+ k

2

)
= Γ

(
m+ k − 2

2
+ 1

)
=

m+ k − 2

2
Γ

(
m+ k − 2

2

)
Using this relation we obtain(

2
k
2
Γ(m+k

2 )

Γ(m2 )

)2

=

((
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)(
2
m+ k − 2

2

))2

=

(
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)2(
2
m+ k − 2

2

)2

.

(25)

Now k − 2 ∈ [0, k], so we can apply to it the induction hypothesis. That is, for r = k − 2, (24) holds, i.e.,(
2

r
2
Γ(m+r

2 )

Γ(m2 )

)
≤ 4(m+ r − 1)! = 4(m+ k − 3)!.
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and therefore (
2

k
2
Γ(m+k

2 )

Γ(m2 )

)2

≤ 4(m+ k − 3)!

(
4
(m+ k − 2)2

4

)
= 4(m+ k − 3)!(m+ k − 2)(m+ k − 2).

Using (m+ k − 2) ≤ (m+ k − 1), it follows that(
2

k−2
2

Γ(m+k−2
2 )

Γ(m2 )

)2(
2
m+ k − 2

2

)2

≤ 4(m+ k − 3)!(m+ k − 2)(m+ k − 2) ≤ 4(m+ k − 1)!

Substituting the last inequality into (25), it follows that (24) holds for r = k + 1.

Lemma A.3. For random variable z ∼ N (0, Im), the even moments of ∥z∥2 are bounded by

E[∥z∥2r2 ] ≤ 2r(m+ r − 1)!

Proof A.3 (Proof of Lemma A.3). Clearly ∥z∥2 has the chi distribution,

E[∥z∥2r2 ] = 2
2r
2
Γ(m+2r

2 )

Γ(m2 )
= 2r

Γ(m2 + r)

Γ(m2 )

Γ
(m
2

+ r
)
= Γ

(m
2

+ (r − 1) + 1
)
=
(m
2

+ (r − 1)
)
Γ
(m
2

+ (r − 1)
)

=
(m
2

+ (r − 1)
)(m

2
+ (r − 2)

)
. . .

m

2
Γ
(m
2

)

E[∥z∥2r2 ] = 2r
(
m
2 + (r − 1)

) (
m
2 + (r − 2)

)
. . . m

2 Γ
(
m
2

)
Γ
(
m
2

)
notice m

2 ≤ m, then

E[∥z∥2r2 ] ≤ 2r
(m+ r − 1)!

m!
≤ 2r(m+ r − 1)!

Combining Lemmas (A.1 and A.2), we obtain the following lemma.

Lemma A.4. Let r ∈ N

E[∥eg(t)∥2r2 ] ≤ µmax(Qe)
r2r(m+ r − 1)!

Combining Lemmas (A.1 and A.3), we obtain the following lemma.

Lemma A.5. Let r ∈ {1, 3, 5, . . . }

E[∥eg(t)∥r2] ≤ 2µmax(Qe)
r
2

√
(m+ r − 1)!

Lemma A.6. Let z(t) be any stationary process, and r ∈ N, then for a stochastic process s(t) =
∑∞

k=0 αkz(t− k), with∑∞
k=0 ∥αk∥ ≤ +∞, the following holds

E[∥s(t)∥r] ≤

( ∞∑
k=0

∥αk∥

)r

E[∥z(t)∥r] (26)
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Proof A.4 (of Lemma A.6).

E[∥s(t)∥r] = E

[
∥

∞∑
k=0

αkz(t− k)∥r
]
≤ E

[( ∞∑
k=0

∥αk∥∥z(t− k)∥

)r]

= E

[ ∞∑
k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

∥αki∥
r∏

i=0

∥z(t− ki)∥

)]
=

∞∑
k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

∥αki∥E

[
r∏

i=0

∥z(t− ki)∥

])
(27)

By the inequality of arithmetic and geometric means

r∏
i=0

∥z(t− ki)∥ ≤ 1

r

r∑
i=1

∥z(t− ki)∥r (28)

then

E

[
r∏

i=0

∥z(t− ki)∥

]
≤ E

[
1

r

r∑
i=1

∥z(t− ki)∥r
]
=

1

r

r∑
i=1

E [∥z(t− ki)∥r] (29)

By assumption z(t) is stationary, therefore E[∥z(t− ki)∥r] = E[∥z(t)∥r], i.e. E[∥z(t)∥r] does not depend on ki, and so we
obtain the statement of the lemma

E[∥s(t)∥r] ≤ E[∥z(t)∥r]
∞∑

k1=0

· · ·
∞∑

kr=0

(
r∏

i=1

∥αki
∥

)
=

( ∞∑
k=0

∥αk∥

)r

E[∥z(t)∥r] (30)

Lemma A.7. Let r ∈ N, then with notation as above the following holds

E[∥z∞(t)− zf (t)∥r] ≤ γ̂rt

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (31)

Proof A.5 (of Lemma A.7). Notice that the process s(t) = z∞(t)− zf (t) = ŷf (t|0)− ŷf (t) can be expressed as:

s(t) =

(
t∑

k=1

ĈÂk−1B̂w(t− k) + D̂w(t)

)
−

( ∞∑
k=1

ĈÂk−1B̂w(t− k) + D̂w(t)

)
(32)

= −
∞∑

k=t+1

ĈÂk−1B̂w(t− k) (33)

in the case of w(t) = u(t)

s(t) = −
∞∑

k=t+1

ĈÂk−1B̂u(t− k) =

∞∑
k=0

αk,t(s, 1)

[
y(t− k)
u(t− k)

]
(34)

with

αk,t(s, 1) =

{[
0 −ĈÂk−1B̂

]
, k ≥ t+ 1

0, k < t+ 1
(35)

In the case of w(t) =
[
yT (t) uT (t)

]T
s(t) = −

∞∑
k=t+1

ĈÂk−1B̂

[
y(t− k)
u(t− k)

]
=

∞∑
k=0

αk,t(s, 2)

[
y(t− k)
u(t− k)

]
(36)

with

αk,t(s, 2) =

{
−ĈÂk−1B̂, k ≥ t+ 1

0, k < t+ 1
(37)
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Notice that in both cases we can upper-bound with the same quantity ∥αk,t(s, 1)∥ ≤ ∥αk,t(s)∥, and ∥αk,t(s, 2)∥ ≤
∥αk,t(s)∥ with

∥αk,t(s)∥ =

{
∥ĈÂk−1B̂∥, k ≥ t+ 1

0, k < t+ 1
(38)

Since w(t) is a stationary process, and by assumption predictors are stable, i.e. all eigenvalues of Â are inside unit circle,
thus

∑∞
k=0 ∥αk,t(s)∥ ≤ +∞,∀t ≥ 0, we apply Lemma A.6, and obtain

E[∥s(t)∥r] = E[∥z∞(t)− zf (t)∥r] ≤

( ∞∑
k=0

∥αk,t(s)∥

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (39)

≤

( ∞∑
k=t+1

∥Ĉ∥∥Âk−1∥∥B̂∥

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (40)

with ∥Âk∥ ≤ M̂γ̂k, for some M > 1 and γ̂ ∈ [γ̂∗, 1), where γ̂∗ is the spectral radius of Â, then with a sum of geometric
series, we get the statement of the lemma

E[∥z∞(t)− zf (t)∥r] ≤
(
M̂∥Ĉ∥∥B̂∥ γ̂t

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] . (41)

Lemma A.8. Let r ∈ N, then with notation as above the following holds

E [∥z∞(t)∥r] ≤

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (42)

Proof A.6 (of Lemma A.8). Notice that z∞(t) = y(t)− ŷf (t) can be expressed as

In the case of w(t) = u(t),

z∞(t) = y(t)−
∞∑
k=1

ĈÂk−1B̂u(t− k)− D̂u(t) =

∞∑
k=0

αk(z∞, 1)

[
y(t− k)
u(t− k)

]
(43)

with

αk(z∞, 1) =


[
I −D̂

]
, k = 0[

0 −ĈÂk−1B̂
]
, k > 0

(44)

in the case of w(t) = [yT (t),uT (t)]T

z∞(t) = y(t)−
∞∑
k=1

ĈÂk−1B̂

[
y(t− k)
u(t− k)

