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ABSTRACT

This paper formally studies generation processes, including auto-regressive next-
token prediction and masked diffusion, that abstract beyond architectural specifics.
At this level of abstraction, we take first steps towards quantifying the benefits of
generation processes being “natural”, intuitively referring to those that align with
underlying physical processes, through measurable criteria such as computational
hardness and learnability. In particular, we demonstrate that allowing generation to
proceed beyond autoregression and current masked diffusion, with capabilities to
rewrite and edit, can bring significant theoretical and empirical advantages, with
important implications for frontier LLMs that aspire to tackle increasingly hard
problems and work universally across domains beyond natural language, such as
coding and science.

1 INTRODUCTION

What power can being natural bring? The underlying generation process of almost everything in nature
follows a unidirectional arrow of time. Perhaps most representative of all, spoken language is produced
through a sequential process where each word builds upon preceding context in causal temporal order.
This generic inductive bias has been encoded into Auto-Regressive Models (ARM) (Shannon, 1951),
through next-token generation. Despite its simplicity, ARM when scaled through training on vast
corpora, has produced remarkably powerful models capable of general-purpose task completion and
reasoning, like GPT (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al., 2023).

Yet reality might be more convoluted. Humans, when tackling challenging tasks, naturally undergo a
non-sequential process of searching for solutions, evaluating and refining them, backtracking when
needed, and iterating until answers are found. Such complexity is not fully captured by current ARM.
While it is debatable if human intelligence fundamentally follows this left-to-right process (LeCun,
2023; Malach, 2023; Bachmann & Nagarajan, 2024; Berglund et al., 2023; Nagarajan et al., 2025),
ARM appears increasingly ill-suited when we venture beyond natural language.

For example, code (i.e. formal language) generation works on objects subject to global constraints
like balanced parentheses and well-typedness. Maintaining validity at each intermediate step makes
transitions from one state to another easier, thus naturally involving updates such as inserting functions,
adding branches, or changing input types. In biology, domains exist largely beyond the reach of
current LLMs, where molecular structures like proteins and genes involve combinatorial objects
modeled as graphs, trees, and strings satisfying physical constraints. Generation proceeds naturally
through structure-aware edits, e.g., swapping protein domains, inserting binding motifs on sequence
graphs, or recombining DNA/RNA segments (Wang et al., 2023).

Given the long-standing pursuit of building foundation models (Bommasani et al., 2022) powerful
enough to handle increasingly complex reasoning tasks and general enough to work across diverse
domains beyond natural language, it becomes important and timely to rethink generation process
itself, as a mechanism separate from architectural specifics, by formally asking:

How do we formally compare various ways to generate, and what opportunities may lie beyond
next-token generation?

Recent work suggests that next-token generation is not the only viable path. Masked Diffusion Models
(MDM) (Hoogeboom et al., 2021; Austin et al., 2021; Lou et al., 2024; Sahoo et al., 2024; Shi et al.,
2024) offer a compelling alternative procedure that, instead of causally generating tokens one by
one, permits any-order generation and produces multiple tokens in parallel, with recent large-scale
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Figure 1: Comparison between autoregressive generation, any-order generation (standard MDM) and
any-process generation (our MDM).

intantiations (DeepMind, 2025; Labs et al., 2025; Nie et al., 2025; Ye et al., 2025) showing comparable
performance with AR-based LLMs. Interestingly, besides faster decoding (up to 10x speedups),
MDM'’s generation process brings empirical improvements on some order-sensitive tasks such as
reversed-order poem completion (Nie et al., 2025; Berglund et al., 2023) and Sudoku puzzles (Kim
et al., 2025b; Shah et al., 2024). This motivates us to formally study it and compare with ARM.

Perhaps counterintuitively, we find while MDM is indeed more powerful than ARM in terms
of parallelism and efficiency for simple tasks, the benefits of seemingly greater flexibility are
surprisingly limited. Like ARM (Merrill & Sabharwal, 2024; Feng et al., 2024; Li et al., 2024),
MDM also achieves Turing-completeness, but does so more efficiently with optimal parallel time
complexity (Theorem 1), thus enabling exponential speedups for simple parallelizable problems.
However, for harder reasoning tasks, MDM faces similar fundamental limitations as ARM: both
struggle with problems requiring backtracking and rewriting capabilities, and cannot handle them
given realistic space resources (Theorem 2). Moreover, when controlling for other factors including
degree of parallelism and architecture, any-order generation itself does not expand what ARM can
already handle (Theorem 3), since any computation performed by MDM can be reorganized into
left-to-right order to align with the underlying arrow of time. Therefore we ask: What are more
natural ways to generate?

As an initial step, we propose Any-Process Generation, inspired by natural generative mechanisms
found across domains. It extends standard MDM beyond its existing unmask capability with three
additional operations (see Figure 1): remask (converting decoded tokens back to masks),
(adding new mask tokens at any position), and delete (removing mask tokens), all learned end-to-
end from data without architectural changes. Freed from conventional physics-inspired diffusion
frameworks, any-process generation removes unnecessary restrictions on mask ratios, decoding steps,
sequence lengths and stopping criteria, enabling structural editing and test-time scaling. With these
modifications, we show that MDM brings significant promise with both encouraging theoretical and
empirical results as follows.

Scalability to Hard Problems: The capability to rewrite and backtrack breaks the non-erasable
limitations of ARM and standard MDM, enabling our model to achive both optimal parallel time
and space complexity (Theorem 4), thus solving many NP-hard problems with polynomial space
through test-time scaling, i.e. an exponential improvement from the previous P. Empirically, on
Sudoku puzzles (Figure 2(a)), our model achieves 99.28% accuracy using only 100 training instances,
outperforming ARM (87.18%) and any-order MDM (89.49%) with 5x parameters trained on 1.8M
instances (i.e., orders of magnitude more).

Structure-Aware Generation: The flexibility to rewrite, insert and delete tokens enables structure-
aware generation processes that resist sequential construction, such as gene splicing in biology
(Figure 2(d)) and 2D graph generation (Figure 2(e)). To quantify such benefits, we prove ARM
cannot even generate matched parentheses (two-sided Dyck-k language) for arbitrary lengths, i.e. one
of the most basic skills for code generation, while our model can (Figure 2(b), Theorem 5). Empirical
results on a graph editing / generation task show that our approach maintains perfect accuracy for
increasingly larger graphs, while ARM performance degrades significantly as graph size increases.

Learning and (OOD) Generalization: Our approach enables learning previously-impossible
simpler algorithms that significantly improve learning and generalization. For parity checking
(Figure 2(c)), our model achieves 100% generalization to arbitrary lengths after training on only
length-2 sequences, while even the latest GPT models struggle on this embarrassingly simple task.

Finally, envisioning a future with access to data of the underlying generation processes of objects
we wish to generate, such as code revisions, math proof drafts, or molecular formation processes,
any-process MDM proves more suitable than ARM (Theorem 6).
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(a) Sudoku (NP-Complete Problem). Scaling up inference-time computes to solve significantly harder problems
by allowing rewrites and backtracking using the remask operation (§ 5.1).
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(b) Coding (Matched Parentheses / Dyck-k). Generating any-sized two-sided Dyck-k is impossible for ARM,
while our model can easily do so with the operation (§ 5.2).
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(c) Parity (Counting 1s). Length generalizing parity and counting problems are enabled by learning a simple
elimination algorithm with the remask and delete operations (§ 5.3).
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(d) DNA Recombination (Splicing System). An example in science / biology where DNA segments are spliced
and pasted using combinations of operations, which is hard for ARM (§ 5.2).

Parallel Feature Editing Parallel Structure Editing

(e) Graph Editing. Editing combinatorial structures where feature / structural evolution and parallel computation
are naturally integrated (§ 5.3). Using ARM to simulate is hard (§ 5.4).

Figure 2: Examples of any-process generation for different tasks.
2 PRELIMINARY

Auto-Regressive Model (ARM) Let X be a finite-sized vocabulary and 7 : ¥* — X be a next-
token predictor, which maps a sequence x = (1,2, -+ ,&,) € X" to a token z, 1 € X. An
autoregressive model (ARM) is defined based on a sequence-to-sequence mapping f : ¥* — X%,
concatenating input sequence x and the next token 7(x), i.e. f(x) = (x,7(x)). ARM formulates
generation as an iterative process by repeatedly applying f to the current sequence. In practice, f is
typically parameterized by a Transformer (Vaswani et al., 2017) with causal attention and learnable
parameters 6. The notion of ARM here also aligns with Chain-of-Thought (CoT) (Wei et al., 2022) in
many other works and we will use them interchangeably throughout this paper.

Masked Diffusion Model (MDM) Let Y = ¥ U {M} be the extended vocabulary where M is an
absorbing mask token (Austin et al., 2021). Consider sequences x; = (2,1, Z¢,2,.-.,%t,8) € =3
indexed by time t € [T], where S is the maximum context length, 7" is the number of decoding
steps, Xo = {M}® is the fully masked sequence and x7 € ¥° is the target clean sequence.! A
masked diffusion model (MDM) (Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024) also relies on
a sequence-to-sequence mapping f : ©° — 2% with x;,1 = f(x;), formulating generation as an
iterative process by repeatedly applying f to progressively unmasks tokens from the all-mask state.

Among many MDM variants, we consider the following standard design choices from recent large
language diffusion models (Nie et al., 2025): 1) linear noise schedule with S = P - T for integer

'Unlike convention in diffusion model where larger ¢ denotes earlier inference steps, we use ¢ following an
intuitive feed-forward ordering during inference, i.e. the focus of this paper.
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P, where each step reveals exactly P tokens; 2) confidence-based adaptive decoding (Chang et al.,
2022) rather than random token selection; 3) encoder-only Transformer architecture without timestep
embedding; 4) conditional generation where input prompt x of length n is a prefix of xg, with n
calculated within context length S, aligned with reasoning problem setup for ARM. Detailed MDM
introduction and encoder-only Transformer definition are in § B and § E, respectively.

3 A THEORY OF MASKED DIFFUSION

The generation process in MDM is unique in two different ways: it generates multiple tokens in
parallel and permits any-order generation. We now investigate whether and how exactly these
properties, in their own right, translate into concrete advantages.

3.1 POWER OF PARALLELISM

Prior work (Merrill & Sabharwal, 2024; Feng et al., 2024; Li et al., 2024) has shown that ARM
with sufficiently many intermediate steps is Turing-complete and thus can solve any computable
problem. Analogous to the role of intermediate steps in ARM, two governing resources determine
MDM’s power: 1) number of decoding (denoising) steps 7'(n), and 2) maximum context length S(n)
(equivalently, the maximum number of tokens available to decode).

Definition 1 (MDM). Let MDM(S(n), T'(n)) be the class of decision problems solvable by MDM (8§ 2)
with maximum context length S(n) and at most T'(n) decoding steps, using some constant depth and
log(n) embedding size encoder-only Transformer. Also, let MDM(S(n)) = |J MDM(S(n),T(n)).
T(n)

To formally characterize MDM’s expressivity in relation to T'(n) and S(n), we establish a connection
with the canonical parallel computation model called Parallel Random Access Machine (PRAM) (For-
tune & Wyllie, 1978; Jal4, 1992), which is the RAM model extended to multiple processors executing
over shared memory. See detailed introduction and a formal definition of the variant we use in § D.

Definition 2 (PRAM). Let P(n) be the number of processors budget, and w(n) = O (log n) the word
size. Define PRAM(P(n),T(n)) as the class of decision problems solvable by a uniform CREW
PRAM (see § D for CREW specification) using at most P(n) processors in at most T'(n) parallel
time.

Theorem 1 (MDM Simulation of PRAM, Informal). For any PRAM program that runs on input
x € X" in at most T'(n) parallel time with P(n) maximum processors, there exists an MDM on input
x, padded to S(n) = O(P(n) - T(n)), that matches the PRAM output in O(T'(n)) decoding steps,
i.e. PRAM(P(n),T(n)) € MDM(O(P(n)-T(n)), O(T(n))). See formal statement in Theorem 8.

This demonstrates that MDM can simulate any PRAM algorithm with optimal parallel time
complexity, thereby it is not only Turing-complete as ARM already achieves, but can also solve
problems significantly faster with parallelization, something ARM cannot offer. The speedup
can be exponential compared to ARM’s serial time complexity: for efficiently parallelizable problems
in NC (Arora & Barak, 2009),” graph connectivity can be solved in O(log n) decoding steps versus
ARM’s linear complexity, and context-free languages including Dyck-k require only (’)(log2 n) steps.
These tasks have been demonstrated hard or inefficient for ARM in previous literature (Strobl et al.,
2024; Zhu et al., 2025).

3.2 (UN)SCALABILITY TO INHERENTLY HARD TASKS

While noteworthy, the computational power described above comes with a non-negligible cost:
solving a problem requires context length S(n) to scale as O(T'(n) - P(n)) (the total parallel work),
a quantity at least as large as the serial time complexity (with P(n) = 1), per Brent’s Theorem (JaJ4,
1992). Particularly, in resource-constrained regimes, we have:

Theorem 2. MDM(S(n)) € PRAM(1,O(S3(n))), where logarithmic factors are hidden in O.

In other words, MDM with context length S(n) cannot solve problems requiring more than O(S3(n))
serial time. This limitation is also shared by ARM (Yang et al., 2025).

2NC is the complexity class for efficiently parallelizable problems, those that are solvable in polylog(n)
time using poly(n) processors; NC C P and it is open whether NC = P (Greenlaw et al., 1995). PRAM is the
canonical model for this notion as a Turing machine is for P.
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This implies MDM is inherently not scalable to solving hard reasoning or generation tasks: for
problems beyond NC and P (e.g., NP-hard problems), this would require superpolynomial context
length (under standard complexity assumptions), practically intractable in terms of both memory and
per-step FLOPs. The root cause lies in MDM'’s irreversible token generation: once decoded, those
positions cannot be reused or rewritten. As reflected in the construction of Theorem 1, each memory
write must be permanently stored as tokens, forcing space to scale with computation time.

In contrast, human reasoning on hard problems naturally involves continuous revision, exploration
of alternative paths, and correction of mistakes before reaching final conclusions. Generation tasks
are no different: for instance, generating planar graphs (drawable on planes without edge crossings)
is NP-complete and naturally involves iteratively adding nodes, checking planarity constraints, and
backtracking when violations occur. Such process has not been captured by either ARM or MDM.

