

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 ON NATURAL WAYS TO GENERATE AND THEIR PROV- ABLE POWER

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Diffusion language models have recently emerged as a competitive alternative to
 012 autoregressive language models. Beyond next-token generation, they are more
 013 efficient and flexible by enabling parallel and any-order token generation. How-
 014 ever, despite empirical successes, their computational power and fundamental
 015 limitations remain poorly understood. In this paper, we formally study whether
 016 non-autoregressive generation in Masked Diffusion Models (MDM) enables solv-
 017 ing problems beyond the reach of Auto-Regressive Models (ARM). Our results
 018 show that MDM with sufficiently large context length is computationally universal
 019 with decoding steps matching the optimal parallel time complexity in PRAM. How-
 020 ever, when controlling for other factors, MDM’s flexibility to generate in any-order
 021 does not expand what ARM can already solve. To address this, we propose a new
 022 form of generation called any-process generation, which extends MDM with capa-
 023 bilities to remask, insert and delete tokens, allowing self-correction, length-variable
 024 editing, and adaptive parallelism. Theoretically and empirically, we demonstrate
 025 these capabilities enable scalability to significantly harder reasoning problems that
 026 are otherwise intractable for ARM and vanilla MDM. Additionally, they prove
 027 essential for generation tasks where objects naturally evolve through non-sequential
 028 processes, crucial for extending current LLMs beyond natural language to domains
 029 such as coding and science.

030 1 INTRODUCTION

032 The underlying generation process of almost everything in nature follows a unidirectional arrow
 033 of time. Perhaps most representative of all, spoken language is produced through a sequential
 034 process where each word builds upon preceding context in causal temporal order. This generic
 035 inductive bias has been encoded into *Auto-Regressive Models (ARM)* (Shannon, 1951), through
 036 next-token generation. Despite its simplicity, ARM when scaled through training on vast corpora, has
 037 produced remarkably powerful models capable of general-purpose task completion and reasoning,
 038 like GPT (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al., 2023).

039 Yet reality might be more convoluted. Humans, when tackling challenging tasks, naturally undergo a
 040 non-sequential process of searching for solutions, evaluating and refining them, backtracking when
 041 needed, and iterating until answers are found. Such complexity is not fully captured by current ARM.
 042 While it is debatable if human intelligence fundamentally follows this left-to-right process (LeCun,
 043 2023; Malach, 2023; Bachmann & Nagarajan, 2024; Berglund et al., 2023; Nagarajan et al., 2025),
 044 ARM appears increasingly ill-suited when we venture beyond natural language.

045 For example, code generation must subject to global constraints like balanced parentheses and
 046 well-typedness. Maintaining validity at each intermediate step makes transitions from one state
 047 to another easier, thus naturally involving updates such as inserting functions, adding branches, or
 048 changing input types. In biology, many domains remain largely beyond the reach of current LLMs,
 049 as molecular structures such as proteins and genes are combinatorial objects that can be modeled as
 050 graphs, trees, or strings that satisfy physical constraints. Their generation proceeds most naturally
 051 through structure-aware edits, e.g., swapping protein domains, inserting binding motifs into sequence
 052 graphs, or recombining DNA/RNA segments (Wang et al., 2023).

053 Given the long-standing pursuit of building foundation models powerful enough to handle increasingly
 complex reasoning tasks and general enough to work across diverse domains beyond natural language,

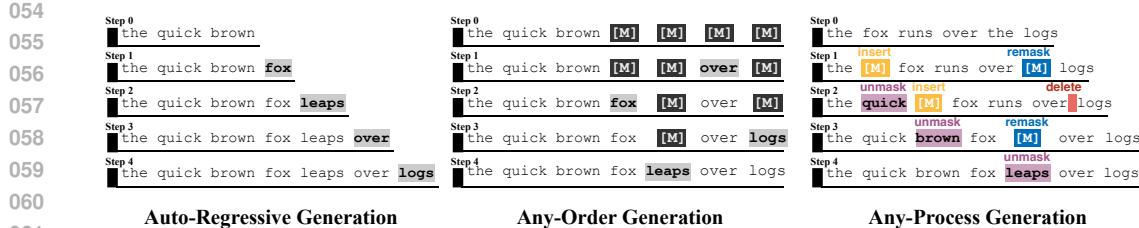


Figure 1: Comparison between autoregressive generation, any-order generation (standard MDM) and any-process generation (our MDM).

it becomes important and timely to rethink generation process itself, as a mechanism separate from architectural specifics, by formally asking:

How do we formally compare various ways to generate, and what opportunities may lie beyond next-token generation?

Recent work suggests that next-token generation is not the only viable path. *Masked Diffusion Models (MDM)* (Hoogeboom et al., 2021; Austin et al., 2021; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024) offer a compelling alternative procedure that, instead of causally generating tokens one by one, permits any-order generation and produces multiple tokens in parallel, with recent large-scale instantiations (DeepMind, 2025; Labs et al., 2025; Nie et al., 2025; Ye et al., 2025) showing comparable performance with AR-based LLMs. Interestingly, besides faster decoding (up to $10\times$ speedups), MDM’s generation process brings empirical improvements on some order-sensitive tasks such as reversed-order poem completion (Nie et al., 2025; Berglund et al., 2023) and Sudoku puzzles (Kim et al., 2025c; Shah et al., 2024). This motivates us to formally study it and compare with ARM.

Perhaps counterintuitively, we find **while MDM is indeed more powerful than ARM in terms of parallelism and efficiency for simple tasks, the benefits of seemingly greater flexibility are surprisingly limited.** Like ARM (Merrill & Sabharwal, 2024; Feng et al., 2024; Li et al., 2024), MDM also achieves Turing-completeness, but does so more efficiently with optimal parallel time complexity (Theorem 1), thus enabling *exponential* speedups for simple parallelizable problems. However, for harder reasoning tasks, MDM faces similar fundamental limitations as ARM: both struggle with problems requiring backtracking and rewriting capabilities, and cannot handle them given realistic space resources (Theorem 2). Moreover, when controlling for other factors including degree of parallelism and architecture, any-order generation itself does not expand what ARM can already handle (Theorem 3), since any computation performed by MDM can be reorganized into left-to-right order to align with the underlying arrow of time. Therefore we ask:

What are provably more powerful ways to generate?

As an initial step, we propose **Any-Process Generation**, inspired by natural generative mechanisms found across domains. It extends standard MDM beyond its existing **unmask** capability with three additional operations (see Figure 1): **remask** (converting decoded tokens back to masks), **insert** (adding new mask tokens at any position), and **delete** (removing mask tokens), all learned end-to-end from data without architectural changes. Freed from conventional physics-inspired diffusion frameworks, any-process generation removes unnecessary restrictions on mask ratios, decoding steps, sequence lengths and stopping criteria, enabling structural editing and test-time scaling. With these modifications, we show that MDM brings significant promise with both encouraging theoretical and empirical results as follows.

Scalability to Hard Problems: The capability to rewrite and backtrack breaks the non-erasable limitations of ARM and standard MDM, enabling our model to achieve both optimal parallel time and space complexity (Theorem 4), thus solving many NP-hard problems with polynomial space through test-time scaling, i.e. an exponential improvement from P achieved by ARM and standard MDM. Empirically, on Sudoku puzzles (Figure 2(a)), our model achieves 99.28% accuracy using only 100 training instances, outperforming ARM (87.18%) and any-order MDM (89.49%) with $5\times$ parameters trained on 1.8M instances, which is orders of magnitude more.

Generality to Non-Sequential Objects: The flexibility to rewrite, insert, and delete tokens enables structure-aware generation processes for objects that inherently resist sequential construction, such as

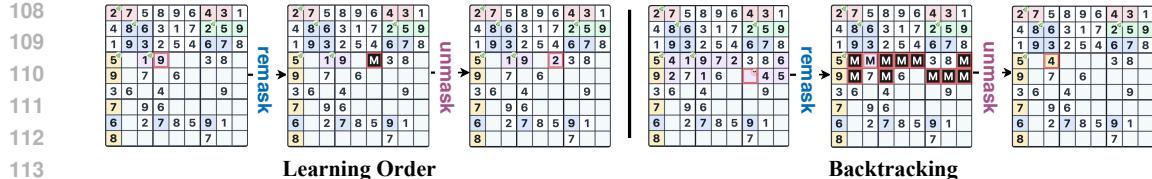
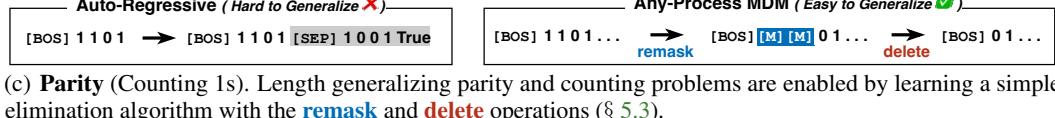
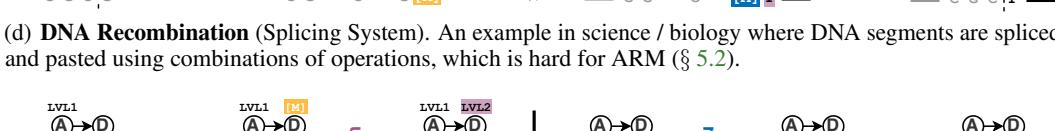
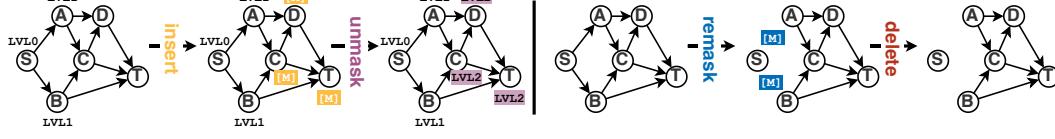


Figure 2: Examples of any-process generation for different tasks.

DNA recombination in biology (Figure 2(d)) and 2D graph generation (Figure 2(e)). This advantage can be formalized through a simple task of matched parentheses generation (two-sided Dyck- k language), i.e. one of the most basic constraints in coding. Theorem 5 proves that ARM cannot cover the entire support beyond a length threshold, because enforcing the generation into a left-to-right order demands global foresight of future tokens that is beyond the computational power of **constant-depth Transformers**. In contrast, AP-MDM can easily do so at arbitrary length using insert operations (Figure 2(b)). Empirically, we verify the structural generation capability of AP-MDM on a challenging graph editing task. The results show that our approach maintains perfect accuracy for increasingly larger graphs, while ARM performance degrades significantly as graph size increases.

Learning and (OOD) Generalization: Our approach enables learning previously-impossible simpler algorithms that significantly improve learning and generalization. For parity checking (Figure 2(c)), our model achieves 100% generalization to arbitrary lengths after training on only length-2 sequences, while even the latest GPT models struggle on this embarrassingly simple task.

Finally, envisioning a future with access to data of the underlying generation processes of objects we wish to generate, such as code revisions, math proof drafts, or molecular formation processes, any-process MDM is theoretically and empirically more suitable than ARM (Theorem 6) since AP-MDM is hard to be simulated by ARM due to the complexity introduced by editing operations.

162

2 PRELIMINARY

164 **Auto-Regressive Model (ARM)** Let Σ be a finite-sized vocabulary and $\pi : \Sigma^* \rightarrow \Sigma$ be a next-
 165 token predictor, which maps a sequence $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \Sigma^n$ to a token $x_{n+1} \in \Sigma$. An
 166 autoregressive model (ARM) is defined based on a sequence-to-sequence mapping $f : \Sigma^* \rightarrow \Sigma^*$,
 167 concatenating input sequence \mathbf{x} and the next token $\pi(\mathbf{x})$, i.e. $f(\mathbf{x}) = (\mathbf{x}, \pi(\mathbf{x}))$. ARM formulates
 168 generation as an iterative process by repeatedly applying f to the current sequence. In practice, f is
 169 typically parameterized by a Transformer (Vaswani et al., 2017) with causal attention and learnable
 170 parameters θ . The notion of ARM here also aligns with *Chain-of-Thought (CoT)* (Wei et al., 2022) in
 171 many other works and we will use them interchangeably throughout this paper.
 172

173 **Masked Diffusion Model (MDM)** Let $\bar{\Sigma} = \Sigma \cup \{\mathbf{M}\}$ be the extended vocabulary where \mathbf{M} is an
 174 absorbing mask token (Austin et al., 2021). Consider sequences $\mathbf{x}_t = (x_{t,1}, x_{t,2}, \dots, x_{t,S}) \in \bar{\Sigma}^S$
 175 indexed by time $t \in [T]$, where S is the maximum context length, T is the number of decoding
 176 steps, $\mathbf{x}_0 = \{\mathbf{M}\}^S$ is the fully masked sequence and $\mathbf{x}_T \in \Sigma^S$ is the target clean sequence.¹ A
 177 masked diffusion model (MDM) (Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024) also relies on
 178 a sequence-to-sequence mapping $f : \bar{\Sigma}^S \rightarrow \Sigma^S$ with $\mathbf{x}_{t+1} = f(\mathbf{x}_t)$, formulating generation as an
 179 iterative process by repeatedly applying f to progressively unmasks tokens from the all-mask state.
 180

181 Among many MDM variants, we consider the following standard design choices from recent large
 182 language diffusion models (Nie et al., 2025): **1**) linear noise schedule with $S = P \cdot T$ for integer
 183 P , where each step reveals exactly P tokens; **2**) confidence-based adaptive decoding (Chang et al.,
 184 2022) rather than random token selection; **3**) encoder-only Transformer architecture without timestep
 185 embedding; **4**) conditional generation where input prompt \mathbf{x} of length n is a prefix of \mathbf{x}_0 , with n
 186 calculated within context length S , aligned with reasoning problem setup for ARM. Detailed MDM
 187 introduction and encoder-only Transformer definition are in § B and § F, respectively.
 188

189

3 A THEORY OF MASKED DIFFUSION

190 The generation process in MDM is unique in two different ways: it generates multiple tokens in
 191 parallel and permits any-order generation. We now investigate whether and how exactly these
 192 properties, in their own right, translate into concrete advantages.
 193

194

3.1 POWER OF PARALLELISM

195 Prior work (Merrill & Sabharwal, 2024; Feng et al., 2024; Li et al., 2024) has shown that ARM
 196 with sufficiently many intermediate steps is Turing-complete and thus can solve any computable
 197 problem. Analogous to the role of intermediate steps in ARM, two governing resources determine
 198 MDM’s power: **1**) number of decoding (denoising) steps $T(n)$, and **2**) maximum context length $S(n)$
 199 (equivalently, the maximum number of tokens available to decode).
 200

201 **Definition 1 (MDM).** Let $MDM(S(n), T(n))$ be the class of decision problems solvable by MDM (§ 2)
 202 with maximum context length $S(n)$ and at most $T(n)$ decoding steps, using some constant depth and
 203 $\log(n)$ embedding size encoder-only Transformer. Also, let $MDM(S(n)) = \bigcup_{T(n)} MDM(S(n), T(n))$.
 204

205 To formally characterize MDM’s expressivity in relation to $T(n)$ and $S(n)$, we establish a connection
 206 with the canonical parallel computation model called *Parallel Random Access Machine (PRAM)* (For-
 207 tune & Wyllie, 1978; JáJá, 1992), which is the RAM model extended to multiple processors executing
 208 over shared memory. See detailed introduction and a formal definition of the variant we use in § E.
 209

210 **Definition 2 (PRAM).** Let $P(n)$ be the number of processors budget, and $w(n) = \Theta(\log n)$ the word
 211 size. Define $PRAM(P(n), T(n))$ as the class of decision problems solvable by a uniform CREW
 212 PRAM (see § E for CREW specification) using at most $P(n)$ processors in at most $T(n)$ parallel time.
 213

214 **Theorem 1 (MDM Simulation of PRAM, Informal).** For any PRAM program that runs on input
 215 $\mathbf{x} \in \Sigma^n$ in at most $T(n)$ parallel time with $P(n)$ maximum processors, there exists an MDM on input
 216 \mathbf{x} , padded to $S(n) = \mathcal{O}(P(n) \cdot T(n))$, that matches the PRAM output in $\mathcal{O}(T(n))$ decoding steps,
 217 i.e. $PRAM(P(n), T(n)) \subseteq MDM(\mathcal{O}(P(n) \cdot T(n)), \mathcal{O}(T(n)))$. See formal statement in Theorem 8.
 218

219 **This demonstrates that MDM can simulate any PRAM algorithm with optimal parallel time
 220 complexity, thereby it is not only Turing-complete as ARM already achieves, but can also solve**

221 ¹Unlike convention in diffusion model where larger t denotes earlier inference steps, we use t following an
 222 intuitive feed-forward ordering during inference, i.e. the focus of this paper.

216 **problems significantly faster with parallelization, something ARM cannot offer.** The speedup
 217 can be *exponential* compared to ARM’s serial time complexity: for efficiently parallelizable problems
 218 in NC (Arora & Barak, 2009),² graph connectivity can be solved in $\mathcal{O}(\log n)$ decoding steps versus
 219 ARM’s linear complexity, and context-free languages including Dyck-k require only $\mathcal{O}(\log^2 n)$ steps.
 220 These tasks have been demonstrated hard or inefficient for ARM in previous literature (Strobl et al.,
 221 2024; Zhu et al., 2025).

222 **Remark** While MDMs can achieve optimal decoding steps (and thus wall-clock time) through
 223 parallel decoding, encoder-based architectures require re-encoding the entire sequence at each step
 224 and cannot utilize KV caching, resulting in higher per-step FLOPs compared to decoder-based ARM.
 225 In theoretical construction for Theorem 1, we do not find such trade-off unavoidable, suggesting
 226 potential to improve per-step FLOPs while maintaining the parallel time advantage for current MDMs.
 227

228 3.2 (UN)SCALABILITY TO HARD TASKS

229 While noteworthy, the computational power described above comes with a non-negligible cost:
 230 solving a problem requires context length $S(n)$ to scale as $\mathcal{O}(T(n) \cdot P(n))$ (the total parallel work),
 231 a quantity at least as large as the serial time complexity (with $P(n) = 1$), per Brent’s Theorem (JáJá,
 232 1992). Particularly, in resource-constrained regimes, we have:

233 **Theorem 2.** $MDM(S(n)) \subseteq PRAM(1, \tilde{\mathcal{O}}(S^3(n)))$, where logarithmic factors are hidden in $\tilde{\mathcal{O}}$.
 234

235 In other words, MDM with context length $S(n)$ cannot solve problems requiring more than $\tilde{\mathcal{O}}(S^3(n))$
 236 serial time. This limitation is also shared by ARM (Yang et al., 2025).

237 **This implies MDM is inherently not scalable to solving hard reasoning or generation tasks:** for
 238 problems beyond P (e.g., NP-hard problems), this would require superpolynomial context length
 239 (under standard complexity assumptions), practically intractable in terms of both memory and per-step
 240 FLOPs. The root cause lies in MDM’s irreversible token generation: once decoded, those positions
 241 cannot be reused or rewritten. As reflected in the construction of Theorem 1, each memory write
 242 must be permanently stored as tokens, forcing space to scale with computation time.
 243

244 In contrast, human reasoning on hard problems naturally involves continuous revision, exploration of
 245 alternative paths, and correction of mistakes before reaching final conclusions. Generation tasks are
 246 no different: for instance, generating planar graphs (drawable on planes without edge crossings) with
 247 minimum splitting numbers is NP-complete and naturally involves iteratively adding nodes, checking
 248 planarity constraints, and backtracking when violations occur. Such process has not been captured by
 249 either ARM or MDM.

250 3.3 (LIMITED) POWER OF ANY-ORDER GENERATION

251 Any-order generation seems to offer extra flexibility over auto-regression, but does it truly translates
 252 into computational advantages? To attribute gains to any-order generation itself, we control for
 253 orthogonal factors differentiating ARM and MDM: **1)** the number of tokens generated per step,
 254 and **2)** the backbone architecture (decoder v.s. encoder). The former has already been shown to
 255 confer stronger parallelism to MDM (§ 3.1); the latter provides internal parallelization benefits (Ewer
 256 et al., 2024) and improved expressiveness through padding with dummy tokens (i.e. M) (Merrill &
 257 Sabharwal, 2025).

258 Therefore, we fix MDM to emit exactly one token per step and ARM to use the encoder-backbone
 259 with mask tokens padding the sequence to the same length (called *Masked-ARM*), or equivalently:

260 **Definition 3 (Masked-ARM).** A Masked-ARM is defined as an MDM (§ 2) that is forced to decode in
 261 left-to-right order and one token per step.

262 **Perhaps counterintuitively, we show that the computational benefits from any-order generation
 263 are rather limited, by itself not enabling what Masked-ARM cannot already solve:**

264 **Theorem 3 (Left-to-Right v.s. Any-Order, Informal).** For any AO-MDM with context length $S(n)$
 265 decoding one token per step, there exists a Masked-ARM with length $\mathcal{O}(S(n))$ and extra constant

266 ²NC is the complexity class for efficiently parallelizable problems, those that are solvable in $\text{polylog}(n)$
 267 time using $\text{poly}(n)$ processors; $NC \subseteq P$ and it is open whether $NC = P$ (Greenlaw et al., 1995). PRAM is the
 268 canonical model for this notion as a Turing machine is for P.

270 layers, that can produce the same generation process for any given input \mathbf{x} , by explicitly specifying
 271 both where to write (position) and what to write (token). See formal statement in Theorem 9.
 272

273 Simulating any-order generation with autoregressive models is not hard because the attention mecha-
 274 nism is good at fetching information from any position, and re-organizing it internally in the correct
 275 order to perform the same computation. While Masked-ARM need not replicate MDM’s exact final
 276 sequence, an additional post-processing step can align their outputs without affecting the theoretical
 277 conclusion. There are also some empirical evidences showing the effectiveness of ARM simulating
 278 any-order (Xue et al., 2025).
 279

280 But not all intricacies inherent in natural generation processes can be easily sequentialized. Coding
 281 for example (as well as many natural scientific processes alike), involves anywhere editing where a
 282 new valid state depends upon previous valid states that may not be contained in the final sequence.
 283 And even when described in left-to-right temporal order, reproducing the state requires more than
 284 simple re-organization, which attention is already provably good at. Hence such a complex process is
 285 not captured by ARM or MDM as currently instantiated.
 286

287 **Remark** We note that MDM’s observed advantages in practice may lie in discovering an optimal
 288 order (Kim et al., 2025c) from data, where left-to-right ordering need not exactly correspond to the
 289 optimal temporal generation order, though computationally equivalent (Theorem 3).
 290

291 4 ANY-PROCESS GENERATION

292 We now introduce *Any-Process Generation*, a more powerful generation paradigm that extends
 293 the any-order masked diffusion from § 2 (referred to as AO-MDM hereafter) by removing various
 294 restrictions to capture natural processes not present in existing generation strategies.
 295

296 **A General Formulation** Let $f_\theta : \bar{\Sigma}^* \rightarrow \bar{\Sigma}^* \times \Sigma^* \times \mathcal{C}^*$ be a function, by default parameterized by
 297 the same Transformer architecture, which on input $\mathbf{x}_k \in \bar{\Sigma}^*$ returns the triple $(\mathbf{x}_k, \mathbf{y}_k, \mathbf{c}_k)$ with $\mathbf{y}_k \in \Sigma^{|\mathbf{x}_k|}$ and $\mathbf{c}_k \in \mathcal{C}^{|\mathbf{x}_k|}$, where \mathbf{x}_k may contain one or more M tokens (a masked sequence) while \mathbf{y}_k is
 298 mask-free; \mathbf{y}_k and \mathbf{c}_k have the same length as the input. Core to the design of this generation process
 299 is a parameter-free (and optionally non-deterministic) transition function $g : \bar{\Sigma}^* \times \Sigma^* \times \mathcal{C}^* \rightarrow \bar{\Sigma}^*$,
 300 which takes $(\mathbf{x}_k, \mathbf{y}_k, \mathbf{c}_k)$ as input to produce the next sequence $\mathbf{x}_{k+1} \in \bar{\Sigma}^*$ that can differ in length
 301 from \mathbf{x}_k . The inclusion of input \mathbf{x}_k itself in the output of $f_\theta(\mathbf{x}_k)$ ensures that g has access to which
 302 positions are masks initially. Overall, generation is formulated as the iterative application of f_θ and g
 303 until some stopping criterion is met:

$$304 \mathbf{x}_{t+1} = g(f_\theta(\mathbf{x}_t)), \quad \text{and hence } \mathbf{x}_t = (g \circ f_\theta)^t(\mathbf{x}_0) = g \circ f_\theta \circ g \circ f_\theta \circ \cdots \circ g \circ f_\theta(\mathbf{x}_0). \quad (1)$$

305 Notably, unlike vanilla MDM, this framework imposes no restrictions on mask ratios at any given
 306 time step, therefore each decoding step can unmask an arbitrary number of tokens, and \mathbf{x}_0 can be
 307 the input prompt \mathbf{x} directly with no initial mask, as in ARM. This framework also does not limit the
 308 maximum number of decoding steps T , the stopping criterion is flexible and need not to be a fully
 309 unmasked sequence, as in ARM. We dub this class of models as *Any-Process MDM* (AP-MDM) and
 310 will detail a specific instantiation. It is not difficult to see AO-MDM is a special case of AP-MDM.
 311

312 4.1 AN INSTANTIATION WITH **UNMASK**, **REMASK**, **INSERT**, AND **DELETE** OPERATIONS

313 Define $\mathcal{C} = \{0, 1\}^3$. For each position i and time step t , the per-position control is a 3-bit vector
 314 $c_{t,i} = (c_{t,i}[1], c_{t,i}[2], c_{t,i}[3]) \in \mathcal{C}$ reserved for different purposes that will be detailed below.
 315 Correspondingly, we write $\mathbf{c}_t = (c_{t,1}, \dots, c_{t,|\mathbf{x}_t|}) \in \mathcal{C}^{|\mathbf{x}_t|}$.
 316

317 **Capability: Rewrite via Remask** We use the first bit of the per-position control $c_{t,i}[1] \in \{0, 1\}$ to
 318 control remasking (and whether to unmask) and define $\forall y \in \Sigma$:

$$319 \text{remask}_{\mathbf{x}_{t,i}, c_{t,i}}(y) = \begin{cases} M & \text{if } c_{t,i}[1] = 1 \\ 320 y & \text{if } x_{t,i} = M \text{ and } c_{t,i}[1] = 0 \\ 321 x_{t,i} & \text{otherwise} \end{cases} \quad (2)$$

322 In other words, when $c_{t,i}[1] = 1$, position i is a mask after decoding regardless of its previous state;
 323 otherwise, standard unmasking follows as usual. This operation enables self-correction and *test-time*
 324 *scaling*, allowing models to scale computation exponentially in $S(n)$ before state repetition occurs.
 325

324 Additionally, since the remasking signal can be learned from data, models can adaptively determine
 325 both decoding order and parallelization degree at each step.