]
− D̂

[
y(t)
u(t)

]
=

∞∑
k=0

αk(z∞, 2)

[
y(t− k)
u(t− k)

]
(45)

Recall that in this case, we assume D̂ = [0, D̂u], note that ∥D̂∥ = ∥D̂u∥ and thus

αk(z∞, 2) =

{[
I −D̂u

]
, k = 0

−ĈÂk−1B̂, k > 0
(46)

Note that in both cases we can upper-bound with the same quantity, i.e. ∥αk(z∞)∥ ≤ ∥αk(z∞)∥, and ∥αk(z∞, 2)∥ ≤
∥αk(z∞)∥, with

∥αk(z∞)∥ ≤

{
1 + ∥D̂∥, k = 0

∥ĈÂk−1B̂∥, k > 0
(47)
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Since, in both cases,
∑∞

k=0 ∥αk(z∞)∥ ≤ +∞, due to stability of the predictor, and
[
yT (t) uT (t)

]T
is stationary, we

apply Lemma A.6, to both cases, and upper bound by (47), to obtain an upper-bound for both cases:

E [∥z∞(t)∥r] ≤

( ∞∑
k=0

∥αk(z∞, 1)∥

)4

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (48)

≤

(
∥I∥+ ∥D̂∥+

∞∑
k=1

∥ĈÂk−1B̂∥

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (49)

≤

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (50)

Lemma A.9. Let r ∈ N, then with notation as above, the following holds

E [∥zf (t)∥r] ≤

(
∥I∥+ ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (51)

Proof A.7 (of Lemma A.9). Notice that the process zf (t) = y(t)− ŷ(t|0) can be expressed as:
In the case of w(t) = u(t)

zf (t) = y(t)−
t∑

k=1

ĈÂk−1B̂u(t− k)− D̂u(t) =

∞∑
k=0

αk(zf , 1)

[
y(t− k)
u(t− k)

]
(52)

with

αk(zf , 1) =


[
I −D̂

]
, k = 0[

0 −ĈÂk−1B̂
]
, 0 < k ≤ t

0, k > t

(53)

In the case of w(t) = [yT (t),uT (t)]T ,

zf (t) = y(t)−
t∑

k=1

ĈÂk−1B̂

[
y(t− k)
u(t− k)

]
− D̂

[
y(t)
u(t)

]
=

∞∑
k=0

αk(zf , 2)

[
y(t− k)
u(t− k)

]
(54)

with

αk(zf , 2) =


[
I 0

]
− D̂, k = 0

−ĈÂk−1B̂, 0 < k ≤ t

0, k > t

(55)

Note that for both cases we can upper-bound by the same quantity ∥αk(zf , 1)∥ ≤ ∥αk(zf )∥, and ∥αk(zf , 2)∥ ≤ ∥αk(zf )∥,
with

∥αk(zf )∥ =


1 + ∥D̂∥, k = 0

∥ĈÂk−1B̂∥, 0 < k ≤ t

0, k > t

(56)
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Since by assumption predictors are stable, we apply Lemma A.6 and obtain

E [∥zf (t)∥r] ≤

( ∞∑
k=0

∥αk(zf )∥

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (57)

≤

(
∥I∥+ ∥D̂∥+

t∑
k=1

∥ĈÂk−1B̂∥

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (58)

≤

(
∥I∥+ ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

t∑
k=1

γ̂k−1

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (59)

=

(
∥I∥+ ∥D̂∥+ M̂∥B̂∥∥Ĉ∥1− γ̂t

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (60)

Notice that γ̂t > 0,∀t, thus we obtain the statement of the lemma

E [∥zf (t)∥r] ≤

(
∥I∥+ ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] . (61)

Lemma A.10. Let r ∈ N, then with notation as above, the following holds.

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] ≤ ∥Σgen∥rℓ1Gr(eg) (62)

with

∥Σgen∥ℓ1 = ∥I∥+
∞∑
k=1

∥CgA
k−1
g Kg∥ (63)

Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (nu + ny +

r
2 − 1)!, r is even

2µmax(Qe)
r
2

√
(nu + ny + r − 1)!, r is odd

(64)

Proof A.8 (of Lemma A.10). Note that
[
y(t)
u(t)

]
can be expressed as

[
y(t)
u(t)

]
=

∞∑
k=1

CgA
k−1
g Kgeg(t− k) + eg(t) =

∞∑
k=0

αk(y,w)eg(t− k) (65)

with e(t) stationary, we apply Lemma A.6 to get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] ≤
( ∞∑

k=0

∥αk(y,w)∥

)r

E [∥eg(t)∥r] (66)

Let us denote ∥Σgen∥ℓ1 =
∑∞

k=0 ∥αk(y,w)∥, the ℓ1 norm of the generative system. Furthermore we can apply Lemma
A.4 and Lemma A.5 to obtain,

E[∥eg(t)∥r2] ≤ Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (nu + ny +

r
2 − 1)!, r is even

2µmax(Qe)
r
2

√
(nu + ny + r − 1)!, r is odd

with this we have the statement of the lemma.

Lemma A.11. Let r ∈ N, and r ≥ 0, then for a, b ∈ R the following holds

(a+ b)2r ≤ 22r−1a2r + 22r−1b2r (67)
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Proof A.9 (of Lemma A.11).

(a+ b)2r = 22r
1

22r
(a+ b)2r = 22r

(
1

2
(a+ b)

)2r

(68)

since ϕ(x) = x2r is convex for r ≥ 0, we have by definition of convexity(
1

2
(a+ b)

)2r

= ϕ

(
a+ b

2

)
≤ 1

2
ϕ(a) +

1

2
ϕ(b) (69)

thus we obtain the statement of the lemma

(a+ b)2r ≤ 22r

2
(a2r + b2r) = 22r−1(a2r + b2r) (70)

Lemma A.12. Let r ∈ N, then with notation as above, the following holds

E[∥VN (f)− L̂N (f)∥r] ≤ (nu + ny + r − 1)!√
N

(
4ḠgenḠf (f)

)r
(71)

with

Ḡf (f) =

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)
M̂∥Ĉ∥∥B̂∥
(1− γ̂)

3
2

(72)

Ḡgen = ∥Σgen∥2ℓ1µmax(Qe) (73)

Proof A.10. with z∞(t) = y(t)− ŷf (t), and zf (t) = y(t)− ŷf (t|0), we start by applying triangle inequalities

E[∥VN (f) − L̂N (f)∥r] = E

[∣∣∣∣∣ 1N
N−1∑
t=0

∥z∞(t)∥2 − ∥zf (t)∥2
∣∣∣∣∣
r]

≤ E

[(
1

N

N−1∑
t=0

∣∣∥z∞(t)∥2 − ∥zf (t)∥2
∣∣)r]

(74)

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

E

 r∏
j=1

∣∣∥z∞(tj)∥2 − ∥zf (tj)∥2
∣∣ (75)

Now using the fact that |a2 − b2| = |(a− b)(a+ b)| = |a− b|(a+ b), since a, b ≥ 0, we get

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥| (∥z∞(tj)∥+ ∥zf (tj)∥)

 (76)

We apply Cauchy-Schwarz, i.e. E[XY ] ≤ |E[XY ]| ≤
√
E[X2]

√
E[Y 2], with X =

∏r
j=1 |∥z∞(tj)∥ − ∥zf (tj)∥|, and

Y =
∏r

j=1 (∥z∞(tj)∥+ ∥zf (tj)∥),

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√√E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2

√√√√√E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2

(77)

For now let’s focus on E
[∏r

j=1 |∥z∞(tj)∥ − ∥zf (tj)∥|2
]
, by applying reverse triangle inequality we obtain

E

 r∏
j=1

|∥z∞(t)∥ − ∥zf (t)∥|2
 ≤ E

 r∏
j=1

∥z∞(t)− zf (t)∥2
 (78)
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now we apply the inequality of arithmetic-geometric means

E

 r∏
j=1

∥z∞(t)− zf (t)∥2
 ≤ 1

r

r∑
j=1

E[∥z∞(t)− zf (t)∥2r] (79)

by applying Lemma A.7, we obtain the first term

E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2
 ≤

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]
1

r

r∑
j=1

γ̂2rtj (80)

