

000 001 002 003 004 005 ADA-DIFFUSER: LATENT-AWARE 006 ADAPTIVE DIFFUSION FOR DECISION-MAKING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032 Recent work has framed decision-making as a sequence modeling problem using
033 generative models such as diffusion models. Although promising, these approaches
034 often overlook latent factors that exhibit evolving dynamics, elements that are
035 fundamental to environment transitions, reward structures, and high-level agent
036 behavior. Explicitly modeling these hidden processes is essential for both precise
037 dynamics modeling and effective decision-making. In this paper, we propose a unified
038 framework that explicitly incorporates latent dynamic inference into generative
039 decision-making from minimal yet sufficient observations. We theoretically show
040 that under mild conditions, the latent process can be identified from small temporal
041 blocks of observations. Building on this insight, we introduce Ada-Diffuser, a
042 causal diffusion model that learns the temporal structure of observed interactions
043 and the underlying latent dynamics simultaneously, and furthermore, leverages
044 them for planning and control. With a proper modular design, Ada-Diffuser
045 supports both planning and policy learning tasks, enabling adaptation to latent
046 variations in dynamics, rewards, and even recovering hidden action variables from
047 action-free demonstrations. Extensive experiments on locomotion and robotic
048 manipulation benchmarks demonstrate the model’s effectiveness in accurate latent
049 inference, long-horizon planning, and adaptive policy learning.
050
051

1 INTRODUCTION

052
053 Learning and planning in partially observable environments is a fundamental challenge in building
054 intelligent agents (Kaelbling et al., 1998). Recent work on casting decision-making as a generative
055 modeling problem, taking advantage of powerful models such as transformers (Chen et al., 2021;
056 Zheng et al., 2022; Kong et al., 2024) and diffusion models (Janner et al., 2022; Chi et al., 2023; Ren
057 et al., 2025), has achieved impressive results in a wide range of tasks. However, these methods often
058 fail to account for hidden latent variables and their temporal dynamics, factors that are prevalent
059 in real-world settings such as robotics (Lauri et al., 2022), autonomous driving (Huang et al., 2024),
060 healthcare (Hauskrecht & Fraser, 2000; Ehrmann et al., 2023), and economics (Brero et al., 2022).
061 Ignoring such latent processes can result in suboptimal decision-making, particularly when the
062 observational data does not provide full coverage of the latent factors underlying the environment’s
063 dynamics (Zintgraf et al., 2021; Xie et al., 2021; Swamy et al., 2022; Belkhale et al., 2023).
064

065 Early works address partial observability in reinforcement learning (RL) and imitation learning
066 (IL) by encoding historical observations and actions into belief states or latent embeddings, which
067 represent a distribution over the underlying latent state (Kaelbling et al., 1998; Hauskrecht, 2000; Guo
068 et al., 2018; Igl et al., 2018; Liang et al., 2024a; Xie et al., 2021). Policy optimization or planning is
069 then carried out based on these inferred belief states. However, learning such representations often
070 requires access to the historical trajectories or data from a diverse set of environments. This can be
071 prohibitively expensive, particularly in high-dimensional state or action spaces, posing challenges for
072 integrating these methods into modern generative decision-making models, which typically prioritize
073 scalability. Can we *identify* the latent factors that govern environment dynamics and rewards, and
074 integrate them into *scalable* generative decision-making models to enable adaptive planning and
075 policy learning, using only *minimal observations*, while *preserving theoretical guarantees*?
076
077

078 In this paper, we pursue this goal by addressing two fundamental questions. First, what is the
079 *minimum* set of observations required, *in principle*, to reliably identify the latent factors that govern
080

054 the environment? Second, how can *latent identification* be effectively incorporated into generative
 055 models (e.g., diffusion models) to enable adaptive planning and policy learning? To answer the first
 056 question, we theoretically show that, under mild conditions, the latent factors at the time step t can
 057 be block-wise identified using only four surrounding observable measurements (i.e., state-action
 058 trajectories) within a small temporal window. This identification result implies that a small temporal
 059 block is sufficient to infer the latent factors in observational RL trajectories in an *online* manner.