3.3 (LIMITED) POWER OF ANY-ORDER GENERATION

Any-order generation seems to offer extra flexibility over auto-regression, but does it truly translates
into computational advantages? To attribute gains to any-order generation itself, we control for
orthogonal factors differentiating ARM and MDM: 1) the number of tokens generated per step,
and 2) the backbone architecture (decoder v.s. encoder). The former has already been shown to
confer stronger parallelism to MDM (§ 3.1); the latter provides internal parallelization benefits (Ewer
et al., 2024) and improved expressiveness through padding with dummy tokens (i.e. M) (Merrill &
Sabharwal, 2025).

Therefore, we fix MDM to emit exactly one token per step and ARM to use the encoder-backbone
with mask tokens padding the sequence to the same length (called Masked-ARM), or equivalently:

Definition 3 (Masked-ARM). A Masked-ARM is defined as an MDM (§ 2) that is forced to decode in
left-to-right order and one token per step.

Perhaps counterintuitively, we show that the computational benefits from any-order generation
are rather limited, by itself not enabling what Masked-ARM cannot already solve:

Theorem 3 (Left-to-Right v.s. Any-Order, Informal). For any AO-MDM with context length S(n)
decoding one token per step, there exists a Masked-ARM with length O(S(n)) and extra constant
layers, that can produce the same generation process for any given input X, by explicitly specifying
both where to write (position) and what to write (token). See formal statement in Theorem 9.

Simulating any-order generation with autoregressive models is not hard because the attention mecha-
nism is good at fetching information from any position, and re-organizing it internally in the correct
order to perform the same computation. While Masked-ARM need not replicate MDM’s exact final
sequence, an additional post-processing step can align their outputs without affecting the theoretical
conclusion. There are also some empirical evidences showing the effectiveness of ARM simulating
any-order (Xue et al., 2025).

But not all intricacies inherent in natural generation processes can be easily sequentialized. Coding
for example (as well as many natural scientific processes alike), involves anywhere editing where a
new valid state depends upon previous valid states that may not be contained in the final sequence.
And even when described in left-to-right temporal order, reproducing the state requires more than
simple re-organization, which attention is already provably good at (breaking Theorem 3). Hence
such a complex process is not captured by ARM or MDM as currently instantiated.

Remark We note that MDM’s observed advantages in practice may lie in discovering an optimal
order (Kim et al., 2025b) from data, where left-to-right ordering need not exactly correspond to the
optimal temporal generation order, though computationally equivalent (Theorem 3).

4 ANY-PROCESS GENERATION

We now introduce Any-Process Generation, a more powerful generation paradigm that extends
the any-order masked diffusion from § 2 (referred to as AO-MDM hereafter) by removing various
restrictions to capture natural processes not present in existing generation strategies.

A General Formulation Let fp : ©* — £* x ¥* x C* be a function, by default parameterized by
the same Transformer architecture, which on input x;, € 3* returns the triple (xx, yx, ci) with y, €
Yl and c, €C <kl where X}, may contain one or more M tokens (a masked sequence) while y, is
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mask-free; y; and cj, have the same length as the input. Core to the design of this generation process
is a parameter-free (and optionally non-deterministic) transition function g : ¥* x ¥* x C* — ¥*,
which takes (xy, ¥, Cx) as input to produce the next sequence x;; € X* that can differ in length
from x. The inclusion of input xy, itself in the output of fy(x)) ensures that g has access to which
positions are masks initially. Overall, generation is formulated as the iterative application of fy and g
until some stopping criterion is met:

xi41 = 9(fo(x¢)), andhence x; = (go fy)'(x0) =go foogo foo---0go fo(xo). (1)
Notably, unlike vanilla MDM, this framework imposes no restrictions on mask ratios at any given
time step, therefore each decoding step can unmask an arbitrary number of tokens, and x, can be
the input prompt x directly with no initial mask, as in ARM. This framework also does not limit the
maximum number of decoding steps 7', the stopping criterion is flexible and need not to be a fully
unmasked sequence, as in ARM. We dub this class of models as Any-Process MDM (AP-MDM) and
will detail a specific instantiation. It is not difficult to see AO-MDM is a special case of AP-MDM.

4.1 AN INSTANTIATION WITH UNMASK, REMASK, , AND DELETE OPERATIONS

Define C = {0, 1}3. For each position i and time step ¢, the per-position control is a 3-bit vector
cei = (eqi[l], eil2], ei[3]) € C reserved for different purposes that will be detailed below.

Correspondingly, we write ¢; = (ct,1,...,C|x,|) € cxl,
Capability 1: Rewrite via Remask We use the first bit of the per-position control ¢, ;[1] € {0, 1}
to control remasking (and whether to unmask) and define:
M ife 1] =1
remasKe, (X¢,y¢)i = S yrs ifxy; =Mand ¢, ;1] =0 )
x¢; otherwise

In other words, when ¢, ;[1] = 1, position 4 is a mask after decoding regardless of its previous state;
otherwise, standard unmasking follows as usual. This operation enables self-correction and test-time
scaling, allowing models to scale computation exponentially in S(n) before state repetition occurs.
Additionally, since the remasking signal can be learned from data, models can adaptively determine
both decoding order and parallelization degree at each step.

Capability 2: Length-Variable Edit via Insert / Delete We use the second and third bits of the
per-position control ¢, ; to govern insertion and deletion, respectively, and define:

- ¢, (z¢) :  insert M after position i if ¢; ;[2] = 1, Vi € [|2]]

Vzy € X ‘ Lo ’ , 3
deletec, (z;) :  delete position ¢ if z;; = M and ¢, ;(3] = 1, Vi € [|z]]

In other words, insert adds a mask token after position ¢ when ¢, ;[2] = 1, and delete removes

position ¢ when it was originally a mask token (z;; = M) and ¢; ;[3] = 1. These operations enable
dynamic sequence length adjustment based on problem complexity, with the insert operation allowing
sequence length to grow exponentially as each mask token can spawn additional masks. Furthermore,
the delete operation provides computational efficiency by freeing space during stages that require
less extensive computation, reducing overall FLOPs waste. This mechanism can work orthogonally
with semi-autoregression (Arriola et al., 2025).

To summarize, each decoding step can be written as:

Jo(x¢) = (X6, ¥1,€t),  g(Xe, ¥, ¢) = deletee, o c; oremaske, (X¢,y) = X411 (4)

The order of the three operations does not affect the result (up to minor definitional adjustments).
And the stopping criterion can be flexibly defined, e.g. one can use generation of an EOS token (as
in ARM) or convergence to a repeated sequence (loop occurs). Architecturally, implementing these
capabilities requires no changes to the Transformer structure, only three additional logit dimensions
are needed for producing control signals, i.e. three extra linear heads. Details in § C.1.

Training / Data Availability All three operations can be trained end-to-end or fine-tuned from
existing large diffusion models, since they preserve MDM’s ability to benefit from self-supervised
training on large-scale data. See details in § C.2. This separates our approach from alternatives
like looped Transformers (Dehghani et al., 2018; Giannou et al., 2023), which are expressive but
notoriously difficult to train due to lack of intermediate supervision.
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Design Considerations The proposed three operations all revolve around the mask token M,
leveraging existing MDM’s strong unmasking capability while only adding modular extensions
that are easier to pretrain or fine-tune than learning harder operations such as inversion of uniform
noise (Sahoo et al., 2025). Moreover, while the definitions of g and c, in (4) suffice for achieving
theoretical benefits detailed later, they are not necessary conditions; other designs are possible.

Remark We note that the idea of remasking and editing have been individually explored in some
prior/concurrent works (Wang et al., 2025; Peng et al., 2025; von Riitte et al., 2025; Havasi et al.,
2025; Wu et al., 2025). However, there has not been a systematic study of guidance principles for
yielding provable computational benefits and their implications. See detailed discussion in § A.

5 THE POWER OF ANY-PROCESS GENERATION

We now show how any-process generation circumvents various difficulties that current ARM and
MDM encounter when handling tasks across different domains and complexities.

5.1 UNIVERSALLY EFFICIENT COMPUTATION
Benefit 1: Scalability to significantly harder problems through rewriting and backtracking.

As discussed in § 3.2, inherently hard problems (e.g. many NP-hard tasks) typically do not admit
sequential processes but require iterative “search—verify—revise” loops, which hold across various
domains: from theorem proving, solving code challenges to synthesis of complex structures in nature.
The pathological way current generation paradigms let discardable tokens accumulate indefinitely
creates scaling barriers, where space explodes and each step incurs ever-increasing computational
cost (Theorem 2). We now demonstrate how AP-MDM resolves this:

Theorem 4 (AP-MDM Simulation of PRAM, Informal). For any PRAM program that runs in at
most T'(n) parallel time, P(n) processors and S(n) memory usage, there exists an AP-MDM that
matches PRAM output on any given input with O(S(n)) context length and O(T'(n)) decoding steps.
See formal statement in Theorem 10.

By comparison, standard MDM requires space scaling with the total work O(P(n) - T'(n)) (Theo-
rem 1), whereas AP-MDM requires only the actual space needed, achieving both optimal parallel
time and space complexity (Theorem 4). This implies AP-MDM not only retains the efficiency of
parallelization, but also dramatically expands the range of solvable problems. In particular, given
polynomial context length, AP-MDM can solve problems in PSPACE rather than just P, which is an
exponential improvement that makes many NP-hard problems solvable with test-time scaling.

Experiment: Sudoku Puzzles We conduct experiments on Sudoku puzzles, i.e. an NP-complete
problem when generalized to n? x n? grids, requiring both the capability of any-order generation, and
the capability to rewrite. As illustrated in Figure 2(a), AP-MDM can use the remask (and standard
unmask) operations to choose the easiest position to fill first, and also erase failed branches and try
alternative assignments, effectively scaling computates to solve harder instances.

We follow the experimental setup from (Kim et al., 2025b) but with a key difference: while the
original work used 1.8M training puzzles, we use only 100 (moderately hard) instances for training
AP-MDM. Despite this significantly reduced dataset, our approach achieves near-perfect accuracy
(99.28%) on most Sudoku puzzles, outperforming both AO-MDM and ARM that use substantially
more samples and larger model sizes, as shown in Figure 3. Any-process generation is instance-wise
more efficient because if the model is allowed to conduct more computes and more steps to solve
the same problem, each step would become easier to learn. Orthogonally, we find from the training
dynamics in Figure 3 that the model quickly learns to identify and fill the easiest positions (unmasking
loss drops rapidly), while learning the order (which position to fill next) proves more challenging.

5.2 STRUCTURAL GENERATION: EXAMPLES IN CODING AND SCIENCE

Benefit 2: Generating (or reasoning over) complex structured objects that evolve non-sequentially,
common across domains beyond natural language (e.g. coding, science).
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(a) Comparison of accuracy on Sudoku. (b) Convergence of losses.

Figure 3: Experimental results on Sudoku puzzles. Results of ARM and AO-MDM are taken from
Kim et al. (2025b). Losses are defined in § C.2.

When the evolving object involves some complex structures (e.g. trees, graphs, strings with con-
straints) that do not inherently build up linearly, forcing the generation into a sequential procedure
can introduce unnecessary computational difficulties. Such scenarios are especially common across
domains beyond natural language (e.g. coding, biology), which current LLMs struggle with.

Example 1: Coding Programs generally require satisfying global constraints like syntax and
semantics at every intermediate state during development, since building each state upon the previous
valid one is easier than jumping directly to the final solution. To illustrate this, consider the basic task
of generating matched parentheses (the Dyck-k language with k types of parentheses), as illustrated
in Figure 2(b). Natural generation involves inserting parentheses anywhere without breaking balance
constraints, while left-to-right generation requires global foresight and constant validity checking
during generation, provably impossible for Transformers at scale. Particularly, we consider a variant
called the two-sided Dyck-k (Definition in § K):

Theorem 5 (Generating Two-Sided Dyck-k, Informal). For any k > 2, there exists a stochastic
AP-MDM that can generate every string in two-sided Dyck-k with positive probability. Conversely,
for any fixed ARM, there exists a length threshold beyond which the ARM cannot guarantee positive
probability for all strings in two-sided Dyck-k. See formal statement in Theorem 12.

This result holds because generating Dyck language for arbitrary length is as hard as recognizing it,
i.e., deciding if the current sequence has matched parentheses, which Transformer restricted in TC®
expressivity cannot do. The vanilla MDM faces similar difficult as it has to predetermine the number
of tokens between each matched parentheses. AP-MDM fundamentally circumvents this difficulty.

Example 2: Science / Biology Consider linear splicing (Head, 1987; Paun, 1996), which is DNA
recombination abstracted (and perhaps over-simplified) as cutting two strings and cross-pasting their
halves, as illustrated in Figure 2(d). Iterating such rules from a finite seed set generates a splicing
language, and any regular language with a marker added to the left side can be generated by such a
system (Head, 1998; Kari & Kopecki, 2012), while regular language has been proven impossible for
constant-depth Transformers (Liu et al., 2022; Merrill et al., 2024).

Experiment: Graph Generation To illustrate the power of generating complex structures by editing,
we consider a graph generation task. Given a directed graph and a prompt specifying source and
target nodes s and ¢, the model is required to generate a modified graph that disconnects s and ¢
by removing the minimum number of edges. This is equivalent to finding the min-cut. Efficient
algorithms for generation typically involve iterative editing: 1) Use BFS to find a path from s to ¢;
2) Augment this path and modify the graph structure; 3) Repeat until s and ¢ are disconnected, then
remove the min-cut edges. Any-process generation is naturally suited for such graph editing tasks,
leveraging /delete/remask operations for adaptive structural and feature modifications and
MDM’s parallel capabilities, as illustrated in Figure 2(e). As shown in Figure 4, our model achieves
almost perfect accuracy for increasingly larger graphs. Meanwhile, when we train ARM to simulate
the same process, they fail to perform well as graph size increases.

5.3 LEARNING AND OOD GENERALIZATION

Benefit 3: Enabling the use of simpler algorithms to solve problems, thereby improving sample
efficiency and (out-of-distribution) generalization.

Experiment: Parity Given a binary sequence x € {0, 1}", parity involves determining if there
are an even or odd number of 1s. This task is conceptually trivial but embarrassingly difficult for
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(a) Graph generation via editing. (b) Length generalization on parity.

Figure 4: Graph generation and parity task results.