Now for the second term E
[∏r

j=1 (∥z∞(tj)∥+ ∥zf (tj)∥)2
]
, we apply the inequality of arithmetic-geometric means

E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2
 ≤ 1

r

r∑
j=1

E
[
(∥z∞(tj)∥+ ∥zf (tj)∥)2r

]
(81)

By Lemma A.11, we obtain

1

r

r∑
j=1

E
[
(∥z∞(tj)∥+ ∥zf (tj)∥)2r

]
≤ 22r−1

r

r∑
j=1

(
E
[
∥z∞(tj)∥2r

]
+E

[
∥zf (tj)∥2r

])
(82)

By Lemma A.8 and Lemma A.9, we obtain

22r−1

r

r∑
j=1

(
E
[
∥z∞(tj)∥2r

]
+E

[
∥zf (tj)∥2r

])
≤ 22r

r

r∑
j=1

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(83)

= 22r

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(84)

Now taking (84) and (80) back to (77), we have

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√√E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2

√√√√√E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2


≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√(M̂∥Ĉ∥∥B̂∥
1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]
1

r

r∑
j=1

γ̂2rtj

·

√√√√22r

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(85)

E[∥VN (f)− L̂N (f)∥r] ≤ 2r

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r (
M̂∥Ĉ∥∥B̂∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

· 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√1

r

r∑
j=1

γ̂2rtj (86)

Note that we can write

1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√1

r

r∑
j=1

γ̂2rtj =
1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

ϕ(
1

r

r∑
j=1

γ̂2rtj ) (87)
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thus we can apply Jensen’s inequality for concave function ϕ(x) =
√
x, i.e. ϕ

(
1

∥S∥
∑

i∈S xi

)
≥ 1

∥S∥
∑

i∈S ϕ(xi), thus we
obtain

1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√1

r

r∑
j=1

γ̂2rtj ≤

√√√√ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

1

r

r∑
j=1

γ̂2rtj (88)

Now by commuting the sums we get√√√√ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

1

r

r∑
j=1

γ̂2rtj =

√√√√1

r

r∑
j=1

1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

γ̂2rtj (89)

now notice that γ̂2rtj only depend on one sum, for which we can use the sum of geometric series, after which the same term
will be repeated Nr−1 times, therefore√√√√1

r

r∑
j=1

1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

γ̂2rtj =

√√√√1

r

r∑
j=1

Nr−1

Nr

1− γ̂2rN

1− γ̂2r
=

1√
N

√
1− γ̂2rN

1− γ̂2r
(90)

since γ̂2rN ≥ 0, and (1− γ̂)
r
2 ≤ (1− γ̂2r)

1
2 , since

(1− γ̂)
r
2 ≤ ((1− γ̂r)(1 + γ̂r))

1
2 (91)

1 ≤ (1 + γ̂r) (92)

we obtain

E[∥VN (f)− L̂N (f)∥r] ≤ 2r√
N

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r (
M̂∥Ĉ∥∥B̂∥
(1− γ̂)

3
2

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(93)

We can apply Lemma A.10, to get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]
≤ ∥Σgen∥2rℓ1G2r(eg) (94)

since 2r is always even, then

G2r(eg) = 2rµmax(Qe)
r(nu + ny + r − 1)! (95)

and with this we obtain the statement of the lemma

E[∥VN (f)− L̂N (f)∥r] ≤ 22r√
N

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r (
M̂∥Ĉ∥∥B̂∥
(1− γ̂)

3
2

)r

· ∥Σgen∥2rℓ1µmax(Qe)
r(nu + ny + r − 1)! (96)

with some algebraic manipulation we get

E[∥VN (f)−L̂N (f)∥r] ≤ (nu + ny + r − 1)!√
N

(
4

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)
M̂∥Ĉ∥∥B̂∥
(1− γ̂)

3
2

∥Σgen∥2ℓ1µmax(Qe)

)r

(97)

Lemma A.13. With notation as above for 0 < λ < 1
4nwḠgenḠf (f)

following holds

E[eλ|VN (f)−L̂N (f)|] ≤ 1 +
(ny + nu)!√

N

4λḠgenḠf (f)

1− 4λ(ny + nu)ḠgenḠf (f)
(98)
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Proof A.11 (of Lemma A.13). with X = λ|VN (f)− L̂N (f)|

E[eλ(VN (f)−L̂N (f))] = 1 +

∞∑
r=1

λr

r!
E[|VN (f)− L̂N (f)|r] ≤ 1 +

∞∑
r=1

λr

r!

(nu + ny + r − 1)!√
N

(
4ḠgenḠf (f)

)r
(99)

Furthermore, with nw = nu + ny

(nw + r − 1)!

r!
= nw!

nw + 1

2

nw + 2

3
. . .

nw + r − 1

r

and as nw+r−1
r ≤ nw, for all r ≥ 1, then

(nw + r − 1)!

r!
≤ nw! (nw)

r−1
= nw!

(nw)
r

nw
=

nw!

nw
(nw)

r
= (nw − 1)!(nw)

r.

this allows us to write

E[eλ(VN (f)−L̂N (f))] ≤ 1 +
(nw − 1)!√

N

∞∑
r=1

(
4λnwḠgenḠf (f)

)r
(100)

the infinite sum is absolutely convergent if
4λnwḠgenḠf (f) < 1

that means that

0 < λ <
1

4nwḠgenḠf (f)
(101)

under this condition we can write

E[eλ(VN (f)−L̂N (f))] ≤ 1 +
(nw − 1)!√

N

4λnwḠgenḠf (f)

1− 4λnwḠgenḠf (f)
= 1 +

nw!√
N

4λḠgenḠf (f)

1− 4λnwḠgenḠf (f)
(102)

Lemma A.14. Let yν(t), ŷf,ν(t), ŷf,ν(t|s) ∈ R1 denote the ν’th component of y(t), ŷf (t), ŷf (t|s) respectively,

Lν(f) ≜ E[(ŷf,ν(t)− yν(t))
2] = lim

s→−∞
E[(ŷf,ν(t|s)− yν(t))

2] (103)

VN,ν(f) ≜
1

N

N−1∑
t=0

(ŷf,ν(t)− yν(t))
2 (104)

and let σ(r), be such that the following holds.

σ(r) ≥ sup
t,k,l

E[∥e(t, k, l)∥r2] (105)

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k ̸= j
(106)

Then the raw moments are bounded

E[(Lν(f)−VN,ν(f))
r] ≤ 1

N
σ(r)4(r − 1)Ge(f)

2r (107)

Proof A.12 (Proof of Lemma A.14). The prediction error can be expressed as

(yν(t)− ŷf,ν(t)) =

∞∑
k=0

αkeg(t− k)
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with

αk = αk(ν) =

{
Deν , k = 0

CeνA
k−1
e Ke, k > 0

where Deν = 1νDe, and Ceν = 1νCe denote the ν’th row of matrices De, Ce respectively. Then generalised loss Lν(f)
for component ν is expressed as

Lν(f) = E[(yν(t)− ŷf,ν(t))
2]

= E

trace

( ∞∑
k=0

αkeg(t− k)

)( ∞∑
k=0

αkeg(t− k)

)T


=

∞∑
k=0

αkQeα
T
k

and infinite horizon prediction loss is

VN,ν(f) =
1

N

N−1∑
t=0

(yν(t)− ŷf,ν(t))
2

Lν(f)− VN,ν(f) =
1

N

N−1∑
t=0

 ∞∑
k=0

αkQeα
T
k −

∞∑
k=0

∞∑
j=0

αkeg(t− k)eg(t− j)αT
k


=

1

N

N−1∑
t=0

∞∑
k=0

∞∑
j=0

αke(t, k, j)α
T
j

e(t, k, j) =

{
trace(Qe)− eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k ̸= j

For ease of notation let us define

z(t, k, j) = αke(t, k, j)α
T
j

then

E[(Lν(f)− VN,ν(f))
r]

=
1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

E

[
r∏

l=1

z(tl, kl, jl)

]

Note that, with i.i.d. innovation noise eg(t), if

tr − kr /∈ {ti − ki, ti − ji}r−1
i=1

∧ tr − jr /∈ {ti − ki, ti − ji}r−1
i=1

or similarly
{tr − kr, tr − jr} ∩ {ti − ki, ti − ji}r−1

i=1 = ∅ (108)

then z(tr, kr, jr) is independent of z(ti, ki, ji). Moreover, notice that E(z(tr, kr, jr)] = 0. Hence, if (108), it holds that

E

[
r∏

l=1

z(tl, kl, jl)

]
= E

[
r−1∏
l=1

z(tl, kl, jl)

]
E[z(tr, kr, jr)]︸ ︷︷ ︸

=0

= 0. (109)

Let us denote

Z = {ti − ki + kr, ti − ji + kr, ti − ki + jr, ti − ji + jr}r−1
i=1 .
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Then using (109) for those {tl, kl, jl}rl=1 which satisfy (108), it follows that

E[(Lν(f)− VN,ν(f))
r] =

1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

∑
tr∈Z

E

[
r∏

l=1

z(tl, kl, jl)

]
. (110)

Note that

E

[
r∏

l=1

z(tl, kl, jl)

]
≤

∣∣∣∣∣E
[

r∏
l=1

z(tl, kl, jl)

]∣∣∣∣∣ ≤ E

[
r∏

l=1

|z(tl, kl, jl)|

]
.