060 Guided by the theoretical findings, we propose Ada-Diffuser, a novel *causal diffusion* framework
 061 with latent identification from temporal blocks, designed to model the data generation process of RL
 062 trajectories influenced by latent factors. To reflect the autoregressive nature of sequential decision
 063 making, we introduce a *causal denoising schedule* that aligns the denoising steps with the underlying
 064 causal structure, drawing inspiration from recent advances in autoregressive diffusion models (Ho
 065 et al., 2022; Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025). For *temporal-block-wise latent*
 066 *identification*, during training, we propose a *denoise-then-refine* procedure that iteratively alternates
 067 between denoising the observations and refining latent estimates. This enables Ada-Diffuser
 068 to jointly learn a structured representation of latent variables and the corresponding observational
 069 distribution. At inference time, Ada-Diffuser generates actions and states while estimating latent
 070 variables in an online fashion. Since states and actions are conditioned on the latent factors, we employ
 071 a *zig-zag sampling* scheme that alternates between sampling state-action pairs and updating latent
 072 variables, ensuring consistency between generated sequences and their underlying latent dynamics.

073 Ada-Diffuser provides a unified generative framework for sequential decision-making. It is
 074 applicable to both *planning* and *policy learning* tasks by conditioning on different types of obser-
 075 vations and adapting the conditional generative process accordingly. The framework is flexible and
 076 can accommodate various forms of latent, including ones that influence dynamics, rewards, or even
 077 represent high-level latent actions. Importantly, even in environments without explicitly designed
 078 latent variables, the block-wise latent identification mechanism improves generative modeling by
 079 implicitly capturing structured temporal dependencies.

080 **Contributions:** (1) We establish sufficient conditions under which latent factors influencing environ-
 081 ment dynamics and rewards can be identified from short temporal windows of RL trajectories, without
 082 requiring full trajectory access or multi-environment data. (2) We develop Ada-Diffuser, a causal
 083 diffusion model that performs block-wise latent inference to jointly model latent contexts and observ-
 084 able trajectories. Unlike prior latent-augmented diffusion approaches, Ada-Diffuser introduces a
 085 minimal-sufficient block with backward refinement for identifiable latents and uses fully autoregres-
 086 sive denoising with zig-zag sampling to couple inference and generation. (3) Ada-Diffuser can
 087 be adapted to a wide range of decision-making tasks by conditioning on different types of observation.
 088 We empirically show the improved performance on a wide range of planning and control tasks,
 089 including 8 environments under 23 different settings.

090 2 BACKGROUND AND RELATED WORK

091 In this section, we provide background and related work on diffusion-based decision-making. Addi-
 092 tional discussions are provided in Appendix E, including related work on (1) learning latent belief
 093 states in POMDPs (Kaelbling et al., 1998; Hauskrecht, 2000; Igl et al., 2018; Gregor et al., 2018;
 094 Goyal et al., 2021), particularly in the context of transfer, meta, and nonstationary RL/IL (Zintgraf
 095 et al., 2021; Liang et al., 2024a; Ni et al., 2023; Xie et al., 2021; Liang et al., 2024a), and (2)
 096 autoregressive diffusion models (Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025; Wu et al., 2023).

097 Recent advances use diffusion models as planners and policies for both RL and IL. *I. Diffusion Plan-*
 098 *ner:* Diffusion-based planning leverages generative models to sample future state-action trajectories
 099 from a given state, using guidance techniques (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) to en-
 100 courage desirable properties such as high expected rewards. Taking Denoising Diffusion Probabilistic
 101 Models (DDPM (Ho et al., 2020))-based approaches as an example, these methods learn a generative
 102 model over expert trajectories $\tau = \{(\mathbf{s}_0, \mathbf{a}_0), \dots, (\mathbf{s}_T, \mathbf{a}_T)\}$ by modeling a forward-noising process:
 103 $q(\mathbf{x}^t \mid \mathbf{x}^{t-1}) = \mathcal{N}(\mathbf{x}^t; \sqrt{\alpha_t} \mathbf{x}^{t-1}, (1 - \alpha_t)\mathbf{I})$, and a parameterized denoising model $p_\theta(\mathbf{x}^{t-1} \mid \mathbf{x}^t)$ to
 104 reverse the process. Here, the superscript t denotes diffusion steps, T denotes the planning horizon,
 105 \mathbf{x}^0 is a clean subsequence sampled from the expert trajectory τ , and α_t controls the variance schedule
 106 at diffusion step t . During inference, trajectories are generated by starting from Gaussian noise
 107 and iteratively denoising through the learned reverse process. This generation can be optionally
 108 conditioned on the initial state or other guidance signals \mathbf{y} (e.g., goals, rewards): $\hat{\tau} \sim p_\theta(\tau \mid \mathbf{s}_0, \mathbf{y})$.