LLMs. Intuitively, the difficulty arises because ARM is forced to attend the entire input and learn a
position-invariant target function, which is hard on training sequences with finite-length. With any-
process generation, the model circumvents this difficulty by learning a simple elimination algorithm:
examine the first two tokens, delete all Os if the pair contains any O or delete the pair if both are 1s,
then repeat until all are processed (Figure 2(c)). The answer is true if any 1s remain. This mimics
how humans solves the problem, a simple length-generalizable approach only possible with deletion.

As shown in Figure 4, our model achieves 100% accuracy on any length after training on only n = 2
length sequences with a tiny model (~200 parameters), while ARM with orders of magnitude more
parameters and samples fails to generalize beyond training lengths.

5.4 HARDNESS OF BEING SIMULATED

Benefit 4: If in the future we have access to data of underlying generation processes (e.g. revision
history of code, articles, math proof drafts, molecular formation processes), any-process MDM is
more suitable than ARM for practical training.

Besides scalability to harder tasks (§ 5.1) and universality across domains (§ 5.2), a crucial question
remains: suppose given access to datasets containing revision histories of the objects we wish to
generate, would AP-MDM be the most appropriate model for such data and large-scale training? To
answer this, we consider ARM as a competitor as it is Turing-complete, and equally expressive as
AO-MDM (Theorem 3) when controlled for orthogonal factors.

We next show ARM is inherently unsuitable for training on editing datasets in two ways. Firstly,
unlike any-order generation (Theorem 3), AP-MDM’s editing operations is hard to be simulated by
ARM by explicitly specifying editing operations applied at each decoding step; particularly

Theorem 6 (Hardness of Simulating AP-MDM, Informal). There exists a constant-depth AP-MDM,
such that no constant-depth ARM can simulate the generation process of that AP-MDM using a
sequence of triplets, i.e., what operation to use (unmask, remask, , delete), where to apply the
operation (position) and what to write for the unmask operation (token), on any input X, under some
complexity hardness assumptions in § L. See formal statement in Theorem 13.

Empirically, we show that representing our generation process using triplets described above for ARM
simulation indeed becomes increasingly difficult to train as sequence length grows, as demonstrated
in the graph generation task in § 5.2.

Secondly, if we disregard the resource constraints from § 5.1 and § 5.2, simulation becomes possible
through additional intermediate steps, but this could require highly contrived trajectories that defeat
the purpose of practical training, e.g. periodically summarize the current state, or using more than
constant tokens to represent each application of an operation.

6 CONCLUSION

This paper provides formal analysis of generation processes and shows, provably and empirically, that
moving beyond standard autoregression and current masked diffusion yields more powerful models.
These results suggest concrete design principles for frontier LLMs, pointing to training and decoding
schemes that scale to increasingly hard tasks and generalize across domains such as code and the
sciences. See further contextualization with respect to related work in § A.
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USAGE OF LARGE LANGUAGE MODELS

In this work, we use LLMs for literature retrieval and discovery, writing assistance and polishing,
and code writing and debugging support. We carefully monitor potential issues such as plagiarism or
factual inaccuracies to ensure academic integrity.
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A RELATED WORK

Masked diffusion models (Hoogeboom et al., 2021; Austin et al., 2021; Lou et al., 2024; Sahoo et al.,
2024; Shi et al., 2024) extend continuous diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) to discrete data. Early work applied these models to specialized domains such
as graph generation (Vignac et al., 2022; Sun & Yang, 2023), protein design (Gruver et al., 2023), and
drug discovery (Lee et al., 2025), where non-sequential generation provides natural advantages. The
field has evolved with recent commercial-scale language models like Gemini Diffusion (DeepMind,
2025) and Mercury (Labs et al., 2025), which demonstrate competitive performance on language
generation, reasoning, and coding tasks. This suggests that MDMs can serve as viable alternatives
to the autoregressive models that currently dominate LLMs. Against this background, this paper
investigates the fundamental computational differences between generation paradigms and explores
whether more powerful generation methods exist.

Several works have explored extensions to standard MDM through mechanisms that enable rewriting
and editing (von Riitte et al., 2025; Wang et al., 2025; Peng et al., 2025; Havasi et al., 2025; Wu
et al., 2025; Kim et al., 2025a), which relate to our any-process generation framework. Wang et al.
(2025) introduces random remasking during inference, though this capability is not learned from
data. Lou et al. (2024); von Riitte et al. (2025); Sahoo et al. (2025) propose adding uniform noise in
the forward process rather than using masks, with models learning to revert them in the backward
process, but this approach generally underperforms since modifying tokens directly appears more
difficult than unmasking. Peng et al. (2025) introduces path planning to control generation, though
the planner is not trained end-to-end with the base model. Current with ours: Havasi et al. (2025)
introduces edit operations to flow matching frameworks but faces similar limitations as uniform
noise approaches; Kim et al. (2025a) introduces to insert tokens at any position while Wu et al.
(2025) proposes expansion and delete, but these capabilities per se are insufficient for handling hard
reasoning tasks as discussed in § 3.

B BACKGROUND: MASKED DIFFUSION MODEL

We introduce the preliminaries of diffusion language models or masked diffusion models (MDM),
following the notation established in § 2. Let X = X U {M} be the extended vocabulary where M
is the mask special token. Consider sequences x; = (¢1,%¢,2,--.,%1,5) € %9 indexed by time
t € [T, where S is the maximum context length, 7" is the number of decoding steps, xo = {M}® is
the fully masked sequence and x € ¥ is the target clean sequence.

Forward Noising Process The forward noising process constructs training data by generating
noisy versions x; from clean sequences x7. Unlike the discrete inference steps in § 2, training uses
continuous time ¢ € [0, T'] with larger ¢ denoting later denoising steps. MDM employs the absorbing
mask kernel (Austin et al., 2021) where the signal ratio «v; = t/T represents the marginal probability
that a token remains unmasked. Since oy increases monotonically with ¢ (i.e., as; < oy for s < ?),
later timesteps preserve more original tokens, consistent with our convention where ¢t = 0 is fully
masked and ¢t = T is clean. At each position i, tokens either stay unchanged or become M, and once
masked, they “absorb” into this state. The marginal distribution is:

q(zei | 27i) = Cat(wyi; aven,, + (1 — ay)em) %)
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where e, denotes the one-hot vector for token v € X. To obtain noised sequence x; from x, we
compute the masking probability 1 — o and mask each position independently with this probability.

Training Objective The reverse process aims to recover xp from xo. MDM parameterizes
po(xX7 | X¢,1) to predict the clean data directly (but as mentioned in § 2, many recent large-scale
MDMs omit explicit timestep embeddings). For the absorbing mask kernel, the true posterior
q(xs | x¢,x7) for s < ¢ has an analytical form. For each position i:

Cat(zs €y, ;) ifz,; #M
q(xs,i | 43, 075) = Cat (m B (1—as)eM+(at—as)ew,i> 2y, — M (6)

1—ag
This means that, if position ¢ is not masked at time ¢, it remains unchanged at time s; if position ¢ is

masked at time ¢, it transitions probabilistically between the original token and mask. The training
objective is derived from the variational lower bound. For the absorbing mask kernel, it simplifies to:

‘CCE(Q) = EtNZ/I(O,T),xTdim,xtwq(xt\xT) _% Z 10gp9 (xT,i | Xt t) (7)
=M 2,
The loss is computed only on masked positions and averaged over the number of masked tokens,
making this equivalent to conditional masked language modeling with proper normalization. Here,
t is sampled uniformly from the continuous interval [0, T'] during training, X7 is sampled from the
data distribution, and x; is obtained by applying the forward noising process.

C METHODOLOGICAL DETAILS

C.1 MODEL ARCHITECTURE

As described in § 4, AP-MDM extends standard MDM with three additional capabilities: remask
(rewrite via remasking), (insert masks), and delete (remove redundant masks). In principle,
these capabilities can be implemented using a shared encoder-only Transformer backbone with three
additional linear heads, adding minimal computational overhead.

Architecture Following Equation (4), the per-position control signals ¢; ; € C = {0,1}3 can be
predicted using three binary classification heads on top of the final Transformer layer. Each head
would map token embeddings to a single dimension followed by sigmoid activation:

cill] = o(Wgrhy; +bg) (remask) )
ci[2] = o(Wrhy; +br) (insert) )
c,il3] = oc(Wphy ; +bp) (delete) (10)

where h, ; is the hidden representation for position ¢ from the encoder-only Transformer.

C.2 SELF-SUPERVISED TRAINING FOR AP-MDM

In principle, one can design specialized loss functions corresponding to each operation, alongside
the standard unmasking loss from MDM, by constructing self-supervised signals from the inherent
structure of text data through augmentation strategies.

Unmasking Loss The unmasking loss would follow standard MDM training as described in
Appendix B. For each training sample xr, one can sample ¢t ~ U/(0,T) and apply the forward
masking process with signal ratio a; = /T to create x;:

(1)

Tti =

s

a7, with probability oy
M with probability 1 — oy

The model would learn to predict original tokens at masked positions with time weighting:

1 'Z"T log po (7. | %)
[fumnask = Et,xT,xt Z o m; -\ — 1 (12)
1T =1

where m; = 1 if position ¢ is valid (according to attention mask), 0 otherwise.
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Remasking Loss The remasking loss could train the model to identify incorrect tokens that should
be remasked. For each sample xr, one can sample ¢ ~ U(0,T) and create a corrupted sequence X;
using batch-internal shuffling (which effectively samples from the empirical token distribution rather
than a biased uniform distribution):

F,. = {xm W%th probab%l%ty oy (13)
’ shuffled token with probability 1 — o
The remasking labels are ¢; ;[1] = 1]z ; # %], and the loss uses binary cross-entropy:
1 x| .
Lremask = B xr.%, S ; m; - BCE(logitp, ;, cr.i[1]) (14)

where m; indicates valid positions and BCE denotes binary cross-entropy with logits.

Insert Loss The insert loss could teach the model to identify positions where additional content is
needed. For each sample x7, one can sample deletion probability 6 ~ I/(0, 1) and generate deletion
indicators for each position 7. One would create the deflated sequence X by removing tokens at
randomly selected positions. The insert labels would be ¢, ;[2] = 1 for positions j that remain in X
where the next position was deleted, 0 otherwise:

1 |

Lo =Esyrx ST > " m; - BCE(logit, ;, ¢t ;[2]) (15)

Jj=1

where m; indicates valid positions in the deflated sequence.

Delete Loss The delete loss could train the model to distinguish between necessary and redundant
mask tokens. One can use a two-step masking process: first apply standard MDM masking with
ay = t/T to create Xpyse, then sample insertion probability v ~ (0, 1) to insert additional M tokens
at randomly selected positions. The delete labels would distinguish mask origins:

coil3] = {é i)ftf;im:seM and inserted in step 2 (16)
The loss uses binary cross-entropy:
T
Lactete = By xp 2, S > mx - BCE(logit, 1., ¢ k[3]) (17)

k=1

where my, indicates valid positions in the contracted sequence.

Combined Training Objective In principle, an AP-MDM training objective could balance all four
capabilities:

»CAP—MDM = Eunmask + )\r Eremask + >\z£ + )\dﬁdelete (18)

where A\, \;, A\q > 0 are hyperparameters controlling the relative importance of each operation with
default value 1.

D PARALLEL RANDOM ACCESS MACHINE

The Random Access Machine (RAM) (Arora & Barak, 2009) serves as the foundational theoretical
model for sequential computation, featuring a single processor that can access any memory location
in unit time regardless of address—hence “random access”, along with a finite set of registers and
basic arithmetic/logical operations. This contrasts with models like Turing machines where memory
access is sequential. The RAM’s key strength lies in its realistic abstraction of modern computers: it
captures the essential computational primitives (arithmetic, memory access, conditional branching)
while abstracting away hardware details, making it ideal for algorithm analysis.
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The Parallel Random Access Machine (PRAM) (Fortune & Wyllie, 1978; JaJa, 1992) extends this
familiar RAM model to parallel computation by allowing P(n) processors to operate synchronously
on shared memory with O(log n)-bit word size. * Each processor in PRAM maintains its own program
counter and unique identifier, enabling conditional branching and coordinated computation. The
model operates in discrete synchronous time steps where all active processors execute simultaneously,
inheriting RAM’s unit-cost random access property while adding the complexity of concurrent
memory operations.

PRAM Variants PRAM has several variants, which differ in their memory access discipline,
forming a hierarchy with precise complexity relationships. Let EREW, CREW, CRCW-Common,
CRCW:-Arbitrary and CRCW-Priority denote the classes of problems solvable in polynomial parallel
time with polynomially many processors under each model, listed in order of increasing expressivity:

« EREW (Exclusive Read, Exclusive Write): No concurrent access to any memory cell. Most
restrictive but captures essential parallelism.

* CREW (Concurrent Read, Exclusive Write): Multiple processors may read the same cell simulta-
neously. Enables broadcast in O(1) time vs. ©(logn) in EREW.

+ CRCW-Common: Concurrent writes allowed only if all writers agree on the value. Boolean OR
computable in O(1) time.

+ CRCW-Arbitrary: Any concurrent writer may succeed; the choice is made arbitrarily (often
modeled as random selection).

* CRCW-Priority: Concurrent writes resolved by processor priority with various schemes (e.g.,
minimum/maximum index, sum of conflicting values).

Crucially, any algorithm in a stronger model can be simulated in a weaker model with at most
O(logn) parallel time overhead (JaJ4, 1992). This polylogarithmic separation appears in basic
primitives, broadcast requires O (log n) rounds in EREW but O(1) in CREW, yet the models remain
polynomially equivalent for most complexity-theoretic purposes. We adopt the CREW model
throughout this paper, where different processors are not allowed to write to the same memory cell
simultaneously.

PRAM, as an idealized abstraction of shared-memory multiprocessor systems, enables precise analysis
of parallel algorithms and gives rise to parallel complexity classes such as NC (Arora & Barak, 2009)
(problems solvable in polylogarithmic parallel time using polynomially many processors). For
example, PRAM can simulate algorithms on trees, linear arrays, meshes, and hypercubes without loss
of parallel time, while reverse simulation costs at most O(log® P(n)) overhead; Boolean circuits of
depth D can be simulated on CREW in O(D) time, making PRAM a natural model for measuring
parallel time complexity in theory.

Below, we provide a more formal definition that will be used in proofs.

D.1 DEFINITION AND EXECUTION PROCESS OF WORD-RAM

We formalize the standard word-RAM that matches a single-processor PRAM (i.e., P(n) = 1).
Throughout, let the input length be n and fix the word size w(n) = ©(logn).