Let us focus on |z(ti, ki, ji)|:

|z(tl, kl, jl)| ≤ ∥αkl
∥2∥αjl∥2∥e(tl, kl, jl)∥2

E

[
r∏

l=1

|z(tl, kl, jl)|

]
≤

r∏
l=1

∥αkl
∥2∥αjl∥2E

[
r∏

l=1

∥e(tl, kl, jl)∥2

]

Then using Arithmetic Mean-Geometric Mean Inequality, (Steele, 2004) we have

E

[
r∏

l=1

∥e(tl, kl, jl)∥

]
≤ 1

r

r∑
l=1

E[∥e(tl, kl, jl)∥r2] (111)

Now, let σ(r), be such that the following holds.

σ(r) ≥ sup
t,k,l

E[∥e(t, k, l)∥r2] (112)

Then, 1
r

∑r
l=1 E[∥e(tl, kl, jl)∥r2] ≤ σ(r) and then from (111) it follows that

E

[
r∏

l=1

|e(tl, kl, jl)|

]
≤ σ(r) (113)

Combining this with (110), it follows that

E[(Lν(f)− VN,ν(f))
r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 (114)

and the quantity σ(r)
∏r

l=1 ∥αkl
∥2∥αjl∥2 does not depend on tr. Moreover

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 ≤ σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2|Z|,

where |Z| is the cardinality of the set Z . Note |Z| ≤ 4(r − 1), therefore

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 ≤ σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥24(r − 1),

Combining the latter inequality with (114), it follows that

E[(Lν(f)− VN,ν(f))
r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

r∏
l=1

∥αkl
∥2∥αjl∥2 (115)



PAC-Bayesian Bounds for LTI systems

Now notice

Ge,ν(f)
2r =

( ∞∑
k=0

∥αk∥2

)2r

=

 ∞∑
k,j=0

∥αk∥2∥αj∥2

r

=

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

r∏
l=1

∥αkl
∥2∥αjl∥2

therefore we obtain

E[(Lν(f)− VN,ν(f))
r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)Ge,ν(f)
2r

≤ 1

Nr
Nr−1σ(r)4(r − 1)Ge,ν(f)

2r

≤ 1

N
σ(r)4(r − 1)Ge,ν(f)

2r

and since

∥αk(ν)∥ =

{
∥1νDe∥ ≤ ∥De∥, k = 0

∥1νCeA
k−1
e Ke∥ ≤ ∥CeA

k−1
e Ke∥, k > 0

then

Ge,ν ≤ Ge = ∥De∥+
∞∑
k=1

∥CeA
k−1
e Ke∥ (116)

and since 2r > 1 we obtain the statement of the lemma

E[(Lν(f)− VN,ν(f))
r] ≤ 1

N
σ(r)4(r − 1)Ge(f)

2r (117)

Lemma A.15. with notation as above the following holds

E[(L(f)− VN (f))r] ≤
nr
y

N
σ(r)4(r − 1)Ge(f)

2r (118)

Proof A.13 (of Lemma A.15). By definition

L(f) = E[(y(t)− ŷf (t))
T (y(t)− ŷf (t))] =

ny∑
ν=1

E[(yν(t)− ŷf,ν(t))
2] =

ny∑
ν=1

Lν(f) (119)

VN (f) =
1

N

N−1∑
t=0

(y(t)− ŷf (t))
T (y(t)− ŷf (t)) =

ny∑
ν=1

1

N

N−1∑
t=0

(yν(t)− ŷf,ν(t))
2 =

ny∑
ν=1

VN,ν(f) (120)

(121)

then

E[(L(f)− VN (f))r] = E

[(
ny∑
ν=1

Lν(f)− VN,ν(f)

)r]
=

ny∑
ν1

· · ·
ny∑
νr

E

[
r∏

i=1

(Lνi
(f)− VN,νi

(f))

]
(122)

Then using Arithmetic Mean-Geometric Mean Inequality, (Steele, 2004), we get
∏r

i=1(Lνi(f) − VN,νi(f)) ≤
1
r

∑r
i=1(Lνi

(f)− VN,νi
(f))r, and thus

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑
i=1

E [(Lνi
(f)− VN,νi

(f))r] (123)
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From Lemma A.14, we have E[(Lν(f)− VN,ν(f))
r] ≤ 1

N σ(r)4(r − 1)Ge(f)
2r, thus

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑
i=1

1

N
σ(r)4(r − 1)Ge(f)

2r (124)

=
nr
y

N
σ(r)4(r − 1)Ge(f)

2r (125)

Lemma A.16. let m = nu + ny , then for r ≥ 2, the quantity

σ(r) = max {(µmax(Qe)
r4(m+ r − 1)!), (µmax(Qe)

r3r(m+ r − 1)!)} = µmax(Qe)
r3r(m+ r − 1)!

satisfies

σ(r) ≥ sup
t,k,l

E[∥e(t, k, l)∥r2]

Proof A.14 (Proof of Lemma A.16). Recall that

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k ̸= j

First let us take the case when k ̸= j. Then

E[∥e(t, k, l)∥r2] = E[∥ − eg(t− k)eTg (t− j)∥r2]

Again as eg(t) is i.i.d. we have

E[∥e(t, k, l)∥r2] ≤ E[∥eg(t− k)∥r2]E[∥eg(t− j)∥r2]

and due to stationarity of eg(t), we have E[∥eg(t− k)∥r2] = E[∥eg(t− j)∥r2], therefore

E[∥e(t, k, l)∥r2] ≤ E[∥eg(t)∥r2]2

and again due to stationarity of eg(t), the moments do not depend on t, and using Lemma A.5 we obtain

σ(r) ≥ µmax(Qe)
r4((m+ r − 1)!) ≥ E[∥e(t, k, l)∥r2]2

Now let us take the case when k = j. Then

E[∥e(t, k, l)∥r2] = E[∥Qe − eg(t− k)eTg (t− k)∥r2]
≤ E[(∥Qe∥2 + ∥eg(t)∥22)r]

= E

 r∑
j=0

(
r
j

)
∥Qe∥r−j

2 ∥eg(t)∥2j2


=

r∑
j=0

(
r
j

)
∥Qe∥r−j

2 E∥eg(t)∥2j2 ]

As Qe is a positive definite matrix,∥Qe∥2 = µmax(Qe), and hence

E[∥e(t, k, l)∥r2] ≤
r∑

j=0

(
r
j

)
µmax(Qe)

r−jE∥eg(t)∥2j2 ]

using Lemma A.4 we obtain

E[∥e(t, k, l)∥r2] ≤
r∑

j=0

(
r
j

)
µmax(Qe)

r−jµmax(Qe)
j2j(m+ j − 1)!

≤ µmax(Qe)
r

r∑
j=0

(
r
j

)
2j(m+ j − 1)!.
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Since for j ≤ r, (m+ j − 1)! ≤ (m+ r − 1)!, hence

E∥e(t, k, l)∥2r2 ] ≤ µmax(Qe)
r(m+ r − 1)!

r∑
j=0

(
r
j

)
2j

Notice 3r = (1 + 2)r =
∑r

j=0

(
r
j

)
2j , hence

E∥eg(t, k, l)∥2r2 ] ≤ µmax(Qe)
r3r(m+ r − 1)!