108 *II. Diffusion Policy:* In contrast to diffusion planners, Diffusion Policy methods directly parameterize
 109 the policy $\pi_\theta(a | s)$ using diffusion models. For example, Diffusion Policy (Chi et al., 2023) uses a
 110 diffusion model to generate multi-step actions with expressive multimodal distributions. DPPO (Ren
 111 et al., 2025) extends this idea by modeling a two-layer MDP structure, which enables fine-tuning of
 112 diffusion-based policies in RL settings. Another line of work uses diffusion models to parameterize
 113 the policy networks for only the single current step (Wang et al., 2022; Hansen-Estruch et al., 2023;
 114 Chen et al., 2023; Lu et al., 2023). Ada-Diffuser can generally accommodate both diffusion
 115 planner and policies within the same framework.

116 3 LATENT IDENTIFICATION IN POMDP

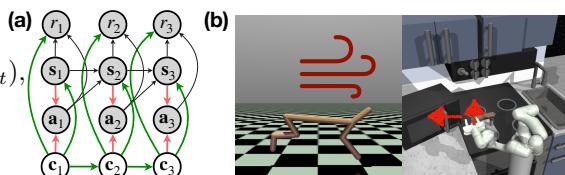
118 In this section, we seek to formally model the structure of the decision-making system by answering
 119 the following questions. First, where do the latent factors reside, and how do they influence the
 120 observable variables such as states, actions, and rewards? Second, can they be identified from
 121 demonstration data alone? We model the system that extends the standard MDP to include un-
 122 observable, time-varying latent variables that affect both the transition dynamics and the reward
 123 function. This model generalizes the contextual MDP by allowing the context to evolve stochastically
 124 over time. We then formalize the data generation process under this model using structural causal
 125 models (SCMs) (Pearl, 2010). Finally, we present theoretical results that characterize the minimal
 126 observational requirements for identifying the latent variables.

127 3.1 LATENT CONTEXTUAL POMDP WITH TIME-DEPENDENT CONTEXT

129 We model the latent factors using a general contextual MDP framework, where the context it-
 130 self evolves over time. Formally, we define a latent time-varying contextual MDP as a tuple
 131 $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{C}, \mathcal{T}, \mathcal{R}, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, \mathcal{C} is the latent con-
 132 text space, $\mathcal{T}(s_t | s_{t-1}, a_{t-1}, c_t)$ is the transition distribution, $\mathcal{R}(s_t, a_t, c_t)$ is the reward function,
 133 and $\gamma \in [0, 1]$ is the discount factor. The latent context $c_t \in \mathcal{C}$ follows a time-dependent (possibly
 134 stochastic) process: $c_t \sim p(c_t | c_{t-1})$, and is unobserved during training and inference. The agent
 135 only observes trajectories $\tau = \{(s_0, a_0), \dots, (s_T, a_T)\}$, and infers the latent context c_t from the
 136 observational data. This is naturally relevant to several MDP models, including (dynamic) hidden
 137 parameter MDPs (Doshi-Velez & Konidaris, 2016; Perez et al., 2020; Xie et al., 2021), Bayes-adaptive
 138 MDPs (Martin, 1965; Duff, 2002; Zintgraf et al., 2021), and factored MDPs (Guestrin et al., 2003).
 A full comparison and analysis is given in App. C.

139 Given trajectories generated under this model, we can describe the data generation process using the
 140 SCMs. Without the loss of generality, we consider the setting where an expert policy π is assumed to
 141 generate the actions, as is standard in learning from demonstration data. The data generation process
 142 can therefore be expressed as (l.h.s. Fig. 1):

144 **Latent Dynamics:** $c_t = h(c_{t-1}, \eta_t)$,
 145 **State Transitions:** $s_t = f(s_{t-1}, a_{t-1}, c_t, \epsilon_t)$,
 146 **Action Generation:** $a_t = \pi(s_t, c_t)$,
 147 **Reward Function:** $r_t = g(s_t, a_t, c_t, \delta_t)$,



150 Figure 1: (a) SCM of the Latent Contextual POMDP. Gray/white nodes are observed/latent variables;
 151 green/red edges represent transitions driven by latents/expert policies, respectively. (b) Examples
 152 where latents influence either dynamics or rewards (affecting optimal actions).