Word Size, Universe, and Addresses. Let the word universe be U = {0,1,...,2% — 1} with
arithmetic modulo 2% (two’s-complement semantics). The address space is A = {0,1,...,5(n)—1}

for some S(n) < n®1). Memory is a mapping M : A — U, zero-initialized.
Let a(n) = [log, S(n)| denote the address width. We adopt the transdichotomous condition:
w(n) > max{[log, S(n)], [log, P(n)]} and w(n) = O(logn). (19)

This ensures every address and processor ID fits in one word, enabling well-typed register-indirect
addressing and processor identification.

The O(log n)-bit word size choice ensures that pointer arithmetic, indexing, and basic integer operations on
polynomially bounded values are unit-time, matching the standard RAM assumptions and avoiding artificial
speedups due to unrealistically wide words.
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Instruction Set and Semantics. The machine operates with register names Reg = {0, 1,...,k}
(for constant k), register file R € U¥*+!, immediate constants Imm C Z (a fixed finite set independent
of n and w), and label identifiers Lab for jump targets.* We assume a constant-size register file with
|[Reg| > 2 in the proof (any constant > 2 suffices up to constant factors). Programs define a partial
label table addr : Lab — {0, ..., ¢} mapping each declared label to its instruction index (injective).

The instruction alphabet Instr consists of the following parameterized forms (r, s € Reg, ¢ € Imm,
L € Lab):
Instr = { LOAD r, [s], STORE [s], , LOADI r, ¢ }
U {ADD r, s, SUBr, s, ANDr, s, XORr, s, SHL r, s, SHR 7, s}
U {BRZr, L, JMP L, HALT }.
Unbracketed registers r, s denote their word values R,, R; € U. The bracketed form [s] denotes
register-indirect addressing: LOAD r, [s] reads M[R;] into R,, and STORE [s],r writes R, to

M]Ry]. Bracketed operands are only allowed in LOAD/STORE; nested or arithmetic addressing (e.g.,
[[s]], [r+c]) is not part of this ISA. If R ¢ A, execution traps. Immediates are loaded as ¢ mod 2%.

The semantics of the instructions are as follows. We write 0 — ¢’ for one execution step. Unless a
jump changes it, set pc < pc + 1 where pc € {0,...,¢} U {HALT} is the program counter. Let &
and A denote bitwise XOR and AND; let < and > denote logical shifts; all arithmetic is modulo 2%.

e LOAD 7, [s]: a < Rs; R, < M|a).

* STORE [s], r: a + Rs; Mla] + R,.

e LOADI 1, ¢: R, < cmod 2v.

* ADDr, s/SUBr, s: R, + (R, £ Rs) mod 2%.

« AND7, s/XOR7, s: R, R. ARy / R, — R, ® R,.

e SHL7, sorSHR 7, s: h + R, mod w; SHL: R, <+ (R, < h) mod 2*; SHR: R, + |R,/2"]
(logical right shift, zero fill).

* BRZr, L: If R, = 0 then pc < addr(L) else (no change to pc beyond +1).
e JVP L: pc «+ addr(L).

* pc < HALT and execution stops.

Intuitively, LOAD and STORE handle memory access through register-indirect addressing, LOADI
loads immediate constants, ADD/SUB perform modular arithmetic, AND/XOR enable bitwise opera-
tions, SHL/SHR provide bit shifts. BRZ (branch if zero) enables conditional branching, JMP provides
unconditional jumps, and HALT terminates execution.

Programs and Configurations. A program is a pair P = (I,...,I;,addr) with I; € Instr
and a partial label table addr : Lab — {0, ..., ¢} mapping each declared label to its instruction
index (injective). The program is well formed if whenever some I; equals JMP L or BRZ r, L, then
L € dom(addr). Code is immutable during execution and independent of n (and thus the RAM model
considered here is uniform). A configuration is o = (pc, R, M) where pc € {0,...,¢} U {HALT}
is the program counter, R € U**! is the register file, and M : A — U is memory. Input occupies
M]0..n — 1]; output is read from a designated location upon termination.

Initialization. Given an input instance of length n, initialization proceeds as follows:
1. Build the label table addr from the loaded code and check well-formedness (every label operand
in the code must appear exactly once as a declared label).

2. Zero-initialize memory M and write the input into a designated block (e.g., M[0..n — 1]) using
the agreed-upon encoding.

3. Set all registers to zero: R; < 0fori € {0,...,k}.

*A label is a human-readable name for a program location (instruction index) serving as a jump/branch target.
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4. Set the program counter to the first instruction: pc <« 0.

The choice w > [log, S(n)] ensures that register-indirect addressing is well-typed: a bracketed
operand [s] uses R as an address in A.

Execution Cycle. While pc # HALT and no trap occurs, the machine advances in discrete steps.
Each successful step costs one time unit. Let I, denote the instruction at index pc. Each step follows
the fetch-decode-execute-commit cycle:

1. Fetch: Read the current instruction I < . If pc ¢ {0,. .., ¢}, the run is invalid and we define
this as a trap.

2. Decode and read operands: Parse the opcode and operands of I without changing the machine
state. Unbracketed registers r, s denote their current word values R, Rs € U (used as data).
A bracketed operand [s]| denotes the candidate address a <— R;. An immediate ¢ € Imm is
interpreted as ¢ mod 2. A label L resolves to addr(L) (guaranteed by well-formedness). No
writes occur in this phase.

3. Execute: Apply the instruction semantics of I to compute a finite write-set W (register and/or
memory locations with their new values) and the next program counter pc,.,. For memory-
referencing instructions, a bracketed operand [s] is valid only if « = R € A; otherwise a trap
occurs. By default pc,,.,, = pc + 1, except for jumps/branches/halting which set it to addr(L) (or
HALT).

4. Commit (writeback): Atomically apply the writes in W to (R, M) and then set pc + pc
Atomicity means all effects of the step become visible only at the end of the step.

next*

5. Cost and continuation: If no trap occurred, charge one unit of time for this step and proceed to
the next; otherwise the run aborts (abnormal termination), and only successfully committed steps
are counted.

Termination and Complexity. Execution halts when pc = HALT. The algorithm’s output is read
from the designated output location(s) in memory (or registers) as specified by the program. Under
the assumptions above and for well-formed programs with legal memory accesses, the step relation is
deterministic and yields a unique next state at each iteration. The time complexity of an algorithm is
the number of executed instructions before halting. A frap aborts the run immediately (abnormal
termination); only successfully committed steps are counted in time.

The RAM model defined here is polynomially equivalent to bit-complexity RAM (a ©(log n) factor
separates their running times) and to richer word-RAMs that add MUL/DIV/POPCNT/CLZ (whose
presence typically improves only by constant or log log n factors).

D.2 EXTENSION TO CREW PRAM

We extend the Word-RAM defined above to a parallel machine with a processor-budget function
P : N — N (typically P(n) < n®W). All word-size/address-width assumptions, the instruction
alphabet Instr, the immediate-set restriction, and the single-processor instruction semantics are
exactly as in the Word-RAM subsection.

Processors and Shared State. Processors are indexed by i € {0, ..., P(n) — 1}. Each processor
has its own program counter and register file; memory is shared:

X = ((pC07 R ?pCP(n)—l)) (RO7 s 7RP(n)_1)7 M)a
where pc; € {0,...,¢} U {HALT} and R’ = (R}, ..., R}) € UFTL. All processors run the same
program P = (Io, ..., Iy, addr).

Initialization (with Processor IDs). Attimet = 0:

1. Build addr and check well-formedness (as in Word-RAM); zero-initialize M and write the input
block.

2. Foreach i € {0,...,P(n) — 1}, set pc; < 0 and clear registers; then write processor-local
identifiers: R} « i and, if P(n) < 2*("), optionally R} < P(n) mod 2*("). All other R’ < 0.
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These two words are provided so that processors can branch, partition work, and self-disable if
unused.

Concurrent-Access Policy (CREW). Multiple processors may read the same address in the same
round; writes must be exclusive: if two or more writes target the same address in a round, the run
traps (abnormal termination).

Round Semantics (Referencing the Word-RAM Step). Each active processor executes exactly
one instruction using the single-processor Word-RAM step semantics; the only new aspects are
(i) simultaneous execution by many processors and (ii) end-of-round memory commit subject to
the CREW policy. Execution proceeds in synchronous rounds ¢ = 0,1,2,... with state ¥; =
((pet)s, (RHY);, M?). In round t, each active processor i with pc! € {0, ..., ¢} executes instruction
I+ on its local snapshot (pc = pct, R = R%') and shared memory M®. After all processors
compute their local effects, the round commits: register writebacks R** — R%!*! (independently),
then memory writes to M**+! under CREW constraints, finally program counter updates pcf“.

Termination and Cost Measures. The parallel run terminates when pc! = HALT for all ¢ (or
traps on an invalid access/conflict). One round costs one unit of parallel time. The work is the total
number of executed instructions W (n) = Y, [{ i : pct € {0,..., ¢} }|, and the span is T, (n) (the
critical-path length). For P(n) processors the Brent bound holds (JaJ4, 1992):

Tpny(n) < [V;((:))—‘ + T (n).

A single-processor run (P(n) = 1) coincides with the Word-RAM model.

Remarks (on P(n), Processor IDs, and Unused Processors). (1) Uniformity: the code P and the
immediate set Imm are independent of n; only the hardware parameters w(n), S(n), and P(n) scale
with input size. (2) Processor IDs: the values i and P(n) are provided via initialization registers (R}
and optionally R?) for branching and work partitioning; programs may copy/overwrite them. (3)
Unused processors: if an algorithm needs only m(n) < P(n) processors, each processor executes
a short self-filter based on ¢ (e.g., 1f ¢ > m(n) then HALT), or computes its assigned block;
processors with empty assignment halt in O(1) rounds, which does not affect the asymptotic parallel
time.

The algorithm for a single-processor in PRAM is shown in Algorithm 1.
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Algorithm 1 Single-Processor Execution (Word-RAM semantics with PID init)

Note. In PRAM, STORE generates a pending write committed at the end of the round under the

CREW rule. In the single-processor case, the store can be applied immediately.

Require: Program P = (I, ..., I, addr), shared memory M : A— U, word size w, processor id

1:
2:
3

4

5:
6.
7

8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

pid, processor budget P(n) (optional)
Init: pc < 0; R[j] «+ Oforall j; R[0] < pid; optional: R[1] + P(n) mod 2%
while pc # HALT do

I I > fetch
PCnext <= pc+1 > default fall-through
if I is LOAD r, [s] then > decode

a < R[s]

if a ¢ A then

trap

end if

R[r] <= M[a] > execute
else if I is STORE [s], r then

a < R[s]

if a ¢ A then

trap

end if

Mla] < R[r] > in PRAM semantics, this is a write event to be committed this round
else if 7 is LOADTI r, ¢ then

Rr] < ¢ mod 2%
else if I is ADD r, s then

R[r] < (R[r] + R[s]) mod 2%
else if [ is SUB r, s then

R[r] + (R[r] — R[s]) mod 2%
else if ] is AND r, s then

R[r] + R[r] A R[s] > bitwise AND
else if I is XOR r, s then
R[r] + R[r] ® R|[s] > bitwise XOR

else if [ is SHL r, s then

h < R[s] mod w

R[r] + (R[r] < h) mod 2%
else if [ is SHR r, s then

h < R[s] mod w

R[r] « |R[r]/2"] > logical right shift, zero-fill
else if [ is BRZ r, L then

if R[r] = 0 then

Denext +— addr(L)

end if
else if [ is JMP L then

Dlnext < addr(L)
else if / is HALT then

PCnext < HALT

else

trap > unknown opcode or malformed operands
end if
PC $— DCext > commit PC; regs/memory updated in each branch above

45: end while

23



Under review as a conference paper at ICLR 2026

E ENCODER TRANSFORMER ARCHITECTURE

This section presents encoder-only Transformers, which form the backbone of MDM. We will
first establish the sequence-wise extension operation, then define the core components, including
bidirectional self-attention, multi-head mechanisms, and feed-forward layers, before assembling the
complete architecture.

We consider an encoder-only Transformer with H heads, L layers, hidden size d, and feed-forward
width w. We will use the following notations:

Definition 4 (Position-Indexed Seq-to-Embedding Function). For a set B, let H(B) denote the set

of all functions 1) such that for every sequence x = (x1,...,x,) € X* and every index i € [n], the
value Y(x,i) € B is defined. We write this succinctly as
v (X,N) = B. (20)

and call this position-indexed seq-to-embedding function. We also define H = Ugen+ H(R?) as the
union of all such classes across real spaces of all output dimensions.

Definition 5 (Canonical Extension to Seq-to-Seq Function). Given a position-indexed seq-to-
embedding function v € H(B), its canonical extension is defined as:

U Y = B* where [Y(z)]; = ¥(x,i) (i € [|z)- 21

For elementwise functions g : R* — RY, we define g : (RY)* — (RY)* by [g(h1:m)]s = 9(hs),
which is a special case where ¥(hi.,,1) = g(h;) (ignoring cross-position context). When the arity is
clear, we reuse the bar notation for both position-indexed and elementwise extensions.

We now define the individual components of encoder Transformers:

Bidirectional Self-Attention. The key difference from decoder Transformers is bidirectional
attention, where each position can attend to all positions in the sequence. Let dj; be the head
dimension. For Wq, Wy, Wy, € R4 and Wy € R4¥9  we define single-head attention on

sequence of embeddings h1., € (R?)" for any n € N*:
q; = Wth, k’j = WKhj, v; = thj (22)

[SAg(h1:n)]i = Wo Z 0 V; (23)
j=1

with a; . = softmax((q;kj)?zl), 0 = (Wo, Wk, Wy,Wo). Position ¢ attends to all j € [n]
without causal restrictions. We use standard 1/+/d}, scaling.

Multi-Head Attention. With Oypa = (0(1>, S0 )), we combine heads via summation:
H
IMHA gy ()i = > [SAgiry (han)]i (24)
t=1

for any ¢ € [n]. Note that this differs from practical implementations which concatenate heads with
dimension d/H each, but maintains equivalent theoretical expressivity.
Feed-Forward and Projection. Let w = dpp. For W7 € R**¢ and W, € R4Xv:

FFg(h) = Wg O'(W1 h) (25)

For output projection, PROJy : R? — RI®I with PROJy(h) = 9h and ¥ € RI¥I*?, We apply these
via sequence-wise extension: FF and PROJ.