326 **Capability: Length-Variable Edit via Insert / Delete** We use the second and third bits of the
 327 per-position control $c_{t,i}$ to govern insertion and deletion, respectively. Define $\forall y \in \bar{\Sigma} \cup \{\epsilon\}$:

$$329 \quad \text{insert}_{c_{t,i}}(y) = \begin{cases} (y, M) & \text{if } c_{t,i}[2] = 1 \\ y & \text{otherwise} \end{cases}, \quad \text{delete}_{x_{t,i}, c_{t,i}}(y) = \begin{cases} \epsilon & \text{if } x_{t,i} = M \text{ and } c_{t,i}[3] = 1 \\ y & \text{otherwise} \end{cases} \quad (3)$$

330 where ϵ denotes the empty string. In other words, insert adds a mask token after position i when
 331 $c_{t,i}[2] = 1$, and delete removes position i when it was originally a mask token ($x_{t,i} = M$) and $c_{t,i}[3] =$
 332 1. These operations enable dynamic sequence length adjustment based on problem complexity, with
 333 the insert operation allowing sequence length to grow exponentially as *each mask token can spawn
 334 additional masks*. Furthermore, the delete operation provides computational efficiency by freeing
 335 space during stages that require less extensive computation, reducing overall FLOPs waste. This
 336 mechanism can work orthogonally with semi-autoregression (Arriola et al., 2025) that expands space
 337 at the end of the sequence.

338 **Composition** To summarize, each decoding step applies the three operations coordinate-wise and
 339 concatenates the resulting segments:

$$340 \quad f_\theta(\mathbf{x}_t) = (\mathbf{x}_t, \mathbf{y}_t, \mathbf{c}_t), \quad g(\mathbf{x}_t, \mathbf{y}_t, \mathbf{c}_t) = (s_{t,1}, s_{t,2}, \dots, s_{t,|\mathbf{x}_t|}) = \mathbf{x}_{t+1} \quad (4)$$

$$341 \quad \text{where } s_{t,i} = \text{insert}_{c_{t,i}} \circ \text{delete}_{x_{t,i}, c_{t,i}} \circ \text{remask}_{x_{t,i}, c_{t,i}}(y_{t,i}), \quad \forall i \in [|\mathbf{x}_t|]$$

342 An algorithmic description of any-process generation with these operations is given in Algorithm 1,
 343 § C.4. And the stopping criterion can be flexibly defined, e.g. one can use generation of an EOS token
 344 (as in ARM) or convergence to a repeated sequence (loop occurs). Architecturally, implementing these
 345 capabilities requires no changes to the Transformer structure, only three additional logit dimensions
 346 are needed for producing control signals, i.e. three extra linear heads (details in § C.1).

347 **Pre-Training / Fine-Tuning / Data Availability** All three operations can be trained end-to-end
 348 from text corpora using self-supervised objectives, preserving MDM’s scalability to large-scale
 349 training (details in § C.2). The minimal architectural changes also enable direct fine-tuning from
 350 existing large diffusion models, possibly using supervised data where the underlying generation
 351 process is explicitly constructed (details in § C.3). This training flexibility separates our approach
 352 from alternatives like looped Transformers (Dehghani et al., 2018; Giannou et al., 2023), which are
 353 expressive but notoriously difficult to train due to lack of intermediate supervision.

354 **Design Considerations** The proposed three operations all revolve around the mask token M ,
 355 leveraging existing MDM’s strong unmasking capability while only adding modular extensions
 356 that are easier to pretrain or fine-tune than learning harder operations such as inversion of uniform
 357 noise (Sahoo et al., 2025). Moreover, while the definitions of g and \mathbf{c}_t in (4) suffice for achieving
 358 theoretical benefits detailed later, they are not necessary conditions; other designs are possible.

359 **Positional Encoding** When insertion or deletion operations modify sequence length, we update the
 360 positional encodings according to the new token positions. This position re-encoding mechanism
 361 is essential for AP-MDM’s expressivity advantages (§ 5) as we will show, allowing the model to
 362 represent more complex processes where position shifts carry meaningful structural information.

363 We note that the idea of remasking and editing have been individually explored in some prior/concurrent
 364 works (Wang et al., 2025; Peng et al., 2025; von Rütte et al., 2025; Havasi et al., 2025; Wu et al.,
 365 2025). However, there has not been a systematic study of guidance principles for yielding provable
 366 computational benefits and their practical implications. See discussions in § A.

370 5 THE POWER OF ANY-PROCESS GENERATION

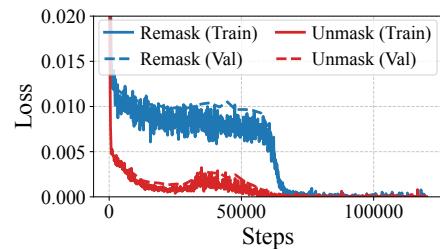
371 We now show how any-process generation circumvents various difficulties that current ARM and
 372 MDM encounter when handling tasks across different domains and complexities.

373 5.1 UNIVERSALLY EFFICIENT COMPUTATION

374 **Benefit 1:** Scalability to significantly harder problems through rewriting and backtracking.

Method	# Samples	# Param	Accuracy
ARM (w/o ordering)	1.8M	42M	9.73%
ARM (with ordering)	1.8M	42M	87.18%
AO-MDM (vanilla)	1.8M	6M	6.88%
AO-MDM (Top-K probability)	1.8M	6M	18.51%
AO-MDM (Top-K prob. margin)	1.8M	6M	89.49%
AP-MDM	100	1.2M	99.28%

386 (a) Comparison of accuracy on Sudoku.



386 (b) Convergence of losses.

387 Figure 3: Experimental results on Sudoku puzzles. Results of ARM and AO-MDM are taken from
388 Kim et al. (2025c). Losses are defined in § C.2.

390 As discussed in § 3.2, inherently hard problems (e.g. many NP-hard tasks) typically do not admit
391 sequential processes but require iterative “search–verify–revise” loops, which hold across various
392 domains: from theorem proving, solving code challenges to synthesis of complex structures in nature.
393 The pathological way current generation paradigms let discardable tokens accumulate indefinitely
394 creates scaling barriers, where space explodes and each step incurs ever-increasing computational
395 cost (Theorem 2). We now demonstrate how AP-MDM resolves this:

396 **Theorem 4** (AP-MDM Simulation of PRAM, Informal). *For any PRAM program that runs in at
397 most $T(n)$ parallel time, $P(n)$ processors and $S(n)$ memory usage, there exists an AP-MDM that
398 matches PRAM output on any given input with $\mathcal{O}(S(n))$ context length and $\mathcal{O}(T(n))$ decoding steps.
399 See formal statement in Theorem 10.*

400 By comparison, standard MDM requires space scaling with the total work $\mathcal{O}(P(n) \cdot T(n))$ (Theo-
401 rem 1), whereas AP-MDM requires only the actual space needed, achieving both optimal parallel
402 time and space complexity (Theorem 4). This implies AP-MDM not only retains the efficiency of
403 parallelization, but also dramatically expands the range of solvable problems. In particular, given
404 polynomial context length, AP-MDM can solve problems in PSPACE rather than just P, which is an
405 exponential improvement that makes many NP-hard problems solvable with test-time scaling.

406 **Experiment: Sudoku Puzzles** We conduct experiments on Sudoku puzzles, i.e. an NP-complete
407 problem when generalized to $n^2 \times n^2$ grids, requiring both the capability of any-order generation, and
408 the capability to rewrite. As illustrated in Figure 2(a), AP-MDM can use the **remask** (and standard
409 **unmask**) operations to choose the easiest position to fill first, and also erase failed branches and try
410 alternative assignments, effectively scaling computates to solve harder instances.

411 We follow the experimental setup from (Kim et al., 2025c) but with a key difference: while the
412 original work used 1.8M training puzzles, we use only 100 (moderately hard) instances for training
413 AP-MDM. Despite this significantly reduced dataset, our approach achieves near-perfect accuracy
414 (99.28%) on most Sudoku puzzles, outperforming both AO-MDM and ARM that use substantially
415 more samples and larger model sizes, as shown in Figure 3. Any-process generation is sample more
416 efficient because if the model is allowed to conduct more computes and more steps to solve the same
417 problem, each step would become easier to learn. Orthogonally, we find from the training dynamics
418 in Figure 3 that the model quickly learns to identify and fill the easiest positions (unmasking loss
419 drops rapidly), while learning the order (which position to fill next) proves more challenging.

420

5.2 STRUCTURAL GENERATION: EXAMPLES IN CODING AND SCIENCE

421 **Benefit 2:** *Generating (or reasoning over) complex structured objects that evolve non-sequentially,
422 common across domains beyond natural language (e.g. coding, science).*

423 When the evolving object involves some complex structures (e.g. trees, graphs, strings with con-
424 straints) that do not inherently build up linearly, forcing the generation into a sequential procedure
425 can introduce unnecessary computational difficulties. Such scenarios are especially common across
426 domains beyond natural language (e.g. coding, biology), which current LLMs struggle with.

427 **Example 1: Coding** Programs generally require satisfying global constraints like syntax and
428 semantics at every intermediate state during development, since building each state upon the previous
429 valid one is easier than jumping directly to the final solution. To illustrate this, consider the basic task
430 of generating matched parentheses (the Dyck- k language with k types of parentheses), as illustrated

432 in Figure 2(b). Natural generation involves inserting parentheses anywhere without breaking balance
 433 constraints, while left-to-right generation requires global foresight and constant validity checking
 434 during generation, provably impossible for Transformers at scale. Particularly, we consider a variant
 435 called the two-sided Dyck- k (Definition in § L):
 436

437 **Theorem 5 (Generating Two-Sided Dyck- k , Informal).** *For any $k \geq 2$, there exists a stochastic
 438 AP-MDM whose generation distribution has support exactly equal to the two-sided Dyck- k language,
 439 i.e., a string has positive generation probability if and only if it is in the language. Conversely, for
 440 any fixed ARM, there exists a length threshold beyond which the ARM cannot guarantee positive
 441 probability for all strings in two-sided Dyck- k . See formal statement in Theorem 12.*
 442

443 This result holds because generating Dyck language for arbitrary length is as hard as recognizing
 444 it, i.e., deciding if the current sequence has matched parentheses, which Transformer restricted
 445 in TC^0 expressivity cannot do. Intuitively, both ARM and vanilla MDM require global foresight
 446 capabilities that are computationally hard for constant-depth Transformers: ARM must foresee the
 447 matching closing brackets when generating opening ones (requiring global planning of the nested
 448 structure), while vanilla MDM must predetermine the number of tokens between each matched pair
 449 at initialization and commit to fixed positions that cannot be modified later. In contrast, AP-MDM
 450 fundamentally circumvents these difficulties through insertion operations, allowing the model to
 451 iteratively build the structure through local decisions that are simple to represent.

452 **Example 2: Science / Biology** Consider linear splicing (Head, 1987; Păun, 1996), which is DNA
 453 recombination abstracted (and perhaps over-simplified) as cutting two strings and cross-pasting their
 454 halves, as illustrated in Figure 2(d). Iterating such rules from a finite seed set generates a splicing
 455 language, and any regular language with a marker added to the left side can be generated by such a
 456 system (Head, 1998; Kari & Kopecki, 2012), while regular language has been proven impossible for
 457 constant-depth Transformers (Liu et al., 2022; Li et al., 2024).

458 To empirically verify AP-MDM’s advantage on tasks concerning non-sequential objects, we consider
 459 a graph generation task which involves structural editing.

460 **Experiment: Graph Generation** Given a directed graph and a prompt specifying source and
 461 target nodes s and t , the model is required to generate a modified graph that disconnects s and t
 462 by removing the minimum number of edges. This is equivalent to finding the min-cut. Efficient
 463 algorithms for generation typically involve iterative editing: 1) Use BFS to find a path from s to t ;
 464 2) Augment this path and modify the graph structure; 3) Repeat until s and t are disconnected, then
 465 remove the min-cut edges. Any-process generation is naturally suited for such graph editing tasks,
 466 leveraging **insert**/**delete**/**remask** operations for adaptive structural and feature modifications and
 467 MDM’s parallel capabilities, as illustrated in Figure 2(e). As shown in Figure 4, our model achieves
 468 almost perfect accuracy for increasingly larger graphs. Meanwhile, when we train ARM to simulate
 469 the same process, they fail to perform well as graph size increases.

470 471 5.3 LEARNING AND OOD GENERALIZATION

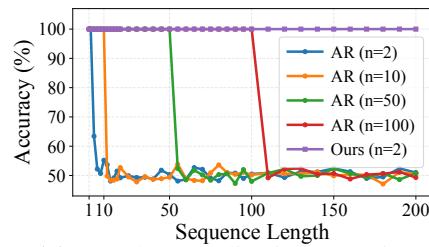
472 **Benefit 3:** *Enabling the use of simpler algorithms to solve problems, thereby improving sample
 473 efficiency and (out-of-distribution) generalization.*

474 **Experiment: Parity** Given a binary sequence $x \in \{0, 1\}^n$, parity involves determining if there
 475 are an even or odd number of 1s. This task is conceptually trivial but embarrassingly difficult for
 476 LLMs. Intuitively, the difficulty arises because ARM is forced to attend the entire input and learn a
 477 position-invariant target function, which is hard on training sequences with finite-length. With any-
 478 process generation, the model circumvents this difficulty by learning a simple elimination algorithm:
 479 examine the first two tokens, **delete** all 0s if the pair contains any 0 or **delete** the pair if both are 1s,
 480 then repeat until all are processed (Figure 2(c)). The answer is true if any 1s remain. This mimics
 481 how humans solves the problem, a simple length-generalizable approach only possible with deletion.

482 As shown in Figure 4, our model achieves 100% accuracy on **any length** after training on only $n = 2$
 483 length sequences with a tiny model (~ 200 parameters), while ARM with orders of magnitude more
 484 parameters and samples fails to generalize beyond training lengths.

Graph Size (# Nodes)	ARM Acc.	AP-MDM Acc.
4	90.32%	100%
5	43.04%	100%
6	0.30%	100%
7	N/A	100%
8	N/A	99.99%
9	N/A	99.97%
10	N/A	99.92%

(a) Graph generation via editing.



(b) Length generalization on parity.

Figure 4: Graph generation and parity task results.

5.4 HARDNESS OF BEING SIMULATED

Benefit 4: *If in the future we have access to data of underlying generation processes (e.g. revision history of code, articles, math proof drafts, molecular formation processes), any-process MDM is more suitable than ARM for practical training.*

Besides scalability to harder tasks (§ 5.1) and universality across domains (§ 5.2), a crucial question remains: suppose given access to datasets containing revision histories of the objects we wish to generate, would AP-MDM be the most appropriate model for such data and large-scale training? To answer this, we consider ARM as a competitor as it is Turing-complete, and equally expressive as AO-MDM (Theorem 3) when controlled for orthogonal factors.

We next show ARM is inherently unsuitable for training on editing datasets in two ways. **Firstly**, unlike any-order generation (Theorem 3), AP-MDM’s editing operations is hard to be simulated by ARM by explicitly specifying editing operations applied at each decoding step; particularly

Theorem 6 (Hardness of Simulating AP-MDM, Informal). *There exists a constant-depth AP-MDM, such that no constant-depth ARM can simulate the generation process of that AP-MDM using a sequence of triplets, i.e., what operation to use (**unmask**, **remask**, **insert**, **delete**), where to apply the operation (position) and what to write for the unmask operation (token), on any input \mathbf{x} , under some complexity hardness assumptions in § M. See formal statement in Theorem 13.*

The key difficulty of simulating AP-MDM lies in the additional complexity brought by the insertion and deletion operations that trigger position shifts: ARM must internally reconstruct the entire editing trajectory to determine what token currently occupies each position (formalized via the PRESERVE problem in § M), which is computationally hard for constant-depth Transformers.

Empirically, we show that representing our generation process using triplets described above for ARM simulation indeed becomes increasingly difficult to train as sequence length grows, as demonstrated in the graph generation task in § 5.2.

Secondly, if we disregard the resource constraints from § 5.1 and § 5.2, simulation becomes possible through additional intermediate steps, but this could require highly contrived trajectories that defeat the purpose of practical training, e.g. periodically summarize the current state, or using more than constant tokens to represent each application of an operation.

6 CONCLUSION

This paper provides formal analysis of generation processes and shows, provably and empirically, that moving beyond standard autoregression and current masked diffusion yields more powerful models. These results suggest concrete design principles for frontier LLMs, pointing to training and decoding schemes that scale to increasingly hard tasks and generalize across domains such as code and the sciences. See further contextualization with respect to related work in § A.

536 USAGE OF LARGE LANGUAGE MODELS

537 In this work, we use LLMs for literature retrieval and discovery, writing assistance and polishing, 538 and code writing and debugging support. We carefully monitor potential issues such as plagiarism or 539 factual inaccuracies to ensure academic integrity.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Eric Allender, Tanmoy Chakraborty, David A Mix Barrington, Samir Datta, and Sambuddha Roy.
546 Grid graph reachability problems. In *21st Annual IEEE Conference on Computational Complexity*
547 (*CCC’06*), pp. 15–27. IEEE, 2006.

548 Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge
549 University Press, 2009.

550 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
551 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
552 sive and diffusion language models. *arXiv preprint arXiv:2503.09573*, 2025.

553 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
554 denoising diffusion models in discrete state-spaces. In *Advances in Neural Information Processing*
555 *Systems*, volume 34, pp. 17981–17993, 2021.

556 Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. *arXiv preprint*
557 *arXiv:2403.06963*, 2024.

558 Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
559 and Owain Evans. The reversal curse: Llms trained on “a is b” fail to learn “b is a”. *arXiv preprint*
560 *arXiv:2309.12288*, 2023.

561 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
562 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
563 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

564 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
565 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
566 *Recognition*, pp. 11335–11345, 2022.

567 Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
568 convolutional networks. In *International conference on machine learning*, pp. 933–941. PMLR,
569 2017.

570 DeepMind. Gemini diffusion, 2025. URL <https://deepmind.google/models/gemini-diffusion/>.

571 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
572 transformers. *arXiv preprint arXiv:1807.03819*, 2018.

573 Ethan Ewer, Daewon Chae, Thomas Zeng, Jinkyu Kim, and Kangwook Lee. Entp: Encoder-only
574 next token prediction. *arXiv preprint arXiv:2410.01600*, 2024.

575 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
576 the mystery behind chain of thought: a theoretical perspective. *Advances in Neural Information*
577 *Processing Systems*, 36, 2024.

578 Steven Fortune and James Wyllie. Parallelism in random access machines. In *Proceedings of the*
579 *tenth annual ACM symposium on Theory of computing*, pp. 114–118, 1978.

580 Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
581 decoding of conditional masked language models. *arXiv preprint arXiv:1904.09324*, 2019.

582 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
583 Papailiopoulos. Looped transformers as programmable computers. In *International Conference on*
584 *Machine Learning*, pp. 11398–11442. PMLR, 2023.

585 Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. *Limits to parallel computation: P-*
586 *completeness theory*. Oxford university press, 1995.

594 Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanassee,
 595 Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
 596 diffusion. *Advances in neural information processing systems*, 36:12489–12517, 2023.

597

598 Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred
 599 generation order. *Transactions of the Association for Computational Linguistics*, 7:661–676,
 600 2019a.

601 Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. *Advances in neural informa-*
 602 *tion processing systems*, 32, 2019b.

603

604 Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
 605 operations. *arXiv preprint arXiv:2506.09018*, 2025.

606

607 Thomas Head. Splicing languages generated with one sided context. *Computing With Bio-molecules:*
 608 *Theory and Experiments*, pp. 269–282, 1998.

609

610 Tom Head. Formal language theory and dna: an analysis of the generative capacity of specific
 611 recombinant behaviors. *Bulletin of mathematical biology*, 49(6):737–759, 1987.

612

613 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 614 *neural information processing systems*, 33:6840–6851, 2020.

615

616 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 617 and multinomial diffusion: Learning categorical distributions. *Advances in neural information*
 618 *processing systems*, 34:12454–12465, 2021.

619

620 Joseph JáJá. *Parallel algorithms*. 1992.

621

622 Lila Kari and Steffen Kopecki. Deciding whether a regular language is generated by a splicing system.
 623 In *International Workshop on DNA-Based Computers*, pp. 98–109. Springer, 2012.

624

625 Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngotiaoco,
 626 Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion. *arXiv preprint*
 627 *arXiv:2509.01025*, 2025a.

628

629 Jaeyeon Kim, Seunggeun Kim, Taekyun Lee, David Z Pan, Hyeji Kim, Sham Kakade, and Sitan
 630 Chen. Fine-tuning masked diffusion for provable self-correction. *arXiv preprint arXiv:2510.01384*,
 631 2025b.

632

633 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the worst, plan
 634 for the best: Understanding token ordering in masked diffusions, 2025c.

635

636 Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
 637 Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language models
 638 based on diffusion. *arXiv preprint arXiv:2506.17298*, 2025.

639

640 Yann LeCun. Do large language models need sensory grounding for meaning and understanding. In
 641 *Workshop on Philosophy of Deep Learning, NYU Center for Mind, Brain, and Consciousness and*
 642 *the Columbia Center for Science and Society*, 2023.

643

644 Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
 645 Saeed Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
 646 diffusion. *arXiv preprint arXiv:2501.06158*, 2025.

647

648 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
 649 solve inherently serial problems. *arXiv preprint arXiv:2402.12875*, 2024.

650

651 Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
 652 learn shortcuts to automata. *arXiv preprint arXiv:2210.10749*, 2022.

653

654 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
 655 ratios of the data distribution. In *International Conference on Machine Learning*, 2024. URL
 656 <https://arxiv.org/abs/2310.16834>.

648 Sidi Lu, Tao Meng, and Nanyun Peng. Insnet: An efficient, flexible, and performant insertion-based
 649 text generation model. *Advances in Neural Information Processing Systems*, 35:7011–7023, 2022.
 650

651 Eran Malach. Auto-regressive next-token predictors are universal learners. *arXiv preprint*
 652 *arXiv:2309.06979*, 2023.

653 Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn. Encode, tag,
 654 realize: High-precision text editing. *arXiv preprint arXiv:1909.01187*, 2019.

655

656 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
 657 *International Conference on Learning Representations*, 2024.

658

659 William Merrill and Ashish Sabharwal. Exact expressive power of transformers with padding. *arXiv*
 660 *preprint arXiv:2505.18948*, 2025.

661

662 William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
 663 threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856,
 664 2022.

665

666 Vaishnav Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice &
 667 look before you leap: Going beyond the creative limits of next-token prediction. *arXiv preprint*
 668 *arXiv:2504.15266*, 2025.

669

670 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 671 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025.

672

673 Gheorghe Păun. On the splicing operation. *Discrete Applied Mathematics*, 70(1):57–79, 1996.

674

675 Fred Zhangzhi Peng, Zachary Bezemer, Sawan Patel, Jarrid Rector-Brooks, Sherwood Yao,
 676 Avishek Joey Bose, Alexander Tong, and Pranam Chatterjee. Path planning for masked diffusion
 677 model sampling, 2025.

678

679 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 680 understanding by generative pre-training. 2018.

681

682 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 683 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

684

685 David Hill Robinson. *Parallel algorithms for group word problems*. University of California, San
 686 Diego, 1993.

687

688 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Mariano Marroquin,
 689 Justin T Chiu, Alexander M Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion
 690 language models. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 691 *Systems*, 2024. URL <https://openreview.net/forum?id=L4uaAR4ArM>.

692

693 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
 694 Volodymyr Kuleshov. The diffusion duality. In *International Conference on Machine Learning*,
 695 2025. URL <https://arxiv.org/abs/2506.10892>.

696

697 Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
 698 search and reasoning capabilities on logic puzzles. *Advances in Neural Information Processing*
 699 *Systems*, 37:56674–56702, 2024.

700

701 Claude E Shannon. Prediction and entropy of printed english. *Bell system technical journal*, 30(1):
 702 50–64, 1951.

703

704 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
 705 generalized masked diffusion for discrete data. In *Advances in Neural Information Processing*
 706 *Systems*, volume 37, 2024.

707

708 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 709 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 710 pp. 2256–2265. pmlr, 2015.

702 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 703 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 704 *arXiv:2011.13456*, 2020.

705 Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
 706 sequence generation via insertion operations. In *International Conference on Machine Learning*,
 707 pp. 5976–5985. PMLR, 2019.

708 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
 709 can transformers express? a survey. *Transactions of the Association for Computational Linguistics*,
 710 12:543–561, 2024.

711 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
 712 *Advances in neural information processing systems*, 36:3706–3731, 2023.

713 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 714 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
 715 *processing systems*, pp. 5998–6008, 2017.

716 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 717 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
 718 2022.

719 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 720 Hofmann. Generalized interpolating discrete diffusion. *arXiv preprint arXiv:2503.04482*, 2025.

721 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 722 Hofmann. Generalized interpolating discrete diffusion, 2025.

723 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
 724 diffusion models with inference-time scaling. *arXiv preprint arXiv:2503.00307*, 2025.

725 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
 726 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
 727 intelligence. *Nature*, 620(7972):47–60, 2023.

728 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 729 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 730 *neural information processing systems*, 35:24824–24837, 2022.

731 Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In *International Conference*
 732 *on Machine Learning*, pp. 11080–11090. PMLR, 2021.

733 Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
 734 generation. In *International Conference on Machine Learning*, pp. 6716–6726. PMLR, 2019.

735 Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria W.,
 736 Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infilling beyond
 737 fixed-size canvas, 2025. URL <https://hkunlp.github.io/blog/2025/dreamon/>.
 738 Blog post.

739 Shuchen Xue, Tianyu Xie, Tianyang Hu, Zijin Feng, Jiacheng Sun, Kenji Kawaguchi, Zhenguo
 740 Li, and Zhi-Ming Ma. Any-order gpt as masked diffusion model: Decoupling formulation and
 741 architecture. *arXiv preprint arXiv:2506.19935*, 2025.

742 Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into
 743 softmax transformers. *arXiv preprint arXiv:2404.04393*, 2024.

744 Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li. Pencil: Long thoughts with short
 745 memory. *arXiv preprint arXiv:2503.14337*, 2025.

746 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
 747 Xlnet: Generalized autoregressive pretraining for language understanding. *Advances in neural*
 748 *information processing systems*, 32, 2019.