153 where η_t , ϵ_t , and δ_t denote i.i.d. exogenous noise variables. Fig. 1(a) shows the graphical model.
 154 Fig. 1(b) illustrates examples where latent factors on dynamics (e.g., external wind in locomotion)
 155 and rewards (e.g., varying target objects in robot control) influence optimal decisions.

156 3.2 IDENTIFIABILITY OF LATENT FACTORS WITH MINIMAL MEASUREMENTS

158 To learn accurate dynamics and make reliable decisions, it is essential that the underlying latent factors
 159 influencing the environment are identifiable with observational data. We present theoretical results
 160 that characterize the minimal number of consecutive observations required for the identifiability of
 161 the latent variables, under a set of mild and natural assumptions.

162 **Assumption 1** (First-order MDP). *We consider the following conditions:*

$$164 \quad P(s_t, a_t, r_t, c_t | s_{t-1}, a_{t-1}, c_{t-1}, \omega_{<t-1}) = P(s_t, a_t, r_t, c_t | s_{t-1}, a_{t-1}, c_{t-1}),$$

165 where $\omega_{<t-1} = \{s_{t-2}, \dots, s_1, a_{t-2}, \dots, a_1, c_{t-2}, \dots, c_1\}$.

167 This is naturally satisfied under our setting described in Section 3.1.

168 **Assumption 2** (Distributional Variability). *There exist observed state and action variables \mathbf{x}_t such*
 169 *that for any $\mathbf{x}_t \in \mathcal{X}_t$, there exists a corresponding $\mathbf{x}_{t-1} \in \mathcal{X}_{t-1}$ and a neighborhood \mathcal{N}^r around*
 170 *$(\mathbf{x}_t, \mathbf{x}_{t-1})$ satisfying that, for all $\mathbf{x}_{t-2} \in \mathcal{X}_{t-2}$, $\mathbf{x}_{t-1} \in \mathcal{X}_{t-1}$, $\mathbf{x}_t \in \mathcal{X}_t$, and $\mathbf{x}_{t+1} \in \mathcal{X}_{t+1}$, the*
 171 *following conditional distribution operators are injective: (i) $L_{\mathbf{x}_{t-2}|\mathbf{x}_{t+1}}$, (ii) $L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}$, and (iii)*
 172 *$L_{\mathbf{x}_t|\mathbf{x}_{t-2}, \mathbf{x}_{t-1}}$, where the conditional operator L represents transformations at the distribution level,*
 173 *that is, how one probability distribution is pushed forward to another (Dunford & Schwartz, 1971).*

174 **Assumption justification.** Conceptually, the injectivity of these operator L implies that
 175 different inputs induce different output distributions, thus imposing a minimal condition on
 176 distributional variability. In RL systems, this condition is naturally satisfied in most stochastic
 177 environments where transitions produce sufficient diversity across different states and actions.
 178 The assumption also aligns with the conditions in identifiability theory, particularly in works
 179 using spectral decomposition and latent variable models (Hu & Schennach, 2008; Hu & Shum,
 180 2012; Fu et al., 2025). We further verify this empirically using MuJoCo RL trajectories with
 181 the context instantiated as time-varying wind (App. B.5.1).

183 **Assumption 3** (Uniqueness of Spectral Decomposition). *For any $\mathbf{x}_t \in \mathcal{X}_t$ and any $\bar{\mathbf{c}}_t \neq \tilde{\mathbf{c}}_t \in \mathcal{C}_t$,*
 184 *there exists a $\mathbf{x}_{t-1} \in \mathcal{X}_{t-1}$ and corresponding neighborhood \mathcal{N}^r satisfying Assumption 2 such that,*
 185 *for some $(\bar{\mathbf{x}}_t, \bar{\mathbf{x}}_{t-1}) \in \mathcal{N}^r$ with $\bar{\mathbf{x}}_t \neq \mathbf{x}_t$, $\bar{\mathbf{x}}_{t-1} \neq \mathbf{x}_{t-1}$:*

187 *i.* $0 < k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t) < C < \infty$ for any $\mathbf{c}_t \in \mathcal{C}_t$ and some constant C ;

188 *ii.* $k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \bar{\mathbf{c}}_t) \neq k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \tilde{\mathbf{c}}_t)$, where

$$190 \quad k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t) = \frac{p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}(\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}{p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}(\bar{\mathbf{x}}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}(\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}. \quad (1)$$

193 **Assumption justification.** Conceptually, Assumption 3 requires that k , which captures
 194 second-order variations in transition dynamics at time $t-1$ and t under the latent variable
 195 \mathbf{c} , yields distinct values for different \mathbf{c} 's. This requirement is typically met in RL, as varied
 196 latent dynamics or rewards often cause significant, observable shifts in behavior. *Crucially,*
 197 *this variability is precisely what motivates the need for the identification of the latent variable*
 198 *\mathbf{c}_t , as it governs meaningful differences in learning underlying decision-making process.* We
 199 further verify this empirically using MuJoCo RL trajectories with the context instantiated as
 200 time-varying wind (App. B.5.2).