For AP-MDM as described in § 4, besides the above heads for unmask, it would require three
additional binary classification heads on top of the final layer: PROJg : R¢ — R for remask,
PROJ; : R? — R for , and PROJp : RY — R for delete operations, each followed by
sigmoid activation. Therefore, PROJy is a mapping from R% to RI*I+3,
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Embeddings. Define token embedding TE : ¥ — R? and positional embedding PE : N* — R4
(which can be flexibly chosen and will be specified when used). Combined as TE + PE. We write
TE, PE for their sequence-wise extensions when clear from context.

Residual Connections. The identity function Idg : R? — R? is defined by Id(x) = z. A residual
connection is defined as f 4 Id4, where Id, is the identity function.

Next, we assemble these components into the encoder transformer architecture:
Definition 6 (Encoder Transformer layer). An encoder layer is defined as:

EncTFyua pr = (FFpp + Idg) o (MHAg,,,,, +Idg) : (RY)* — (R%)* (26)

Definition 7 (Encoder Transformer). With parameters 6 = (GTE,GPE,(GI(\% A)eL:p(el(be)eL:paPRO 7)s
the encoder transformer is:

Ency = PROJgoo0, 0 (QﬁzlEncTFeu) o0 ) o (TEgy, + PEgyy) 27)

MHA

The model applies embeddings, then L encoder layers, then position-wise projection to vocabulary
logits. Output length equals input length n.

F KEY ToOL: ENCODER FULL-ACCESS SEQUENCE PROCESSING (E-FASP)

In this section, we develop Full-Access Sequence Processing for encoders (E-FASP), a programming
language whose programs describe the construction process of seq-to-embedding functions that are
equivalent to those computed by encoder-only Transformers. This extends the FASP framework
originally developed for decoder-only Transformers in Yang et al. (2025). Similar connections have
also been established in Weiss et al. (2021); Yang & Chiang (2024).

E-FASP is the key technical tool that will be used to prove Theorem 1, Theorem 3 and Theorem 4.

F.1 DEFINITION OF E-FASP

Notations. Recall that in § E, we defined the position-indexed seq-to-embedding function space
H(B) as the set of all functions 1) that map a sequence and a position index to an element in B:

(&) =+ B (28)

That is, for every sequence x = (21, ...,2,) € X* and every index i € [n], we have 1(x,3) € B.
We also define H = Ugen+ H(R?) as the union of all such classes across real spaces of all output
dimensions. For any position-indexed function ¢ € H(B), its canonical extension ¢) : ¥* — B* is

defined by [1)(x)]; = 1(x,%) for i € [|x]|]. This allows us to convert position-indexed functions to
sequence-to-sequence functions when needed.

Also recall that PE : N — R is a positional embedding, and we additionally define TacT as a
class of activation functions. We formally define E-FASP as follows:

Definition 8 (Encoder-FASP). An E-FASP program is a sequence of position-indexed seq-to-
embedding functions 1, . . . , by constructed inductively. At each step t € [T, the program maintains
a set of defineable position-indexed seq-to-embedding functions Py, and defines a new function by
applying operators to functions in P;. We define the defineable functions at step t € [T):

P, 2 {TE,PE}U{¢; | 1 <i<t—1} (29)

where TE(x,1) = TE(x;) and PE(x, i) = PE(%) are the token and positional embedding functions
respectively, viewed as position-indexed seq-to-embedding functions. 1, at step t has to be defined by
applying one of the following four primitive operators on already-defined functions from Py:

1. Concatenation: For 1), € P; with ) € H(R™) and ' € H(R9%), define
[, 910x,8) = (%, 1) |19/ (x,)) € RO (30)

where || denotes vector concatenation.
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2. Linear Projection: For ) € P, with ) € H(R®) and matrix W € R% >4, define

(W o) (x,4) = W -1b(x,i) € RY 31)
3. Nonlinear Activation:’ For 1 € P; with ) € H(R?) and o € Tacr, define
(o o)(x,1) = o((x,1)) (32)
4. Encoder Average-Hard Attention: For q,k € H(R%) and v € H(R?) where q,k,v € Py, define
aha(q, k,v)(x,1) = ﬁ v(x,7) (33)
JEA;

where A; = arg max;e(x|(q(X, ), k(x, j)) and ties are averaged uniformly. This attention can
be seen as a pecial case of standard softmax attention with temperature approaching 0 (Merrill
etal., 2022).

Finally, when we want to use E-FASP to define a function mapping from a sequence of tokens ¥*
and a position index i to a single token in %, we can define 1 € H(RI*!) and return arg max ¢ (x, i)
(the token corresponding to the largest logit at the position i).°

We denote the set of all position-indexed seq-to-embedding functions defineable by E-FASP with
position embedding PE and activation functions Tact as E-FASP[PE; Tact], where PE can be
either BiPE or SEQ. The expressivity of E-FASP depends on the specific positional embedding and
activation functions used.

F.2 EQUIVALENCE WITH ENCODER TRANSFORMER

We now establish the equivalence between E-FASP and encoder-only Transformers, and define the
specific instantiation considered in the proof of this paper.

Definition 9 (Encoder Transformer Function Class). Let HpuerrpE;Tacr] b€ the class of seq-to-
embedding functions that can be expressed by encoder-only Transformers of finite depth, where
the positional embedding uses PE (either BiPE or SEQ), feed-forward layers use activation func-
tions from Tacr, attention layers use average-hard attention as defined in Equation (33), and all
intermediate computations use finite precision arithmetic.

It is straightforward to see that both variants are equivalent to their corresponding Transformer
function classes:

Lemma 7 (Equivalence of E-FASP and Encoder Transformers). For any positional embedding
PE € {BiPE, SEQ} and activation function class Tacr, the following equivalence holds:

E-FASP[PE; Tact| = Henerr[PE Tacr] (34)

Proof Sketch. Forward direction: Each E-FASP primitive operator (concatenation, linear projec-
tion, nonlinear activation, encoder attention) directly corresponds to operations in encoder Trans-
formers. Concatenation involves merging multiple smaller Transformers into a larger Transformer
that produces the same output. Reverse direction: Any encoder Transformer can be expressed as an
E-FASP program by decomposing each layer into primitive operations.

The detailed proof, including the treatment of closed operators and inductive construction, is invariant
to decoder or encoder Transformers, and thus is identical to Yang et al. (2025); we omit the details. [

Intuitively, this equivalence holds because E-FASP programs capture the computational structure
of encoder Transformers. Each step in an E-FASP program corresponds to defining a new seq-to-
embedding function by applying primitive operators to previously defined functions, which mirrors
how smaller Transformers are constructed into a deeper and wider Transformer that produces the
same output. The Transformer corresponding to the program is of depth O(1) (given constant 7") and
embedding size O(max{dpg, dTE }), by construction in the proof of Lemma 7.

SWe allow multi-variable activation functions like Gated ReLU (ReGLU), x, y — z[y]+.

We could assume an arbitrary order to break ties, but we omit this for simplicity. In our examples we always
ensure the argmax is unique.
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F.3 TwoO VARIANTS OF E-FASP

Throughout this paper, we consider two variants of E-FASP based on different positional embeddings,
both using the same activation functions.

Variant 1: Binary Positional Encoding We define E-FASP with binary positional embedding
BiPE : Nt — {0, 1}o82 S(m)1;

BiPFE(4) = binary representation of ¢ using [log, S(n)] bits (35)

This representation uses [log, S(n)] bits to represent all possible positions within the maximum
context length S(n), and aligns with the address representation in PRAM (§ D) for efficient bitwise
arithmetic operations.

Variant 2: Integer Positional Encoding We also define E-FASP with integer positional embed-
ding SEQ : NT — NT:

SEQ(i) =1 (36)
This is the identity mapping over NT that directly uses the position index as a scalar feature, as
considered in the original decoder-only FASP framework (Yang et al., 2025).

Activation Functions Both variants use the same class of activation functions Tact = {ReGLU},
where Gated ReLU (ReGLU) (Dauphin et al., 2017) is defined as ReGLU(z,y) = = - [y]l+ =
x - max(y, 0) for x,y € R. With Gated ReLU as the primitive activation, we can express ReLU and
multiplication operations through the following identities:

ReLU(z) = ReGLU(z,1), 2z xy = ReGLU(z,y)— ReGLU(z, —y) 37)

Therefore, having ReGLU allows us to express both ReLU and multiplication (reverse is also true),
making both variants equivalent:

E-FASP[BiPE;ReGLU] = E-FASP[BiPE; []+, X] (38)
E-FASP[SEQ; ReGLU] = E-FASP[SEQ; []+, X] (39)

where [-]; and x are the ReLU and multiplication respectively.

F.4 ORIGINAL SUPPORTED OPERATORS

With the four primitive operators in E-FASP and the activation functions defined above, the follow-
ing operators can be included in both variants E-FASP[BiPE; [-]4, X]| and E-FASP[SEQ; []+, X/,
adapted from the decoder version of FASP:

Arithmetic Operators

* add(t¥1,12) = Y1 + 1¥9: Element-wise addition

* minus(¢1,v2) = 11 — 19 Element-wise subtraction

e multi(¢y,vs) = 11 X ¥9: Element-wise multiplication
* max(t1,12): Element-wise maximum

* min(t1,12): Element-wise minimum

Boolean Operators For 11,12 € H({0,1}):

* and(¢1,v2) = min(¥1, ¥2): Logical AND
* or(¢1,v¥2) = =(—11 A —1b2): Logical OR
e not(v) =1 — 1: Logical NOT

* xor(11,12): Logical XOR

Comparison Operators For 11,19 € H(Z):
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e leq(tr,v2) = [2 — 1 + 1]+ — [tha — 11]4+: Less than or equal
* geq(¥1,12) = leq(vs, 11): Greater than or equal
* eq(1, P2 a(th1,¥2) A Lea(ya, 1b1): Equality

)=1le
o 1t(¢1,v2) = Leq(thy, 2 — 1): Less than
* gt(¢1,v%2) = 1t(tha, ¥1): Greater than

Sequence Aggregation Operators

* seqg.max(t): Returns the maximum value across all positions in the sequence

* seqgmin(v): Returns the minimum value across all positions in the sequence

* seg.and(¢) = seqmin(¢): Logical AND across all positions

* seqor(y) = seqmax(1)): Logical OR across all positions

* seg_sum(?): Sum of values across all positions (requires log n positional embedding)

* seqavg(y) =1 Z?:l ¥ (z1.5): Average across all positions

Positional Operators

* is_first(4) = 1[i = 1]: Indicator for first position

* inv_seq.len(i) = 1/n: Inverse of sequence length

* is_pos. k(i) = 1[¢ = k]: Indicator for position k

Control Flow Operators

o if_then_-else(¥eond, Yirues Ytase) OF 1te(Weonds Yirue, Yraise): If-then-else conditional selection
Attention Variants

* aha(q, k,v): Standard average-hard attention (encoder bidirectional)
* rha(q, k, v): Rightmost-hard attention (breaks ties by selecting rightmost position)

* rightmost_exact _match(q, k,v): Rightmost exact match (returns default if no exact match)

F.5 ADDITIONAL OPERATORS AND JUSTIFICATIONS

Next we give the semantics of some additional operators used in the PRAM simulation programs and
justify their closure in the E-FASP framework.

BITWISE ARITHMETIC OPERATORS

These operators are defined in the encoder-E-FASP framework using activations {[-]+, x } (equiv-
alently ReGLU) and are independent of the specific positional embedding choice. All inputs and
outputs are position-indexed seq-to-embedding functions in ({0, 1}"") where 9 (x, i) € {0,1}™
encodes an m-bit integer with LSB at coordinate 1. All arithmetic is modulo 2™.

Bitwise Addition. Given ¢, ¢ € H({0,1}™), write at position (x, 7):
P1(x,i) =ra=(a1,...,am), WYa(x,i)=:b=(by,...,by) € {0,1}™ (40)

Bitwise addition is defined as adding two m-bit integers modulo 2. This can be constructed using
the primitive operators (and other operators that are already defined) in Definition 8, which follows
an approach similar to standard carry-lookahead, and is a constant-depth, polylogarithmic-width
construction:

Define for k € [m] the local propagate/generate bits:
Pk = ak D by = ar + bk — 2akb, gk = ax N by = arby (41)
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Let So =0and S; =3~ p: for j € [m] (computed by a single linear layer). For 1 < j < i <m,
define the interval-all-ones gate:

Qj.i = edp ((Sim1 = 55) = ((1 = 1) = j)) (42)

where eq;,(u) =2 ([u — (k — 1)]4+ — 2[u — k] + [u — (k + 1)]4) equals 1 at u = k and 0 at all
other integers.

The carry into bit 7 is:

0, i=1
Ci = i , (43)
{1 —eq (ijll ngj,i) , 12>2

The sum bits are s; = p; & C; = p; + C; — 2p;C;. We define:
bit_addm, (¢, ) (x,1) :=s = (s1,...,8m) € {0,1}"" (44)
Bitwise Subtraction. For ¢, ¢ € H({0,1}™), define:

bitminus,(¢1,1¥2) :=bit_addm, (1, ) + 1 (45)

where — is bitwise NOT (elementwise 1 — -) and “+1” adds the constant vector e; = (1,0,...,0)
via the same bit_add,,.

Logical Shifts. Let ¢ € H({0,1}™) and 7 € ({0, 1}"). At position (x, %), write a = 1)(x,1) =
(ai,...,an) and define the shift amount:

t=int(r) =Y 2"7'r, €{0,...,m} (46)
r=1
For k € [m], we define:
min{m,k—1}
[shift left,, (¥, )k = Z ed,(t) - ap—s 47)
s=0
min{m,m—k}
[shift_right,,(, Mk = Y  eqt)- ars (48)
s=0

where out-of-range indices are treated as 0, and eq,(-) is the integer-equality gate realized by three
ReLUs.

Complexity Analysis. All operators act locally at each position on H({0,1}™) without cross-
position communication, and are composed from E-FASP primitives. Throughout m = O (logn).

The witness enumeration method for bitwise addition requires: (i) one linear layer for (p, g) and
prefix sums (S;); (ii) one nonlinear layer for witnesses @), ; (each uses 3 ReLUs) and products
9;@;.+; (iii) linear aggregation and threshold for carries Cj; (iv) local polynomial for s; = p; @ C.
This achieves constant depth (3-4 layers) and width O(m?) = O((logn)?) (polylogarithmic in
n). Bitwise subtraction uses two’s complement and reuses the same addition circuit with identical
complexity bounds. Logical shifts compute the shift amount ¢ and all candidate shifts in parallel, then
use equality gates for selection, also achieving constant depth and O(m?) width.