756 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
757 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025.
758

759 Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
760 by superposition: A theoretical perspective on chain of continuous thought. *arXiv preprint*
761 *arXiv:2505.12514*, 2025.

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810	CONTENTS		
811			
812	1	Introduction	1
813			
814	2	Preliminary	4
815			
816	3	A Theory of Masked Diffusion	4
817			
818	3.1	Power of Parallelism	4
819			
820	3.2	(Un)Scalability to Hard Tasks	5
821			
822	3.3	(Limited) Power of Any-Order Generation	5
823			
824	4	Any-Process Generation	6
825			
826	4.1	An Instantiation with unmask , remask , insert , and delete Operations	6
827			
828	5	The Power of Any-Process Generation	7
829			
830	5.1	Universally Efficient Computation	7
831			
832	5.2	Structural Generation: Examples in Coding and Science	8
833			
834	5.3	Learning and OOD Generalization	9
835			
836	5.4	Hardness of Being Simulated	10
837			
838	6	Conclusion	10
839			
840	A	Related Work	18
841			
842	B	Background: Masked Diffusion Model	18
843			
844	C	Methodological Details	19
845			
846	C.1	Model Architecture	19
847			
848	C.2	Self-Supervised Training	19
849			
850	C.3	Supervised Training	20
851			
852	C.4	Inference-Time Algorithm	22
853			
854	D	Implementation Details	22
855			
856	E	Parallel Random Access Machine	22
857			
858	E.1	Definition and Execution Process of Word-RAM	23
859			
860	E.2	Extension to CREW PRAM	25
861			
862	F	Encoder Transformer Architecture	27
863			
864	G	Key Tool: Encoder Full-Access Sequence Processing (E-FASP)	28
865			
866	G.1	Definition of E-FASP	29
867			
868	G.2	Equivalence with Encoder Transformer	30
869			
870	G.3	Two Variants of E-FASP	30

864	G.4 Original Supported Operators	31
865	G.5 Additional Operators and Justifications	32
867		
868	H Proof of Theorem 1	33
869		
870	I Proof of Theorem 2	37
871		
872	J Proof of Theorem 3	38
873		
874	K Proof of Theorem 4	39
875		
876	L Proof of Theorem 5	44
877		
879	M Proof of Theorem 6	45
880		
881	N Experiment: Sudoku Puzzle	47
882		
883		
884	O Experiment: Graph Generation	52
885		
886	P Experiment: Parity	53
887		
888		
889		
890		
891		
892		
893		
894		
895		
896		
897		
898		
899		
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		

918 **A RELATED WORK**

919
 920 Masked diffusion models (Hoogeboom et al., 2021; Austin et al., 2021; Lou et al., 2024; Sahoo et al.,
 921 2024; Shi et al., 2024) extend continuous diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
 922 2020; Song et al., 2020) to discrete data. Early work applied these models to specialized domains such
 923 as graph generation (Vignac et al., 2022; Sun & Yang, 2023), protein design (Gruver et al., 2023), and
 924 drug discovery (Lee et al., 2025), where non-sequential generation provides natural advantages. The
 925 field has evolved with recent commercial-scale language models like Gemini Diffusion (DeepMind,
 926 2025) and Mercury (Labs et al., 2025), which demonstrate competitive performance on language
 927 generation, reasoning, and coding tasks. This suggests that MDMs can serve as viable alternatives
 928 to the autoregressive models that currently dominate LLMs. Against this background, this paper
 929 investigates the fundamental computational differences between generation paradigms and explores
 930 whether more powerful generation methods exist.
 931

931 Several works have explored extensions to standard MDM through mechanisms that enable rewriting
 932 and editing (von Rütte et al., 2025; Wang et al., 2025; Peng et al., 2025; Havasi et al., 2025; Wu
 933 et al., 2025; Kim et al., 2025a), which relate to our any-process generation framework. Wang et al.
 934 (2025) introduces random remasking during inference, though this capability is not learned from
 935 data. Lou et al. (2024); von Rütte et al. (2025); Sahoo et al. (2025) propose adding uniform noise in
 936 the forward process rather than using masks, with models learning to revert them in the backward
 937 process, but this approach generally underperforms since modifying tokens directly appears more
 938 difficult than unmasking. Peng et al. (2025) introduces path planning to control generation, though
 939 the planner is not trained end-to-end with the base model. Current with ours: Havasi et al. (2025)
 940 introduces edit operations to flow matching frameworks but faces similar limitations as uniform noise
 941 approaches; Kim et al. (2025a) and Kim et al. (2025b) introduce to insert tokens at any position and
 942 remask tokens, while Wu et al. (2025) proposes expansion and delete, but these capabilities per se are
 943 insufficient for handling hard reasoning tasks as discussed in § 3.

944 Before MDM, there are also some earlier explorations of non-autoregressive generation processes.
 945 Insertion-based models such as the Insertion Transformer (Stern et al., 2019), InDIGO (Gu et al.,
 946 2019a), non-monotonic sequential text generation (Welleck et al., 2019), the Levenshtein Trans-
 947 former (Gu et al., 2019b), and InsNet (Lu et al., 2022) generate text by repeatedly inserting (and
 948 sometimes deleting) tokens at arbitrary positions, while XLNet (Yang et al., 2019) generalizes autore-
 949 gressive pretraining to random permutations of the factorization order. LaserTagger (Malmi et al.,
 950 2019) and Mask-Predict (Ghazvininejad et al., 2019) formulate generation as iteratively predicting
 951 edit tags or filling masks in parallel. These methods demonstrate that alternative generation orders
 952 and local edits can bring empirical benefits on specific tasks, but most of them are defined based on
 953 particular architectures and decoding heuristics. In contrast, this work provides a unified formalization
 954 that subsumes insertion, deletion, and (re)masking operations as special cases, and first systematic
 955 analysis of their computational power with comparison to ARM and MDM.
 956

957 **B BACKGROUND: MASKED DIFFUSION MODEL**

958 We introduce the preliminaries of diffusion language models or masked diffusion models (MDM),
 959 following the notation established in § 2. Let $\bar{\Sigma} = \Sigma \cup \{\mathbf{M}\}$ be the extended vocabulary where \mathbf{M}
 960 is the mask special token. Consider sequences $\mathbf{x}_t = (x_{t,1}, x_{t,2}, \dots, x_{t,S}) \in \bar{\Sigma}^S$ indexed by time
 961 $t \in [T]$, where S is the maximum context length, T is the number of decoding steps, $\mathbf{x}_0 = \{\mathbf{M}\}^S$ is
 962 the fully masked sequence and $\mathbf{x}_T \in \Sigma^S$ is the target clean sequence.
 963

Forward Noising Process The forward noising process constructs training data by generating
 964 noisy versions \mathbf{x}_t from clean sequences \mathbf{x}_T . Unlike the discrete inference steps in § 2, training uses
 965 continuous time $t \in [0, T]$ with larger t denoting later denoising steps. MDM employs the *absorbing*
 966 *mask kernel* (Austin et al., 2021) where the signal ratio $\alpha_t = t/T$ represents the marginal probability
 967 that a token remains unmasked. Since α_t increases monotonically with t (i.e., $\alpha_s < \alpha_t$ for $s < t$),
 968 later timesteps preserve more original tokens, consistent with our convention where $t = 0$ is fully
 969 masked and $t = T$ is clean. At each position i , tokens either stay unchanged or become \mathbf{M} , and once
 970 masked, they “absorb” into this state. The marginal distribution is:

$$q(x_{t,i} | x_{T,i}) = \text{Cat}(x_{t,i}; \alpha_t \mathbf{e}_{x_{T,i}} + (1 - \alpha_t) \mathbf{e}_{\mathbf{M}}) \quad (5)$$

972 where \mathbf{e}_v denotes the one-hot vector for token $v \in \bar{\Sigma}$. To obtain noised sequence \mathbf{x}_t from \mathbf{x}_T , we
 973 compute the masking probability $1 - \alpha_t$ and mask each position independently with this probability.
 974

975 **Training Objective** The reverse process aims to recover \mathbf{x}_T from \mathbf{x}_0 . MDM parameterizes
 976 $p_\theta(\mathbf{x}_T \mid \mathbf{x}_t, t)$ to predict the clean data directly (but as mentioned in § 2, many recent large-scale
 977 MDMs omit explicit timestep embeddings). For the absorbing mask kernel, the true posterior
 978 $q(\mathbf{x}_s \mid \mathbf{x}_t, \mathbf{x}_T)$ for $s < t$ has an analytical form. For each position i :

$$q(x_{s,i} \mid x_{t,i}, x_{T,i}) = \begin{cases} \text{Cat}(x_{s,i}; \mathbf{e}_{x_{t,i}}), & \text{if } x_{t,i} \neq \mathbf{M} \\ \text{Cat}\left(x_{s,i}; \frac{(1-\alpha_s)\mathbf{e}_M + (\alpha_t - \alpha_s)\mathbf{e}_{x_{T,i}}}{1-\alpha_s}\right), & \text{if } x_{t,i} = \mathbf{M} \end{cases} \quad (6)$$

982 This means that, if position i is not masked at time t , it remains unchanged at time s ; if position i is
 983 masked at time t , it transitions probabilistically between the original token and mask. The training
 984 objective is derived from the variational lower bound. For the absorbing mask kernel, it simplifies to:
 985

$$\mathcal{L}_{\text{CE}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,T), \mathbf{x}_T \sim p_{\text{data}}, \mathbf{x}_t \sim q(\mathbf{x}_t \mid \mathbf{x}_T)} \left[-\frac{1}{|\{i : x_{t,i} = \mathbf{M}\}|} \sum_{i : x_{t,i} = \mathbf{M}} \log p_\theta(x_{T,i} \mid \mathbf{x}_t, t) \right] \quad (7)$$

989 The loss is computed only on masked positions and averaged over the number of masked tokens,
 990 making this equivalent to conditional masked language modeling with proper normalization. Here,
 991 t is sampled uniformly from the continuous interval $[0, T]$ during training, \mathbf{x}_T is sampled from the
 992 data distribution, and \mathbf{x}_t is obtained by applying the forward noising process.
 993

C METHODOLOGICAL DETAILS

C.1 MODEL ARCHITECTURE

997 As described in § 4, AP-MDM extends standard MDM with three additional capabilities: **remask**
 998 (rewrite via remasking), **insert** (insert masks), and **delete** (remove redundant masks). In principle,
 999 these capabilities can be implemented using a shared encoder-only Transformer backbone with three
 1000 additional linear heads, adding minimal computational overhead.
 1001

1002 **Architecture** Following Equation (4), AP-MDM uses four prediction heads on top of a shared
 1003 encoder-only Transformer backbone. Given the hidden representation $\mathbf{h}_{t,i} \in \mathbb{R}^d$ for position i , the
 1004 heads output logits and probabilities:

$$p_\theta(y_{t,i} \mid \mathbf{x}_t) = \text{softmax}(\mathbf{W}_U \mathbf{h}_{t,i} + \mathbf{b}_U), \quad \mathbf{W}_U \in \mathbb{R}^{|\Sigma| \times d} \quad (\text{unmask}) \quad (8)$$

$$c_{t,i}[1] = \sigma(\mathbf{W}_R \mathbf{h}_{t,i} + \mathbf{b}_R), \quad \mathbf{W}_R \in \mathbb{R}^{d \times 1} \quad (\text{remask}) \quad (9)$$

$$c_{t,i}[2] = \sigma(\mathbf{W}_I \mathbf{h}_{t,i} + \mathbf{b}_I), \quad \mathbf{W}_I \in \mathbb{R}^{d \times 1} \quad (\text{insert}) \quad (10)$$

$$c_{t,i}[3] = \sigma(\mathbf{W}_D \mathbf{h}_{t,i} + \mathbf{b}_D), \quad \mathbf{W}_D \in \mathbb{R}^{d \times 1} \quad (\text{delete}) \quad (11)$$

1011 where the unmask head outputs a probability distribution $p_\theta(y_{t,i} \mid \mathbf{x}_t)$ over the vocabulary Σ for
 1012 predicting tokens at masked positions, while the three control signal heads output binary probabilities
 1013 for the corresponding operations. During inference, tokens are obtained via $y_{t,i} = \arg \max p_\theta(\cdot \mid \mathbf{x}_t)$
 1014 and control signals are obtained by thresholding.

C.2 SELF-SUPERVISED TRAINING

1017 In principle, one can design specialized loss functions corresponding to each operation, alongside
 1018 the standard unmasking loss from MDM, by constructing self-supervised signals from the inherent
 1019 structure of text data through augmentation strategies.
 1020

1021 **Unmasking Loss** The unmasking loss would follow standard MDM training as described in
 1022 Appendix B. For each training sample \mathbf{x}_T , one can sample $t \sim \mathcal{U}(0, T)$ and apply the forward
 1023 masking process with signal ratio $\alpha_t = t/T$ to create \mathbf{x}_t :

$$x_{t,i} = \begin{cases} x_{T,i} & \text{with probability } \alpha_t \\ \mathbf{M} & \text{with probability } 1 - \alpha_t \end{cases} \quad (12)$$

1026 The model would learn to predict original tokens at masked positions with time weighting:
 1027

$$\mathcal{L}_{\text{unmask}} = \mathbb{E}_{t, \mathbf{x}_T, \mathbf{x}_t} \left[\frac{1}{\sum_i m_i} \sum_{i=1}^{|\mathbf{x}_T|} m_i \cdot \left(-\frac{\log p_{\theta}(x_{T,i} | \mathbf{x}_t)}{t} \right) \right] \quad (13)$$

1031 where $m_i = 1$ if position i is valid (according to attention mask), 0 otherwise.
 1032

1033 **Remasking Loss** The remasking loss could train the model to identify incorrect tokens that should
 1034 be remasked. For each sample \mathbf{x}_T , one can sample $t \sim \mathcal{U}(0, T)$ and create a corrupted sequence $\tilde{\mathbf{x}}_t$
 1035 using batch-internal shuffling (which effectively samples from the empirical token distribution rather
 1036 than a biased uniform distribution):

$$\tilde{x}_{t,i} = \begin{cases} x_{T,i} & \text{with probability } \alpha_t \\ \text{shuffled token} & \text{with probability } 1 - \alpha_t \end{cases} \quad (14)$$

1039 The remasking labels are $c_{t,i}[1] = \mathbf{1}[x_{T,i} \neq \tilde{x}_{t,i}]$, and the loss uses binary cross-entropy:
 1040

$$\mathcal{L}_{\text{remask}} = \mathbb{E}_{t, \mathbf{x}_T, \tilde{\mathbf{x}}_t} \left[\frac{1}{\sum_i m_i} \sum_{i=1}^{|\mathbf{x}_T|} m_i \cdot \text{BCE}(\text{logit}_{R,i}, c_{t,i}[1]) \right] \quad (15)$$

1044 where m_i indicates valid positions and BCE denotes binary cross-entropy with logits.
 1045

1046 **Insert Loss** The insert loss could teach the model to identify positions where additional content is
 1047 needed. For each sample \mathbf{x}_T , one can sample deletion probability $\delta \sim \mathcal{U}(0, 1)$ and generate deletion
 1048 indicators for each position i . One would create the deflated sequence $\tilde{\mathbf{x}}$ by removing tokens at
 1049 randomly selected positions. The insert labels would be $c_{t,j}[2] = 1$ for positions j that remain in $\tilde{\mathbf{x}}$
 1050 where the next position was deleted, 0 otherwise:

$$\mathcal{L}_{\text{insert}} = \mathbb{E}_{\delta, \mathbf{x}_T, \tilde{\mathbf{x}}} \left[\frac{1}{\sum_j m_j} \sum_{j=1}^{|\tilde{\mathbf{x}}|} m_j \cdot \text{BCE}(\text{logit}_{I,j}, c_{t,j}[2]) \right] \quad (16)$$

1054 where m_j indicates valid positions in the deflated sequence.
 1055

1056 **Delete Loss** The delete loss could train the model to distinguish between necessary and redundant
 1057 mask tokens. One can use a two-step masking process: first apply standard MDM masking with
 1058 $\alpha_t = t/T$ to create \mathbf{x}_{base} , then sample insertion probability $\gamma \sim \mathcal{U}(0, 1)$ to insert additional M tokens
 1059 at randomly selected positions. The delete labels would distinguish mask origins:
 1060

$$c_{t,i}[3] = \begin{cases} 1 & \text{if } \hat{x}_{t,i} = \mathbf{M} \text{ and inserted in step 2} \\ 0 & \text{otherwise} \end{cases} \quad (17)$$

1062 The loss uses binary cross-entropy:
 1063

$$\mathcal{L}_{\text{delete}} = \mathbb{E}_{\gamma, \mathbf{x}_T, \hat{\mathbf{x}}_t} \left[\frac{1}{\sum_k m_k} \sum_{k=1}^{|\hat{\mathbf{x}}_t|} m_k \cdot \text{BCE}(\text{logit}_{D,k}, c_{t,k}[3]) \right] \quad (18)$$

1067 where m_k indicates valid positions in the contracted sequence.
 1068

1069 **Combined Training Objective** In principle, an AP-MDM training objective could balance all four
 1070 capabilities:
 1071

$$\mathcal{L}_{\text{AP-MDM}} = \mathcal{L}_{\text{unmask}} + \lambda_r \mathcal{L}_{\text{remask}} + \lambda_i \mathcal{L}_{\text{insert}} + \lambda_d \mathcal{L}_{\text{delete}} \quad (19)$$

1072 where $\lambda_r, \lambda_i, \lambda_d > 0$ are hyperparameters controlling the relative importance of each operation with
 1073 default value 1.
 1074

1075 C.3 SUPERVISED TRAINING

1077 In addition to the self-supervised training approach described in § C.2, AP-MDM can also be trained
 1078 with explicit supervision when state-transition data is available. This applies to scenarios where we
 1079 have access to the underlying generation process. It can also be combined with the self-supervised
 approach in § C.2 for hybrid training, e.g. self-supervised in pretraining and supervised in finetuning.

1080
1081 **Algorithm 1** Any-Process Generation with **unmask**, **remask**, **insert**, and **delete** Operations
1082 **Require:** Trained model f_θ , input prompt \mathbf{x}
1083 **Ensure:** Generated sequence $\mathbf{x}_{\text{final}}$

1: $\mathbf{x}_0 \leftarrow \mathbf{x}$ ▷ Initialize with input prompt
2: $t \leftarrow 0$
3: **while** stopping criterion not met **do**
4: $(\mathbf{x}_t, \mathbf{y}_t, \mathbf{c}_t) \leftarrow f_\theta(\mathbf{x}_t)$ ▷ Model forward pass
5: $\mathbf{z}_t \leftarrow []$ ▷ Initialize temporary sequence
6: **for** $i = 1$ to $|\mathbf{x}_t|$ **do**
7: **if** $c_{t,i}[3] = 1$ and $x_{t,i} = \mathbf{M}$ **then** ▷ **delete** operation
8: **continue** ▷ Skip this position
9: **end if**
10: **if** $c_{t,i}[1] = 1$ **then** ▷ Determine token value: Remask > Unmask > Keep
11: Append \mathbf{M} to \mathbf{z}_t ▷ **remask** operation
12: **else if** $x_{t,i} = \mathbf{M}$ **then** ▷ **unmask** operation
13: Append $y_{t,i}$ to \mathbf{z}_t
14: **else** ▷ Keep unchanged
15: Append $x_{t,i}$ to \mathbf{z}_t
16: **end if**
17: **if** $c_{t,i}[2] = 1$ **then** ▷ **insert** operation
18: Append \mathbf{M} to \mathbf{z}_t
19: **end if**
20: **end if**
21: **end for**
22: $\mathbf{x}_{t+1} \leftarrow \mathbf{z}_t$
23: $t \leftarrow t + 1$
24: **end while**
25: **return** \mathbf{x}_t

Data Format Each training sample consists of a state-transition tuple $(\mathbf{x}_k, \mathbf{y}^*, \mathbf{c}^*)$ where:

- $\mathbf{x}_k \in \bar{\Sigma}^*$: current state (potentially containing M tokens)
- $\mathbf{y}^* \in \Sigma^{|\mathbf{x}_k|}$: target tokens for each position
- $\mathbf{c}^* = (c_1^*, \dots, c_{|\mathbf{x}_k|}^*)$ where $c_i^* \in \mathcal{C} = \{0, 1\}^3$: ground-truth control signals

Training Objective Given the state-transition data, the model learns to predict both the target tokens and control signals. The training objective consists of four components:

For positions where $x_{k,i} = \text{M}$ and $y_i^* \neq \text{M}$, predict the target token.

$$\mathcal{L}_{\text{unmask}}^{\sup} = -\frac{1}{|\{i : x_{k,i} = \mathsf{M}, y_i^* \neq \mathsf{M}\}|} \sum_{i : x_{k,i} = \mathsf{M}, y_i^* \neq \mathsf{M}} \log p_{\theta}(y_i^* \mid \mathbf{x}_k) \quad (20)$$

For all valid positions, predict the control signals:

$$\mathcal{L}_{\text{remark}}^{\text{sup}} = \frac{1}{\sum_i m_i} \sum_{i=1}^{|\mathbf{x}_k|} m_i \cdot \text{BCE}(\text{logit}_{R,i}, c_i^*[1]) \quad (21)$$

$$\mathcal{L}_{\text{insert}}^{\text{sup}} = \frac{1}{\sum_i m_i} \sum_{i=1}^{|x_k|} m_i \cdot \text{BCE}(\text{logit}_{I,i}, c_i^*[2]) \quad (22)$$

$$\mathcal{L}_{\text{delete}}^{\text{sup}} = \frac{1}{\sum_i m_i} \sum_i m_i \cdot \text{BCE}(\text{logit}_{D,i}, c_i^*[3]) \quad (23)$$

1134 where m_i indicates valid positions and BCE denotes binary cross-entropy with logits.
 1135
 1136

Combined Objective:

1137
$$\mathcal{L}_{\text{AP-MDM}}^{\text{sup}} = \mathcal{L}_{\text{unmask}}^{\text{sup}} + \lambda_r \mathcal{L}_{\text{remask}}^{\text{sup}} + \lambda_i \mathcal{L}_{\text{insert}}^{\text{sup}} + \lambda_d \mathcal{L}_{\text{delete}}^{\text{sup}}$$
 (24)
 1138

1139 **C.4 INFERENCE-TIME ALGORITHM**
 1140

1141 As described in § 4, AP-MDM generation follows an iterative process formulated as $\mathbf{x}_{t+1} =$
 1142 $g(f_{\theta}(\mathbf{x}_t))$. We provide the complete inference-time sampling algorithm that implements the transition
 1143 function g following Equation (4).

1144 The algorithm implements the transition function $g(\mathbf{x}_t, \mathbf{y}_t, \mathbf{c}_t)$ as defined in Equation (4). Thresholds
 1145 τ_r, τ_i, τ_d control when operations are applied (default value 0.5 for all). The algorithm supports
 1146 variable-length generation through dynamic insertion and deletion, and terminates when a stopping
 1147 criterion is met (e.g., sequence convergence, generation of special tokens, or reaching a maximum
 1148 iteration limit).

1149

1150 **D IMPLEMENTATION DETAILS**
 1151

1152 We provide implementation details for the experiments described in the main paper. All models are
 1153 built on encoder-only Transformer architecture as described in § F, with task-specific configurations
 1154 detailed below.

1155

1156 **Model Architecture** All models are based on encoder-only Transformer architecture with rotary
 1157 positional embeddings (RoPE). For AP-MDM, we add three binary classification heads (remask,
 1158 insert, delete) on top of the standard unmask head. We use no timestep embedding and set time
 1159 conditioning to zero during supervised training. For Sudoku, we use 6 layers, 4 attention heads,
 1160 hidden dimension $d = 256$, feed-forward dimension $4d = 1024$, maximum sequence length 400,
 1161 vocabulary size 31. For Parity, we use 1 layer, 1 attention head, hidden dimension $d = 4$, feed-forward
 1162 dimension $4d = 16$, maximum sequence length 3, vocabulary size 6, with approximately 200 total
 1163 parameters. For Graph, we use 8 layers, 4 attention heads, hidden dimension $d = 256$, feed-forward
 1164 dimension $4d = 1024$, maximum sequence length set to accommodate graphs of varying sizes,
 1165 vocabulary size 55; the same configuration is used for the ARM baseline.

1166

1167 **Training Data Generation** For supervised training as described in § C.3, training data consists
 1168 of state-transition tuples $(\mathbf{x}_k, \mathbf{y}^*, \mathbf{c}^*)$ generated by simulating the natural solving or generation
 1169 algorithms for each task. Starting from ground-truth target solutions, we execute task-specific
 1170 algorithms and record the intermediate computation states at each step. For each state, we capture the
 1171 current sequence \mathbf{x}_k (with unknown or unfilled positions represented as M), the target values \mathbf{y}^* to be
 1172 revealed, and the control decisions \mathbf{c}^* indicating which operations (unmask, remask, insert, delete)
 1173 should be applied. Concrete examples of data generation for Sudoku, Parity, and Graph tasks are
 1174 provided in § N, § P, and § O, respectively.

1175

1176 **Training Details** We train all models using AdamW optimizer with learning rate 10^{-4} , $(\beta_1, \beta_2) =$
 1177 $(0.9, 0.999)$, weight decay 0.01, and batch size 256. Learning rate follows a constant schedule with
 1178 250 warmup steps. We use mixed precision training (bfloating16) with gradient clipping at 1.0. Loss
 1179 weights are set to $\lambda_r = \lambda_i = \lambda_d = 1.0$ by default. Models are trained for up to 1M steps or until
 1180 convergence. For Graph generation, we use 100K graph instances for training both AP-MDM and the
 1181 ARM baseline. For Parity, we use only 4 training samples for AP-MDM, while the ARM baseline is
 1182 trained with up to 10K instances.

1183

1184 **E PARALLEL RANDOM ACCESS MACHINE**
 1185

1186

1187 The Random Access Machine (RAM) (Arora & Barak, 2009) serves as the foundational theoretical
 1188 model for sequential computation, featuring a single processor that can access any memory location
 1189 in unit time regardless of address—hence “random access”, along with a finite set of registers and
 1190 basic arithmetic/logical operations. This contrasts with models like Turing machines where memory

1188 access is sequential. The RAM’s key strength lies in its realistic abstraction of modern computers: it
 1189 captures the essential computational primitives (arithmetic, memory access, conditional branching)
 1190 while abstracting away hardware details, making it ideal for algorithm analysis.