201 These assumptions are mild and natural. While Assumption 1 is standard in RL, it can be relaxed
 202 without violating our theory (App. B.3.4). Assumptions 2–3 are naturally satisfied in practice, as
 203 they simply formalize that latent variables influence the dynamic, motivating why we need the
 204 identification of them. Further validation and discussion are provided in App. A.4. Importantly, the
 205 *more strongly the context influences the dynamics (and thus the more critical it becomes to account*
 206 *for \mathbf{c} in decision-making), the more strongly these two assumptions are satisfied: the transition*
 207 *operator becomes more injective as required in Assumption 2, and the spectral ratio k becomes more*
 208 *separable across contexts as required in Assumption 3 (See empirical validation in App. B.5.3).* Under these assumptions, we establish an identifiability theory that characterizes the conditions under
 209 which the latent factors can be recovered, and specifies the level of identifiability that can be achieved.

211 **Theorem 1** (Identifiability on Latent Factors). *Under Assumptions 1–3, the posterior distribution of*
 212 *latent factor with consecutive observations $p(\mathbf{c}_t | \mathbf{x}_{t-2:t+1})$ can be identifiable up to an invertible*
 213 *transformation on the latents $\hat{\mathbf{c}}_t = h(\mathbf{c}_t)$, where $\hat{\mathbf{c}}_t$ is estimated latents and h is an invertible function.*

215 The proof is in App. B.2. Theorem 1 indicates that **a short temporal window of observations (with**
future frame at $t+1$) contains sufficient information to *recover the posterior distribution over the*

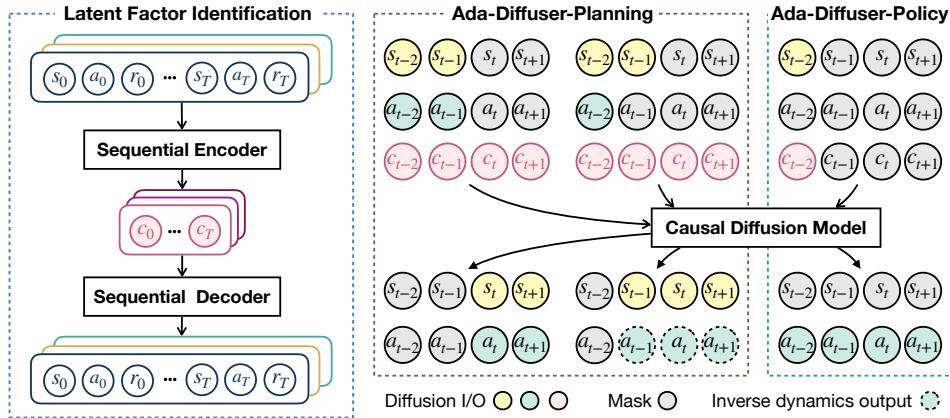


Figure 2: Overview of the Ada-Diffuser framework. The modular design consists of two main stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion model (Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is then used for planning or policy learning conditioned on the inferred latent context.

true latent factors (up to an invertible transformation) in an online manner, without requiring access to the full trajectory. This form of identifiability is standard in representation learning and is sufficient for downstream tasks such as dynamics modeling, planning, and control. Any policy or dynamics model that conditions on \hat{c}_t can implicitly compose with h^{-1} without loss of expressiveness. We further discuss the implications of this finding in greater detail in App. A.4.

4 LATENT-AWARE ADAPTIVE DIFFUSION PLANNER AND POLICY

Building on Theorem 1, we introduce the Ada-Diffuser framework for learning and planning with latent identification. As illustrated in Fig. 2, Ada-Diffuser models the trajectory generation process via two modules: (1) **latent factor identification block**, which estimates the sequence of latent variables from the observable trajectories; and (2) **causal diffusion model**, which learns the causal generative process of RL trajectories and explicitly infers latent context. Guided by the theoretical findings in Theorem 1 and the generative process (Sec C), we use autoregressive denoising for temporal dependencies and a backward-refinement step over a minimal-sufficient block, designed via a tailored noise schedule and zig-zag sampling, to recover the latent posterior in an online manner.