Hence,

σ(r) = max {µmax(Qe)
r4(m+ r − 1)!,

µmax(Qe)
r3r(m+ r − 1)!} .

As we are interested in moments higher or equal to two, i.e. r ≥ 2, then

σ(r) = µmax(Qe)
r3r(m+ r − 1)!.

Lemma A.17. For λ ≤
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

, the moment generating function is bounded

E
[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1− 3(m+ 1)λnyµmax(Qe)Ge(f)2)
(126)

Proof A.15 (Proof of Lemma A.17). We can bound the moment generating function via series expansion. First note that
E[L(f)− VN (f)] = 0, and hence

E
[
eλ(L(f)−VN (f))

]
= 1 + λE[L(f)− VN (f)] +

∞∑
r=2

λr

r!
E[(L(f)− VN (f))r].

Then using Lemma A.15 we get

E
[
eλ(L(f)−VN (f))

]
≤ 1 +

∞∑
r=2

λr

r!

nr
y

N
σ(r)4(r − 1)Ge(f)

2r (127)

Now using Lemma A.16 we obtain

E
[
eλ(L(f)−VN (f))

]
≤ 1 +

1

N

∞∑
r=2

(m+ r − 1)!

r!
4(r − 1)

(
3nyλµmax(Qe)Ge(f)

2
)r

Notice that 4(r − 1) ≤ 2r, for r ∈ N. Furthermore

(m+ r − 1)!

r!
= m!

m+ 1

2

m+ 2

3
. . .

m+ r − 1

r

and as m+r−1
r ≤ m+1

2 , for all r ≥ 2, then

(m+ r − 1)!

r!
≤ m!

(
m+ 1

2

)r−1

= m!

(
m+1
2

)r
m+1
2

= 2
m!

m+ 1

(
m+ 1

2

)r

.

Hence, we can derive the following inequality:

E
[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

m!

m+ 1

∞∑
r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

.
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Notice that if
|3(m+ 1)λnyµmax(Qe)Ge(f)

2| < 1,

then the infinite sum
∑∞

r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

is absolutely convergent, and

∞∑
r=2

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)r

=

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)2

1− 3(m+ 1)λnyµmax(Qe)Ge(f)2

To sum up, if

λ ≤
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

.

then

E
[
eλ(L(f)−VN (f))

]
≤ 1 +

2

N

m!

m+ 1

(
3(m+ 1)λnyµmax(Qe)Ge(f)

2
)2

1− 3(m+ 1)λnyµmax(Qe)Ge(f)2

≤ 1 +
2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1− 3(m+ 1)λnyµmax(Qe)Ge(f)2)
.

Lemma A.18. For measurable functions X(f), Y (f) on F , With probability at least 1− δ, the following holds

∀ρ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+Ψπ(λ,N)

]
, (128)

with
Ψπ(λ,N) = lnEf∼πE[eλ(X(f)−Y (f))] (129)

Proof A.16 ( of Lemma A.18). Let us apply the Donsker & Varadhan variational formula to the function λ(X(f)− Y (f))
it then follows that

sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)−KL(ρ̂∥π)) = lnEf∼πe

λ(X(f)−Y (f)), (130)

In particular,

esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π)) = elnEf∼πe
λ(X(f)−Y (f))

= Ef∼πe
λ(X(f)−Y (f)) (131)

and hence

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π))] = E[Ef∼πe
λ(X(f)−Y (f))] = (132)

Ef∼πE[eλ(X(f)−Y (f))] = eΨπ(λ,N)

with
Ψπ(λ,N) = lnEf∼πE[eλ(X(f)−Y (f))] (133)

Hence,

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π)]e−Ψπ(λ,N) = 1 (134)

Since

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π)]e−Ψπ(λ,N) =

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π)−Ψπ(λ,N)] (135)

it follows that

E[esupρ̂(λEf∼ρ̂X(f)−λEf∼ρ̂Y (f)−KL(ρ̂∥π))−Ψπ(λ,N)] = 1 (136)
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By Chernoff’s bound applied to the random variable X = supρ̂(λEf∼ρ̂(f) − λEf∼ρ̂Y (f) −KL(ρ̂∥π)) − Ψπ(λ,N) it
then follows that for any a > 0

P(X ≥ a) ≤ E[eX ]

ea
≤ e−a

By choosing a = ln 1
δ , it follows that

P(X ≥ ln
1

δ
) ≤ δ

and hence,

P(X ≤ ln
1

δ
) ≥ 1− δ

By substituting the definition of X and regrouping the terms, it then follows that

P(sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)−KL(ρ̂∥π)) ≤ ln

1

δ
+Ψπ(λ,N)) ≥ 1− δ

Note that

{ω | sup
ρ̂
(λEf∼ρ̂X(f)− λEf∼ρ̂Y (f)(ω)−KL(ρ̂∥π)) ≤ ln

1

δ
+Ψπ(λ,N)} =

{ω | ∀ρ̂ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f)(ω) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+Ψπ(λ,N)

}
and hence it then follows that with probability at least 1− δ, the following holds

∀ρ : Ef∼ρ̂X(f) ≤ Ef∼ρ̂Y (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+Ψπ(λ,N)

]
, (137)

Corollary A.19. By Lemma A.18, and Lemma A.17, for 0 < λ ≤ inff∈F
(
3(m+ 1)nyµmax(Qe)Ge(f)

2
)−1

, with Mπ,
denoting the set of all absolutely continuous probability densities w.r.t. π, then with probability at least 1− δ, the following
holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+ Ψ̂π,1(λ,N)

]
, (138)

with

Ψ̂π,1(λ,N) ≜ lnEf∼π

(
1 +

2

N

(m+ 1)!
(
3λnyµmax(Qe)Ge(f)

2
)2

(1− 3(m+ 1)λnyµmax(Qe)Ge(f)2)

)
(139)

Corollary A.20. By Lemma A.18, and Lemma A.13, for 0 < λ ≤ inff∈F
(
4nwḠgenḠf (f)

)−1
, with Mπ , denoting the set

of all absolutely continuous probability densities w.r.t. π, then with probability at least 1− δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂VN (f) ≤ Ef∼ρ̂L̂N (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+ Ψ̂π,2(λ,N)

]
, (140)

with

Ψ̂π,2(λ,N) ≜ lnEf∼π

(
1 +

(ny + nu)!√
N

4λḠgenḠf (f)

1− 4λ(ny + nu)ḠgenḠf (f)

)
(141)

Lemma A.21. For

0 < λ̃ ≤ 1

2

(
sup
f∈F

max{3(m+ 1)nyµmax(Qe)Ge(f)
2, 4nwḠgenḠf (f)}

)−1

(142)
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with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
1

λ̃

[
KL(ρ̂∥π) + ln

1

δ
+

Ψ̂π,2(2λ̃, N) + Ψ̂π,1(2λ̃, N)

2

]
(143)

with

Ψ̂π,1(2λ̃, N) = Ψπ,1(λ̃, N) = lnEf∼π

1 +
2

N

(m+ 1)!
(
6λ̃nyµmax(Qe)Ge(f)

2
)2

(1− 6(m+ 1)λ̃nyµmax(Qe)Ge(f)2)

 (144)

Ψ̂π,2(2λ̃, N) = Ψπ,2(λ̃, N) = lnEf∼π

(
1 +

(ny + nu)!√
N

8λ̃ḠgenḠf (f)

1− 8λ̃(ny + nu)ḠgenḠf (f)

)
(145)

Proof A.17. we have

P (ω ∈ S1) ≥ 1− δ (146)
P (ω ∈ S2) ≥ 1− δ (147)

with

S1 ≜ {ω ∈ Ω|∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+ Ψ̂π,1(λ,N)

]
} (148)

S2 ≜ {ω ∈ Ω|∀ρ ∈ Mπ : Ef∼ρ̂VN (f) ≤ Ef∼ρ̂L̂N (f) +
1

λ

[
KL(ρ̂∥π) + ln

1

δ
+ Ψ̂π,2(λ,N)