1191 The Parallel Random Access Machine (PRAM) (Fortune & Wyllie, 1978; JáJá, 1992) extends this
 1192 familiar RAM model to parallel computation by allowing $P(n)$ processors to operate synchronously
 1193 on shared memory with $\mathcal{O}(\log n)$ -bit word size.³ Each processor in PRAM maintains its own program
 1194 counter and unique identifier, enabling conditional branching and coordinated computation. The
 1195 model operates in discrete synchronous time steps where all active processors execute simultaneously,
 1196 inheriting RAM’s unit-cost random access property while adding the complexity of concurrent
 1197 memory operations.

1198 **PRAM Variants** PRAM has several variants, which differ in their memory access discipline,
 1199 forming a hierarchy with precise complexity relationships. Let EREW, CREW, CRCW-Common,
 1200 CRCW-Arbitrary and CRCW-Priority denote the classes of problems solvable in polynomial parallel
 1201 time with polynomially many processors under each model, listed in order of increasing expressivity:
 1202

- 1204 • **EREW** (Exclusive Read, Exclusive Write): No concurrent access to any memory cell. Most
 1205 restrictive but captures essential parallelism.
- 1206 • **CREW** (Concurrent Read, Exclusive Write): Multiple processors may read the same cell simulta-
 1207 neously. Enables broadcast in $\mathcal{O}(1)$ time vs. $\Theta(\log n)$ in EREW.
- 1208 • **CRCW-Common**: Concurrent writes allowed only if all writers agree on the value. Boolean OR
 1209 computable in $\mathcal{O}(1)$ time.
- 1210 • **CRCW-Arbitrary**: Any concurrent writer may succeed; the choice is made arbitrarily (often
 1211 modeled as random selection).
- 1212 • **CRCW-Priority**: Concurrent writes resolved by processor priority with various schemes (e.g.,
 1213 minimum/maximum index, sum of conflicting values).

1215 Crucially, any algorithm in a stronger model can be simulated in a weaker model with at most
 1216 $\mathcal{O}(\log n)$ parallel time overhead (JáJá, 1992). This polylogarithmic separation appears in basic
 1217 primitives, broadcast requires $\Theta(\log n)$ rounds in EREW but $\mathcal{O}(1)$ in CREW, yet the models remain
 1218 polynomially equivalent for most complexity-theoretic purposes. **We adopt the CREW model**
 1219 **throughout this paper**, where different processors are not allowed to write to the same memory cell
 1220 simultaneously.

1221 PRAM, as an idealized abstraction of shared-memory multiprocessor systems, enables precise analysis
 1222 of parallel algorithms and gives rise to parallel complexity classes such as NC (Arora & Barak, 2009)
 1223 (problems solvable in polylogarithmic parallel time using polynomially many processors). For
 1224 example, PRAM can simulate algorithms on trees, linear arrays, meshes, and hypercubes without loss
 1225 of parallel time, while reverse simulation costs at most $\mathcal{O}(\log^2 P(n))$ overhead; Boolean circuits of
 1226 depth D can be simulated on CREW in $\mathcal{O}(D)$ time, making PRAM a natural model for measuring
 1227 parallel time complexity in theory.

1228 Below, we provide a more formal definition that will be used in proofs.

1230 E.1 DEFINITION AND EXECUTION PROCESS OF WORD-RAM

1232 We formalize the standard word-RAM that matches a single-processor PRAM (i.e., $P(n) = 1$).
 1233 Throughout, let the input length be n and fix the word size $w(n) = \Theta(\log n)$.

1235 **Word Size, Universe, and Addresses.** Let the word universe be $\mathbb{U} = \{0, 1, \dots, 2^w - 1\}$ with
 1236 arithmetic modulo 2^w (two’s-complement semantics). The address space is $\mathcal{A} = \{0, 1, \dots, S(n) - 1\}$
 1237 for some $S(n) \leq n^{\mathcal{O}(1)}$. Memory is a mapping $M : \mathcal{A} \rightarrow \mathbb{U}$, *zero-initialized*.

1240 ³The $\mathcal{O}(\log n)$ -bit word size choice ensures that pointer arithmetic, indexing, and basic integer operations on
 1241 polynomially bounded values are unit-time, matching the standard RAM assumptions and avoiding artificial
 1242 speedups due to unrealistically wide words.

1242 Let $a(n) = \lceil \log_2 S(n) \rceil$ denote the address width. We adopt the transdichotomous condition:

1243 $w(n) \geq \max\{\lceil \log_2 S(n) \rceil, \lceil \log_2 P(n) \rceil\} \quad \text{and} \quad w(n) = \Theta(\log n). \quad (25)$

1244 This ensures every address and processor ID fits in one word, enabling well-typed register-indirect
1245 addressing and processor identification.

1246 **Instruction Set and Semantics.** The machine operates with register names $\text{Reg} = \{0, 1, \dots, k\}$
1247 (for constant k), register file $R \in \mathbb{U}^{k+1}$, immediate constants $\text{Imm} \subset \mathbb{Z}$ (a fixed finite set independent
1248 of n and w), and label identifiers Lab for jump targets.⁴ We assume a constant-size register file with
1249 $|\text{Reg}| \geq 2$ in the proof (any constant ≥ 2 suffices up to constant factors). Programs define a partial
1250 label table $\text{addr} : \text{Lab} \rightarrow \{0, \dots, \ell\}$ mapping each declared label to its instruction index (injective).

1251 The instruction alphabet Instr consists of the following parameterized forms ($r, s \in \text{Reg}$, $c \in \text{Imm}$,
1252 $L \in \text{Lab}$):

1253
$$\begin{aligned} \text{Instr} = & \{ \text{LOAD } r, [s], \text{STORE } [s], r, \text{LOADI } r, c \} \\ & \cup \{ \text{ADD } r, s, \text{SUB } r, s, \text{AND } r, s, \text{XOR } r, s, \text{SHL } r, s, \text{SHR } r, s \} \\ & \cup \{ \text{BRZ } r, L, \text{JMP } L, \text{HALT} \}. \end{aligned}$$

1254 Unbracketed registers r, s denote their word values $R_r, R_s \in \mathbb{U}$. The bracketed form $[s]$ denotes
1255 register-indirect addressing: $\text{LOAD } r, [s]$ reads $M[R_s]$ into R_r , and $\text{STORE } [s], r$ writes R_r to
1256 $M[R_s]$. Bracketed operands are only allowed in LOAD/STORE ; nested or arithmetic addressing (e.g.,
1257 $[[s]], [r+c]$) is not part of this ISA. If $R_s \notin \mathcal{A}$, execution traps. Immediates are loaded as $c \bmod 2^w$.

1258 The semantics of the instructions are as follows. We write $\sigma \rightarrow \sigma'$ for one execution step. Unless a
1259 jump changes it, set $\text{pc} \leftarrow \text{pc} + 1$ where $\text{pc} \in \{0, \dots, \ell\} \cup \{\text{HALT}\}$ is the program counter. Let \oplus
1260 and \wedge denote bitwise XOR and AND; let \ll and \gg denote logical shifts; all arithmetic is modulo 2^w .

- 1261 • $\text{LOAD } r, [s]$: $a \leftarrow R_s; R_r \leftarrow M[a]$.
- 1262 • $\text{STORE } [s], r$: $a \leftarrow R_s; M[a] \leftarrow R_r$.
- 1263 • $\text{LOADI } r, c$: $R_r \leftarrow c \bmod 2^w$.
- 1264 • $\text{ADD } r, s / \text{SUB } r, s$: $R_r \leftarrow (R_r \pm R_s) \bmod 2^w$.
- 1265 • $\text{AND } r, s / \text{XOR } r, s$: $R_r \leftarrow R_r \wedge R_s / R_r \leftarrow R_r \oplus R_s$.
- 1266 • $\text{SHL } r, s$ or $\text{SHR } r, s$: $h \leftarrow R_s \bmod w$; SHL : $R_r \leftarrow (R_r \ll h) \bmod 2^w$; SHR : $R_r \leftarrow \lfloor R_r / 2^h \rfloor$
1267 (logical right shift, zero fill).
- 1268 • $\text{BRZ } r, L$: If $R_r = 0$ then $\text{pc} \leftarrow \text{addr}(L)$ else (no change to pc beyond $+1$).
- 1269 • $\text{JMP } L$: $\text{pc} \leftarrow \text{addr}(L)$.
- 1270 • $\text{pc} \leftarrow \text{HALT}$ and execution stops.

1271 Intuitively, LOAD and STORE handle memory access through register-indirect addressing, LOADI
1272 loads immediate constants, ADD/SUB perform modular arithmetic, AND/XOR enable bitwise operations,
1273 SHL/SHR provide bit shifts. BRZ (branch if zero) enables conditional branching, JMP provides
1274 unconditional jumps, and HALT terminates execution.

1275 **Programs and Configurations.** A *program* is a pair $\mathcal{P} = (I_0, \dots, I_\ell, \text{addr})$ with $I_i \in \text{Instr}$
1276 and a partial label table $\text{addr} : \text{Lab} \rightarrow \{0, \dots, \ell\}$ mapping each declared label to its instruction
1277 index (injective). The program is *well formed* if whenever some I_i equals $\text{JMP } L$ or $\text{BRZ } r, L$, then
1278 $L \in \text{dom}(\text{addr})$. Code is immutable during execution and independent of n (and thus the RAM model
1279 considered here is uniform). A *configuration* is $\sigma = (\text{pc}, R, M)$ where $\text{pc} \in \{0, \dots, \ell\} \cup \{\text{HALT}\}$
1280 is the program counter, $R \in \mathbb{U}^{k+1}$ is the register file, and $M : \mathcal{A} \rightarrow \mathbb{U}$ is memory. Input occupies
1281 $M[0..n-1]$; output is read from a designated location upon termination.

1282 **Initialization.** Given an input instance of length n , initialization proceeds as follows:

1283 ⁴A label is a human-readable name for a program location (instruction index) serving as a jump/branch target.

1296 1. Build the label table addr from the loaded code and check well-formedness (every label operand
 1297 in the code must appear exactly once as a declared label).
 1298 2. Zero-initialize memory M and write the input into a designated block (e.g., $M[0..n - 1]$) using
 1299 the agreed-upon encoding.
 1300 3. Set all registers to zero: $R_i \leftarrow 0$ for $i \in \{0, \dots, k\}$.
 1301 4. Set the program counter to the first instruction: $\text{pc} \leftarrow 0$.

1303 The choice $w \geq \lceil \log_2 S(n) \rceil$ ensures that register-indirect addressing is well-typed: a bracketed
 1304 operand $[s]$ uses R_s as an address in \mathcal{A} .
 1305

1306 **Execution Cycle.** While $\text{pc} \neq \text{HALT}$ and no trap occurs, the machine advances in discrete steps.
 1307 Each successful step costs one time unit. Let I_{pc} denote the instruction at index pc . Each step follows
 1308 the fetch-decode-execute-commit cycle:

1310 1. **Fetch:** Read the current instruction $I \leftarrow I_{\text{pc}}$. If $\text{pc} \notin \{0, \dots, \ell\}$, the run is invalid and we define
 1311 this as a trap.
 1312 2. **Decode and read operands:** Parse the opcode and operands of I without changing the machine
 1313 state. Unbracketed registers r, s denote their current word values $R_r, R_s \in \mathbb{U}$ (used as data).
 1314 A bracketed operand $[s]$ denotes the candidate address $a \leftarrow R_s$. An immediate $c \in \text{Imm}$ is
 1315 interpreted as $c \bmod 2^w$. A label L resolves to $\text{addr}(L)$ (guaranteed by well-formedness). No
 1316 writes occur in this phase.
 1317 3. **Execute:** Apply the instruction semantics of I to compute a finite *write-set* W (register and/or
 1318 memory locations with their new values) and the *next program counter* pc_{next} . For memory-
 1319 referencing instructions, a bracketed operand $[s]$ is valid only if $a = R_s \in \mathcal{A}$; otherwise a trap
 1320 occurs. By default $\text{pc}_{\text{next}} = \text{pc} + 1$, except for jumps/branches/halting which set it to $\text{addr}(L)$ (or
 1321 HALT).
 1322 4. **Commit (writeback):** Atomically apply the writes in W to (R, M) and then set $\text{pc} \leftarrow \text{pc}_{\text{next}}$.
 1323 Atomicity means all effects of the step become visible only at the end of the step.
 1324 5. **Cost and continuation:** If no trap occurred, charge one unit of time for this step and proceed to
 1325 the next; otherwise the run aborts (abnormal termination), and only successfully committed steps
 1326 are counted.

1327 **Termination and Complexity.** Execution halts when $\text{pc} = \text{HALT}$. The algorithm's output is read
 1328 from the designated output location(s) in memory (or registers) as specified by the program. Under
 1329 the assumptions above and for well-formed programs with legal memory accesses, the step relation is
 1330 deterministic and yields a unique next state at each iteration. The *time complexity* of an algorithm is
 1331 the number of executed instructions before halting. A *trap* aborts the run immediately (abnormal
 1332 termination); only successfully committed steps are counted in time.

1334 The RAM model defined here is polynomially equivalent to bit-complexity RAM (a $\Theta(\log n)$ factor
 1335 separates their running times) and to richer word-RAMs that add `MUL`/`DIV`/`POPCNT`/`CLZ` (whose
 1336 presence typically improves only by constant or $\log \log n$ factors).

1337 E.2 EXTENSION TO CREW PRAM

1339 We extend the Word-RAM defined above to a parallel machine with a processor-budget function
 1340 $P : \mathbb{N} \rightarrow \mathbb{N}$ (typically $P(n) \leq n^{\mathcal{O}(1)}$). All word-size/address-width assumptions, the instruction
 1341 alphabet Instr , the immediate-set restriction, and the *single-processor* instruction semantics are
 1342 exactly as in the Word-RAM subsection.

1344 **Processors and Shared State.** Processors are indexed by $i \in \{0, \dots, P(n) - 1\}$. Each processor
 1345 has its own program counter and register file; memory is shared:

$$1347 \Sigma = ((\text{pc}_0, \dots, \text{pc}_{P(n)-1}), (R^0, \dots, R^{P(n)-1}), M),$$

1348 where $\text{pc}_i \in \{0, \dots, \ell\} \cup \{\text{HALT}\}$ and $R^i = (R_0^i, \dots, R_k^i) \in \mathbb{U}^{k+1}$. All processors run the same
 1349 program $\mathcal{P} = (I_0, \dots, I_\ell, \text{addr})$.

Algorithm 2 Single-Processor Execution (Word-RAM semantics with PID init)

Note. In PRAM, STORE generates a pending write committed at the end of the round under the CREW rule. In the single-processor case, the store can be applied immediately.

Require: Program $\mathcal{P} = (I_0, \dots, I_\ell, \text{addr})$, shared memory $M : \mathcal{A} \rightarrow \mathbb{U}$, word size w , processor id pid , processor budget $P(n)$ (optional)

1: **Init:** $pc \leftarrow 0$; $R[j] \leftarrow 0$ for all j ; $R[0] \leftarrow \text{pid}$; **optional:** $R[1] \leftarrow P(n) \bmod 2^w$

2: **while** $pc \neq \text{HALT}$ **do**

3: $I \leftarrow I_{pc}$ ▷ fetch

4: $pc_{\text{next}} \leftarrow pc + 1$ ▷ default fall-through

5: **if** I is LOAD $r, [s]$ **then** ▷ decode

6: $a \leftarrow R[s]$

7: **if** $a \notin \mathcal{A}$ **then**

8: **trap**

9: **end if**

10: $R[r] \leftarrow M[a]$ ▷ execute

11: **else if** I is STORE $[s], r$ **then**

12: $a \leftarrow R[s]$

13: **if** $a \notin \mathcal{A}$ **then**

14: **trap**

15: **end if**

16: $M[a] \leftarrow R[r]$ ▷ in PRAM semantics, this is a write event to be committed this round

17: **else if** I is LOADI r, c **then**

18: $R[r] \leftarrow c \bmod 2^w$

19: **else if** I is ADD r, s **then**

20: $R[r] \leftarrow (R[r] + R[s]) \bmod 2^w$

21: **else if** I is SUB r, s **then**

22: $R[r] \leftarrow (R[r] - R[s]) \bmod 2^w$

23: **else if** I is AND r, s **then** ▷ bitwise AND

24: $R[r] \leftarrow R[r] \wedge R[s]$

25: **else if** I is XOR r, s **then** ▷ bitwise XOR

26: $R[r] \leftarrow R[r] \oplus R[s]$

27: **else if** I is SHL r, s **then**

28: $h \leftarrow R[s] \bmod w$

29: $R[r] \leftarrow (R[r] \ll h) \bmod 2^w$

30: **else if** I is SHR r, s **then**

31: $h \leftarrow R[s] \bmod w$

32: $R[r] \leftarrow \lfloor R[r] / 2^h \rfloor$ ▷ logical right shift, zero-fill

33: **else if** I is BRZ r, L **then**

34: **if** $R[r] = 0$ **then**

35: $pc_{\text{next}} \leftarrow \text{addr}(L)$

36: **end if**

37: **else if** I is JMP L **then**

38: $pc_{\text{next}} \leftarrow \text{addr}(L)$

39: **else if** I is HALT **then**

40: $pc_{\text{next}} \leftarrow \text{HALT}$

41: **else**

42: **trap** ▷ unknown opcode or malformed operands

43: **end if**

44: $pc \leftarrow pc_{\text{next}}$ ▷ commit PC; regs/memory updated in each branch above

45: **end while**

Initialization (with Processor IDs). At time $t = 0$:

1. Build addr and check well-formedness (as in Word-RAM); zero-initialize M and write the input block.
2. For each $i \in \{0, \dots, P(n) - 1\}$, set $\text{pc}_i \leftarrow 0$ and clear registers; then write *processor-local identifiers*: $R_0^i \leftarrow i$ and, if $P(n) \leq 2^{w(n)}$, optionally $R_1^i \leftarrow P(n) \bmod 2^{w(n)}$. All other $R_j^i \leftarrow 0$.

1404 These two words are provided so that processors can branch, partition work, and self-disable if
 1405 unused.

1406
 1407 **Concurrent-Access Policy (CREW).** Multiple processors may *read* the same address in the same
 1408 round; *writes must be exclusive*: if two or more writes target the same address in a round, the run
 1409 traps (abnormal termination).

1410
 1411 **Round Semantics (Referencing the Word-RAM Step).** Each active processor executes exactly
 1412 one instruction using the single-processor Word-RAM step semantics; the only new aspects are
 1413 (i) simultaneous execution by many processors and (ii) end-of-round memory commit subject to
 1414 the CREW policy. Execution proceeds in synchronous rounds $t = 0, 1, 2, \dots$ with state $\Sigma_t =$
 1415 $((\text{pc}_i^t), (R^{i,t}), M^t)$. In round t , each active processor i with $\text{pc}_i^t \in \{0, \dots, \ell\}$ executes instruction
 1416 $I_{\text{pc}_i^t}$ on its local snapshot $(\text{pc} = \text{pc}_i^t, R = R^{i,t})$ and shared memory M^t . After all processors
 1417 compute their local effects, the round commits: register writebacks $R^{i,t} \rightarrow R^{i,t+1}$ (independently),
 1418 then memory writes to M^{t+1} under CREW constraints, finally program counter updates pc_i^{t+1} .

1419
 1420 **Termination and Cost Measures.** The parallel run terminates when $\text{pc}_i^t = \text{HALT}$ for all i (or
 1421 traps on an invalid access/conflict). One round costs one unit of *parallel time*. The *work* is the total
 1422 number of executed instructions $W(n) = \sum_t |\{i : \text{pc}_i^t \in \{0, \dots, \ell\}\}|$, and the *span* is $T_\infty(n)$ (the
 1423 critical-path length). For $P(n)$ processors the Brent bound holds (JáJa, 1992):

$$T_{P(n)}(n) \leq \left\lceil \frac{W(n)}{P(n)} \right\rceil + T_\infty(n).$$

1424 A single-processor run ($P(n) = 1$) coincides with the Word-RAM model.
 1425

1426
 1427 **Remarks (on $P(n)$, Processor IDs, and Unused Processors).** (1) *Uniformity*: the code \mathcal{P} and the
 1428 immediate set lmm are independent of n ; only the hardware parameters $w(n)$, $S(n)$, and $P(n)$ scale
 1429 with input size. (2) *Processor IDs*: the values i and $P(n)$ are provided via initialization registers (R_0^i
 1430 and optionally R_1^i) for branching and work partitioning; programs may copy/overwrite them. (3)
 1431 *Unused processors*: if an algorithm needs only $m(n) \leq P(n)$ processors, each processor executes
 1432 a short self-filter based on i (e.g., if $i \geq m(n)$ then HALT), or computes its assigned block;
 1433 processors with empty assignment halt in $O(1)$ rounds, which does not affect the asymptotic parallel
 1434 time.

1435 The algorithm for a single-processor in PRAM is shown in Algorithm 2.
 1436

1437 F ENCODER TRANSFORMER ARCHITECTURE

1438
 1439 This section presents encoder-only Transformers, which form the backbone of MDM. We will
 1440 first establish the sequence-wise extension operation, then define the core components, including
 1441 bidirectional self-attention, multi-head mechanisms, and feed-forward layers, before assembling the
 1442 complete architecture.

1443 We consider an encoder-only Transformer with H heads, L layers, hidden size d , and feed-forward
 1444 width w . We will use the following notations:

1445
 1446 **Definition 4** (Position-Indexed Seq-to-Embedding Function). *For a set B , let $\mathcal{H}(B)$ denote the set
 1447 of all functions ψ such that for every sequence $x = (x_1, \dots, x_n) \in \Sigma^*$ and every index $i \in [n]$, the
 1448 value $\psi(x, i) \in B$ is defined. We write this succinctly as*

$$\psi : (\Sigma^*, \mathbb{N}) \rightarrow B. \quad (26)$$

1449
 1450 and call this position-indexed seq-to-embedding function. We also define $\mathcal{H} = \cup_{d \in \mathbb{N}^+} \mathcal{H}(\mathbb{R}^d)$ as the
 1451 union of all such classes across real spaces of all output dimensions.

1452
 1453 **Definition 5** (Canonical Extension to Seq-to-Seq Function). *Given a position-indexed seq-to-
 1454 embedding function $\psi \in \mathcal{H}(B)$, its canonical extension is defined as:*

$$\bar{\psi} : \Sigma^* \rightarrow B^* \quad \text{where} \quad [\bar{\psi}(x)]_i = \psi(x, i) \quad (i \in [|x|]). \quad (27)$$

1455
 1456 For elementwise functions $g : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$, we define $\bar{g} : (\mathbb{R}^d)^* \rightarrow (\mathbb{R}^{d'})^*$ by $[\bar{g}(h_{1:n})]_i = g(h_i)$,
 1457 which is a special case where $\psi(h_{1:n}, i) = g(h_i)$ (ignoring cross-position context). When the arity is
 1458 clear, we reuse the bar notation for both position-indexed and elementwise extensions.

1458 We now define the individual components of encoder Transformers:
 1459

1460 **Bidirectional Self-Attention.** The key difference from decoder Transformers is bidirectional
 1461 attention, where each position can attend to all positions in the sequence. Let d_h be the head
 1462 dimension. For $W_Q, W_K, W_V \in \mathbb{R}^{d_h \times d}$ and $W_O \in \mathbb{R}^{d \times d_h}$, we define single-head attention on
 1463 sequence of embeddings $h_{1:n} \in (\mathbb{R}^d)^n$ for any $n \in \mathbb{N}^+$:

$$1464 \quad q_i = W_Q h_i, \quad k_j = W_K h_j, \quad v_j = W_V h_j \quad (28)$$

$$1466 \quad [SA_\theta(h_{1:n})]_i = W_O \sum_{j=1}^n \alpha_{ij} v_j \quad (29)$$

1468 with $\alpha_{i,:} = \text{softmax}((q_i^\top k_j)_{j=1}^n)$, $\theta = (W_Q, W_K, W_V, W_O)$. Position i attends to all $j \in [n]$
 1469 without causal restrictions. We use standard $1/\sqrt{d_h}$ scaling.
 1470

1471 **Multi-Head Attention.** With $\theta_{\text{MHA}} = (\theta^{(1)}, \dots, \theta^{(H)})$, we combine heads via summation:
 1472

$$1473 \quad [MHA_{\theta_{\text{MHA}}}(h_{1:n})]_i = \sum_{t=1}^H [SA_{\theta^{(t)}}(h_{1:n})]_i \quad (30)$$

1475 for any $i \in [n]$. Note that this differs from practical implementations which concatenate heads with
 1476 dimension d/H each, but maintains equivalent theoretical expressivity.
 1477

1478 **Feed-Forward and Projection.** Let $w = d_{\text{FF}}$. For $W_1 \in \mathbb{R}^{w \times d}$ and $W_2 \in \mathbb{R}^{d \times w}$:

$$1479 \quad \text{FF}_\theta(h) = W_2 \sigma(W_1 h) \quad (31)$$

1481 For output projection, $\text{PROJ}_\vartheta : \mathbb{R}^d \rightarrow \mathbb{R}^{|\Sigma|}$ with $\text{PROJ}_\vartheta(h) = \vartheta h$ and $\vartheta \in \mathbb{R}^{|\Sigma| \times d}$. We apply these
 1482 via sequence-wise extension: $\overline{\text{FF}}$ and $\overline{\text{PROJ}}$.

1483 For AP-MDM as described in § 4, besides the above heads for **unmask**, it would require three
 1484 additional binary classification heads on top of the final layer: $\text{PROJ}_R : \mathbb{R}^d \rightarrow \mathbb{R}$ for **remask**,
 1485 $\text{PROJ}_I : \mathbb{R}^d \rightarrow \mathbb{R}$ for **insert**, and $\text{PROJ}_D : \mathbb{R}^d \rightarrow \mathbb{R}$ for **delete** operations, each followed by
 1486 sigmoid activation. Therefore, PROJ_ϑ is a mapping from \mathbb{R}^d to $\mathbb{R}^{|\Sigma|+3}$.
 1487

1488 **Embeddings.** Define token embedding $\text{TE} : \Sigma \rightarrow \mathbb{R}^d$ and positional embedding $\text{PE} : \mathbb{N}^+ \rightarrow \mathbb{R}^d$
 1489 (which can be flexibly chosen and will be specified when used). Combined as $\text{TE} + \text{PE}$. We write
 1490 TE , PE for their sequence-wise extensions when clear from context.