In this section, we first present a general formulation of conditional diffusion modeling with latent variables. We then describe the two modules of Ada-Diffuser in detail (Fig. 2). The complete algorithmic pseudocode of the training and inference procedures are given in App. D.1.

4.1 LATENT-AUGMENTED DIFFUSION MODEL FOR PLANNING AND POLICY LEARNING

Without loss of generality, we denote the observable trajectory as τ_x , which may correspond to a state-action sequence τ_{sa} or a state-only sequence τ_s , depending on the task setting. To incorporate latent structure, we augment the observable trajectory with the estimated latent context, yielding the full trajectory representation $\tau = [\tau_x, \tau_c]$, where τ_c denotes the inferred sequence of latent variables.

We train a conditional diffusion model to generate trajectories conditioned on desired attributes $\mathbf{y}(\tau)$ (e.g., **reward** or **goal specification**) and the identified \mathbf{c} . The denoising model ϵ_θ is trained to predict the noise added during the forward diffusion process via the objective: $\mathcal{L}_{\text{diff}} = \mathbb{E}_{\tau^0, \mathbf{y}, t, \epsilon} \left[\|\epsilon_\theta(\tau^t, t, \mathbf{y}(\tau), \mathbf{c}) - \epsilon\|^2 \right]$, where τ^0 is a clean trajectory sample, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, and the noisy trajectory at diffusion step t is constructed as: $\tau^t = \sqrt{\bar{\alpha}_t} \tau^0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$, where $\bar{\alpha}_t$ denotes the cumulative product of the forward noise schedule. Here, the superscript t indexes diffusion steps, and should not be confused with the environment time step indices within the trajectory.

Ada-Diffuser can flexibly adapt to generate different components of the trajectory depending on the task. In the **planning** setting, the model generates full trajectories $\tau = \{\mathbf{x}_t, \mathbf{x}_{t+1}, \dots, \mathbf{x}_{t+T_p}\}$, where T_p denotes the planning horizon. Here, \mathbf{x}_t may have two cases: (i) $\mathbf{x}_t = \{\mathbf{s}_t, \mathbf{a}_t\}$, when both states and actions are generated, (ii) $\mathbf{x}_t = \{\mathbf{s}_t\}$, when only states are generated. In the latter

case, we train an inverse dynamics model (IDM) (Ajay et al., 2023a) to infer the corresponding actions from state transitions. In the **policy learning** setting, the model generates only actions, i.e., $\tau = \{\mathbf{a}_{t+1}, \mathbf{a}_{t+2}, \dots, \mathbf{a}_{t+T_a}\}$, where T_a is the action generation horizon. While multi-step action generation methods (e.g., DP (Chi et al., 2023)) can also be viewed as a form of planning (Zhu et al., 2023), for generality, we categorize such settings under the policy framework. Ada-Diffuser-Policy accommodates both variants: multi-step action generation ($T_a > 1$), as in DP, and single-step decision-making ($T_a = 1$), as in IDQL (Hansen-Estruch et al., 2023).

4.2 STAGE 1: OFFLINE LATENT FACTOR IDENTIFICATION

Based on Theorem 1, we structure the latent inference process around *temporal blocks*, using short segments of trajectories to identify the latent context at each time step. We adopt a variational inference framework (Kingma & Welling, 2014) in which the latent variable \mathbf{c}_t is inferred block-wise. Hence, different from prior approaches that also use variational objectives to learn latent variables from observable RL trajectories (e.g., (Xie et al., 2021; Pertsch et al., 2021; Ni et al., 2023; Zeng et al., 2023; Liang et al., 2024a)¹, our method is operated in a block-wise manner, where each latent is inferred from a temporal block that includes both minimal but sufficient historical and future steps. That is, the prior distribution is conditioned on the latent variable from the previous step and the in-block history, while the posterior additionally incorporates future observations. Specifically, given a trajectory block $t - T_x : t + 1$, where T_x is the block size, we have prior $p_\phi(\mathbf{c}_t | \mathbf{c}_{t-1})$, and posterior $q_\psi(\mathbf{c}_t | \mathbf{x}_{t-T_x:t+1})$, where \mathbf{x} denotes the observed variables and may correspond to $\{\mathbf{s}\}$, $\{\mathbf{s}, \mathbf{a}\}$, or $\{\mathbf{s}, \mathbf{a}, r\}$. We then optimize the evidence lower bound (ELBO) of the observed trajectories:

$$\mathcal{L}_{\text{ELBO}, t} = \mathbb{E}_{q_\psi(\mathbf{c}_t | \mathbf{x}_{t-T_x:t+1})} [-\log p_\theta(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)] + D_{\text{KL}}(q_\psi(\mathbf{c}_t | \mathbf{x}_{t-T_x:t+1}) \| p_\phi(\mathbf{c}_t | \mathbf{c}_{t-1})) .$$

Here, the reconstruction term, $-\log p_\theta(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)$ is instantiated based on the available observation modalities. Specifically, (i) when only states are observed, the model reconstructs \mathbf{s}_t conditioned on $(\mathbf{s}_{t-1}, \mathbf{c}_t)$; and (ii) when rewards are available, the model also reconstructs r_t from $(\mathbf{s}_t, \mathbf{a}_t, \mathbf{c}_t)$. The stage is learned through a sequential encoder and decoder (l.h.s., Fig. 2).

4.3 STAGE 2: CAUSAL DIFFUSION MODEL

We propose a **causal diffusion model** for learning the generative process described in Sec.3.1. By “causal,” we refer to the modeling of the true underlying data generation process, which incorporates two key desiderata: (1) the *autoregressive process* inherent in temporal sequential RL trajectories; and (2) the *latent factor process*, capturing the causal influence of the unobserved context variables \mathbf{c}_t on the observations (e.g., $\mathbf{x}_t = [\mathbf{s}_t, \mathbf{a}_t, r_t]$). Thus, unlike prior diffusion-based RL methods and latent-augmented variants (Sec. 2; see Table A11 for a comparison), our approach incorporates the following design choices.

Autoregressive Denoising To model the autoregressive structure of trajectory generation, and following the recent advances in autoregressive diffusion (Chen et al., 2024; Xie et al., 2024b; Wu et al., 2023), we introduce a **causal denoising schedule**. Under this mechanism, each time step within a local temporal block is assigned a denoising schedule that depends both on its temporal distance from the conditioning anchor and on the inferred latent variables. This reflects the intuition that later time steps exhibit higher uncertainty. Specifically, for a trajectory of length T , we assign monotonically increasing noise levels $\{k_1, \dots, k_T\}$, sampled linearly as $k_i = \frac{i}{T} K$ where $i \in \{1, \dots, T\}$ and K denotes the maximum diffusion step.

Given the inferred latent context $\hat{\mathbf{c}}_{0:T}$, the model performs autoregressive denoising over the block in T steps. The overall denoising process is defined as:

$$p_\theta \left(\mathbf{x}_0^0, \dots, \mathbf{x}_{T-1}^0 \mid \mathbf{x}_0^{k_1}, \dots, \mathbf{x}_{T-1}^{k_T}, \hat{\mathbf{c}}_{0:T} \right), \quad (2)$$

where $\mathbf{x}_i^{k_i}$ denotes the noisy observation at time step i , and \mathbf{x}_i^0 is the clean, denoised output.

Specifically, the first denoising step is: $p_\theta(\mathbf{x}_0^0, \mathbf{x}_1^{k_1}, \dots, \mathbf{x}_{T-1}^{k_{T-1}} \mid \mathbf{x}_0^0, \dots, \mathbf{x}_{T-1}^0, \hat{\mathbf{c}}_{0:T})$, where the first observation \mathbf{x}_0 has been fully denoised and other observations are partially denoised, followed by the second step: $p_\theta(\mathbf{x}_1^0, \mathbf{x}_2^{k_1}, \dots, \mathbf{x}_{T-1}^{k_{T-2}} \mid \mathbf{x}_0^0, \mathbf{x}_1^0, \dots, \mathbf{x}_{T-1}^{k_{T-1}}, \hat{\mathbf{c}}_{0:T})$, and finally until all observations are denoised: $p_\theta(\mathbf{x}_{T-1}^0 \mid \mathbf{x}_0^0, \dots, \mathbf{x}_{T-2}^0, \mathbf{x}_{T-1}^{k_1}, \hat{\mathbf{c}}_{0:T})$.