]
} (149)

with Ā denoting the complementary set of A, i.e. Ā = Ω \A

P (ω ∈ S̄1) < δ (150)
P (ω ∈ S̄2) < δ (151)

(152)

Thus by union bound we get

P
(
ω ∈ (S̄1 ∪ S̄2)

)
< 2δ (153)

and thus

P (ω ∈ (S1 ∩ S2)) ≥ 1− 2δ (154)

with this we can write: with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
2

λ

[
KL(ρ̂∥π) + ln

1

δ
+

Ψ̂π,2(λ,N) + Ψ̂π,1(λ,N)

2

]
(155)

In order to bring this to a more common way of writing PAC-Bayesian bounds, let us define λ̃ = 0.5λ ↔ λ = 2λ̃, thus we
can write, for

0 < λ̃ ≤ 1

2

(
sup
f∈F

max{3(m+ 1)nyµmax(Qe)Ge(f)
2, 4nwḠgenḠf (f)}

)−1

(156)

with probability at least 1− 2δ, the following holds

∀ρ ∈ Mπ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂L̂N (f) +
1

λ̃

[
KL(ρ̂∥π) + ln

1

δ
+

Ψ̂π,2(2λ̃, N) + Ψ̂π,1(2λ̃, N)

2

]
(157)
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with

Ψ̂π,1(2λ̃, N) = Ψπ,1(λ̃, N) = lnEf∼π

1 +
2

N

(m+ 1)!
(
6λ̃nyµmax(Qe)Ge(f)

2
)2

(1− 6(m+ 1)λ̃nyµmax(Qe)Ge(f)2)

 (158)

Ψ̂π,2(2λ̃, N) = Ψπ,2(λ̃, N) = lnEf∼π

(
1 +

(ny + nu)!√
N

8λ̃ḠgenḠf (f)

1− 8λ̃(ny + nu)ḠgenḠf (f)

)
(159)

A.1. Bounded noise

In this section we state the lemmas and proofs associated with bounded innovation noise case.

Lemma A.22. Let eg(t) ∈ E ⊂ Rny+ny , be a zero mean, independant, and bounded stochastic process, s.t. |eg,i(t)| ≤ ce,
∀i ∈ {1, . . . , nu+ ny}, i.e eg,i(t) is the i’th component of eg(t)

E[∥eg(t)∥r] ≤
(
ce
√
ny + nu

)r
(160)

Proof A.18.

E[∥eg(t)∥r] = E



√√√√nu+ny∑

i=1

e2g,i(t)

r ≤


√√√√nu+ny∑

i=1

c2e

r

=

(√
(nu + ny)c2e

)r

=
(
ce
√
ny + nu

)r
(161)

Lemma A.23. Let eg(t) ∈ E ⊂ Rny+ny , be a zero mean, independant, and bounded stochastic process, s.t. |eg,i(t)| ≤ ce,
∀i ∈ {1, . . . , nu+ ny}, i.e eg,i(t) is the i’th component of eg(t)

σ(r) =
(
2c2e(ny + nu)

)r ≥ sup
t,k,l

E[∥e(t, k, l)∥r2] (162)

e(t, k, l) = E[eg(t− k)eTg (t− l)]− eg(t− k)eTg (t− l) (163)

Proof A.19. First let us take the case when k ̸= j. Then, due to independance of eg(t), we have E[eg(t− k)eg(t− j)] = 0,
and thus

E[∥e(t, k, l)∥r2] = E[∥ − eg(t− k)eTg (t− j)∥r2]

Again as eg(t) is i.i.d. we have

E[∥e(t, k, l)∥r2] ≤ E[
(
∥eg(t− k)∥2∥eTg (t− j)∥2

)r
] ≤ E[∥eg(t− k)∥r2]E[∥eg(t− j)∥r2]

and due to stationarity of eg(t), we have E[∥eg(t− k)∥r2] = E[∥eg(t− j)∥r2], therefore

E[∥e(t, k, l)∥r2] ≤ E[∥eg(t)∥r2]2

and again due to stationarity of eg(t), the moments do not depend on t, and using Lemma A.22 we obtain

∀k ̸= j, E[∥e(t, k, l)∥r2] ≤
(
c2e(ny + nu)

)r
Now let us take the case when k = j. Then

E
[
∥E[eg(t− k)eTg (t− l)]− eg(t− k)eTg (t− l)∥r

]
≤ E

[(
∥E[eg(t− k)eTg (t− l)]∥+ ∥eg(t− k)eTg (t− l)∥

)r]
(164)

By convexity (a+ b)r = 2r 1
2r (a+ b)r = 2r

(
1
2 (a+ b)

)r ≤ 2r−1(ar + br), we obtain

E[∥e(t, k, l)∥r2] ≤ 2r−1
(
E
[
∥E[eg(t− k)eTg (t− l)]∥r

]
+E

[
∥eg(t− k)eTg (t− l)∥r

])
(165)

= 2r−1
(
∥E[eg(t− k)eTg (t− l)]∥r +E

[
∥eg(t− k)eTg (t− l)∥r

])
(166)

≤ 2r−1
(
E[∥eg(t− k)eTg (t− l)∥r] +E

[
∥eg(t− k)eTg (t− l)∥r

])
≤ 2rE

[
∥eg(t)∥2r

]
(167)
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Again by using Lemma A.22, we obtain

∀k = j E[∥e(t, k, l)∥r2] ≤
(
2c2e(ny + nu)

)r
(168)

Thus we obtain the statement of the lemma

∀t, k, j E[∥e(t, k, l)∥r2] ≤ max{
(
c2e(ny + nu)

)r
,
(
2c2e(ny + nu)

)r} =
(
2c2e(ny + nu)

)r
(169)

Lemma A.24. With notation as above, with |eg,i| ≤ ce, the following holds

E[eλ(L(f)−VN (f))] ≤ 1 +
1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

(170)

Proof A.20. By power series, and E[L(f)− VN (f)] = 0, we have

E[eλ(L(f)−VN (f))] = 1 +

∞∑
r=2

λr

r!
E[(L(f)− VN (f))r] (171)

Now by Lemma A.15, and Lemma A.23, and 4(r − 1) ≤ 2r we have

E[(L(f)− VN (f))r] ≤ 1

N
(4c2eny(ny + nu)Ge(f)

2)r (172)

Thus,

E[eλ(L(f)−VN (f))] ≤ 1 +
1

N

∞∑
r=2

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (173)

now since λ4c2eny(ny + nu)Ge(f)
2 ≥ 0, then

1 +
1

N

∞∑
r=2

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (174)

≤ 1 +
1

N

∞∑
r=0

1

r!
(λ4c2eny(ny + nu)Ge(f)

2)r (175)

= 1 +
1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

(176)

Lemma A.25. With notation as above, with |eg,i| ≤ ce, the following holds

E[eλ(VN (f)−L̂(f))] ≤ 1 +
1√
N

e2λGf (f)∥Σgen∥2
ℓ1

c2e(ny+nu) (177)

with

Gf (f) ≜

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)(
M̂∥Ĉ∥∥B̂∥
(1− γ̂)

3
2

)
(178)

Proof A.21. By power series, we have

E[eλ(VN (f)−L̂(f))] ≤ E[eλ|VN (f)−L̂(f)|] = 1 +

∞∑
r=1

λr

r!
E[|VN (f)− L̂(f)|r] (179)

For the terms E[|VN (f)− L̂N (f)|r], we reuse the proof of Lemma A.12, and continue from (93), i.e.

E[∥VN (f)− L̂N (f)∥r] ≤ 2r√
N

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r (
M̂∥Ĉ∥∥B̂∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]√

1

1− γ̂2r
(180)
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Note that

(1− γ̂)
r
2 ≤

(
1− γ̂2r

) 1
2 (181)

it is easy to see since for γ̂ ∈ [0, 1), the following holds

(1− γ̂)
r ≤ 1− γ̂2r = (1− γ̂r)(1 + γ̂r) (182)
1 ≤ 1 + γ̂r (183)

This allows us to simplify the expression to

E[∥VN (f)− L̂N (f)∥r] ≤ 2r√
N

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)r (
M̂∥Ĉ∥∥B̂∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
](

1√
1− γ̂

)r

(184)

Now, from Lemma A.6, we get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]
≤ ∥Σgen∥2rℓ1E[∥eg(t)∥2r] (185)

by lemma A.22, we get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]
≤
(
∥Σgen∥2ℓ1c

2
e(ny + nu)

)r
(186)

Thus, with Gf (f) ≜
1√
1− γ̂

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1−γ̂

)(
M̂∥Ĉ∥∥B̂∥

1−γ̂

)

E[∥VN (f)− L̂N (f)∥r] ≤ 1√
N

(
2Gf (f)∥Σgen∥2ℓ1c

2
e(ny + nu)

)r
(187)

Thus

E[eλ|VN (f)−L̂(f)|] ≤ 1 +
1√
N

∞∑
r=1

1

r!