1491 **Residual Connections.** The identity function $\text{Id}_d : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined by $\text{Id}_d(x) = x$. A *residual*
 1492 connection is defined as $f + \text{Id}_d$, where Id_d is the identity function.
 1493

1494 Next, we assemble these components into the encoder transformer architecture:

1495 **Definition 6** (Encoder Transformer layer). *An encoder layer is defined as:*

$$1496 \quad \text{EncTF}_{\text{MHA}, \text{FF}} = (\overline{\text{FF}} + \overline{\text{Id}_d}) \circ (\text{MHA}_{\theta_{\text{MHA}}} + \overline{\text{Id}_d}) : (\mathbb{R}^d)^* \rightarrow (\mathbb{R}^d)^* \quad (32)$$

1498 **Definition 7** (Encoder Transformer). *With parameters $\theta = (\theta_{\text{TE}}, \theta_{\text{PE}}, (\theta_{\text{MHA}}^{(\ell)})_{\ell=1}^L, (\theta_{\text{FF}}^{(\ell)})_{\ell=1}^L, \theta_{\text{PROJ}})$,
 1499 the encoder transformer is:*

$$1500 \quad \text{Enc}_\theta = \overline{\text{PROJ}_{\theta_{\text{PROJ}}}} \circ \left(\bigcirc_{\ell=1}^L \text{EncTF}_{\theta_{\text{MHA}}^{(\ell)}, \theta_{\text{FF}}^{(\ell)}} \right) \circ (\text{TE}_{\theta_{\text{TE}}} + \text{PE}_{\theta_{\text{PE}}}) \quad (33)$$

1501 *The model applies embeddings, then L encoder layers, then position-wise projection to vocabulary
 1502 logits. Output length equals input length n .*
 1503

1504 G KEY TOOL: ENCODER FULL-ACCESS SEQUENCE PROCESSING (E-FASP)

1507 In this section, we develop Full-Access Sequence Processing for encoders (E-FASP), a programming
 1508 language whose programs describe the construction process of seq-to-embedding functions that are
 1509 equivalent to those computed by encoder-only Transformers. This extends the FASP framework
 1510 originally developed for decoder-only Transformers in Yang et al. (2025). Similar connections have
 1511 also been established in Weiss et al. (2021); Yang & Chiang (2024).

1511 E-FASP is the key technical tool that will be used to prove Theorem 1, Theorem 3 and Theorem 4.

1512 G.1 DEFINITION OF E-FASP
15131514 **Notations.** Recall that in § F, we defined the position-indexed seq-to-embedding function space
1515 $\mathcal{H}(B)$ as the set of all functions ψ that map a sequence and a position index to an element in B :
1516

1517
$$\psi : (\Sigma^*, [\cdot]) \rightarrow B \quad (34)$$

1518 That is, for every sequence $\mathbf{x} = (x_1, \dots, x_n) \in \Sigma^*$ and every index $i \in [n]$, we have $\psi(\mathbf{x}, i) \in B$.
1519 We also define $\mathcal{H} = \cup_{d \in \mathbb{N}^+} \mathcal{H}(\mathbb{R}^d)$ as the union of all such classes across real spaces of all output
1520 dimensions. For any position-indexed function $\psi \in \mathcal{H}(B)$, its canonical extension $\bar{\psi} : \Sigma^* \rightarrow B^*$ is
1521 defined by $[\bar{\psi}(\mathbf{x})]_i = \psi(\mathbf{x}, i)$ for $i \in [|\mathbf{x}|]$. This allows us to convert position-indexed functions to
1522 sequence-to-sequence functions when needed.
15231524 Also recall that $\text{PE} : \mathbb{N}^+ \rightarrow \mathbb{R}^d$ is a positional embedding, and we additionally define \mathcal{T}_{ACT} as a
1525 class of activation functions. We formally define E-FASP as follows:
15261527 **Definition 8** (Encoder-FASP). *An E-FASP program is a sequence of position-indexed seq-to-embedding
1528 functions ψ_1, \dots, ψ_T constructed inductively. At each step $t \in [T]$, the program maintains
1529 a set of defineable position-indexed seq-to-embedding functions \mathcal{P}_t , and defines a new function by
1530 applying operators to functions in \mathcal{P}_t . We define the defineable functions at step $t \in [T]$:*
1531

1532
$$\mathcal{P}_t \triangleq \{\text{TE}, \text{PE}\} \cup \{\psi_i \mid 1 \leq i \leq t-1\} \quad (35)$$

1533 where $\text{TE}(\mathbf{x}, i) = \text{TE}(x_i)$ and $\text{PE}(\mathbf{x}, i) = \text{PE}(i)$ are the token and positional embedding functions
1534 respectively, viewed as position-indexed seq-to-embedding functions. ψ_t at step t has to be defined by
1535 applying one of the following four primitive operators on already-defined functions from \mathcal{P}_t :
15361537 1. **Concatenation:** For $\psi, \psi' \in \mathcal{P}_t$ with $\psi \in \mathcal{H}(\mathbb{R}^{d_1})$ and $\psi' \in \mathcal{H}(\mathbb{R}^{d_2})$, define
1538

1539
$$[\psi, \psi'](\mathbf{x}, i) = (\psi(\mathbf{x}, i) \parallel \psi'(\mathbf{x}, i)) \in \mathbb{R}^{d_1+d_2} \quad (36)$$

1540 where \parallel denotes vector concatenation.
15411542 2. **Linear Projection:** For $\psi \in \mathcal{P}_t$ with $\psi \in \mathcal{H}(\mathbb{R}^d)$ and matrix $W \in \mathbb{R}^{d' \times d}$, define
1543

1544
$$(W \circ \psi)(\mathbf{x}, i) = W \cdot \psi(\mathbf{x}, i) \in \mathbb{R}^{d'} \quad (37)$$

1545 3. **Nonlinear Activation:**⁵ For $\psi \in \mathcal{P}_t$ with $\psi \in \mathcal{H}(\mathbb{R}^d)$ and $\sigma \in \mathcal{T}_{\text{ACT}}$, define
1546

1547
$$(\sigma \circ \psi)(\mathbf{x}, i) = \sigma(\psi(\mathbf{x}, i)) \quad (38)$$

1548 4. **Encoder Average-Hard Attention:** For $q, k \in \mathcal{H}(\mathbb{R}^d)$ and $v \in \mathcal{H}(\mathbb{R}^{d'})$ where $q, k, v \in \mathcal{P}_t$, define
1549

1550
$$\text{aha}(q, k, v)(\mathbf{x}, i) = \frac{1}{|A_i|} \sum_{j \in A_i} v(\mathbf{x}, j) \quad (39)$$

1551 where $A_i = \arg \max_{j \in [|\mathbf{x}|]} \langle q(\mathbf{x}, i), k(\mathbf{x}, j) \rangle$ and ties are averaged uniformly. This attention can
1552 be seen as a special case of standard softmax attention with temperature approaching 0 (Merrill
1553 et al., 2022).
15541555 Finally, when we want to use E-FASP to define a function mapping from a sequence of tokens Σ^*
1556 and a position index i to a single token in Σ , we can define $\psi \in \mathcal{H}(\mathbb{R}^{|\Sigma|})$ and return $\arg \max \psi(\mathbf{x}, i)$
1557 (the token corresponding to the largest logit at the position i).⁶
15581559 We denote the set of all position-indexed seq-to-embedding functions defineable by E-FASP with
1560 position embedding PE and activation functions \mathcal{T}_{ACT} as $\text{E-FASP}[\text{PE}; \mathcal{T}_{\text{ACT}}]$, where PE can be
1561 either BiPE or SEQ. The expressivity of E-FASP depends on the specific positional embedding and
1562 activation functions used.
15631564 ⁵We allow multi-variable activation functions like Gated ReLU (ReGLU), $x, y \mapsto x[y]_+$.
1565 ⁶We could assume an arbitrary order to break ties, but we omit this for simplicity. In our examples we always
1566 ensure the argmax is unique.

1566
1567

G.2 EQUIVALENCE WITH ENCODER TRANSFORMER

1568
1569

We now establish the equivalence between E-FASP and encoder-only Transformers, and define the specific instantiation considered in the proof of this paper.

1570
1571
1572
1573
1574

Definition 9 (Encoder Transformer Function Class). *Let $\mathcal{H}_{EncTF[PE; \mathcal{T}_{ACT}]}$ be the class of seq-to-embedding functions that can be expressed by encoder-only Transformers of finite depth, where the positional embedding uses PE (either BiPE or SEQ), feed-forward layers use activation functions from \mathcal{T}_{ACT} , attention layers use average-hard attention as defined in Equation (39), and all intermediate computations use finite precision arithmetic.*

1575
1576
1577

It is straightforward to see that both variants are equivalent to their corresponding Transformer function classes:

1578
1579

Lemma 7 (Equivalence of E-FASP and Encoder Transformers). *For any positional embedding $PE \in \{BiPE, SEQ\}$ and activation function class \mathcal{T}_{ACT} , the following equivalence holds:*

1580
1581

$$E\text{-FASP}[PE; \mathcal{T}_{ACT}] = \mathcal{H}_{EncTF[PE; \mathcal{T}_{ACT}]} \quad (40)$$

1582
1583
1584
1585
1586

Proof Sketch. **Forward direction:** Each E-FASP primitive operator (concatenation, linear projection, nonlinear activation, encoder attention) directly corresponds to operations in encoder Transformers. Concatenation involves merging multiple smaller Transformers into a larger Transformer that produces the same output. **Reverse direction:** Any encoder Transformer can be expressed as an E-FASP program by decomposing each layer into primitive operations.

1587
1588
1589

The detailed proof, including the treatment of closed operators and inductive construction, is invariant to decoder or encoder Transformers, and thus is identical to Yang et al. (2025); we omit the details. \square

1590
1591
1592
1593
1594
1595

Intuitively, this equivalence holds because E-FASP programs capture the computational structure of encoder Transformers. Each step in an E-FASP program corresponds to defining a new seq-to-embedding function by applying primitive operators to previously defined functions, which mirrors how smaller Transformers are constructed into a deeper and wider Transformer that produces the same output. The Transformer corresponding to the program is of depth $\mathcal{O}(1)$ (given constant T) and embedding size $\mathcal{O}(\max\{d_{PE}, d_{TE}\})$, by construction in the proof of Lemma 7.

1596
1597

G.3 TWO VARIANTS OF E-FASP

1598
1599
1600

Throughout this paper, we consider two variants of E-FASP based on different positional embeddings, both using the same activation functions.

1601
1602
1603

Variant 1: Binary Positional Encoding We define E-FASP with binary positional embedding BiPE : $\mathbb{N}^+ \rightarrow \{0, 1\}^{\lceil \log_2 S(n) \rceil}$:

1604

$$\text{BiPE}(i) = \text{binary representation of } i \text{ using } \lceil \log_2 S(n) \rceil \text{ bits} \quad (41)$$

1605
1606
1607
1608

This representation uses $\lceil \log_2 S(n) \rceil$ bits to represent all possible positions within the maximum context length $S(n)$, and aligns with the address representation in PRAM (§ E) for efficient bitwise arithmetic operations.

1609
1610

Variant 2: Integer Positional Encoding We also define E-FASP with integer positional embedding SEQ : $\mathbb{N}^+ \rightarrow \mathbb{N}^+$:

1611

$$\text{SEQ}(i) = i \quad (42)$$

1612
1613
1614

This is the identity mapping over \mathbb{N}^+ that directly uses the position index as a scalar feature, as considered in the original decoder-only FASP framework (Yang et al., 2025).

1615
1616
1617
1618
1619

Activation Functions Both variants use the same class of activation functions $\mathcal{T}_{ACT} = \{\text{ReLU}\}$, where Gated ReLU (ReGLU) (Dauphin et al., 2017) is defined as $\text{ReLU}(x, y) = x \cdot [y]_+ = x \cdot \max(y, 0)$ for $x, y \in \mathbb{R}$. With Gated ReLU as the primitive activation, we can express ReLU and multiplication operations through the following identities:

$$\text{ReLU}(x) = \text{ReLU}(x, 1), \quad x \times y = \text{ReLU}(x, y) - \text{ReLU}(x, -y) \quad (43)$$

1620 Therefore, having ReGLU allows us to express both ReLU and multiplication (reverse is also true),
 1621 making both variants equivalent:
 1622

$$E-FASP[BiPE; ReGLU] = E-FASP[BiPE; [\cdot]_+, \times] \quad (44)$$

$$E-FASP[SEQ; ReGLU] = E-FASP[SEQ; [\cdot]_+, \times] \quad (45)$$

1625 where $[\cdot]_+$ and \times are the ReLU and multiplication respectively.
 1626

1627 G.4 ORIGINAL SUPPORTED OPERATORS

1629 With the four primitive operators in E-FASP and the activation functions defined above, the following
 1630 operators can be included in both variants $E-FASP[BiPE; [\cdot]_+, \times]$ and $E-FASP[SEQ; [\cdot]_+, \times]$,
 1631 adapted from the decoder version of FASP:

1632 Arithmetic Operators

- 1634 • $\text{add}(\psi_1, \psi_2) = \psi_1 + \psi_2$: Element-wise addition
- 1635 • $\text{minus}(\psi_1, \psi_2) = \psi_1 - \psi_2$: Element-wise subtraction
- 1636 • $\text{multi}(\psi_1, \psi_2) = \psi_1 \times \psi_2$: Element-wise multiplication
- 1638 • $\text{max}(\psi_1, \psi_2)$: Element-wise maximum
- 1639 • $\text{min}(\psi_1, \psi_2)$: Element-wise minimum

1641 Boolean Operators For $\psi_1, \psi_2 \in \mathcal{H}(\{0, 1\})$:

- 1643 • $\text{and}(\psi_1, \psi_2) = \min(\psi_1, \psi_2)$: Logical AND
- 1644 • $\text{or}(\psi_1, \psi_2) = \neg(\neg\psi_1 \wedge \neg\psi_2)$: Logical OR
- 1645 • $\text{not}(\psi) = 1 - \psi$: Logical NOT
- 1647 • $\text{xor}(\psi_1, \psi_2)$: Logical XOR

1649 Comparison Operators For $\psi_1, \psi_2 \in \mathcal{H}(\mathbb{Z})$:

- 1651 • $\text{leq}(\psi_1, \psi_2) = [\psi_2 - \psi_1 + 1]_+ - [\psi_2 - \psi_1]_+$: Less than or equal
- 1652 • $\text{geq}(\psi_1, \psi_2) = \text{leq}(\psi_2, \psi_1)$: Greater than or equal
- 1653 • $\text{eq}(\psi_1, \psi_2) = \text{leq}(\psi_1, \psi_2) \wedge \text{leq}(\psi_2, \psi_1)$: Equality
- 1655 • $\text{lt}(\psi_1, \psi_2) = \text{leq}(\psi_1, \psi_2 - 1)$: Less than
- 1656 • $\text{gt}(\psi_1, \psi_2) = \text{lt}(\psi_2, \psi_1)$: Greater than

1658 Sequence Aggregation Operators

- 1660 • $\text{seq_max}(\psi)$: Returns the maximum value across all positions in the sequence
- 1661 • $\text{seq_min}(\psi)$: Returns the minimum value across all positions in the sequence
- 1662 • $\text{seq_and}(\psi) = \text{seq_min}(\psi)$: Logical AND across all positions
- 1664 • $\text{seq_or}(\psi) = \text{seq_max}(\psi)$: Logical OR across all positions
- 1665 • $\text{seq_sum}(\psi)$: Sum of values across all positions (requires $\log n$ positional embedding)
- 1667 • $\text{seq_avg}(\psi) = \frac{1}{n} \sum_{j=1}^n \psi(x_{1:j})$: Average across all positions

1669 Positional Operators

- 1671 • $\text{is_first}(i) = \mathbf{1}[i = 1]$: Indicator for first position
- 1672 • $\text{inv_seq_len}(i) = 1/n$: Inverse of sequence length
- 1673 • $\text{is_pos_k}(i) = \mathbf{1}[i = k]$: Indicator for position k

1674
1675*Control Flow Operators*1676
1677

- $\text{if_then_else}(\psi_{\text{cond}}, \psi_{\text{true}}, \psi_{\text{false}})$ or $\text{ite}(\psi_{\text{cond}}, \psi_{\text{true}}, \psi_{\text{false}})$: If-then-else conditional selection

1678

Attention Variants

1679

1680

- $\text{aha}(q, k, v)$: Standard average-hard attention (encoder bidirectional)

1681

1682

- $\text{rha}(q, k, v)$: Rightmost-hard attention (breaks ties by selecting rightmost position)

1683

- $\text{rightmost_exact_match}(q, k, v)$: Rightmost exact match (returns default if no exact match)

1684

1685

G.5 ADDITIONAL OPERATORS AND JUSTIFICATIONS

1686

1687

Next we give the semantics of some additional operators used in the PRAM simulation programs and justify their closure in the E-FASP framework.

1688

1689

BITWISE ARITHMETIC OPERATORS

1690

1691

These operators are defined in the encoder-E-FASP framework using activations $\{[\cdot]_+, \times\}$ (equivalently ReGLU) and are independent of the specific positional embedding choice. All inputs and outputs are position-indexed seq-to-embedding functions in $\mathcal{H}(\{0, 1\}^m)$ where $\psi(\mathbf{x}, i) \in \{0, 1\}^m$ encodes an m -bit integer with LSB at coordinate 1. All arithmetic is modulo 2^m .

1692

1693

Bitwise Addition. Given $\psi_1, \psi_2 \in \mathcal{H}(\{0, 1\}^m)$, write at position (\mathbf{x}, i) :

1694

1695

$$\psi_1(\mathbf{x}, i) =: \mathbf{a} = (a_1, \dots, a_m), \quad \psi_2(\mathbf{x}, i) =: \mathbf{b} = (b_1, \dots, b_m) \in \{0, 1\}^m \quad (46)$$

1696

1697

Bitwise addition is defined as adding two m -bit integers modulo 2^m . This can be constructed using the primitive operators (and other operators that are already defined) in Definition 8, which follows an approach similar to standard carry-lookahead, and is a constant-depth, polylogarithmic-width construction:

1700

1701

Define for $k \in [m]$ the local propagate/generate bits:

1702

1703

$$p_k = a_k \oplus b_k = a_k + b_k - 2a_k b_k, \quad g_k = a_k \wedge b_k = a_k b_k \quad (47)$$

1704

1705

Let $S_0 = 0$ and $S_j = \sum_{t \leq j} p_t$ for $j \in [m]$ (computed by a single linear layer). For $1 \leq j < i \leq m$, define the interval-all-ones gate:

1706

1707

$$Q_{j,i} = \text{eq}_0((S_{i-1} - S_j) - ((i-1) - j)) \quad (48)$$

1708

1709

where $\text{eq}_k(u) := 2([u - (k - \frac{1}{2})]_+ - 2[u - k]_+ + [u - (k + \frac{1}{2})]_+)$ equals 1 at $u = k$ and 0 at all other integers.

1710

1711

The carry into bit i is:

1712

1713

$$C_i = \begin{cases} 0, & i = 1 \\ 1 - \text{eq}_0\left(\sum_{j=1}^{i-1} g_j Q_{j,i}\right), & i \geq 2 \end{cases} \quad (49)$$

1714

1715

The sum bits are $s_i = p_i \oplus C_i = p_i + C_i - 2p_i C_i$. We define:

1716

1717

$$\text{bit_add}_m(\psi_1, \psi_2)(\mathbf{x}, i) := \mathbf{s} = (s_1, \dots, s_m) \in \{0, 1\}^m \quad (50)$$

1718

1719

Bitwise Subtraction. For $\psi_1, \psi_2 \in \mathcal{H}(\{0, 1\}^m)$, define:

1720

1721

$$\text{bit_minus}_m(\psi_1, \psi_2) := \text{bit_add}_m(\psi_1, \neg\psi_2) \dotplus 1 \quad (51)$$

1722

1723

where \neg is bitwise NOT (elementwise $1 - \cdot$) and “ $\dotplus 1$ ” adds the constant vector $\mathbf{e}_1 = (1, 0, \dots, 0)$ via the same bit_add_m .

1728 **Logical Shifts.** Let $\psi \in \mathcal{H}(\{0, 1\}^m)$ and $\tau \in \mathcal{H}(\{0, 1\}^m)$. At position (\mathbf{x}, i) , write $\mathbf{a} = \psi(\mathbf{x}, i) = (a_1, \dots, a_m)$ and define the shift amount:

$$1731 \quad t = \text{int}(\tau) = \sum_{r=1}^m 2^{r-1} \tau_r \in \{0, \dots, m\} \quad (52)$$

1734 For $k \in [m]$, we define:

$$1736 \quad [\text{shift_left}_m(\psi, \tau)]_k = \sum_{s=0}^{\min\{m, k-1\}} \text{eq}_s(t) \cdot a_{k-s} \quad (53)$$

$$1739 \quad [\text{shift_right}_m(\psi, \tau)]_k = \sum_{s=0}^{\min\{m, m-k\}} \text{eq}_s(t) \cdot a_{k+s} \quad (54)$$

1742 where out-of-range indices are treated as 0, and $\text{eq}_s(\cdot)$ is the integer-equality gate realized by three
1743 ReLUs.

1744 **Complexity Analysis.** All operators act locally at each position on $\mathcal{H}(\{0, 1\}^m)$ without cross-
1745 position communication, and are composed from E-FASP primitives. Throughout $m = \Theta(\log n)$.

1747 The witness enumeration method for bitwise addition requires: **(i)** one linear layer for (p, g) and
1748 prefix sums (S_j); **(ii)** one nonlinear layer for witnesses $Q_{j,i}$ (each uses 3 ReLUs) and products
1749 $g_j Q_{j,i}$; **(iii)** linear aggregation and threshold for carries C_i ; **(iv)** local polynomial for $s_i = p_i \oplus C_i$.
1750 This achieves constant depth (3-4 layers) and width $\mathcal{O}(m^2) = \mathcal{O}((\log n)^2)$ (polylogarithmic in
1751 n). Bitwise subtraction uses two's complement and reuses the same addition circuit with identical
1752 complexity bounds. Logical shifts compute the shift amount t and all candidate shifts in parallel, then
1753 use equality gates for selection, also achieving constant depth and $\mathcal{O}(m^2)$ width.

1754 All constructions use only E-FASP primitives (linear projections, ReLU/ReLU activations, multi-
1755 plication). By the equivalence established in § G, these are realizable by constant-depth encoder
1756 Transformers.

1758 **Instruction Access Operations.** This operator enables instruction fetching from memory by
1759 address lookup, which is essential for PRAM simulation.

$$1760 \quad \text{get_instruction}(\mathbf{x}, i) := \text{bin}(W_{\text{INSTR}} \circ \text{ite}(\text{is_addr}(\mathbf{x}, \cdot), \text{bin}(\text{TE}(\mathbf{x}, \cdot)), \mathbf{0}_w))(\mathbf{x}, i) \in \{0, 1\}^w \quad (55)$$

1763 where $W_{\text{INSTR}} : \mathbb{R}^w \rightarrow \mathbb{R}^w$ is a learned linear transformation (MLP layer) that maps address bits to
1764 instruction bits. This operator first extracts the address bits from address positions (even positions
1765 $\zeta, 1$) by converting their token embeddings to binary representations, then applies the instruction
1766 lookup transformation W_{INSTR} to produce the corresponding instruction encoding. The PRAM
1767 instruction set (LOAD, STORE, ADD, SUB, etc., as defined in § E) is hardcoded into the parameters
1768 of W_{INSTR} during training, enabling the model to perform instruction fetching through learned
1769 address-to-instruction mappings.

1770 H PROOF OF THEOREM 1

1772 **Theorem 8** (MDM Simulation of PRAM, Formal). *For any PRAM program $\mathcal{P} = (I_0, \dots, I_\ell, \text{addr})$
1773 (with finite number of instructions ℓ , and is uniform for all processors and input size n), that on input
1774 $\mathbf{x}_{\text{val}} \in \mathbb{U}^n$ with corresponding address $\mathbf{x}_{\text{addr}} \in \mathcal{A}^n$ that runs in $T(n)$ parallel time using at most
1775 $P(n)$ processors and outputs $\text{PRAM}_{\mathcal{P}}(\mathbf{x}_{\text{addr}}, \mathbf{x}_{\text{val}}) \in \mathbb{U}$ per procedure described in § E, there exists
1776 a bijection $\phi : \mathbb{U} \cup \mathcal{A} \rightarrow \Sigma$ and a special token $[\text{SEP}] \in \Sigma$, and a MDM with constant depth and
1777 $\log(n)$ embedding size encoder-only Transformer, on input $\mathbf{x} = ((\mathbf{z}_{2i}, \mathbf{z}_{2i+1})_{i=0}^{n-1}, [\text{SEP}]) \in \Sigma^{2n+1}$
1778 where $\mathbf{z}_{2i} = \phi(\mathbf{x}_{\text{addr}, i})$ and $\mathbf{z}_{2i+1} = \phi(\mathbf{x}_{\text{val}, i})$, padded to $\mathcal{O}(P(n) \times T(n))$ context length, outputs
1779 $\phi(\text{PRAM}_{\mathcal{P}}(\mathbf{x}_{\text{addr}}, \mathbf{x}_{\text{val}}))$ with $\mathcal{O}(T(n))$ decoding steps.*

1780 The proof demonstrates that AO-MDM can simulate any PRAM algorithm. The construction is based
1781 on E-FASP, the programming language we developed, whose definable programs are equivalent to

encoder-only Transformer function class (see § G). We prove Theorem 1 by: (1) defining the setup and input format for PRAM simulation; (2) constructing an E-FASP program that simulates PRAM execution in Algorithm 2.

Choice of Architecture / E-FASP Variant For this simulation, we use the E-FASP[SEQ; $[\cdot]_+$, \times] variant with integer positional encoding rather than the binary variant. This choice is crucial because MDM’s context length can be exponentially large (e.g., for NP-hard problems), while PRAM’s actual memory usage remains polynomial. Using $\log n$ bits to represent positions would be insufficient when the context length n itself grows exponentially with the problem size, even though PRAM addresses can still be represented in $\log S(n)$ bits. To avoid confusion between MDM’s context length and PRAM’s memory space, we use $S_{MDM}(n)$ to denote the maximum context length and reserve $S(n)$ for PRAM’s memory space.

Input Format The input that encodes the PRAM’s initial memory state is a sequence $\mathbf{x} = (x_1, \dots, x_{2n+2}) \in \Sigma^{2n+2}$ of discrete tokens from the vocabulary Σ .