All constructions use only E-FASP primitives (linear projections, ReLU/ReGLU activations, mul-
tiplication). By the equivalence established in § F, these are realizable by constant-depth encoder
Transformers.

Instruction Access Operations. This operator enables instruction fetching from memory by
address lookup, which is essential for PRAM simulation.

get_instruction(x,¢) := bin(Winstr o ite(is_addr(x, -), bin(TE(x, -)), 0, ))(x, ) € {0, 1}*
(49)
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where WingTr @ RY — R" is a learned linear transformation (MLP layer) that maps address bits to
instruction bits. This operator first extracts the address bits from address positions (even positions
(1) by converting their token embeddings to binary representations, then applies the instruction
lookup transformation WingTr to produce the corresponding instruction encoding. The PRAM
instruction set (LOAD, STORE, ADD, SUB, etc., as defined in § D) is hardcoded into the parameters
of WingTr during training, enabling the model to perform instruction fetching through learned
address-to-instruction mappings.

G PROOF OF THEOREM |

Theorem 8 (MDM Simulation of PRAM, Formal). For any PRAM program P = (I, ..., I, addr)
(with finite number of instructions ¢, and is uniform for all processors and input size n), that on
input X,, € U™ with corresponding address Xuq0r € A™ that runs in T'(n) parallel time using
at most P(n) processors and outputs PRAMp(Xa4ar, Xva1) € U per procedure described in § D,
there exists a bijection ¢ : UU A — X and a special token [SEP] € %, and a MDM on input
X = ((zzi7z%+1)?;01, [SEP]) € X2 where zo; = &(Xagar.i) and zai 11 = ¢(Xyari), padded to
O(P(n) x T(n)) context length, outputs ¢(PRAMp (Xadar, Xvar)) with O(T(n)) decoding steps.

The proof demonstrates that AO-MDM can simulate any PRAM algorithm using E-FASP, the
programming language we developed, whose definable programs are equivalent to encoder-only
Transformer function class (see § F). We prove Theorem 1 by: (1) defining the setup and input format
for PRAM simulation; (2) constructing an E-FASP program that simulates PRAM execution in
Algorithm 1.

Choice of Architecture / E-FASP Variant For this simulation, we use the E-FASP[SEQ; [+, X]
variant with integer positional encoding rather than the binary variant. This choice is crucial because
MDM'’s context length can be exponentially large (e.g., for NP-hard problems), while PRAM’s actual
memory usage remains polynomial. Using log n bits to represent positions would be insufficient
when the context length n itself grows exponentially with the problem size, even though PRAM
addresses can still be represented in log S(n) bits. To avoid confusion between MDM’s context
length and PRAM’s memory space, we use Sypm(n) to denote the maximum context length and
reserve S(n) for PRAM’s memory space.

Input Format The input that encodes the PRAM’s initial memory state is a sequence x =
(21,...,Tony2) € L2 of discrete tokens from the vocabulary X.

Let w = O(log n) be the word width and recall from § D that the address width @ = [log, S(n)] < w
(addresses fit within words). The sequence has length 2n 4+ 2 = 1 + 2n + 1 where:

r1 € X (processor count token) (50)
To; € X (address token) fori=1,...,n (629
Toi+1 € X (datatoken) fori=1,....n (52)
ZTont+2 = [SEP] (separator token) (53)

Through token embedding TE : ¥ — R¢ and subsequent linear projections, these discrete tokens are
mapped to their semantic bit representations:

TE(x1) — P(n) € {0,1}" (54)

TE(z9;) + addr; € {0,1}"  (address bits) (55)

TE((EQZ‘+1) — val; € {0, 1}w (data bits) (56)

fori =1,...,n. The [SEP] token serves as a separator with special meaning in the computation

trace, as detailed in the next subsection. Following the standard MDM notation frorg § 2, the actual

input to the MDM is the padded sequence xo = (0,1, %0,2,- -, %0,Sypu(n)) € $9uom(n) wwhere
Y=Y U{M}k

Zo,; = Ty forjzl,...,2n+2 (57)

To,; = M fO]‘j = 2n+3,...,SMDM(n) (58)
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We aim to show that there exists an encoder-only Transformer that, given the initial memory state of a
PRAM as input, can output the exact same result as the PRAM algorithm after Typm(n) = O(T(n))
decoding steps. The Transformer will have constant depth and context length O(Sypm(n)), where
Smpm (n) represents the MDM’s context budget.

We next provide an overview of the construction:

Processor State and Computation Log Representation: First, we state the representation of
processor state and computation log as tokens. We represent each processor’s state and one round of
computation using a fixed number of tokens: program counter (1 token), register file (5 tokens), and
computation log (2 tokens), for a total of 8 tokens per processor.

Program Counter (PC): A single word encoding the current instruction address.

Register File: We maintain exactly 5 registers, each storing one word. This provides sufficient
computational capacity while keeping the representation tractable.

Computation Log: This log is populated only when executing STORE [s], r instructions, recording
the target address and stored value. For all other instructions, the log remains empty (represented by
special tokens).

The computation trace for one parallel round can be represented as:
[SEP] (PC1,R11,...,R15,Addry,Valy) (PC2,Ra1,...,Re5,Addrs, Vals) ... (59)

where [SEP] serves as a separator token to distinguish different computation rounds and there are
a total of P(n) independent processors. Each processor i € {1,..., P(n)} contributes an 8-tuple
(PCi,Ri1,Ri 2, Ri3,Ri 4, R 5,Addr,, Val;) representing its program counter, five register values,
and memory write operation (address and value). The trace thus contains exactly P(n) such 8-tuples
per parallel round.

Processor Assignment and Role Identification. The algorithm begins by determining whether the
current position contains a mask token (i.e. is_mask). If the position is a mask token (Branch 1), the
algorithm continues by computing the distance to the nearest preceding [ SEP] token. If the position
is not a mask token (Branch 2), it indicates this position has already been unmasked (computation
has already finished), and the algorithm returns the input token (or a all zero vector) which will not
be unmasked per definition of MDM § 2).

To identify the processor ID, we find the rightmost [ SEP] token to the left of the current position
(i.e. rightmost_sep_pos) and compute the distance between them (i.e. distance_to_sep). If this
distance > 8 x P(n) (Branch 1.1), the position does not participate in the current computation round
as it is not a token that should be “unmasked” in this round, in this case, the algorithm returns a
special embedding (a all zero vector), which results in uniform distribution during prediction and
smallest confidence, ensuring that the MDM will not select this position for unmasking; if the distance
= 8 X P(n) 4+ 1 (Branch 1.2), this position return the embedding of [SEP ], preparing for the next
computation round; otherwise if the distance < 8 x P(n) + 1 (Branch 1.3), the position participates
in the computation of the current round.

For those positions participating in the current computation round. The corresponding processor
ID (i.e. processor_id) is obtained by right-shifting distance_to_sep by 3 bits with zero-padding on
the left (since each processor corresponds to exactly 8 tokens). The rightmost 3 bits represent the
position within that processor (i.e. inner_processor_id).

Initialization of Processor State. We need to initialize the initial state of all processors at the
beginning. This is determined by the current number of [SEP] tokens in the sequence. Specif-
ically, when the current position is a mask token and there is exactly one [SEP] token (i.e.
seq-sum(is_sep) == 1) (Branch 3), we consider this the initialization state. All program counters
are set to 0, all registers are set to 0, and all memory locations are set to 0.

Fetch Instruction and Execution (Main Loop). According to the processor ID and inner processor
position, the algorithm fetches the instruction from the instruction memory (i.e. get_instruction),
which is hard-coded into the parameters of the model, and execute it (using execute). Different
instructions yields different execution semantics, and sequently different 8 token state. Finally,
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according to the inner_processor_id, the algorithm chooses what to return. The algorithm terminates
when the PC of all processors are HALT.

We now formally construct an E-FASP program that simulates PRAM execution (the single-
processor algorithm detailed in § D). The semantics meanings and justifications of operators
used in the program are summarized in § F. The only two global operators are seg_sum and
rightmost_exact_match implementable by attention , otherwise are all local operators imple-
mentable by polylog-width constant-depth MLPs.

The context length of MDM used by this construction is Sypm(n) = O(Tpa(n) x P(n)), the
decoding steps is Tvpm(n) = O(Tpar(n)), Where T, (1) is the parallel time complexity and P(n)
is the processor count. For the constructed Transformer, embedding size is log(n) and depth is a
constant.

o Initialization ——————-—-—--—--——————
is_sep = ( == embed ([SEP]))

is_mask = ( == embed ([MASK]))

is_init = (seg_sum(is_sep) == 1)

# Get the current and last [SEP] position

cur_sep = rightmost_exact_match(l, is_sep, )
dist_to_sep = - cur_sep
pn = rightmost_exact_match(l, is_first, )

spanned_pn = pn << 3

# Skip positions not participating in computation

if (not is_mask) or (dist_to_sep > spanned_pn): return 0O
if dist_to_sep == spanned_pn + 1l: return embed([SEP])

if is_init: return O

# Initialization
pid = (dist_to_sep - 1) >> 3
inner_id = (dist_to_sep - 1 ) [:3]

if is_init and inner_id == 1: return pid

if is_init and inner_id != 1: return O

# Read previous round state ———————-——-———————————
prev_sep = rightmost_exact_match(l, (is_sep and ( < cur_sep)), )

prev_pid_base = prev_sep + 1 + (pid << 3)

pos_PC = prev_pid_base + 0
PC = rightmost_exact_match (pos_PC, , )
pos_R1 = prev_pid_base + 1
R1 = rightmost_exact_match (pos_R1, , )
pos_R2 = prev_pid_base + 2
R2 = rightmost_exact_match (pos_R2, , )
pos_R3 = prev_pid_base + 3
R3 = rightmost_exact_match (pos_R3, , )
pos_R4 = prev_pid_base + 4
R4 = rightmost_exact_match (pos_R4, , )
pos_R5 = prev_pid_base + 5
R5 = rightmost_exact_match (pos_R5, , )

if PC == HALT_CODE: return O
$f —— Fetch and execute instruction - —————-—--------——-
# Decode

I_type, op_r, op_s, op_c, label_addr = get_instruction (PC)

# Source/destination register

Rs = (Rl if op_s == else
R2 if op_s == 2 else
R3 if op_s == 3 else
R4 if op_s == 4 else
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R5 if op_s == 5 else 0)
Rr = (Rl if op_r == 1 else
R2 if op_r == 2 else
R3 if op_r == 3 else
R4 if op_r == 4 else
R5 if op_r == 5 else 0)
# Default effect
PC_next = PC + 1
WR_val = Rr
writes_reg = False
ADDR_out = 0 # Slot 6: only STORE overwrites address (a <= w, use word
directly)
VAL_out = 0 # Slot 7: only STORE overwrites value
# Address read
if I_type == embed([LOAD]) :
ADDR_KEYS = (TE if is_addr else 0)
ADDR_POSVAL = (PE if is_addr else 0)
last_addr_pos_load = rightmost_exact_match(Rs, ADDR_KEYS, ADDR_POSVAL)

load_val = rightmost_exact_match (last_addr_pos_load + 1, PE, TE)
WR_val = load_val

# Per—instruction semantics

elif I_type == embed([STORE]): ADDR_out, VAL_out = Rs, Rr

elif I_type == embed([LOADI]): WR_val = op_c

elif I_type == embed([ADD]): WR_val = (Rr + Rs)

elif I_type == embed([SUB]): WR_val = (Rr - Rs)

elif I_type == embed([AND]): WR_val = (Rr & Rs)

elif I_type == embed([XOR]): WR_val = (Rr "~ Rs)

elif I_type == embed([SHL]): WR_val = (Rr << Rs)

elif I_type == embed([SHR]): WR_val = (Rr >> Rs)

elif I_type == embed([BRZ]) and Rr == 0: PC_next = label_addr

elif I_type == embed([JMP]): PC_next = label_addr

elif I_type == embed([HALT]): PC_next = HALT_CODE

# Register writeback: only for {LOAD, LOADI, ADD, SUB, AND, XOR, SHL,

t

writes_reg = (I_type == embed([LOAD])) or (I_type == embed([LOADI]))
(I_type == embed([ADD])) or (I_type == embed([SUB])) or \
(I_type == embed([AND])) or (I_type == embed([XOR])) or \
(I_type == embed([SHL])) or (I_type == embed([SHR]))

R1_next = (WR_val if (writes_reg and op_r == 1) else R1)

R2_next = (WR_val if (writes_reg and op_r == 2) else R2)

R3_next = (WR_val if (writes_reg and op_r == 3) else R3)

R4_next = (WR_val if (writes_reg and op_r == 4) else R4)

R5_next = (WR_val if (writes_reg and op_r == 5) else R5)

$ - Return one of 8 slots according to inner_id --————————-

if inner_id

return PC_next

elif inner_id == 1: return Rl_next
elif inner_id == 2: return R2_next
elif inner_id == 3: return R3_next
elif inner_id == 4: return R4_next
elif inner_id == 5: return R5_next
elif inner_id == 6: return ADDR_out
else: return VAL_out
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H PROOF OF THEOREM 2

The result stems from MDM’s total amount of computation being bounded by S(n) in both total
steps (T'(n) < S(n)) and per-step capacity (polynomial embedding size), preventing it from solving
problems requiring greater computational resources.

Fix an encoder-only MDM with context length S(n) and T'(n) decoding steps. Throughout we assume
constant depth/heads and log-precision arithmetic with hidden width d = ©(log(S(n) + T'(n)))
(binary positional code), as in our setup. Particularly, at each decoding step the model re-encodes
a length-S(n) sequence. A single forward pass is dominated by self-attention: for each position i
we form a query in R? and take dot products with all S(n) keys, then take the value-weighted sum.
Counting FLOPs, one attention head costs

O(S(n) - S(n) - d) = ©(S(n)*log(S(n) + T(n))), (60)
and the multi-head/multi-layer constants only change the leading constant. The position-wise
MLP adds ©(S(n) - poly(d)) = ©(S(n) polylog(S(n) + T'(n))) FLOPs and is lower order when
S(n) > d. Thus one decoding step costs

O(S(n)*) FLOPs, (61)

where O(-) suppresses polylog factors in S(n) + T(n). Over T(n) steps the total compute is
O(S (n)? T(n)) In particular, when each step reveals at least one token (or a constant number), we

have T'(n) < S(n), yielding the unified cubic bound O(S(n)3). Hence any problem that needs
w(S(n)?) serial time cannot be solved by MDM in the (S(n), T(n)) regime stated.