(
2λGf (f)∥Σgen∥2ℓ1c

2
e(ny + nu)

)r
(188)

≤ 1 +
1√
N

e2λGf (f)∥Σgen∥2
ℓ1

c2e(ny+nu) (189)

and therefore the statement of the lemma holds.

Corollary A.26. By lemma A.18, lemmas A.24,A.25, and by applying a union bound, we obtain, for λ > 0, δ ∈ [0, 1), the
set of absolutely continuous probability density functions Mπ w.r.t. π, the following holds with probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
1

λ

[
DKL(ρ||π) + ln

(
1

δ

)
+ Ψ̂ce,π(λ,N)

]
(190)

with

Ψ̂ce,π(λ,N) ≜
1

2

(
Ψ̂ce,π,1(λ,N) + Ψ̂ce,π,2(λ,N)

)
(191)

Ψ̂ce,π,1(λ,N) ≜ lnEf∼π

(
1 +

1

N
eλ4c

2
eny(ny+nu)Ge(f)

2

)
(192)

Ψ̂ce,π,2(λ,N) ≜ lnEf∼π

(
1 +

1√
N

e2λGf (f)∥Σgen∥2
ℓ1

c2e(ny+nu)

)
(193)
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A.2. Bounded innovation noise case: Alternative formulation

Lemma A.27. for a sequence of random variables xj ∈ R, and j ∈ {1, . . . , r}

E

 r∏
j=1

xj

 ≤

r−1∏
j=1

E
[
x
(2j)
j

](2−j)

E
[
x(2r−1)
r

]2−(r−1)

(194)

Proof A.22 (of Lemma A.27). We first apply Cauchy-Schwarz inequality E
[∏r

j=1 xj

]
≤ |E

[∏r
j=1 xj

]
| =

|E
[
(x1)

(∏r
j=2 xj

)]
| ≤

√
E [x2

1]

√
E
[∏r

j=2 x
2
j

]
, and obtain

E

 r∏
j=1

xj

 ≤ E
[
x2
j

]2−1

E

 r∏
j=2

x2
j

2−1

(195)

Then we apply Cauchy-Schwarz again

E

 r∏
j=1

xj

 ≤ E
[
x2
1

]2−1

E
[
x
(22)
2

]2−2

E

 r∏
j=3

x
(22)
j

2−2

=

2∏
j=1

E
[
x
(2j)
j

](2−j)

E

 r∏
j=2+1

x
(22)
j

2−2

(196)

We repeat this process until we have

E

 r∏
j=1

xj

 ≤
r−2∏
j=1

E
[
x
(2j)
j

](2−j)

E
[
x
(2r−2)
r−1 x(2r−2)

r

]2−(r−2)

(197)

Then we apply the final Cauchy-Schwarz inequality and obtain the statement of the lemma

E

 r∏
j=1

xj

 ≤
r−2∏
j=1

E
[
x
(2j)
j

](2−j)

E
[
x
(2r−1)
r−1

]2−(r−1)

E
[
x(2r−1)
r

]2−(r−1)

(198)

=

r−1∏
j=1

E
[
x
(2j)
j

](2−j)

E
[
x(2r−1)
r

]2−(r−1)

(199)

Lemma A.28. Let m = ny + nu. If |eg(t)| < ce, then

E[∥VN (f)− L̂N (f)∥r] ≤ Ḡf,1(f)∥Σgen∥ℓ1(ce
√
m)

(
2∥Σgen∥ℓ1(ce

√
m)

N
Ḡf,2(f)

)r

(200)

where Ḡf,1(f) ≜
(

M̂∥Ĉ∥∥B̂∥
1−γ̂

)
, and Ḡf,2(f) ≜

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1−γ̂

)
1

1−γ̂ ∥Σgen∥ℓ1 ≜ ∥I∥+
∑∞

k=1 ∥CgA
k−1
g Kg∥.

Proof A.23 (of Lemma A.28). with z∞(t) = y(t) − ŷf (t), and zf (t) = y(t) − ŷf (t|0), we start by applying triangle
inequalities

E[∥VN (f) − L̂N (f)∥r] = E

[∣∣∣∣∣ 1N
N−1∑
t=0

∥z∞(t)∥2 − ∥zf (t)∥2
∣∣∣∣∣
r]

≤ E

[(
1

N

N−1∑
t=0

∣∣∥z∞(t)∥2 − ∥zf (t)∥2
∣∣)r]

(201)

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

E

 r∏
j=1

∣∣∥z∞(tj)∥2 − ∥zf (tj)∥2
∣∣ (202)
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Now using the fact that |a2 − b2| = |(a− b)(a+ b)| = |a− b|(a+ b), since a, b ≥ 0, we get

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥| (∥z∞(tj)∥+ ∥zf (tj)∥)

 (203)

We apply Cauchy-Schwarz, i.e. E[XY ] ≤ |E[XY ]| ≤
√
E[X2]

√
E[Y 2], with X =

∏r
j=1 |∥z∞(tj)∥ − ∥zf (tj)∥|, and

Y =
∏r

j=1 (∥z∞(tj)∥+ ∥zf (tj)∥),

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√√E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2

√√√√√E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2


(204)

For now let’s focus on E
[∏r

j=1 |∥z∞(tj)∥ − ∥zf (tj)∥|2
]
, by applying reverse triangle inequality we obtain

E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2
 ≤ E

 r∏
j=1

∥z∞(tj)− zf (tj)∥2
 (205)

For the ease of notation for the next step, let us define xj ≜ ∥z∞(tj)− zf (tj)∥2, then the quantity of interest is

E

 r∏
j=1

xj

 (206)

For the above quantity we can apply Lemma A.27, which states

E

 r∏
j=1

xj

 ≤
r−1∏
j=1

E
[
x
(2j)
j

](2−j)

E
[
x(2r−1)
r

]2−(r−1)

(207)

From Lemma A.7, we also know that

E[∥z∞(t)− zf (t)∥r] ≤ γ̂rt

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] (208)

Thus combining Lemma A.27 and Lemma A.7, we get

E

 r∏
j=1

∥z∞(tj)− zf (tj)∥2
 ≤

r−1∏
j=1

γ̂2tj

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥(2j+1)
] 1

2j

× γ̂2tr

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥(2r)
] 1

2r−1

(209)

with Lemma A.10, and Lemma A.22, we have

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] ≤ ∥Σgen∥rℓ1(ce
√
m)r, (210)

thus we get

E

 r∏
j=1

∥z∞(tj)− zf (tj)∥2
 ≤

r−1∏
j=1

γ̂2tj

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2 (
∥Σgen∥2

j+1

ℓ1 (ce
√
m)2

j+1
)2−j

· γ̂2tr

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2 (
∥Σgen∥2rℓ1 (ce

√
m)2r

)2−(r−1)

, (211)
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With some algebraic simplification we obtain the first term

E

 r∏
j=1

∥z∞(tj)− zf (tj)∥2
 ≤

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)2

∥Σgen∥2ℓ1(ce
√
m)2

r∏
j=1

γ̂2tj , (212)

Now for the second term E
[∏r

j=1 (∥z∞(tj)∥+ ∥zf (tj)∥)2
]
, we apply the inequality of arithmetic-geometric means

E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2
 ≤ 1

r

r∑
j=1

E
[
(∥z∞(tj)∥+ ∥zf (tj)∥)2r

]
(213)

By Lemma A.11, we obtain

1

r

r∑
j=1

E
[
(∥z∞(tj)∥+ ∥zf (tj)∥)2r

]
≤ 22r−1

r

r∑
j=1

(
E
[
∥z∞(tj)∥2r

]
+E

[
∥zf (tj)∥2r

])
(214)