Let $w = \Theta(\log n)$ be the word width and recall from § E that the address width $a = \lceil \log_2 S(n) \rceil \leq w$ (addresses fit within words). The sequence has length $2n + 2 = 1 + 2n + 1$ where:

$$x_1 \in \Sigma \quad (\text{processor count token}) \quad (56)$$

$$x_{2i} \in \Sigma \quad (\text{address token}) \quad \text{for } i = 1, \dots, n \quad (57)$$

$$x_{2i+1} \in \Sigma \quad (\text{data token}) \quad \text{for } i = 1, \dots, n \quad (58)$$

$$x_{2n+2} = [\text{SEP}] \quad (\text{separator token}) \quad (59)$$

Through token embedding $\text{TE} : \Sigma \rightarrow \mathbb{R}^d$ and subsequent linear projections, these discrete tokens are mapped to their semantic bit representations:

$$\text{TE}(x_1) \mapsto P(n) \in \{0, 1\}^w \quad (60)$$

$$\text{TE}(x_{2i}) \mapsto \text{addr}_i \in \{0, 1\}^w \quad (\text{address bits}) \quad (61)$$

$$\text{TE}(x_{2i+1}) \mapsto \text{val}_i \in \{0, 1\}^w \quad (\text{data bits}) \quad (62)$$

for $i = 1, \dots, n$. The $[\text{SEP}]$ token serves as a separator with special meaning in the computation trace, as detailed in the next subsection. Following the standard MDM notation from § 2, the actual input to the MDM is the padded sequence $\mathbf{x}_0 = (x_{0,1}, x_{0,2}, \dots, x_{0,S_{MDM}(n)}) \in \bar{\Sigma}^{S_{MDM}(n)}$ where $\bar{\Sigma} = \Sigma \cup \{\mathbf{M}\}$:

$$x_{0,j} = x_j \quad \text{for } j = 1, \dots, 2n + 2 \quad (63)$$

$$x_{0,j} = \mathbf{M} \quad \text{for } j = 2n + 3, \dots, S_{MDM}(n) \quad (64)$$

We aim to show that there exists an encoder-only Transformer that, given the initial memory state of a PRAM as input, can output the exact same result as the PRAM algorithm after $T_{MDM}(n) = \mathcal{O}(T(n))$ decoding steps. The Transformer will have constant depth and context length $\mathcal{O}(S_{MDM}(n))$, where $S_{MDM}(n)$ represents the MDM’s context budget.

We next provide an overview of the construction:

Processor State and Computation Log Representation: First, we state the representation of processor state and computation log as tokens. We represent each processor’s state and one round of computation using a fixed number of tokens: program counter (1 token), register file (5 tokens), and computation log (2 tokens), for a total of 8 tokens per processor.

Program Counter (PC): A single word encoding the current instruction address.

Register File: We maintain exactly 5 registers, each storing one word. This provides sufficient computational capacity while keeping the representation tractable.

Computation Log: This log is populated only when executing STORE [s], r instructions, recording the target address and stored value. For all other instructions, the log remains empty (represented by special tokens).

1836

The computation trace for one parallel round can be represented as:

1837

1838

$$[\text{SEP}] \langle \text{PC}_1, \text{R}_{1,1}, \dots, \text{R}_{1,5}, \text{Addr}_1, \text{Val}_1 \rangle \langle \text{PC}_2, \text{R}_{2,1}, \dots, \text{R}_{2,5}, \text{Addr}_2, \text{Val}_2 \rangle \dots \quad (65)$$

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

where $[\text{SEP}]$ serves as a separator token to distinguish different computation rounds and there are a total of $P(n)$ independent processors. Each processor $i \in \{1, \dots, P(n)\}$ contributes an 8-tuple $\langle \text{PC}_i, \text{R}_{i,1}, \text{R}_{i,2}, \text{R}_{i,3}, \text{R}_{i,4}, \text{R}_{i,5}, \text{Addr}_i, \text{Val}_i \rangle$ representing its program counter, five register values, and memory write operation (address and value). The trace thus contains exactly $P(n)$ such 8-tuples per parallel round.

1851

Processor Assignment and Role Identification. The algorithm begins by determining whether the current position contains a mask token (i.e. `is_mask`). If the position is a mask token (**Branch 1**), the algorithm continues by computing the distance to the nearest preceding $[\text{SEP}]$ token. If the position is not a mask token (**Branch 2**), it indicates this position has already been unmasked (computation has already finished), and the algorithm returns the input token (or a all zero vector) which will not be unmasked per definition of MDM § 2).

1852

1853

1854

1855

1856

1857

1858

1859

To identify the processor ID, we find the rightmost $[\text{SEP}]$ token to the left of the current position (i.e. `rightmost_sep_pos`) and compute the distance between them (i.e. `distance_to_sep`). If this distance $> 8 \times P(n)$ (**Branch 1.1**), the position does not participate in the current computation round as it is not a token that should be “unmasked” in this round, in this case, the algorithm returns a special embedding (a all zero vector), which results in uniform distribution during prediction and smallest confidence, ensuring that the MDM will not select this position for unmasking; if the distance $= 8 \times P(n) + 1$ (**Branch 1.2**), this position return the embedding of $[\text{SEP}]$, preparing for the next computation round; otherwise if the distance $< 8 \times P(n) + 1$ (**Branch 1.3**), the position participates in the computation of the current round.

1860

1861

1862

1863

For those positions participating in the current computation round. The corresponding processor ID (i.e. `processor_id`) is obtained by right-shifting `distance_to_sep` by 3 bits with zero-padding on the left (since each processor corresponds to exactly 8 tokens). The rightmost 3 bits represent the position within that processor (i.e. `inner_processor_id`).

1864

1865

1866

1867

1868

Initialization of Processor State. We need to initialize the initial state of all processors at the beginning. This is determined by the current number of $[\text{SEP}]$ tokens in the sequence. Specifically, when the current position is a mask token and there is exactly one $[\text{SEP}]$ token (i.e. `seq_sum(is_sep) == 1`) (**Branch 3**), we consider this the initialization state. All program counters are set to 0, all registers are set to 0, and all memory locations are set to 0.

1869

1870

1871

1872

1873

1874

1875

Fetch Instruction and Execution (Main Loop). According to the processor ID and inner processor position, the algorithm fetches the instruction from the instruction memory (i.e. `get_instruction`), which is hard-coded into the parameters of the model, and execute it (using `execute`). Different instructions yields different execution semantics, and sequently different 8 token state. Finally, according to the `inner_processor_id`, the algorithm chooses what to return. The algorithm terminates when the PC of all processors are HALT.

1876

1877

1878

1879

1880

We now formally construct an E-FASP program that simulates PRAM execution (the single-processor algorithm detailed in § E). The semantics meanings and justifications of operators used in the program are summarized in § G. The only two global operators are `seq_sum` and `rightmost_exact_match` implementable by attention, otherwise are all local operators implementable by polylog-width constant-depth MLPs.

1881

1882

1883

1884

The context length of MDM used by this construction is $S_{\text{MDM}}(n) = \mathcal{O}(T_{\text{par}}(n) \times P(n))$, the decoding steps is $T_{\text{MDM}}(n) = \mathcal{O}(T_{\text{par}}(n))$, where $T_{\text{par}}(n)$ is the parallel time complexity and $P(n)$ is the processor count. For the constructed Transformer, embedding size is $\log(n)$ and depth is a constant.

1885

1886

1887

1888

1889

```
# ----- Initialization -----
is_sep = (TE == embed([SEP]))
is_mask = (TE == embed([MASK]))
is_init = (seq_sum(is_sep) == 1)

# Get the current and last [SEP] position
```

```

1890 cur_sep = rightmost_exact_match(1, is_sep, PE)
1891 dist_to_sep = PE - cur_sep
1892 pn = rightmost_exact_match(1, is_first, TE)
1893 spanned_pn = pn << 3
1894
1895 # Skip positions not participating in computation
1896 if (not is_mask) or (dist_to_sep > spanned_pn): return 0
1897 if dist_to_sep == spanned_pn + 1: return embed([SEP])
1898 if is_init: return 0
1899
1900 # Initialization
1901 pid = (dist_to_sep - 1) >> 3
1902 inner_id = (dist_to_sep - 1) [:3]
1903
1904 if is_init and inner_id == 1: return pid
1905 if is_init and inner_id != 1: return 0
1906
1907 # ----- Read previous round state -----
1908 prev_sep = rightmost_exact_match(1, (is_sep and (PE < cur_sep)), PE)
1909 prev_pid_base = prev_sep + 1 + (pid << 3)
1910
1911 pos_PC = prev_pid_base + 0
1912 PC = rightmost_exact_match(pos_PC, PE, TE)
1913 pos_R1 = prev_pid_base + 1
1914 R1 = rightmost_exact_match(pos_R1, PE, TE)
1915 pos_R2 = prev_pid_base + 2
1916 R2 = rightmost_exact_match(pos_R2, PE, TE)
1917 pos_R3 = prev_pid_base + 3
1918 R3 = rightmost_exact_match(pos_R3, PE, TE)
1919 pos_R4 = prev_pid_base + 4
1920 R4 = rightmost_exact_match(pos_R4, PE, TE)
1921 pos_R5 = prev_pid_base + 5
1922 R5 = rightmost_exact_match(pos_R5, PE, TE)
1923
1924 if PC == HALT_CODE: return 0
1925
1926 # ----- Fetch and execute instruction -----
1927 # Decode
1928 I_type, op_r, op_s, op_c, label_addr = get_instruction(PC)
1929
1930 # Source/destination register
1931 Rs = (R1 if op_s == 1 else
1932         R2 if op_s == 2 else
1933         R3 if op_s == 3 else
1934         R4 if op_s == 4 else
1935         R5 if op_s == 5 else 0)
1936
1937 Rr = (R1 if op_r == 1 else
1938         R2 if op_r == 2 else
1939         R3 if op_r == 3 else
1940         R4 if op_r == 4 else
1941         R5 if op_r == 5 else 0)
1942
1943 # Default effect
1944 PC_next = PC + 1
1945 WR_val = Rr
1946 writes_reg = False
1947 ADDR_out = 0 # Slot 6: only STORE overwrites address (a <= w, use word
1948     directly)
1949 VAL_out = 0 # Slot 7: only STORE overwrites value
1950
1951 # Address read
1952 if I_type == embed([LOAD]):
1953     ADDR_KEYS = (TE if is_addr else 0)

```

```

1944     ADDR_POSVAL = (PE if is_addr else 0)
1945
1946     last_addr_pos_load = rightmost_exact_match(Rs, ADDR_KEYS, ADDR_POSVAL)
1947     load_val = rightmost_exact_match(last_addr_pos_load + 1, PE, TE)
1948     WR_val = load_val
1949
1950     # Per-instruction semantics
1951     elif I_type == embed([STORE]): ADDR_out, VAL_out = Rs, Rr
1952     elif I_type == embed([LOADI]): WR_val = op_c
1953     elif I_type == embed([ADD]): WR_val = (Rr + Rs)
1954     elif I_type == embed([SUB]): WR_val = (Rr - Rs)
1955     elif I_type == embed([AND]): WR_val = (Rr & Rs)
1956     elif I_type == embed([XOR]): WR_val = (Rr ^ Rs)
1957     elif I_type == embed([SHL]): WR_val = (Rr << Rs)
1958     elif I_type == embed([SHR]): WR_val = (Rr >> Rs)
1959     elif I_type == embed([BRZ]) and Rr == 0: PC_next = label_addr
1960     elif I_type == embed([JMP]): PC_next = label_addr
1961     elif I_type == embed([HALT]): PC_next = HALT_CODE
1962
1963     # Register writeback: only for {LOAD, LOADI, ADD, SUB, AND, XOR, SHL, SHR
1964     # }
1965     writes_reg = (I_type == embed([LOAD])) or (I_type == embed([LOADI])) or \
1966         (I_type == embed([ADD])) or (I_type == embed([SUB])) or \
1967         (I_type == embed([AND])) or (I_type == embed([XOR])) or \
1968         (I_type == embed([SHL])) or (I_type == embed([SHR]))
1969
1970     R1_next = (WR_val if (writes_reg and op_r == 1) else R1)
1971     R2_next = (WR_val if (writes_reg and op_r == 2) else R2)
1972     R3_next = (WR_val if (writes_reg and op_r == 3) else R3)
1973     R4_next = (WR_val if (writes_reg and op_r == 4) else R4)
1974     R5_next = (WR_val if (writes_reg and op_r == 5) else R5)
1975
1976     # ----- Return one of 8 slots according to inner_id -----
1977     if inner_id == 0: return PC_next
1978     elif inner_id == 1: return R1_next
1979     elif inner_id == 2: return R2_next
1980     elif inner_id == 3: return R3_next
1981     elif inner_id == 4: return R4_next
1982     elif inner_id == 5: return R5_next
1983     elif inner_id == 6: return ADDR_out
1984     else: return VAL_out

```

I PROOF OF THEOREM 2

The result stems from MDM’s total amount of computation being bounded by $S(n)$ in both total steps ($T(n) \leq S(n)$) and per-step capacity (polynomial embedding size), preventing it from solving problems requiring greater computational resources.

Fix an encoder-only MDM with context length $S(n)$ and $T(n)$ decoding steps. Throughout we assume constant depth/heads and log-precision arithmetic with hidden width $d = \Theta(\log(S(n) + T(n)))$ (binary positional code), as in our setup. Particularly, at each decoding step the model re-encodes a length- $S(n)$ sequence. A single forward pass is dominated by self-attention: for each position i we form a query in \mathbb{R}^d and take dot products with all $S(n)$ keys, then take the value-weighted sum. Counting FLOPs, one attention head costs

$$\Theta(S(n) \cdot S(n) \cdot d) = \Theta(S(n)^2 \log(S(n) + T(n))), \quad (66)$$

and the multi-head/multi-layer constants only change the leading constant. The position-wise MLP adds $\Theta(S(n) \cdot \text{poly}(d)) = \Theta(S(n) \text{ polylog}(S(n) + T(n)))$ FLOPs and is lower order when $S(n) \gg d$. Thus one decoding step costs

$$\tilde{\mathcal{O}}(S(n)^2) \text{ FLOPs}, \quad (67)$$

1998 where $\tilde{\mathcal{O}}(\cdot)$ suppresses polylog factors in $S(n) + T(n)$. Over $T(n)$ steps the total compute is
1999 $\tilde{\mathcal{O}}(S(n)^2 T(n))$. In particular, when each step reveals at least one token (or a constant number), we
2000 have $T(n) \leq S(n)$, yielding the unified cubic bound $\tilde{\mathcal{O}}(S(n)^3)$. Hence any problem that needs
2001 $\omega(S(n)^3)$ serial time cannot be solved by MDM in the $(S(n), T(n))$ regime stated.
2002

J PROOF OF THEOREM 3

2006 Recall Definition 3, we defined **Masked-ARM** as an autoregressive model with encoder-only Trans-
2007 former architecture that pads the input sequence with mask tokens to the maximum context length,
2008 which is also equivalent to a MDM with a fixed order (left-to-right) generation and generating one
2009 token at a time. Consider an AO-MDM with input format $\mathbf{x} = (x_1, \dots, x_n)$ followed by a special
2010 separator token [SEP] at position $n + 1$.
2011

AO-MDM Intermediate State: At any intermediate generation step, the AO-MDM state can be
2012 represented as $\mathbf{z} = (z_1, \dots, z_{S(n)}) \in \bar{\Sigma}^{S(n)}$ where $\bar{\Sigma} = \Sigma \cup \{\mathbf{M}\}$. The sequence structure is:
2013

$$z_j = x_j \quad \text{for } j \in [n] \quad (\text{fixed input portion}) \quad (68)$$

$$z_{n+1} = [\text{SEP}] \quad (\text{separator}) \quad (69)$$

$$z_j \in \Sigma \cup \{\mathbf{M}\} \quad \text{for } j \in \{n + 2, \dots, S(n)\} \quad (\text{generation region}) \quad (70)$$

2018 Let $\mathcal{D} = (d_1, d_2, \dots, d_k)$ denote the sequence of positions that have been decoded (unmasked) by the
2019 AO-MDM in chronological order, where $d_i \in \{n + 2, \dots, S(n)\}$ and $z_{d_i} \neq \mathbf{M}$ for all $i \in [k]$. The
2020 ordering reflects the temporal sequence in which the AO-MDM performed the unmasking operations.
2021

Definition 10 (Position/Content Tokens and Address Encoding). *Let Σ be the base vocabulary. We
2022 reserve a subset $\Sigma_{\text{pos}} \subseteq \Sigma$ for position tokens and define a bijection $\text{encode} : \{1, \dots, S(n)\} \rightarrow \Sigma_{\text{pos}}$
2023 with inverse $\text{dec_pos} : \Sigma_{\text{pos}} \rightarrow \{1, \dots, S(n)\}$. For each decoded position d_i , define*

$$\text{addr}_{d_i} := \text{encode}(d_i) \in \Sigma_{\text{pos}} \subseteq \Sigma, \quad \text{tok}_{d_i} := z_{d_i} \in \Sigma.$$

2025 *Thus both address tokens and content tokens are drawn from the original vocabulary Σ . We also
2026 reserve a subset $\Sigma_{\text{op}} \subseteq \Sigma$ for operator tokens used later for AP-MDM edits (§ 4).*
2027

2028 **Masked-ARM Simulation:** For each decoded token at position $d_i \in \mathcal{D}$, the Masked-ARM represents
2029 it using a 2-tuple:
2030

$$\langle \text{addr}_{d_i}, \text{tok}_{d_i} \rangle = \langle \text{encode}(d_i), z_{d_i} \rangle \quad (71)$$

2032 where $\text{encode}(d_i)$ is a token representation of the positional index d_i , and z_{d_i} is the actual decoded
2033 token. The target Masked-ARM sequence to be constructed is:
2034

$$\mathbf{y}_{\text{ARM}} = (x_1, \dots, x_n, [\text{SEP}], \text{addr}_{d_1}, \text{tok}_{d_1}, \dots, \text{addr}_{d_k}, \text{tok}_{d_k}, \underbrace{\mathbf{M}, \dots, \mathbf{M}}_{\text{remaining positions}}) \quad (72)$$

2037 where the sequence $\mathcal{D} = (d_1, d_2, \dots, d_k)$ preserves the chronological order of AO-MDM's decoding
2038 operations. The Masked-ARM sequence has total length $2S(n) - n - 1 = \mathcal{O}(S(n))$, since each
2039 AO-MDM token requires two tokens (address and content) in the Masked-ARM representation.
2040

Induction: To prove We prove by induction that for any AO-MDM, there exists a corresponding
2041 Masked-ARM that can simulate the AO-MDM's generation process step by step for arbitrary input
2042 sequences.
2043

Theorem 9 (AO-MDM Simulation by Masked-ARM). *For any AO-MDM, there exists a corresponding
2044 Masked-ARM such that: for any input sequence $\mathbf{x} = (x_1, \dots, x_n)$ and any intermediate state of
2045 the AO-MDM with decoded sequence $\mathcal{D} = (d_1, d_2, \dots, d_k)$, the Masked-ARM, starting from the cor-
2046 responding intermediate state \mathbf{y}_{ARM} , can generate the next address-token pair $\langle \text{addr}_{d_{k+1}}, \text{tok}_{d_{k+1}} \rangle$
2047 such that:*

$$\text{encode}(d_{k+1}) = \text{addr}_{d_{k+1}} \quad (\text{address matches AO-MDM's next decode position}) \quad (73)$$

$$z_{d_{k+1}} = \text{tok}_{d_{k+1}} \quad (\text{token matches AO-MDM's next decode content}) \quad (74)$$

2051 where d_{k+1} is the position that AO-MDM will decode next, and $z_{d_{k+1}}$ is the token that AO-MDM will
2052 generate at that position.
2053

2052 *Proof.* To prove this result, we decompose the architecture of the AO-MDM into two parts: the input
 2053 transformation part (which can be represented as an operator `mdm_embed`) that transforms the token
 2054 and position into an embedding, and the output generation part (which can be represented as an
 2055 operator `mdm_decode`) that transforms the embedding into logits, that is:

$$\text{AO-MDM}(\mathbf{x}) = \text{mdm_decode}(\text{mdm_embed}(\bar{\mathbf{TE}}, \bar{\mathbf{PE}}))(\mathbf{x}) \quad (75)$$

2056 where $\bar{\mathbf{TE}}$ and $\bar{\mathbf{PE}}$ are seq-to-seq functions defined in Definition 5.

2057 This decomposition is invariant to the choice of token and position embedding functions and AO-
 2058 MDM's parameter configuration. Simulating AO-MDM's generation process boils down to the
 2059 following two steps:

2060 **Step 1: Replicating `mdm_embed`.** We construct initial layers of the Masked-ARM that, given the
 2061 Masked-ARM state \mathbf{y}_{ARM} , produce intermediate embeddings identical to $\text{mdm_embed}(\mathbf{x})$ where \mathbf{x} is
 2062 the corresponding AO-MDM state. This transformation converts the address-token pair representation
 2063 back into the embedding format that the AO-MDM expects, enabling the subsequent layers to
 2064 perform identical computations. We write the E-FASP programs (which corresponds to the encoder
 2065 Transformer construction) for the construction:

```

2068 # ----- Get logits identical to AO-MDM
2069 # -----
2070 mdm_logits = mdm_decode(embed_MDM)
2071 tok_scores = score(mdm_logits)

2072 # AO-MDM candidate set: positions > [SEP], still [MASK], and within valid
2073 # range
2074 cand_mask = (PE > sep_pos) and (TE_MDM == embed([MASK])) and (PE <= sn)
2075 cand_score = (tok_scores if cand_mask else 0)

2076 max_score = seq_max(cand_score)
2077 is_best = cand_mask and (tok_scores == max_score)

2078 # Select AO-MDM's next decode position and corresponding logits
2079 next_pos = rightmost_exact_match(1, is_best, PE)
2080 logits_next = rightmost_exact_match(next_pos, PE, mdm_logits)

2081 # ----- Emit as Masked-ARM <addr, tok> order
2082 # -----
2083 gen_slot = rightmost_exact_match(1,
2084     (PE > sep_pos) and (PE <= sn) and (TE == embed
2085         ([MASK])),
2086         PE)
2087 emit_addr = (((gen_slot - sep_pos) [:1]) == 0)

2088 if PE == gen_slot:
2089     result = (next_pos if emit_addr else logits_next)
2090 else:
2091     result = 0

2092 return result

```

2093 This completes the proof. □

2094 We remark the proof relies on two assumptions: 1) the function $\bar{S}(\mathbf{x}) = S(|\mathbf{x}|)$ is deterministic and
 2095 computable by encoder Transformer (this is implemented by the `sn` function in the E-FASP program
 2096 for Step 1); 2) the confidence score is also deterministic and computable by encoder Transformer (this
 2097 is implemented by the `score` operator in the E-FASP program for Step 2).

2102 K PROOF OF THEOREM 4

2103 **Theorem 10** (AP-MDM Simulation of PRAM, Formal). *Let $\mathcal{P} = (I_0, \dots, I_\ell, \text{addr})$ be a uniform
 2104 PRAM program with a finite instruction set of size ℓ , identical across processors and input size*

2106 *n. On an initial memory state specified by address-value pairs $(\mathbf{x}_{\text{addr}}, \mathbf{x}_{\text{val}})$ with $\mathbf{x}_{\text{val}} \in \mathbb{U}^n$ and*
 2107 *$\mathbf{x}_{\text{addr}} \in \mathcal{A}^n$, suppose \mathcal{P} runs in parallel time $T(n)$ using at most $P(n)$ processors and at most $S(n)$*
 2108 *shared-memory words of $\Theta(\log n)$ bits, and outputs $\text{PRAM}_{\mathcal{P}}(\mathbf{x}_{\text{addr}}, \mathbf{x}_{\text{val}}) \in \mathbb{U}$ (see § E). Then there*
 2109 *exists a bijection $\phi : \mathbb{U} \cup \mathcal{A} \rightarrow \Sigma$ and an AP-MDM which, on input*

$$2110 \quad \mathbf{x} = (z_0, z_1, \dots, z_n) \in \Sigma^{n+1}, \quad z_0 = \phi(P(n)), \quad z_i = \phi(\mathbf{x}_{\text{val},i}) \text{ for } i = 1, \dots, n,$$

2112 *padded to context length $\mathcal{O}(S(n))$ (addresses provided implicitly by positional encodings), produces*
 2113 *$\phi(\text{PRAM}_{\mathcal{P}}(\mathbf{x}_{\text{addr}}, \mathbf{x}_{\text{val}}))$ in $\mathcal{O}(T(n))$ decoding steps.*

2114 We first show that AP-MDM can simulate a weaker model called Rewrite-MDM, which is sufficient
 2115 for the result. Then we construct an E-FASP program that simulates PRAM execution in a space-
 2116 efficient manner.

2117 **Rewrite-MDM** follows the same framework as AP-MDM but with simplified control signals. For
 2118 any token $y \in \Sigma$, define:

$$2119 \quad \text{remask}_{x_{t,i}, c_{t,i}}(y) = \begin{cases} y & \text{if } c_{t,i}[1] = 1 \\ x_{t,i} & \text{if } c_{t,i}[1] = 0 \end{cases} \quad (76)$$

2120 where $c_{t,i}[1] \in \{0, 1\}$ is a binary rewrite signal. In other words, when $c_{t,i}[1] = 1$, the model rewrites
 2121 position i with new content y ; when $c_{t,i}[1] = 0$, it preserves the original content $x_{t,i}$ unchanged.

2122 We next show how each transition $\mathbf{z}_t \rightarrow \mathbf{z}_{t+1}$ in Rewrite-MDM can be simulated by exactly three
 2123 steps of AP-MDM as defined in § 4.

2124 **Lemma 11** (AP-MDM Simulation of Rewrite-MDM). *For any Rewrite-MDM transition $\mathbf{z}_t \rightarrow \mathbf{z}_{t+1}$ on sequence of length n , there exists a sequence of three AP-MDM steps that produces the identical result.*

2125 *Proof.* Given a Rewrite-MDM transition where we want to selectively rewrite positions in sequence
 2126 $\mathbf{z}_t = (z_{t,1}, z_{t,2}, \dots, z_{t,n})$ according to rewrite signal $\mathbf{r}_t = (r_{t,1}, r_{t,2}, \dots, r_{t,n})$, we simulate this
 2127 using the following three AP-MDM steps: $\mathbf{z}_t \rightarrow \mathbf{u}^{(1)} \rightarrow \mathbf{u}^{(2)} \rightarrow \mathbf{u}^{(3)} = \mathbf{z}_{t+1}$.