I PROOF OF THEOREM 3

Recall Definition 3, we defined Masked-ARM as an autoregressive model with encoder-only Trans-
former architecture that pads the input sequence with mask tokens to the maximum context length,
which is also equivalent to a MDM with a fixed order (left-to-right) generation and generating one
token at a time. Consider an AO-MDM with input format x = (x1,. .., z, ) followed by a special
separator token [ SEP] at position n + 1.

AO-MDM Intermediate State: At any intermediate generation step, the AO-MDM state can be

represented as z = (21, .. ., 25(n)) € £ where £ = ¥ U {M}. The sequence structure is:
zj =x; forj e [n] (fixedinput portion) (62)
Zn+1 = [SEP] (separator) (63)
zj € BU{M} forje{n+2,...,5(n)} (generation region) (64)
Let D = (dy,ds, ..., d;) denote the sequence of positions that have been decoded (unmasked) by the

AO-MDM in chronological order, where d; € {n + 2,...,S(n)} and z4, # M for all ¢ € [k]. The
ordering reflects the temporal sequence in which the AO-MDM performed the unmasking operations.

Definition 10 (Position/Content Tokens and Address Encoding). Let X be the base vocabulary. We
reserve a subset Y.,05 C X for position tokens and define a bijection encode : {1,...,S(n)} — Xpos
with inverse dec_pos : Y05 — {1,...,5(n)}. For each decoded position d;, define

addry, := encode(d;) € Yp0s C X, tokg, := z4, € X.
Thus both address tokens and content tokens are drawn from the original vocabulary .. We also
reserve a subset ¥, C X for operator tokens used later for AP-MDM edits (§ 4).
Masked-ARM Simulation: For each decoded token at position d; € D, the Masked-ARM represents
it using a 2-tuple:
(addrg,, tokg,) = {encode(d;), z4,) (65)

where encode(d;) is a token representation of the positional index d;, and z4, is the actual decoded
token. The target Masked-ARM sequence to be constructed is:

yarm = (Z1,...,Zn, [SEP],addry,,tokq,,...,addry,,toky,, M,....M ) (66)
—_———

remaining positions
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where the sequence D = (d1,da, . .., dy) preserves the chronological order of AO-MDM'’s decoding
operations. The Masked-ARM sequence has total length 25(n) —n — 1 = O(S(n)), since each
AO-MDM token requires two tokens (address and content) in the Masked-ARM representation.

Induction: To prove We prove by induction that for any AO-MDM, there exists a corresponding
Masked-ARM that can simulate the AO-MDM’s generation process step by step for arbitrary input
sequences.

Theorem 9 (AO-MDM Simulation by Masked-ARM). For any AO-MDM, there exists a correspond-
ing Masked-ARM such that: for any input sequence x = (x1, ..., x,) and any intermediate state of
the AO-MDM with decoded sequence D = (dy,ds, . .., dy), the Masked-ARM, starting from the cor-
responding intermediate state y gy, can generate the next address-token pair (addry, ., tokq,.,)
such that:

encode(dy41) = addrg, ., (address matches AO-MDM'’s next decode position) (67)
2dy,, = tokg,,, (token matches AO-MDM’s next decode content) (68)

where dj. 1 is the position that AO-MDM will decode next, and zq, _, is the token that AO-MDM will
generate at that position.

Proof. To prove this result, we decompose the architecture of the AO-MDM into two parts: the input
transformation part (which can be represented as an operator mdm_embed) that transforms the token
and position into an embedding, and the output generation part (which can be represented as an
operator mdm_decode) that transforms the embedding into logits, that is:

AO-MDM(x) = mdm_decode(mdm_embed(TE, PE))(x) (69)
where TE and PE are seq-to-seq functions defined in Definition 5.

This decomposition is invariant to the choice of token and position embedding functions and AO-
MDM'’s parameter configuration. Simulating AO-MDM’s generation process boils down to the
following two steps:

Step 1: Replicating mdm_embed. We construct initial layers of the Masked-ARM that, given the
Masked-ARM state y arm, produce intermediate embeddings identical to mdm_embed(x) where x is
the corresponding AO-MDM state. This transformation converts the address-token pair representation
back into the embedding format that the AO-MDM expects, enabling the subsequent layers to
perform identical computations. We write the E-FASP programs (which corresponds to the encoder
Transformer construction) for the construction:

mdm_logits = mdm_decode (embed_MDM)
tok_scores = score(mdm_logits)

# AO-MDM candidate set: positions > [SEP], still [MASK], and within valid

range

cand_mask = ( > sep_pos) and (TE_MDM == embed([MASK])) and ( <= sn)
cand_score = (tok_scores if cand_mask else 0)

max_score = seq_max(cand_score)

is_best = cand_mask and (tok_scores == max_score)

# Select AO-MDM's next decode position and corresponding logits

next_pos = rightmost_exact_match(l, is_best, )
logits_next = rightmost_exact_match (next_pos, , mdm_logits)
$ - Emit as Masked-ARM <addr, tok> order
gen_slot = rightmost_exact_match(l,
( > sep_pos) and ( <= sn) and ( == embed

([MASK])),

)
emit_addr = (((gen_slot - sep_pos)[:1]) == 0)
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if == gen_slot:

result = (next_pos if emit_addr else logits_next)
else:

result = 0

return result

This completes the proof. O

We remark the proof relies on two assumptions: 1) the function S(x) = S(|x|) is deterministic and
computable by encoder Transformer (this is implemented by the sn function in the E-FASP program
for Step 1); 2) the confidence score is also dertermistic and computable by encoder Transformer (this
is implemented by the score operator in the E-FASP program for Step 2).

J PROOF OF THEOREM 4

Theorem 10 (AP-MDM Simulation of PRAM, Formal). Let P = (I, ..., I;, addr) be a uniform
PRAM program with a finite instruction set of size !, identical across processors and input size
n. On an initial memory state specified by address—value pairs (Xaddr, Xval) With Xy, € U™ and
Xaddr € A", suppose P runs in parallel time T'(n) using at most P(n) processors and at most S(n)
shared-memory words of ©(log n) bits, and outputs PRAMp (Xaddr, Xval) € U (see § D). Then there
exists a bijection ¢ : UU A — X and an AP-MDM which, on input

X =(20,21,-.-,2n) €EX"T 20 = ¢(P(n)), 2i = ¢(Xyari) fori=1,...,n,
padded to context length O(S(n)) (addresses provided implicitly by positional encodings), produces
P(PRAMp (Xaddrs Xva1)) in O(T'(n)) decoding steps.

We first show that AP-MDM can simulate a weaker model called Rewrite-MDM, which is sufficient
for the result. Then we construct an E-FASP program that simulates PRAM execution in a space-
efficient manner.

Rewrite-MDM follows the same framework as AP-MDM with f5 : ¥* — ¥* x §* and ¢ :
3* x §* — ¥*, but with different control signals:

Yei MR =1
Sii = 1R i} ySe)i=<"7 7
i ={Rei}s 9(vi,51) {xm i Ry = 0

where R;; € {0,1} is a binary rewrite signal. In other words, when R, ; = 1, the model rewrites
position ¢ with new content ¥, ;; when IR ; = 0, it preserves the original content z; ; unchanged.

(70)

We next show how each transition z; — z;; in Rewrite-MDM can be simulated by exactly three
steps of AP-MDM as defined in § 4.

Lemma 11 (AP-MDM Simulation of Rewrite-MDM). For any Rewrite-MDM transition z, — Z41
on sequence of length n, there exists a sequence of three AP-MDM steps that produces the identical
result.

Proof. Given a Rewrite-MDM transition where we want to selectively rewrite positions in sequence
z; = (211,22, - -, %,n) according to rewrite signal r, = (r¢1,7¢2,...,7,n), We simulate this
using the following three AP-MDM steps: z; — ul) — u® — u® =z,

Step 1 (Insert): Starting from z;, apply operation at every position ¢ € [n] to create an
expanded sequence of length 2n:

ut = (go fo)(z) 71

where Si(l) ={l[z; = M],R,gl) = 0711-(1) = 1,D,§1) = 0} for all i € [n]. This yields u¥ =
(zt,la Ma 2t,2, M7 <oy Rtny

Step 2 (Unmask and Remask): Apply AP-MDM'’s (g o fy) operation on u") with control signals:

ul® = (go fo) () (72)
where the control signals are set as follows:
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* For even positions 2i (newly inserted masks): Sg) = {]l[ug) = M, RS) =0, Ié?) =0, Dg) =

0} (unmask to reveal new content)
* For odd positions 2i — 1 (original tokens): 82(?)_1 = {]l[u%)_l = M],R;?_l = Tt,ing(?)_l =

0, Dg?)_l = 0} (remask to rewrite content)

which yleld u(2) = (M, Zt+41,1, M, Zt41,29 -5 '\/l7 ZH_Ln).

Step 3 (Delete): Apply AP-MDM’s (g o fy) operation again to delete all mask tokens at original
positions:

u® = (go fo)(u?) (73)

where for all positions j in u(®:

« For odd positions 2i — 1: 8§ | = {1[u{?) , =M, RS, = 0,1, =0, D) | = 1[u{? |, =
M]}

* For even positions 2i: Ség’) = {]l[ug) = M, Réi-’) = O,IQ(?) =0, Dg’) =0}

This removes all mask tokens at odd positions and recovers the original length n. By construction,
u® =z, completing the simulation.

State Tracking Mechanism To enable the AP-MDM to autonomously determine which of the
three simulation steps to execute, we augment sequences with special boundary tokens [BOS] and
[EOS]. The model identifies the current phase by examining the boundary token configuration:

* Step 1 (Insert): Normal state with [BOS] at the beginning and [EOS] at the end
* Step 2 (Unmask and Remask): [EOS] is followed by a M token, indicating expanded state
* Step 3 (Delete): [BOS] is preceded by a M token, signaling cleanup phase

During Step 2, the model leverages the first bit of positional encodings (e.g. BiPE introduced in § F)
to distinguish between original positions (odd indices) and newly inserted positions (even indices),
enabling it to correctly apply remasking operations to original positions based on the rewrite signal
r; while unmasking new positions to write content from wy.

We omit the Transformer-based construction for the procedure described above for brevity, which
can be done by a simple E-FASP program. O

We use the Rewrite-MDM variant established above to simulate PRAM algorithms with optimal space
complexity. Here we use the E-FASP[BiPE; [-|;, X| variant with binary positional encoding (§ F).
The input that encodes the PRAM’s initial memory state is a sequence X = (71, ..., Z,41) € 27!
of discrete tokens from the vocabulary >::

x1 € ¥ (processor count token) (74)
Ti+1 € X (datatoken) fori=1,...,n (75)

Through token embedding TE : ¥ — R", these discrete tokens are mapped to their semantic bit
representations:

TE(z1) — P(n) € {0,1}" (76)

TE(z;41) + val; € {0,1}* (data bits) (77)

for i = 1,...,n. The actual input to the AP-MDM is the padded sequence xo =
(1‘0}1, 0,25 - »CCO,S(n)) e 25(") where ¥ = X U {M}

Zo,; = T4 forj:l,...,n+1 (78)

zo; =M forj=n+2,...,5n) (79)
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The crucial advantage of AP-MDM is that it can dynamically rewrite the content at any position
using the remask operation, allowing the simulation to use space optimally as O(S(n)) rather than
the O(P(n) x T'(n)) required by standard MDM.

We next provide an overview of the construction:

The key difference between how Rewrite-MDM and AO-MDM simulate PRAM is that Rewrite-MDM
can directly rewrite the memory at any position and each computation does not necessarily has be
kept in the context forever. This enables us to get rid of the address token. Now representation of a
processor can be simplified to:

- <PC1, R1,1,R1,2, R173> <PC2, R21,Ra2, R273> ce (80)
where we only use 3 registers (this is sufficient for the proof but can be extended to any k > 2).

Additionally, we do not append processor representations to the end of input x as in AO-MDM, but
instead will initialize them at the end of the entire sequence. The remaining part of the sequence is
used as a shared memory where token embeddings are data and positional encodings are addresses,
aligning more closely with PRAM.

Intialization. When the last position is a mask token, we initialize the processor state and computa-
tion log at the end of the sequence. Roles of each token are calculated similarly as the construction in
AO-MDM (except it is static throughout the generation process).

The execution of the program is similar to the construction in AO-MDM, except now the address
is inherently associated with the positional encoding. The termination is also slightly different: the
returned embedding has to contain an additional bit to indicate the rewrite operation. Also, the
termination condition is no longer when all masked are unmasked but a flexibly defined one: in our
case, when all processors are HALT.

Using the operators defined above, we now construct an E-FASP program that simulates PRAM
execution. The program implements the single-processor algorithm detailed in § D.