By Lemma A.8 and Lemma A.9, we obtain

22r−1

r

r∑
j=1

(
E
[
∥z∞(tj)∥2r

]
+E

[
∥zf (tj)∥2r

])
≤ 22r

r

r∑
j=1

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(215)

= 22r

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

)2r

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥2r
]

(216)

with Lemma A.10, and Lemma A.22, we have

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r] ≤ ∥Σgen∥rℓ1(ce
√
m)r, (217)

we get

E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2
 ≤

(
2∥Σgen∥ℓ1(ce

√
m)

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

))2r

(218)

Now taking (218) and (80) back to (204), we have

E[∥VN (f)− L̂N (f)∥r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√√E

 r∏
j=1

|∥z∞(tj)∥ − ∥zf (tj)∥|2

√√√√√E

 r∏
j=1

(∥z∞(tj)∥+ ∥zf (tj)∥)2


≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

√√√√(M̂∥Ĉ∥∥B̂∥
1− γ̂

)2

∥Σgen∥2ℓ1(ce
√
m)2

r∏
j=1

γ̂2tj

·

√√√√(2∥Σgen∥ℓ1(ce
√
m)

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

))2r

(219)

with Gf (f) ≜
(

M̂∥Ĉ∥∥B̂∥
1−γ̂

)(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1−γ̂

)
E[∥VN (f)− L̂N (f)∥r] ≤

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)
∥Σgen∥ℓ1(ce

√
m)

(
2∥Σgen∥ℓ1(ce

√
m)

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

))r

· 1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

r∏
j=1

γ̂tj (220)
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Note that
(∑N−1

t=0 γ̂t
)r

=
∑N−1

t1=0 · · ·
∑N−1

tr=0

∏r
j=1 γ̂

tj , and by applying the sum of the geometric series we obtain

E[∥VN (f)− L̂N (f)∥r] ≤

(
M̂∥Ĉ∥∥B̂∥

1− γ̂

)
∥Σgen∥ℓ1(ce

√
m)

(
2∥Σgen∥ℓ1(ce

√
m)

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1− γ̂

))r

·
(

1− γ̂N

N(1− γ̂)

)r

(221)

Note that 1− γ̂N ≤ 1, so with Ḡf,1(f) ≜
(

M̂∥Ĉ∥∥B̂∥
1−γ̂

)
, and Ḡf,2(f) ≜

(
1 + ∥D̂∥+ M̂∥B̂∥∥Ĉ∥

1−γ̂

)
1

1−γ̂ the statement of the
lemma follows.

Lemma A.29. With notation as above the following holds

E[eλ|VN (f)−L̂N (f)|] ≤ 1 + Ḡf,1(f)∥Σgen∥ℓ1(ce
√
m)

∞∑
r=1

(
λ

2∥Σgen∥ℓ1
(ce

√
m)

N Ḡf,2(f)
)r

r!
(222)

= (1− Ḡf,1(f)∥Σgen∥ℓ1(ce
√
m)) + Ḡf,1(f)∥Σgen∥ℓ1(ce

√
m)eλ

2∥Σgen∥ℓ1 (ce
√

m)

N Ḡf,2(f)

Proof A.24 (of Lemma A.13). with X = λ|VN (f)− L̂N (f)|

E[eλ(VN (f)−L̂N (f))] = 1 +

∞∑
r=1

λr

r!
E[|VN (f)− L̂N (f)|r] ≤ 1 +

∞∑
r=1

λr

r!

(
2∥Σgen∥ℓ1(ce

√
m)

N
Ḡf,2(f)

)r

(223)

Lemma A.30 (Alternative bound using (Alquier & Wintenberger, 2012)). With probability at least 1− δ, the following
holds

∀ρ : Ef∼ρ̂L(f) ≤ Ef∼ρ̂VN (f) +
1

λ

[
DKL(ρ̂∥π) + ln

1

δ
+Ψπ,2(λ,N)

]
, (224)

with
Ψπ,2(λ,N) = lnEf∼πE[eλ(L(f)−VN (f))] ≤ lnEf∼π

(
e

λ2

2N (Ge(f)+Ge,1(f))
2C2(4Ge(f)C+1)2

)
(225)

where C = ce
√
nu + ny

Ge,1(f) = ∥De∥2 +
∞∑
k=1

(k + 1)∥CeA
k−1
e Ke∥2

In particular, limN→∞ Ψπ,2(λ,N) = 0 for any λ > 0 and for λN =
√
N , limN→

1
λN

Ψπ,2(λN , N) = 0.

Proof A.25 (Proof of Lemma A.30). For each f ∈ F , consider Xt = y(t)− ŷf (t). Then Xt

Xt =

∞∑
k=0

αkeg(t− k),

where

αk =

{
De, k = 0

CeA
k−1
e Ke, k > 0

By (Alquier et al., 2013, Proposition 4.2) Xt is a weakly dependent process in the terminology of (Alquier et al., 2013),
and ∥Xt∥ ≤ Ge(f)C and the coefficient θ∞,N (1) satisfies θ∞,N (1) < 2Ge,1(f)C for all NN. Consider the function
h(x1, . . . , xN ) = 1

(2L+1)

∑N
i=1 ∥xi∥22 defined on X = [−L,L]N , where L = 2Ge(f)C. Then h is 1− Lipschitz. Notice

that λVN (f) = λ
N (2L+ 1)h(X(0), . . . ,X(N − 1)). Then

E[eλ(L(f)−VN (f))] = E[e
λ
N (2L+1)(E[h(X(0),...,X(N−1))]−h(X(0),...,X(N−1))]
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and hence by (Alquier et al., 2013, Theorem 6.6)

E[eλ(L(f)−VN (f))] ≤ e
λ2

N (2L+1)2(∥X0∥∞+θ∞,N (1))2/2

where ∥X0∥∞ is the smallest real number such that ∥X0∥ ≤ ∥X0∥∞ with probability 1. By using the definition L, and the
facts that ∥Xt∥ ≤ Ge(f)C and θ∞,N (1) < 2Ge,1(f)C the statement of the lemma follows.

E[eλ(L(f)−VN (f))] ≤ e
λ2

N (2L+1)2(∥X0∥∞+θ∞,N (1))2/2 ≤ e
λ2

N (4Ge(f)C+1)2(Ge(f)+2Ge,1)
2C2/2 (226)

Proof A.26 (of Theorem 5.4). By applying Lemma A.30, Lemma A.29, and by applying the union bound as in Lemma
A.21, we obtain, for λ > 0, δ ∈ (0, 1], with probability at least 1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
2

λ

[
DKL(ρ|π) + ln

1

δ
+

Ψ1(λ,N) + Ψ2(λ,N)

2

]
(227)

with

Ψ1(λ,N) ≜ lnEf∼πe
λ2

2N (4Ge(f)C+1)2(Ge(f)+2Ge,1)
2C2

(228)

Ψ2(λ,N) ≜ lnEf∼π

(
(1− Ḡf,1(f)∥Σgen∥ℓ1(ce

√
m)) + Ḡf,1(f)∥Σgen∥ℓ1(ce

√
m)eλ

2∥Σgen∥ℓ1 (ce
√

m)

N Ḡf,2(f)

)
(229)

Now with λ̃ ≜ 0.5λ ↔ λ = 2λ̃, we obtain the statement of the lemma: for λ̃ > 0, δ ∈ (0, 1], then with probability at least
1− 2δ

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) +
1

λ̃

[
DKL(ρ|π) + ln

1

δ
+

Ψ1(λ̃, N) + Ψ2(λ̃, N)

2

]
(230)

with

Ψ1(λ̃, N) ≜ lnEf∼πe
λ̃2

N 2(4Ge(f)C+1)2(Ge(f)+2Ge,1)
2C2

(231)

Ψ2(λ̃, N) ≜ lnEf∼π

(
(1− Ḡf,1(f)∥Σgen∥ℓ1(ce

√
m)) + Ḡf,1(f)∥Σgen∥ℓ1(ce

√
m)e

λ̃
N 8∥Σgen∥ℓ1

(ce
√
m)Ḡf,2(f)

)
(232)