2128 **Step 1 (Insert):** Starting from \mathbf{z}_t , apply **insert** operation at every position $i \in [n]$ to create an
 2129 expanded sequence of length $2n$:

$$2130 \quad \mathbf{u}^{(1)} = (g \circ f_{\theta})(\mathbf{z}_t) \quad (77)$$

2131 where $c_i^{(1)}[1] = 0$ (no remask), $c_i^{(1)}[2] = 1$ (insert), $c_i^{(1)}[3] = 0$ (no delete) for all $i \in [n]$. This yields
 2132 $\mathbf{u}^{(1)} = (z_{t,1}, \mathbf{M}, z_{t,2}, \mathbf{M}, \dots, z_{t,n}, \mathbf{M})$.

2133 **Step 2 (Unmask and Remask):** Apply AP-MDM's $(g \circ f_{\theta})$ operation on $\mathbf{u}^{(1)}$ with control signals:

$$2134 \quad \mathbf{u}^{(2)} = (g \circ f_{\theta})(\mathbf{u}^{(1)}) \quad (78)$$

2135 where the control signals are set as follows:

2136

- For even positions $2i$ (newly inserted masks): $c_{2i}^{(2)}[1] = 0$ (unmask), $c_{2i}^{(2)}[2] = 0$ (no insert),
 $c_{2i}^{(2)}[3] = 0$ (no delete)
- For odd positions $2i - 1$ (original tokens): $c_{2i-1}^{(2)}[1] = r_{t,i}$ (remask), $c_{2i-1}^{(2)}[2] = 0$ (no insert),
 $c_{2i-1}^{(2)}[3] = 0$ (no delete)

2137 which yield $\mathbf{u}^{(2)} = (\mathbf{M}, z_{t+1,1}, \mathbf{M}, z_{t+1,2}, \dots, \mathbf{M}, z_{t+1,n})$.

2138 **Step 3 (Delete):** Apply AP-MDM's $(g \circ f_{\theta})$ operation again to **delete** all mask tokens at original
 2139 positions:

$$2140 \quad \mathbf{u}^{(3)} = (g \circ f_{\theta})(\mathbf{u}^{(2)}) \quad (79)$$

2141 where for all positions j in $\mathbf{u}^{(2)}$:

2160 • For odd positions $2i-1$: $c_{2i-1}^{(3)}[1] = 0$ (no remask), $c_{2i-1}^{(3)}[2] = 0$ (no insert), $c_{2i-1}^{(3)}[3] = \mathbb{1}[u_{2i-1}^{(2)} =$
 2161 $M]$ (delete if mask)
 2162
 2163 • For even positions $2i$: $c_{2i}^{(3)}[1] = 0$ (no remask), $c_{2i}^{(3)}[2] = 0$ (no insert), $c_{2i}^{(3)}[3] = 0$ (no delete)

2164
 2165 This removes all mask tokens at odd positions and recovers the original length n . By construction,
 2166 $\mathbf{u}^{(3)} = \mathbf{z}_{t+1}$, completing the simulation.

2167 **State Tracking Mechanism** To enable the AP-MDM to autonomously determine which of the
 2168 three simulation steps to execute, we augment sequences with special boundary tokens `[BOS]` and
 2169 `[EOS]`. The model identifies the current phase by examining the boundary token configuration:

2170
 2171 • **Step 1 (Insert):** Normal state with `[BOS]` at the beginning and `[EOS]` at the end
 2172
 2173 • **Step 2 (Unmask and Remask):** `[EOS]` is followed by a `M` token, indicating expanded state
 2174
 2175 • **Step 3 (Delete):** `[BOS]` is preceded by a `M` token, signaling cleanup phase

2176 During Step 2, the model leverages the first bit of positional encodings (e.g. BiPE introduced in § G)
 2177 to distinguish between original positions (odd indices) and newly inserted positions (even indices),
 2178 enabling it to correctly apply remasking operations to original positions based on the rewrite signal
 2179 \mathbf{r}_t while unmasking new positions to write content from \mathbf{w}_t .

2180 We omit the Transformer-based construction for the procedure described above for brevity, which
 2181 can be done by a simple E-FASP program. \square

2182 We use the Rewrite-MDM variant established above to simulate PRAM algorithms with optimal space
 2183 complexity. Here we use the E-FASP[BiPE; \cdot +, \times] variant with binary positional encoding (§ G).
 2184 The input that encodes the PRAM’s initial memory state is a sequence $\mathbf{x} = (x_1, \dots, x_{n+1}) \in \Sigma^{n+1}$
 2185 of discrete tokens from the vocabulary Σ :

$$x_1 \in \Sigma \quad (\text{processor count token}) \quad (80)$$

$$x_{i+1} \in \Sigma \quad (\text{data token}) \quad \text{for } i = 1, \dots, n \quad (81)$$

2186 Through token embedding $\text{TE} : \Sigma \rightarrow \mathbb{R}^w$, these discrete tokens are mapped to their semantic bit
 2187 representations:

$$\text{TE}(x_1) \mapsto P(n) \in \{0, 1\}^w \quad (82)$$

$$\text{TE}(x_{i+1}) \mapsto \text{val}_i \in \{0, 1\}^w \quad (\text{data bits}) \quad (83)$$

2188 for $i = 1, \dots, n$. The actual input to the AP-MDM is the padded sequence $\mathbf{x}_0 =$
 2189 $(x_{0,1}, x_{0,2}, \dots, x_{0,S(n)}) \in \bar{\Sigma}^{S(n)}$ where $\bar{\Sigma} = \Sigma \cup \{\mathbf{M}\}$:

$$x_{0,j} = x_j \quad \text{for } j = 1, \dots, n+1 \quad (84)$$

$$x_{0,j} = \mathbf{M} \quad \text{for } j = n+2, \dots, S(n) \quad (85)$$

2190 The crucial advantage of AP-MDM is that it can dynamically rewrite the content at any position
 2191 using the **remask** operation, allowing the simulation to use space optimally as $\mathcal{O}(S(n))$ rather than
 2192 the $\mathcal{O}(P(n) \times T(n))$ required by standard MDM.

2193 We next provide an overview of the construction:

2194 The key difference between how Rewrite-MDM and AO-MDM simulate PRAM is that Rewrite-MDM
 2195 can directly rewrite the memory at any position and each computation does not necessarily have to
 2196 be kept in the context forever. This enables us to get rid of the address token. Now representation of a
 2197 processor can be simplified to:

$$\dots \langle \text{PC}_1, \text{R}_{1,1}, \text{R}_{1,2}, \text{R}_{1,3} \rangle \langle \text{PC}_2, \text{R}_{2,1}, \text{R}_{2,2}, \text{R}_{2,3} \rangle \dots \quad (86)$$

2198 where we only use 3 registers (this is sufficient for the proof but can be extended to any $k \geq 2$).

2199 Additionally, we do not append processor representations to the end of input \mathbf{x} as in AO-MDM, but
 2200 instead will initialize them at the end of the entire sequence. The remaining part of the sequence is
 2201 used as a shared memory where token embeddings are data and positional encodings are addresses,
 2202 aligning more closely with PRAM.

2214 **Initialization.** When the last position is a mask token, we initialize the processor state and computation log at the end of the sequence. Roles of each token are calculated similarly as the construction in AO-MDM (except it is static throughout the generation process).

2217 The execution of the program is similar to the construction in AO-MDM, except now the address is inherently associated with the positional encoding. The termination is also slightly different: the returned embedding has to contain an additional bit to indicate the rewrite operation. Also, the termination condition is no longer when all masked are unmasked but a flexibly defined one: in our case, when all processors are HALT.

2222 Using the operators defined above, we now construct an E-FASP program that simulates PRAM execution. The program implements the single-processor algorithm detailed in § E.

```

2225 # ----- Roles & Layout -----
2226 is_mask = (TE == embed([MASK]))
2227 pn = rightmost_exact_match(1, is_first, TE) # number of processors P(n)
2228 last_p = rightmost_exact_match(1, is_last, PE) # last position index
2229 proc_b = last_p - (pn << 2) + 1 # processor region start
2230 in_proc = (PE >= proc_b) and (PE < proc_b + (pn << 2)) # in processor
2231     region
2232 in_mem = (PE >= 2) and (PE < proc_b) # in memory region
2233
2234 # ----- Initialization -----
2235 last_is_mask = rightmost_exact_match(1, is_last, is_mask)
2236 if last_is_mask and in_proc:
2237     inner = (PE - proc_b) [:2] # slot index 0..3
2238     # initialize processor region to 0, and R=1 (require rewrite)
2239     if inner == 0: return (0, 1) # PC
2240     elif inner == 1: return ((PE - proc_b) >> 2, 1) # R1
2241     elif inner == 2: return (0, 1) # R2
2242     else: return (0, 1) # R3
2243 # no rewrite for other positions in initialization step
2244 if last_is_mask and not in_proc:
2245     return (TE, 0)
2246
2247 # ===== Processor zone update (only if in_proc) =====
2248 if in_proc:
2249     pid = (PE - proc_b) >> 2
2250     slot = (PE - proc_b) [:2] # 0:PC 1:R1 2:R2 3:R3
2251
2252     # read previous round processor state (fixed slot)
2253     pc_pos = proc_b + (pid << 2) + 0
2254     r1_pos = proc_b + (pid << 2) + 1
2255     r2_pos = proc_b + (pid << 2) + 2
2256     r3_pos = proc_b + (pid << 2) + 3
2257     PC = rightmost_exact_match(pc_pos, PE, TE)
2258     R1 = rightmost_exact_match(r1_pos, PE, TE)
2259     R2 = rightmost_exact_match(r2_pos, PE, TE)
2260     R3 = rightmost_exact_match(r3_pos, PE, TE)
2261
2262     # processor already HALTED, do not update (R=0 for this slot)
2263     if PC == HALT_CODE: return (0, 0)
2264
2265     # fetch and decode instruction
2266     I_type, op_r, op_s, op_c, label_addr = get_instruction(PC)
2267     Rs = (R1 if op_s == 1 else R2 if op_s == 2 else R3 if op_s == 3 else
2268           0)
2269     Rr = (R1 if op_r == 1 else R2 if op_r == 2 else R3 if op_r == 3 else
2270           0)
2271
2272     # default
2273     PCn, WR, WR_en = PC + 1, Rr, 0
2274
2275     # instruction semantics
2276     if I_type == embed([LOAD]):
```

```

2268     # mem_get: address=PE, value=TE (only match in memory region)
2269     hitp = rightmost_exact_match(Rs, (PE if in_mem else 0), (PE if
2270         in_mem else 0))
2271     WR = rightmost_exact_match(hitp, PE, (TE if in_mem else 0))
2272     WR_en = 1
2273
2274     elif I_type == embed([STORE]): WR_en = 0
2275     elif I_type == embed([LOADI]): WR, WR_en = op_c, 1
2276     elif I_type == embed([ADD]): WR, WR_en = (Rr + Rs), 1
2277     elif I_type == embed([SUB]): WR, WR_en = (Rr - Rs), 1
2278     elif I_type == embed([AND]): WR, WR_en = (Rr & Rs), 1
2279     elif I_type == embed([XOR]): WR, WR_en = (Rr ^ Rs), 1
2280     elif I_type == embed([SHL]): WR, WR_en = (Rr << Rs), 1
2281     elif I_type == embed([SHR]): WR, WR_en = (Rr >> Rs), 1
2282     elif I_type == embed([BRZ]) and (Rr == 0): PCn = label_addr
2283     elif I_type == embed([JMP]): PCn = label_addr
2284     elif I_type == embed([HALT]): PCn = HALT_CODE
2285
2286     # unified writeback
2287     R1n = (WR if (WR_en and op_r == 1) else R1)
2288     R2n = (WR if (WR_en and op_r == 2) else R2)
2289     R3n = (WR if (WR_en and op_r == 3) else R3)
2290
2291     # return next state for this slot and require rewrite
2292     if slot == 0: return (PCn, 1)
2293     elif slot == 1: return (R1n, 1)
2294     elif slot == 2: return (R2n, 1)
2295     else: return (R3n, 1)
2296
2297     # ===== Memory zone update (also for non MASK) =====
2298     if in_mem:
2299         # for all PC slots, construct STORE stream (address, value) for this
2300         # step
2301         is_pc_glob = (((PE - proc_b)[:2]) == 0) and (PE >= proc_b) and (PE <
2302             proc_b + (pn << 2))
2303         PCI = (TE if is_pc_glob else 0)
2304         It, rd, rs, cimm, L = get_instruction(PCI)
2305
2306         pid_i = ((PE - proc_b) >> 2) # only meaningful for PC slot
2307         r1_i = rightmost_exact_match(proc_b + (pid_i << 2) + 1, PE, TE)
2308         r2_i = rightmost_exact_match(proc_b + (pid_i << 2) + 2, PE, TE)
2309         r3_i = rightmost_exact_match(proc_b + (pid_i << 2) + 3, PE, TE)
2310         Rs_i = (r1_i if rs == 1 else r2_i if rs == 2 else r3_i if rs == 3 else
2311             0)
2312         Rr_i = (r1_i if rd == 1 else r2_i if rd == 2 else r3_i if rd == 3 else
2313             0)
2314
2315         STORE_KEYS = (Rs_i if (is_pc_glob and (It == embed([STORE]))) else 0)
2316             # store address
2317         STORE_VALS = (Rr_i if (is_pc_glob and (It == embed([STORE]))) else 0)
2318             # store value
2319
2320         hit = rightmost_exact_match(PE, STORE_KEYS, 1, 0)
2321         val = rightmost_exact_match(PE, STORE_KEYS, STORE_VALS, TE)
2322
2323         # all halt: do not rewrite; otherwise, if hit, rewrite this address (
2324             # even if not MASK originally)
2325         if hit == 1: return (val, 1)
2326         else: return (TE, 0)
2327
2328     return (TE, 0)

```

2322 **L PROOF OF THEOREM 5**

2324 **Definition 11** (Two-Sided Dyck- k). *Let $\Sigma_k = \{a_1^{\pm 1}, \dots, a_k^{\pm 1}\}$. Define $u \Rightarrow v$ if v is obtained from*
 2325 *u by deleting a factor $a_i a_i^{-1}$ or $a_i^{-1} a_i$ for some $i \in \{1, \dots, k\}$. Write $u \Rightarrow^* v$ iff there exist $m \geq 0$*
 2326 *and words $u = w_0, \dots, w_m = v$ with $w_j \Rightarrow w_{j+1}$ for all j . Then*

2328
$$\text{TDyck}_k := \{w \in \Sigma_k^* : w \Rightarrow^* \varepsilon\}. \quad (87)$$

2329 where ε is the empty word.

2331 For the Two-Sided Dyck- k language, we define the vocabulary as:

2332
$$\Sigma = \{a_1^{\pm 1}, a_1^{-1}, a_2^{\pm 1}, a_2^{-1}, \dots, a_k^{\pm 1}, a_k^{-1}\} \cup \{[\text{BOS}], [\text{EOS}]\} \quad (88)$$

2334 and the extended vocabulary $\bar{\Sigma} = \Sigma \cup \{M_1, M_2\}$, where $\{a_i^{\pm 1}\}_{i=1}^k$ are the $2k$ bracket tokens, $[\text{BOS}]$
 2335 and $[\text{EOS}]$ are boundary tokens, and M_1, M_2 are two types of mask tokens used to handle an inherent
 2336 limitation of vanilla masked diffusion when extended to the non-deterministic case (i.e. given two
 2337 mask tokens, the model can not randomly generate AA and BB without also having probability to
 2338 generate AB and BA). Thus $|\Sigma| = 2k + 2$ and $|\bar{\Sigma}| = 2k + 4$.

2339 Following (Merrill et al., 2022):

2340 **Definition 12** (Hardmax). *For any $x \in \mathbb{R}^n$, define the zero-temperature softmax (Hardmax) as*

2342
$$\text{softmax}_0(x) \triangleq \lim_{\tau \rightarrow 0^+} \text{softmax}_\tau(x), \quad \text{where} \quad [\text{softmax}_0(x)]_i = \begin{cases} \frac{1}{\lvert \arg \max_j x_j \rvert}, & i \in \arg \max_j x_j, \\ 0, & \text{otherwise.} \end{cases}$$

2345 **Definition 13** (Stochastic AP-MDM). *A stochastic AP-MDM is defined as an AP-MDM with encoder-
 2346 only Transformer backbone as in § F, where instead of greedy decoding, we use sampling from
 2347 Hardmax distributions. Formally, let $\text{Enc}_\theta : \Sigma^* \rightarrow (\mathbb{R}^d)^*$ be the encoder Transformer (before
 2348 the final projection layer) as defined in Definition 7. For each position i in the input sequence,
 2349 let $\mathbf{h}_i = [\text{Enc}_\theta(\mathbf{x})]_i \in \mathbb{R}^d$ be the hidden state. Define logits $\ell(v \mid \mathbf{x}, i) = \langle \mathbf{h}_i, \text{TE}(v) \rangle$ and the
 2350 probability distribution over vocabulary Σ as:*

2351
$$p_\theta(v \mid \mathbf{x}, i) = [\text{softmax}_0(\ell(\cdot \mid \mathbf{x}, i))]_v \quad (89)$$

2353 where softmax_0 is the Hardmax function from Definition 12. The stochastic AP-MDM samples tokens
 2354 according to $v_i \sim \text{Categorical}(p_\theta(\cdot \mid \mathbf{x}, i))$. For the insert operation to support two types of mask
 2355 tokens (M_1 and M_2), we use two separate classification heads PROJ_{I_1} and PROJ_{I_2} whose outputs
 2356 are thresholded for inserting M_1 or M_2 , with priority: M_2 takes precedence over M_1 . We disable
 2357 remask and delete operations for this construction.

2358 **Theorem 12** (Generating Two-Sided Dyck- k , Formal). *For any $k \geq 2$, there exists a stochastic
 2359 AP-MDM as in Definition 13 with constant-depth Transformer backbone such that the support of the
 2360 induced distribution of AP-MDM over strings w is exactly equal to TDyck_k , that is,*

2361 1. (Coverage) For every $w \in \text{TDyck}_k$, $\Pr_\theta[w] > 0$.
 2362 2. (Support exactness) For every $w \notin \text{TDyck}_k$, $\Pr_\theta[w] = 0$.

2364 *Conversely, under the common hardness assumption that $\text{TC}^0 \neq \text{NC}^1$, for any constant-depth
 2365 ARM with polylogarithmic embedding dimension, there exists $N \in \mathbb{N}$ such that the support of the
 2366 distribution generated ARM cannot be exactly equal to TDyck_k .*

2368 *Proof.* For the claim about ARM, we will prove by contradiction. First we note that every $w \in \Sigma_k^*$,
 2369 there exists a $w' \in \text{TDyck}_k$ such that w is a prefix of w' . (The existence of such w' is straightforward,
 2370 for example, one can construct it by taking $w' = ww^{-1}$, where the inverse is performed by viewing
 2371 w as an element of the corresponding free group) Now we suppose ARM can indeed generate a
 2372 distribution whose support is exactly equal to TDyck_k . This implies that the ARM must be able to
 2373 determine at each generation step whether the current sequence can be terminated. Specifically, the
 2374 model must assess whether the currently generated sequence satisfies the complete bracket matching
 2375 condition. If the sequence is properly matched, the probability of outputting $[\text{EOS}]$ must be non-zero
 to enable termination. Therefore, the difficulty of generating matched brackets reduces to the problem

of recognizing whether a given sequence forms valid matched brackets. For the two-sided Dyck- k language, this recognition problem is DLOGTIME-uniform NC^1 -hard (Robinson, 1993), which exceeds the computational capacity of constant-depth Transformers which is in TC^0 , under the hardness assumption that $\text{TC}^0 \neq \text{NC}^1$. Thus we conclude ARM cannot generate a distribution over Σ_k^* whose support is exactly equal to TDyck_k .

For the stochastic AP-MDM, we construct the following algorithm to generate all strings in the two-sided Dyck- k language through the following algorithmic procedure, illustrated in Figure 2(b):

Step 1 (Probabilistic Mask Insertion): If the current sequence contains no mask tokens, then for any sequence position j not containing an end-of-sequence token, the model inserts M_1 with constant probability $p \in (0, 1)$ using the insert operation from § 4. The insertion probability for M_2 is set to zero at this stage.

Step 2 (Uniform Token Selection): At positions containing M_1 , the model performs two operations: (i) it samples uniformly from the bracket token set $\{a_i^{\pm 1}\}_{i=1}^k$ to determine the content, and (ii) it inserts M_2 with probability 1. Due to the priority-based insertion mechanism defined in Definition 13, M_2 overrides M_1 , making the original insertion probability irrelevant for subsequent processing.

Step 3 (Context-Aware Bracket Matching): When processing M_2 tokens, the model identifies the nearest bracket token $a_j^{\pm 1}$ to the left of the current position and generates the corresponding matching bracket according to the two-sided Dyck- k reduction rules.

Termination Condition: The termination mechanism operates as follows: In Step 2, when the sequence contains M_1 tokens but no M_2 tokens, the model inserts M_2 at the final position with a fixed probability. Subsequently, in Step 3, when processing this final M_2 token, the model generates $[\text{EOS}]$ (given the binary positional encoding we considered in § E, the model is able to identify if the token should be decoded as $[\text{EOS}]$ or a matching bracket), signaling the end of the generation process.

The above algorithm admits an E-FASP program implementation (see § G) with the following treatment of stochastic operations:

For uniform sampling over the $2k$ bracket tokens, we exploit the fixed vocabulary size by assigning each bracket token $a_i^{\pm 1}$ to distinct dimensions in the d -dimensional embedding space. Specifically, when the E-FASP program needs to output a uniform distribution over a subset $S \subseteq \{a_i^{\pm 1}\}_{i=1}^k$, it returns a hidden state $\mathbf{h} \in \mathbb{R}^d$ where $\langle \mathbf{h}, \text{TE}(v) \rangle = c$ for all $v \in S$ (for some constant c) and $\langle \mathbf{h}, \text{TE}(v') \rangle < c$ for $v' \notin S$. The hardmax from Definition 13, ensures that the probability mass concentrates uniformly over S , achieving the desired uniform sampling behavior.

It is easy to see that this generation procedure can produce any string in the two-sided Dyck- k language, and since any token that would violate Dyck constraints always has strictly smaller logit and hence probability 0 under Hardmax, the support of the distribution is exactly TDyck_k . \square

We note the introduction of two mask tokens is for the model to distinguish between different steps, but this is not necessary if we allow some random seeds in input which mitigates the limitation of MDM when extending to the non-deterministic case.

M PROOF OF THEOREM 6

Edit Triplet Encoding. We encode each elementary edit as a triplet of tokens $\langle \text{op}, \text{pos}, \text{val} \rangle \in \Sigma_{\text{op}} \times \Sigma_{\text{pos}} \times \Sigma$, where

$$\Sigma_{\text{op}} = \{\text{UNMASK}, \text{INSERT}, \text{DELETE}, \text{REMASK}\} \quad (90)$$

The position token set Σ_{pos} reuses the earlier address/position encoding in Definition 10: a position $i \in [S(n)]$ is encoded as $\text{pos} = \text{encode}(i)$ with inverse decoding $\text{dec_pos}(\text{pos}) = i$.

The semantics of the triplet follows the instantiation of AP-MDM considered in § 4.

Definition 14 (Editing Sequence). *Given an input sequence $\mathbf{x} \in \bar{\Sigma}^*$, an editing sequence is a finite sequence of triplets*

$$T(\mathbf{x}) = (\langle \text{op}_j, \text{pos}_j, \text{val}_j \rangle)_{j=1}^{m(\mathbf{x})}, \quad \text{op}_j \in \Sigma_{\text{op}}, \text{pos}_j \in \Sigma_{\text{pos}}, \text{val}_j \in \Sigma. \quad (91)$$

2430 Its application to \mathbf{x} is defined recursively by $\mathbf{x}^{(0)} = \mathbf{x}$ and

$$2432 \quad \mathbf{x}^{(j)} = \text{Apply}(\langle \text{op}_j, \text{pos}_j, \text{val}_j \rangle, \mathbf{x}^{(j-1)}), \quad j = 1, \dots, m(\mathbf{x}). \quad (92)$$

2433 We write

$$2434 \quad \text{Apply-Triplets}(T(\mathbf{x}), \mathbf{x}) := \mathbf{x}^{(m(\mathbf{x}))}. \quad (93)$$

2435 An editing sequence is valid iff every intermediate application is well-defined under the triplet
2436 semantics (e.g., UNMASK applies only to masks).

2437 **Theorem 13** (Hardness of Simulating AP-MDM, Formal). *There exists an AP-MDM F with a
2438 constant-depth encoder-only Transformer backbone such that no ARM or Masked-ARM G (Defini-
2439 tion 3) with a constant-depth decoder-only Transformer backbone can, on every input \mathbf{x} , produce
2440 an editing sequence $T_G(\mathbf{x})$ (Definition 14) that realizes F 's generation process; i.e., under the
2441 assumption that constant-depth Transformers do not include TC^0 ,*

$$2443 \quad \forall G \exists \mathbf{x} \in \bar{\Sigma}^* : \text{Apply-Triplets}(T_G(\mathbf{x}), \mathbf{x}) \neq \text{Apply-Triplets}(T_F(\mathbf{x}), \mathbf{x}),$$

2444 or $T_G(\mathbf{x})$ is invalid.

2445 The ARM in the above result can be replaced by the Masked-ARM with encoder architecture used in
2446 Theorem 3 without affecting the result.

2447 *Proof.* Fix $L \in \mathbb{N}$. Let $\mathbf{u} \in \Sigma^L$ be the base string, let T be a valid editing sequence (Definition 14),
2448 and let $q \in \Sigma_{\text{pos}}$ be a query position token with index $i = \text{dec_pos}(q)$. Encode the input as

$$2449 \quad \mathbf{x} = (\mathbf{u}, [\text{SEP}], \text{flatten}(T), [\text{SEP}], q, [\text{SEP}]) \in \Sigma^{L+3+3m(\mathbf{u})}. \quad (94)$$

2450 Here

$$2451 \quad \text{flatten}(T) = (\text{op}_1, \text{pos}_1, \text{val}_1, \dots, \text{op}_m, \text{pos}_m, \text{val}_m). \quad (95)$$

2452 The task is to output the queried symbol after applying the editing history:

$$2453 \quad y = [\text{Apply-Triplets}(T(\mathbf{u}), \mathbf{u})]_i \in \Sigma. \quad (96)$$

2454 That is, the instance provides (i) a base string \mathbf{u} , (ii) an editing history T as a sequence of triplets,
2455 and (iii) a query position token q . The model must simulate T on \mathbf{u} and return the symbol at the
2456 queried position i in the resulting string. For AP-MDM, the simulation is intuitive and can be proven
2457 by simple E-FASP program which we skip in this proof.