#f Roles & Layout ————————————————-—-————
is_mask = ( == embed ([MASK]))
pn = rightmost_exact_match(l, is_first, ) # number of processors P (n)
last_p = rightmost_exact_match(l, is_last, ) # last position index
proc_b = last_p - (pn << 2) + 1 # processor region start
in_proc = ( >= proc_b) and ( < proc_b + (pn << 2)) # in processor
region
in_mem = ( >= 2) and ( < proc_b) # in memory region
$ - Initialization ————————————-—————————
last_is_mask = rightmost_exact_match(l, is_last, is_mask)
if last_is_mask and in_proc:
inner = ( - proc_b) [:2] # slot index 0..3
# initialize processor region to 0, and R=1 (require rewrite)
if inner == 0: return (0, 1) # PC
elif inner == 1: return (( - proc_b) >> 2, 1) # R1
elif inner == 2: return (0, 1) # R2

else: return (0, 1) # R3
# no rewrite for other positions in initialization step
if last_is_mask and not in_proc:

return (TE, 0)
# ========= Processor zone update (only if in_proc) =========
if in_proc:

pid = ( - proc_b) >> 2

slot = ( - proc_b) [:2] # 0:PC 1:R1 2:R2 3:R3

# read previous round processor state (fixed slot)
pc_pos = proc_b + (pid << 2) +
rl_pos = proc_b + (pid << 2)
r2_pos = proc_b + (pid << 2)
r3_pos proc_b + (pid << 2)

+ + +
w NP O
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PC = rightmost_exact_match
R1 rightmost_exact_match
R2 rightmost_exact_match
R3 = rightmost_exact_match

pc_pos, PE, TE
rl_pos, PE, TE
r2_pos, PE, TE
r3_pos, PE, TE

# processor already HALTed, do not update (R=0 for this slot)
if PC == HALT_CODE: return (0, 0)

# fetch and decode instruction
I_type, op_r, op_s, op_c, label_addr = get_instruction (PC)

Rs = (Rl if op_s == 1 else R2 if op_s == 2 else R3 if op_s == 3 else
0)

Rr = (Rl if op_r == 1 else R2 if op_r == 2 else R3 if op_r == 3 else
0)

# default

PCn, WR, WR_en = PC + 1, Rr, O

# instruction semantics

if I_type == embed([LOAD]) :
# mem_get: address=PE, value=TE (only match in memory region)
hitp = rightmost_exact_match(Rs, (PE if in_mem else 0), (PE if

in_mem else 0))
WR = rightmost_exact_match (hitp, PE, (TE if in_mem else 0))

WR_en = 1
elif I_type == embed([STORE]): WR_en = 0
elif I_type == embed([LOADI]): WR, WR_en = op_c, 1
elif I_type == embed([ADD]): WR, WR_en = (Rr + Rs), 1
elif I_type == embed([SUB]): WR, WR_en = (Rr - Rs), 1
elif I_type == embed([AND]) WR, WR_en = (Rr & Rs), 1
elif I_type == embed([XOR]): WR, WR_en = (Rr = Rs), 1
elif I_type == embed([SHL]): WR, WR_en = (Rr << Rs)), 1
elif I_type == embed([SHR]): WR, WR_en = (Rr >> Rs)), 1
elif I_type == embed([BRZ]) and (Rr == 0): PCn = label_addr
elif I_type == embed([JMP]) PCn = label_addr
elif I_type == embed([HALT]): PCn = HALT_CODE

# unified writeback

Rln = (WR if (WR_en and op_r == 1) else R1l)
R2n = (WR if (WR_en and op_r == 2) else R2)
R3n = (WR if (WR_en and op_r == 3) else R3)

# return next state for this slot and require rewrite

if slot == 0: return (PCn, 1)
elif slot == 1: return (Rln, 1)
elif slot == 2: return (R2n, 1)

else: return (R3n, 1)

========= Memory zone update (also for non MASK) =========

in_mem:

# for all PC slots, construct STORE stream (address, value) for this
step

is_pc_glob = (((PE - proc_b)[:2]) == 0) and (PE >= proc_b) and (PE <
proc_b + (pn << 2))

PCi = (TE if is_pc_glob else 0)

It, rd, rs, cimm, L = get_instruction (PCi)

pid_i = ((PE = proc_b) >> 2) # only meaningful for PC slot
rl_i = rightmost_exact_match(proc_b + (pid_i << 2) + 1, PE, TE)
r2_i = rightmost_exact_match (proc_b + (pid_i << 2) + 2, PH, TE)
3 TE)
i =

r3_1 rightmost_exact_match (proc_b + (pid_1i << 2) +
Rs_1i (rl_i if rs == 1 else r2_i if rs == else r3_

3 else
0)
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Rr i = (rl i 1if rd == 1 else r2_1 1if rd == 2 else r3_1 if rd == 3 else
0)

STORE_KEYS = (Rs_i if (is_pc_glob and (It == embed([STORE]))) else 0)
# store address

STORE_VALS = (Rr_i if (is_pc_glob and (It == embed([STORE]))) else 0)
# store value

hit = rightmost_exact_match (PE, STORE_KEYS, 1, 0)

val = rightmost_exact_match ( , STORE_KEYS, STORE_VALS, )

# all halt: do not rewrite; otherwise, if hit, rewrite this address (
even if not MASK originally)

if hit == 1: return (val, 1)
else: return ( , 0)
return (TE, 0)

K PROOF OF THEOREM 5

Definition 11 (Two-Sided Dyck-k). Let ¥y = {aT!,. .., akil}. Define u = v if v is obtained from

u by deleting a factor aiai_1 or ai_lai forsomei € {1,...,k}. Write u =" v iff there exist m > 0
and words u = wo, . .., Wy, = v With wj = wj1 forall j. Then
TDyck;, = {weX; : w="¢}. (81)

where ¢ is the empty word.

For the Two-Sided Dyck-k language, we define the vocabulary as:
Y ={aft a7t adt azt, ... ,a;:l,a;l} U{[BOS], [EOS]} (82)

and the extended vocabulary 3 = XU {M;, My}, where {a"' }}_, are the 2k bracket tokens, [BOS ]
and [EOS] are boundary tokens, and My, My are two types of mask tokens used to handle an inherent
limitation of vanilla masked diffusion when extended to the non-deterministic case (i.e. given two
mask tokens, the model can not randomly generate AA and BB without also having probability to
generate AB and BA). Thus |X| = 2k 4+ 2 and |X| = 2k + 4.

Definition 12 (Stochastic AP-MDM). A stochastic AP-MDM is defined as an AP-MDM with encoder-
only Transformer backbone as in § E, where instead of greedy decoding, we use stochastic sampling.
Formally, let Encg : ¥* — (R%)* be the encoder Transformer (before the final projection layer) as
defined in Definition 7. For each position i in the input sequence, let h; = [Ency(x)]; € RY be the
hidden state. We define the probability distribution over vocabulary 3. as:

(o | . — XL TE))/7)
T S e ey, TE())/7)

where (-, -) denotes the dot product, TE(v) is the token embedding for token v, and T > 0 is the tem-
perature parameter. The stochastic AP-MDM samples tokens according to v; ~ Categorical(py(- |
X, 1)) instead of selecting arg max,cx pg(v | x,1). For the insert operation to support two types of
mask tokens (M, and M), we modify the architecture in § E to use two separate classification heads
PROJ;, and PROJy, instead of a single insert head as described in § 4. The insertion logic follows
a simple priority-based rule: My has higher priority, so when the second head predicts insertion, we
insert My; otherwise, we check the first head to decide whether to insert M.

(83)

Notably, we disable the remask and delete operations for this construction to ensure fair comparison
with ARM. This prevents the stochastic AP-MDM from exploiting the more efficient space utilization
discussed in § 5.1 to gain additional computational advantage in generating matching brackets, which
would be unavailable to autoregressive models that cannot rewrite previously generated tokens.

Theorem 12 (Generating Two-Sided Dyck-k, Formal). For any k > 2, there exists a stochastic
AP-MDM as defined in Definition 12 with constant depth Transformer backbone that can generate
every string w in the two-sided Dyck-k language TDyck, with positive probability. Conversely, for
any constant-depth ARM with polynomial embedding dimension, there exists N € N such that the
ARM cannot generate every string w € TDyck, with |lw| < N in O(|w|) steps.

40



Under review as a conference paper at ICLR 2026

Proof. For ARM, generating arbitrary-length matched bracket sequences requires the model to
determine at each generation step whether the current sequence can be terminated. Specifically, the
model must assess whether the currently generated sequence satisfies the complete bracket matching
condition. If the sequence is properly matched, the probability of outputting [EOS] must be non-zero
to enable termination. Therefore, the difficulty of generating matched brackets reduces to the problem
of recognizing whether a given sequence forms valid matched brackets. For the two-sided Dyck-k
language, this recognition problem is DLOGTIME-uniform NC'-hard (Robinson, 1993), which
exceeds the computational capacity of constant-depth Transformers which is in TCO.

For the stochastic AP-MDM, we construct the following algorithm to generate all strings in the
two-sided Dyck-k language through the following algorithmic procedure, illustrated in Figure 2(b):

Step 1 (Probabilistic Mask Insertion): If the current sequence contains no mask tokens, then for
any sequence position j not containing an end-of-sequence token, the model inserts M; with constant
probability p € (0, 1) using the insert operation from § 4. The insertion probability for M is set to
zero at this stage.

Step 2 (Uniform Token Selection with Priority Override): At positions containing M1, the model
performs two operations: (i) it samples uniformly from the bracket token set {alil }%_| to determine
the content, and (ii) it inserts My with probability 1. Due to the priority-based insertion mechanism
defined in Definition 12, My overrides M;, making the original insertion probability irrelevant for

subsequent processing.

Step 3 (Context-Aware Bracket Matching): When processing M, tokens, the model identifies the
nearest bracket token aj-ﬂ to the left of the current position and generates the corresponding matching
bracket according to the two-sided Dyck-k reduction rules.

Termination Condition: The termination mechanism operates as follows: In Step 2, when the
sequence contains M; tokens but no M tokens, the model inserts Mo at the final position with a
fixed probability. Subsequently, in Step 3, when processing this final M5 token, the model generates
[EOS] (given the binary positional encoding we considered in § D, the model is able to identify if
the token should be decoded as [EOS] or a matching bracket), signaling the end of the generation
process.

Implementation via E-FASP Programming: The above algorithm admits an E-FASP program
implementation (see § F) with the following treatment of stochastic operations:

For uniform samplingE over the 2k bracket tokens, we exploit the fixed vocabulary size by assigning
each bracket token a; ! to distinct dimensions in the d-dimensional embedding space. Specifically,
when the E-FASP program needs to output a uniform distribution over a subset S C {a?l L
it returns a hidden state h € R? where (h, TE(v)) = ¢ for all v € S (for some constant c) and
(h, TE(v")) = —oco for v' ¢ S. Under the temperature-scaled softmax from Definition 12, taking
7 — 0T ensures that the probability mass concentrates uniformly over S, achieving the desired
uniform sampling behavior.

It is easy to see that this generation procedure can produce any string in the two-sided Dyck-k
language, as the random insertion and matching mechanism covers the entire support of valid bracket
sequences.

O

We note the introduction of two mask tokens is for the model to distinguish between different steps,
but this is not necessary if we allow some random seeds in input which mitigates the limitation of
MDM when extending to the non-deterministic case.

L PROOF OF THEOREM 6

Edit Triplet Encoding. We encode each elementary edit as a triplet of tokens (op, pos, val) €
Yop X Xpos X 2, where

Yop = {UNMASK, INSERT, DELETE, REMASK} (84)
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The position token set X,,¢ reuses the earlier address/position encoding in Definition 10: a position
i € [|x|] is encoded as pos = encode(i) with inverse decoding dec_pos(pos) = i.

The semantics of the triplet follows the instantiation of AP-MDM considered in § 4.

Definition 13 (Editing Sequence). Given an input sequence x € ¥*, an editing sequence is a finite
sequence of triplets

T(x) = ((opj7 pos;, Valj>);n:(?), op; € Yop, POS; € Ypos, valj € 2. (85)

Its application to x is defined recursively by x(©) = x and
xU) = Apply((opj,posj,valj>, x(j_l))7 j=1,...,m(x). (86)
We write
Apply_Triplets (T(x), x) = x (M) (87)
An editing sequence is valid iff every intermediate application is well-defined under the triplet
semantics (e.g., UNMASK applies only to masks).

Theorem 13 (Hardness of Simulating AP-MDM, Formal). There exists an AP-MDM F' with a
constant-depth encoder-only Transformer backbone such that no ARM or Masked-ARM G (Defini-
tion 3) with a constant-depth decoder-only Transformer backbone can, on every input x, produce
an editing sequence T (x) (Definition 13) that realizes F'’s generation process; i.e., under the

assumption that constant-depth Transformers do not include TC°,
VG Ix e X*: Apply,Triplets(Tg(x), x) # Apply_Triplets (TF(X), x),
or Ti(x) is invalid.

The ARM in the above result can be replaced by the Masked-ARM with encoder architecture used in
Theorem 3 without affecting the result.

Proof. Fix L € N. Let u € X be the base string, let 7" be a valid editing sequence (Definition 13),
and let ¢ € 3,0 be a query position token with index ¢ = dec_pos(g). Encode the input as

x = (u, [SEP], flatten(T), [SEP], ¢, [SEP]) € REH+3+3mu), (88)
Here
flatten(T") = (opy, pos;, valy, ..., 0p,,, POS,,, val,,). (89)
The task is to output the queried symbol after applying the editing history:

y = [Apply,Triplets(T(u), u)]l € X (90)

That is, the instance provides (i) a base string u, (ii) an editing history 7" as a sequence of triplets,
and (iii) a query position token g. The model must simulate 7" on u and return the symbol at the
queried position ¢ in the resulting string. For AP-MDM, the simulation is intuitive and can be proven
by simple E-FASP program which we skip in this proof.

For ARM, due to the construction of the problem, the simulation process is exactly copying the
editing sequence part in the input, therefore solving the problem is equivalent to directly answer the
query, which we show the equivalence to a TC%-hard task:

Definition 14 (PRESERVES (Allender et al., 2006)). Let A be an ordered list (1-indexed). The update
alphabet is
U ={insert(i), delete(i) | i € N}. o1

For an initial list Ay and an update sequence s € U*, let A be the list after applying the first t
updates of s. For indices i,j € N, define

PRESERVES(Ag, s,4,7) <= the item at position i in Ay still exists after s and is at position j in A
92)
The decision problem PRESERVES asks, given (A, s, 1, j), whether PRESERVES( Ay, s,1, j) holds.

Conjecture 14. The PRESERVES problem is NC*-hard under DLOGTIME-uniform reductions.
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We reduce PRESERVES to our Editing-Query task in one step. Given (Ay, s,i,j) with |Ag| =
L, let u € XL list the items of Ay (unique token id per item); expand each insert(p,v) as
the triplet block ((INSERT,encode(p), M), (UNMASK, encode(p’), v)) and each delete(p) as
((REMASK, encode(p), o), (DELETE, encode(p), ®) ), where p’ is the position of the newly inserted
mask under our convention and e is ignored; let 7" be the concatenation over s and set ¢ = encode(j).
Then with

Yy = [Apply,Triplets(T, u)] 93)

j’
we have

PRESERVES(Ay, s,4,j) < y =1id(i). %94)
Thus any model that solves Editing-Query on all inputs also decides PRESERVES. By Conjecture 14,
PRESERVES is NC'-hard, which places it beyond the computational capacity of constant-depth

Transformers that are contained in TC". Under this conjecture, no constant-depth ARM or Masked-
ARM can solve our Editing-Query task on all inputs. This completes the proof.

O
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