2458 For ARM, due to the construction of the problem, the simulation process is exactly copying the
2459 editing sequence part in the input, therefore solving the problem is equivalent to directly answer the
2460 query, which we show the equivalence to a TC^0 -hard task:

2461 **Definition 15** (PRESERVES (Allender et al., 2006)). *Let A be an ordered list (1-indexed). The update
2462 alphabet is*

$$2463 \quad \mathcal{U} = \{ \text{insert}(i), \text{delete}(i) \mid i \in \mathbb{N} \}. \quad (97)$$

2464 For an initial list A_0 and an update sequence $s \in \mathcal{U}^*$, let A_t be the list after applying the first t
2465 updates of s . For indices $i, j \in \mathbb{N}$, define

$$2466 \quad \text{PRESERVES}(A_0, s, i, j) \iff \text{the item at position } i \text{ in } A_0 \text{ still exists after } s \text{ and is at position } j \text{ in } A_{|s|}. \quad (98)$$

2467 The decision problem PRESERVES asks, given (A_0, s, i, j) , whether $\text{PRESERVES}(A_0, s, i, j)$ holds.

2468 **Conjecture 14.** The PRESERVES problem is NC^1 -hard under DLOGTIME-uniform reductions.

2469 We reduce PRESERVES to our Editing-Query task in one step. Given (A_0, s, i, j) with $|A_0| = L$, let $\mathbf{u} \in \Sigma^L$ list the items of A_0 (unique token id per item); expand each $\text{insert}(p, v)$ as
2470 the triplet block $(\langle \text{INSERT}, \text{encode}(p), \mathbf{M} \rangle, \langle \text{UNMASK}, \text{encode}(p'), v \rangle)$ and each $\text{delete}(p)$ as
2471 $(\langle \text{REMASK}, \text{encode}(p), \bullet \rangle, \langle \text{DELETE}, \text{encode}(p), \bullet \rangle)$, where p' is the position of the newly inserted
2472 mask under our convention and \bullet is ignored; let T be the concatenation over s and set $q = \text{encode}(j)$.
2473 Then with

$$2474 \quad y = [\text{Apply-Triplets}(T, \mathbf{u})]_j, \quad (99)$$

2484 we have

2485 $\text{PRESERVES}(A_0, s, i, j) \iff y = \text{id}(i).$ (100)

2486 Thus any model that solves Editing-Query on all inputs also decides PRESERVES. By Conjecture 14,
2487 PRESERVES is NC^1 -hard, which places it beyond the computational capacity of constant-depth
2488 Transformers that are contained in TC^0 . Under this conjecture, no constant-depth ARM or Masked-
2489 ARM can solve our Editing-Query task on all inputs. This completes the proof.
24902491 \square 2492

N EXPERIMENT: SUDOKU PUZZLE

2493 We provide detailed description of training data generation for the Sudoku puzzle experiment. The
2494 data generation process simulates a backtracking-based solving algorithm and records the intermediate
2495 states as supervised training trajectories for AP-MDM.
24962497 **State Representation** The 9×9 Sudoku grid is represented as a sequence of 324 tokens, where
2498 each cell is encoded using 3 consecutive tokens: (value, color, marker). The vocabulary consists of
2499 32 tokens including: EMPTY (unfilled cell), MASK (unknown position to be predicted), digits 1-9
2500 (filled values), WHITE (default color indicating no branch), 15 branch COLOR tokens (tracking
2501 different branching paths), NORMAL (standard state), SKULL (failed branch point), BRANCH
2502 (active branch starting position), and SEPARATOR (structural delimiter between cells). The value
2503 token can be EMPTY (for unfilled cells), a digit 1-9 (for filled cells), or MASK (for positions being
2504 predicted). The color token tracks which branching decision path the cell belongs to, using WHITE
2505 for non-branched cells and one of 15 COLOR tokens for cells within branches. The marker token
2506 indicates the cell's computational status: NORMAL for standard cells, SKULL for positions that
2507 caused backtracking, and BRANCH for branch starting points.
25082509 The solving algorithm consists of several atomic operations, each translated into state-transition
2510 tuples for AP-MDM training:
25112512 **Assign and Branch:** The two most fundamental operations in Sudoku solving are deterministic
2513 assignment and branch creation, both implemented through combinations of **remask** and **unmask**
2514 operations. For Assign, when deterministically filling a cell with value v , we generate a 2-step
2515 transition: first, the three tokens at the target position are remasked, converting them to (M, M, M) ;
2516 second, these masks are unmasked to the target values (v, c, NORMAL) where c is the appropriate
2517 color token determined by the current branch context. For Branch, when creating a branch at position
2518 (r, c) with candidate value v and branch identifier b , we similarly generate a 2-step transition: first,
2519 remask the cell tokens to (M, M, M) ; second, unmask to $(v, \text{COLOR}_b, \text{BRANCH})$ to mark this cell
2520 as a branch starting point with the corresponding branch color.
25212522 Concrete examples visualizing these two operations are shown in Figure 5.
25232524 **Contradiction Marking, Backtrack, and Recovery:** When the solver detects a contradiction (a
2525 cell with no valid candidates), before backtracking, we mark this contradicting position through a
2526 2-step transition: first remask the cell to (M, M, M) , then unmask to $(\text{EMPTY}, \text{COLOR}_b, \text{SKULL})$ to
2527 visually indicate the contradiction location. When backtracking from a failed branch, multiple cells
2528 need to be cleared through a 2-step transition that handles both ordinary cells and the branch starting
2529 point differently: in the first step, ordinary cells are remasked in all three token positions while
2530 the branch starting point only has its marker token remasked; in the second step, ordinary cells are
2531 unmasked to $(\text{EMPTY}, \text{WHITE}, \text{NORMAL})$ while the branch starting point undergoes simultaneous
2532 remask and unmask operations with the first two positions remasked to (M, M) and the third position
2533 unmasked to store the failed value. After backtracking, when filling the failed position with a new
2534 value, we generate a 2-step transition to convert from the SKULL state: the first step unmasks the
2535 value and color while remasking the marker to $(M, M, v_{\text{old}}) \rightarrow (v_{\text{new}}, c, M)$, and the second step
2536 unmasks the marker to either NORMAL or BRANCH depending on whether this creates a new
2537 branch. Concrete examples visualizing these operations are shown in Figure 5.
25382539 **Training Data Statistics** Following this generation process, each Sudoku puzzle produces 1421.3
2540 state-transition tuples (i.e. from \mathbf{x}_t to \mathbf{x}_{t+1}) on average depending on the puzzle difficulty and the
2541 number of backtracking steps required. For our experiments, we generated training data from 100
2542 hard Sudoku puzzles, each yielding 25,022.6 training state-transition tuples on average.
2543

Figure 5: Demonstration of backtracking and recovery from failure operations (Part 1). (Continued on next page)

2646

2647

Input Sequence (x_t)

2	[COLOR_1]	[BRANCH]	7	[COLOR_1]	[NORMAL]	5	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	4	[COLOR_1]	[NORMAL]	3
[COLOR_1]	[NORMAL]	1	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	8	[COLOR_2]	[BRANCH]	6	[COLOR_2]	[NORMAL]	3	[WHITE]	[NORMAL]	1	[WHITE]	[NORMAL]	7	[WHITE]
[NORMAL]	2	[COLOR_3]	[BRANCH]	5	[COLOR_3]	[NORMAL]	9	[COLOR_3]	[NORMAL]	1	[WHITE]	[NORMAL]	9	[COLOR_2]	[NORMAL]	3	[COLOR_2]	[NORMAL]	1	[WHITE]	[NORMAL]
[NORMAL]	5	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]	[NORMAL]	5	[COLOR_4]	[BRANCH]	1	[MASK]	[MASK]
[MASK]	1	[COLOR_5]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	3	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	[MASK]	[MASK]	[MASK]
9	[COLOR_4]	[NORMAL]	1	[MASK]	[MASK]	[MASK]	[MASK]	7	[WHITE]	[NORMAL]	[MASK]	[MASK]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[MASK]	[MASK]	[MASK]
1	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	[MASK]	3	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]
[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	9	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[COLOR_4]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	9	[WHITE]
[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]
[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	2	[WHITE]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]	[NORMAL]	5	[WHITE]	[NORMAL]	1	[WHITE]
[COLOR_2]	[NORMAL]	1	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	8	[COLOR_4]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]
[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	1	[WHITE]

Remask (c)

Next Sequence (x_{t+1})

(c)

Input Sequence (x_t)

2	[COLOR_1]	[BRANCH]	1	[COLOR_1]	[NORMAL]	5	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	4	[COLOR_1]	[NORMAL]	3	
[COLOR_1]	[NORMAL]	1	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	8	[COLOR_2]	[BRANCH]	6	[COLOR_2]	[NORMAL]	3	[WHITE]	[NORMAL]	1	[WHITE]	[NORMAL]	7	[WHITE]	
[NORMAL]	2	[COLOR_3]	[BRANCH]	5	[COLOR_3]	[NORMAL]	9	[COLOR_3]	[NORMAL]	1	[WHITE]	[NORMAL]	9	[COLOR_2]	[NORMAL]	3	[COLOR_2]	[BRANCH]	1	[WHITE]		
[NORMAL]	5	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]	[NORMAL]	5	[COLOR_4]	[BRANCH]	1	[EMPTY]		
[NORMAL]	[MASK]	[MASK]	1	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	3	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	1	[EMPTY]		
[WHITE]	[NORMAL]	9	[COLOR_4]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	6	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	
[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	3	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	4	[WHITE]
[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[COLOR_4]	[NORMAL]	[EMPTY]
[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	
[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	2	[WHITE]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]	[NORMAL]	1	[WHITE]	
[WHITE]	[NORMAL]	9	[COLOR_2]	[NORMAL]	1	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	
[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]		

Remark (e)

Next Generation (n)

(d)

Figure 5: (Continued) Part 2.

2700

2701

Input Sequence (x_t)

Remask (c)

Next Sequence (x_{t+1})

2	[COLOR_1]	[BRANCH]	7	[COLOR_1]	[NORMAL]	5	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	4	[COLOR_1]	[NORMAL]	3	
[COLOR_1]	[NORMAL]	1	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	8	[COLOR_2]	[BRANCH]	6	[COLOR_2]	[NORMAL]	3	[WHITE]	[NORMAL]	1	[WHITE]	[NORMAL]	7	[WHITE]	
[NORMAL]	2	[COLOR_3]	[BRANCH]	5	[COLOR_3]	[NORMAL]	9	[COLOR_3]	[NORMAL]	1	[WHITE]	[NORMAL]	9	[COLOR_2]	[NORMAL]	3	[COLOR_2]	[BRANCH]	1	[WHITE]	[NORMAL]	
[NORMAL]	5	[WHITE]	[NORMAL]	4	[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]	[NORMAL]	5	[COLOR_4]	[BRANCH]	1	[EMPTY]	[WHITE]	
[NORMAL]	4	[COLOR_4]	[NORMAL]	1	[EMPTY]	[WHITE]	1	[EMPTY]	[WHITE]	1	[EMPTY]	[WHITE]	1	[EMPTY]	[WHITE]	3	[WHITE]	[NORMAL]	8	[WHITE]	[NORMAL]	1
[EMPTY]	[WHITE]	[NORMAL]	9	[COLOR_4]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	
[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	3	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	4
[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[COLOR_4]	[NORMAL]	
[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	9	[WHITE]	[NORMAL]	1	[WHITE]	[NORMAL]	6	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	
[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	6	[COLOR_2]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	2	[WHITE]	[NORMAL]	7	[COLOR_2]	[NORMAL]	8	[WHITE]
[WHITE]	[NORMAL]	5	[WHITE]	[NORMAL]	9	[COLOR_2]	[NORMAL]	1	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	8	[COLOR_4]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	1	[EMPTY]
[WHITE]	[NORMAL]	1	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	7	[WHITE]	[NORMAL]	[EMPTY]	[WHITE]	[NORMAL]	1	[EMPTY]

(e)

Input Sequence (x_t)

2	[COLOR_1]	[BRANCH]	1	7	[COLOR_1]	(NORMAL)	1	5	[WHITE]	(NORMAL)	1	8	[WHITE]	(NORMAL)	1	9	[WHITE]	(NORMAL)	1	6	[WHITE]	(NORMAL)	1	4	[COLOR_1]	(NORMAL)	1	3	[WHITE]
[COLOR_1]	(NORMAL)	1	1	[WHITE]	(NORMAL)	1	4	[WHITE]	(NORMAL)	1	8	[COLOR_2]	[BRANCH]	1	6	[COLOR_2]	(NORMAL)	1	3	[WHITE]	(NORMAL)	1	1	[WHITE]	(NORMAL)	1	7	[WHITE]	
(NORMAL)	1	2	[COLOR_3]	[BRANCH]	1	5	[COLOR_3]	(NORMAL)	1	9	[COLOR_3]	(NORMAL)	1	1	[WHITE]	(NORMAL)	1	9	[COLOR_2]	(NORMAL)	1	3	[COLOR_2]	(NORMAL)	1	2	[WHITE]		
(NORMAL)	1	5	[WHITE]	(NORMAL)	1	4	[WHITE]	(NORMAL)	1	6	[COLOR_2]	(NORMAL)	1	7	[COLOR_2]	(NORMAL)	1	8	[WHITE]	(NORMAL)	1	5	[COLOR_4]	[BRANCH]	1	[EMPTY]	[WHITE]		
[EMPTY]	[WHITE]	(NORMAL)	1	9	[COLOR_4]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	3	[WHITE]	(NORMAL)	1	8	[WHITE]	(NORMAL)	1	1	[WHITE]
(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	7	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	6	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]		
[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	3	[WHITE]	(NORMAL)	1	6	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	4	[WHITE]	
(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	9	[WHITE]	(NORMAL)	1	6	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	9	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	7	[COLOR_4]		
[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	2	[WHITE]	(NORMAL)	1	7	[COLOR_2]	(NORMAL)	1	8	[WHITE]	(NORMAL)	1	1	[WHITE]
(NORMAL)	1	5	[WHITE]	(NORMAL)	1	9	[COLOR_2]	(NORMAL)	1	1	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	8	[COLOR_4]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	1	[WHITE]		
[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	7	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	(NORMAL)	1	6	[WHITE]	(NORMAL)	1	[EMPTY]	[WHITE]	

Remask (c)

Next Sequence (x_{t+1})

(f)

Figure 5: (Continued) Part 3.

2754 **O EXPERIMENT: GRAPH GENERATION**
 2755

2756 We consider a graph editing task that requires computing the minimum edge set to disconnect two
 2757 specified nodes. Formally, given a directed graph $G = (V, E)$ with unit-capacity edges and two
 2758 designated nodes $s, t \in V$ (source and target), the task is to generate a modified graph $G' = (V, E')$
 2759 where $E' \subseteq E$ such that there exists no path from s to t in G' , and $|E \setminus E'|$ (the number of removed
 2760 edges) is minimized. This is equivalent to computing the minimum s - t cut, which by the max-flow
 2761 min-cut theorem equals the maximum flow from s to t . The generation process involves iteratively
 2762 finding augmenting paths, modifying the graph structure by reversing edge directions, and tracking
 2763 intermediate states until no more augmenting paths exist. The final output is the graph with min-cut
 2764 edges removed, effectively disconnecting s and t .

2765 We provide detailed description of training data generation for this graph editing task based on
 2766 the Edmonds-Karp algorithm. The data generation process simulates the BFS-based augmenting
 2767 path search and records the intermediate algorithmic states as supervised training trajectories for
 2768 AP-MDM.

2770 **State Representation** A directed graph with n nodes and m edges is represented as a token
 2771 sequence with three main components: prompt (source and target nodes), graph data (edge list with
 2772 features), and node data (node list with features). Each edge is encoded with its endpoints (u, v)
 2773 and two feature slots tracking the edge's directional availability: slot1 represents forward direction
 2774 availability (initially FB for forward-backward) and slot2 represents reverse direction availability
 2775 (initially MASK indicating unavailable). Each node is encoded with its ID and two features: level
 2776 (BFS layer, initially INF for unvisited or LVL0 for source) and parent (parent node in BFS tree,
 2777 initially NIL). The vocabulary includes structural tokens (PROMPT, SRC, TGT, GRAPH, NODES,
 2778 parentheses), edge feature tokens (FB, MASK), node feature tokens (LVL0-LVL9, INF, NIL, PAR),
 2779 node IDs (0-299), and termination tokens (EOA, EOS).

2780 **Atomic Operations** The Edmonds-Karp algorithm is decomposed into atomic operations, each
 2781 translated into state-transition tuples for AP-MDM training. The algorithm consists of four phases:

2783 **Feature Expansion:** Before the algorithm begins, edge and node feature slots must be initialized
 2784 through a 3-step process following a expansion-then-unmask paradigm. First, MASK tokens are
 2785 inserted after each edge's second node and after each node's ID (**insert** operation). Second, another
 2786 MASK is inserted while simultaneously unmasking the first MASK to FB for edges and to the
 2787 appropriate level for nodes (**insert** + **unmask** operations). Third, the second MASK is unmasked to
 2788 MASK for edges and to NIL for nodes (**unmask** operation). See Figure 6.

2789 **Breadth-First Search:** The breadth-first search proceeds by discovering nodes layer by layer. When
 2790 a new node is discovered through an edge, we generate a 2-step transition: first, remask the node's
 2791 level and parent features to MASK (**remask** operation); second, unmask these MASKs to the new
 2792 level and parent ID (**unmask** operation). This continues until either the target node is reached
 2793 (proceed to augmentation) or no new nodes can be discovered (algorithm terminates). See Figure 7.

2794 **Path Augmentation:** When an augmenting path from source to target is found, we generate a 2-step
 2795 transition to flip edges along the path and reset node features. First, for each edge on the path, swap
 2796 its slot1 and slot2 values (reversing the direction), and simultaneously remask all node features to
 2797 MASK (**remask** operation). Second, unmask all node MASKs back to their initial values: INF for
 2798 non-source nodes and LVL0 for the source node, with all parents set to NIL (**unmask** operation).
 2799 After augmentation, the algorithm returns to BFS phase to search for the next augmenting path. See
 2800 Figure 8.

2801 **Termination and Structural Editing:** When no more augmenting paths exist, the final BFS identifies
 2802 two disjoint sets S and T where S contains the source and T contains the target. The min-cut edges
 2803 are those directed from nodes in S to nodes in T in the original graph, and these edges must be
 2804 removed to disconnect source and target. This is accomplished through a 3-step process. First,
 2805 remask all tokens representing the min-cut edges to MASK (**remask** operation). Second, delete
 2806 these edges while simultaneously expanding a MASK token after EOA (**delete** + **insert** operations).
 2807 Third, unmask the expanded MASK to EOS (**unmask** operation), marking algorithm completion.
 2808 See Figure 9.

# Nodes	# Edges	AP-MDM		ARM	
		Avg. Seq. Length	Max Seq. Length	Avg. Seq. Length	Max Seq. Length
4	12	56	65	932	932
5	17	81	88	1,375	1,403
6	23	114	129	2,083	2,140
7	29	148	170	2,687	2,874
8	36	189	217	3,529	3,865
9	43	236	252	5,586	6,597
10	50	270	305	4,915	5,392

Table 1: Sequence length statistics for graphs of different sizes. AP-MDM sequences contain state-transition tuples, while ARM sequences enumerate all operations explicitly.

ARM Baseline For comparison with AP-MDM, we train an autoregressive baseline that learns to generate the complete solving trajectory as a single sequence. The ARM baseline takes the initial graph state as input and must generate the full sequence of operations needed to solve the task. To enable this, we convert the AP-MDM training data into an ARM-compatible format by representing each operation as a triplet (p, o, v) where p is the position index (POSE0-POSE399), o is the operation type (REMASK, UNMASK, INSERT, DELETE), and v is the value (or NONE for operations without values). The sequence format is: [initial state x_0] STEP [operations₁] STEP [operations₂] STEP ... ANSWER [final state x_{final}], where each STEP separates consecutive state transitions and ANSWER marks the beginning of the final output. For ARM training, we use the standard next-token prediction objective with teacher forcing, where the model learns to autoregressively generate the entire operation sequence given the initial state.

As shown in Table 1, the sequence length grows with graph size for both AP-MDM and ARM, but ARM requires significantly longer sequences due to the explicit operation enumeration.

P EXPERIMENT: PARITY

The parity task requires determining whether a binary sequence contains an even or odd number of 1s. Formally, given an input sequence $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \{0, 1\}^n$, the task is to compute $\bigoplus_{i=1}^n x_i$ (XOR of all bits), outputting 0 for even parity and 1 for odd parity.

Algorithm and Data Generation For AP-MDM training, we implement an elimination algorithm that mimics how humans naturally solve parity: repeatedly remove pairs of identical elements until only the result remains. The vocabulary consists of 5 tokens: BOS (sequence start), EOS (sequence end), MASK, digit 0, and digit 1. The elimination process follows these rules: when encountering 0s in the sequence, convert them to MASK; when encountering a pair of 1s, convert both to MASK; then delete the MASK tokens. This process repeats until only BOS remains (for even parity) or BOS followed by a single 1 remains (for odd parity). Each elimination step generates a state-transition tuple: converting tokens to MASK is a **remask** operation, and removing MASKs is a **delete** operation.

Data The training data consists of only 4 instances that cover all possible elimination patterns. Each sample is a single-step state transition demonstrating one atomic operation. The test set contains 1,000 randomly generated binary sequences with varying lengths. The test sequences have approximately equal distribution of even and odd parities.

ARM Baseline For the ARM baseline, we train autoregressive models with chain-of-thought reasoning where the model generates intermediate cumulative XOR values at each position before outputting the final result. The sequence structure is: BOS [$x_1 x_2 \dots x_n$] EOP [$s_1 s_2 \dots s_n$ result] EOS, where $s_i = \bigoplus_{j=1}^i x_j$ represents the cumulative XOR up to position i , and result is True (for odd parity) or False (for even parity). Only the content after EOP is used for computing the training loss. We train ARM models with up to 10K training instances at various fixed lengths (e.g., length 2, 10, 50, 100) and evaluate their ability to generalize to longer unseen lengths.

Figure 6 displays the Feature Expansion phase in graph generation, showing the initialization process for edge and node feature slots using **insert** and **unmask** operations. The figure is divided into three panels: (a), (b), and (c), each illustrating a different step in the process.

Panel (a): This panel shows the initial prompt and the first few steps of the graph generation process. The prompt consists of tokens: SRC, 0, TGT, 4, GRAPH, followed by a sequence of nodes: (0 1), (0 2), (0 3), (0 4), (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (2 0), (3 1), (4 2), (1 0), (3 0), (4 1), and (4). The sequence is annotated with **Nodes** and **Mask** tokens. The **Insert** operation is used to add edge features (e.g., (0 1), (0 2), (0 3), (0 4)) and node features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (2 0), (3 1), (4 2), (1 0), (3 0), (4 1)). The **Delete** operation is used to remove edge features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4)). The **Next Sequence** (x_{t+1}) is shown as a continuation of the sequence with additional edge and node features.

Panel (b): This panel shows the continuation of the graph generation process. The prompt consists of tokens: SRC, 0, TGT, 4, GRAPH, followed by a sequence of nodes: (0 1), (0 2), (0 3), (0 4), (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (2 0), (3 1), (4 2), (1 0), (3 0), (4 1), and (4). The sequence is annotated with **Nodes** and **Mask** tokens. The **Insert** operation is used to add edge features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4)). The **Delete** operation is used to remove edge features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4)). The **Next Sequence** (x_{t+1}) is shown as a continuation of the sequence with additional edge and node features.

Panel (c): This panel shows the continuation of the graph generation process. The prompt consists of tokens: SRC, 0, TGT, 4, GRAPH, followed by a sequence of nodes: (0 1), (0 2), (0 3), (0 4), (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (2 0), (3 1), (4 2), (1 0), (3 0), (4 1), and (4). The sequence is annotated with **Nodes** and **Mask** tokens. The **Insert** operation is used to add edge features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4)). The **Delete** operation is used to remove edge features (e.g., (1 2), (1 3), (1 4), (2 3), (2 4)). The **Next Sequence** (x_{t+1}) is shown as a continuation of the sequence with additional edge and node features.

Figure 6: Feature Expansion phase in graph generation, showing the initialization process for edge and node feature slots using **insert** and **unmask** operations.

Figure 6: Feature Expansion phase in graph generation, showing the initialization process for edge and node feature slots using `insert` and `unmask` operations.

(a)

Input Sequence (x_t)

```
PROMPT SRC 0 4 GRAPH [MASK] ( 0 1 FB [MASK] ) ( 0 2 FB [MASK] ) ( 0 3 FB [MASK] ) ( 0 4 FB [MASK] ) ( 1 2 FB [MASK] ) ( 1 3 FB [MASK] ) ( 1 4 FB [MASK] ) ( 2 3 FB [MASK] ) ( 0 1 FB [MASK] ) ( 3 4 FB [MASK] ) ( 2 0 FB [MASK] ) ( 3 1 FB [MASK] ) ( 4 2 FB [MASK] ) ( 1 0 FB [MASK] ) ( 3 8 FB [MASK] ) ( 4 1 FB [MASK] ) ( 4 3 FB [MASK] ) NODES ( 0 (LVL0) [NIL] ) ( 0 1 [MASK] ) [MASK] ) ( 2 [MASK] ) [MASK] ) ( 3 [MASK] ) [MASK] ) ( 4 [MASK] ) [MASK] )
```

(b)

Figure 7: Parallelized BFS phase in graph generation, showing layer-by-layer node discovery with parallel processing using `remask` and `unmask` operations.

Figure 9 displays a sequence of 3D plots illustrating the termination and structural editing phase of an algorithm. The plots are arranged in a grid, showing the state of the graph at different stages of the process.

The first two rows show the **Input Sequence (x_t)** and **Remark ($c[0]$)** for a 4-node graph. The next two rows show **Insert ($c[1]$)** and **Delete ($c[2]$)**. The following two rows show the **Next Sequence (x_{t+1})** for each operation. The bottom row shows the final **Input Sequence (x_t)** and **Remark ($c[0]$)** for the completed graph.

The plots are color-coded with various shades of blue, red, and yellow, representing different states or components of the graph. The bottom row shows the final **Input Sequence (x_t)** and **Remark ($c[0]$)** for the completed graph.

Figure 9: Termination and Structural Editing phase, showing the deletion of min-cut edges and algorithm completion using **remask** and **delete** operations.