¹Additional related works and extended discussions are in App. E.2.

324 **Denoise-and-refine Mechanism** Theorem 1 indicates that both historical and future observations
 325 are required for recovering the latents. However, these future observations are not accessible during
 326 online inference, which results in a mismatch between identifiability requirements and available
 327 information. Hence, guided by this insight with preserving the causal structure of the generative
 328 process, we propose a novel *denoise-and-refine mechanism* that alternates between denoising the
 329 observable sequences and refining the latent estimates, and is applied consistently during both training
 330 and inference to ensure high-quality latent context recovery in an online manner. We introduce how
 331 we implement this during training and inference.

332 **Training:** Given a noisy input $\mathbf{x}_t^{k_t}$ with noise level k_t , we first sample an initial
 333 latent context from the prior: $\hat{\mathbf{c}}_t^{\text{prior}} \sim p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1})$, and use it to denoise
 334 the observation: $\hat{\mathbf{x}}_t^{(0)} = \epsilon_\theta(\mathbf{x}_t^{k_t}, k_t, \hat{\mathbf{c}}_t^{\text{prior}})$. Then we infer the latent using the
 335 posterior network, conditioned on a broader temporal window including future
 336 observations (accessible in offline data): $\hat{\mathbf{c}}_t^{\text{post}} \sim q_\psi(\mathbf{c}_t \mid \mathbf{x}_{t-k:t+1})$, and obtain
 337 a **refined** denoised prediction: $\hat{\mathbf{x}}_t^{(0)'} = \epsilon_\theta(\mathbf{x}_t^{k_t}, k_t, \hat{\mathbf{c}}_t^{\text{post}})$.

338 We have two reconstruction losses: one from the prior-sampled latent, $\mathcal{L}_{\text{prior}} = \|\hat{\mathbf{x}}_t^{(0)} - \mathbf{x}_t^0\|^2$, and one from the posterior-sampled latent, $\mathcal{L}_{\text{post}} =$
 339 $\|\hat{\mathbf{x}}_t^{(0)'} - \mathbf{x}_t^0\|^2$. To encourage the posterior latent to produce better reconstructions,
 340 we introduce a **contrastive improvement loss**: $\mathcal{L}_{\text{rel}} = \text{softplus}(\log \mathcal{L}_{\text{post}} - \log \text{sg}(\mathcal{L}_{\text{prior}}) + m)$, where $\text{sg}(\cdot)$ denotes stop-gradient,
 341 $\text{softplus}(u) = \log(1 + e^u)$, and $m \geq 0$ is a margin hyperparameter. The final
 342 objective for this denoise-and-refine step is: $\mathcal{L}_{\text{d-r}} = \mathcal{L}_{\text{post}} + \lambda_{\text{prior}} \mathcal{L}_{\text{prior}} + \lambda_{\text{rel}} \mathcal{L}_{\text{rel}}$, where λ_{prior} and λ_{rel}
 343 are weighting coefficients. $\mathcal{L}_{\text{diff}}$ updates only θ , $\mathcal{L}_{\text{post}}$ updates only ψ , $\mathcal{L}_{\text{prior}}$ updates only ϕ , and \mathcal{L}_{rel}
 344 updates both ϕ and ψ .

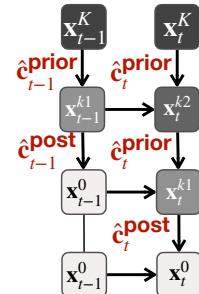
345 **Inference:** During inference, future observations are not available, which prevents direct use of the
 346 posterior network for latent inference. To address this, we adopt a *zig-zag sampling strategy*² that
 347 combines autoregressive denoising with latent refinement. Specifically, we first sample the entire
 348 trajectory by applying the forward diffusion process with the maximum noise level K . We then
 349 perform autoregressive denoising across time.

350 For each time step t , we begin by denoising \mathbf{x}_t^K to an intermediate noise level k_1 using $\hat{\mathbf{c}}_t$ sampled
 351 from the prior: $\hat{\mathbf{c}}_t^{\text{prior}} \sim p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1})$. We then obtain updated $\hat{\mathbf{c}}_t$ from the posterior latent distribution
 352 $\hat{\mathbf{c}}_t^{\text{post}} \sim q_\psi(\mathbf{c}_t \mid \mathbf{x}_{t-k:t+1}^0, \mathbf{x}_t^{k_1}, \mathbf{x}_{t+1}^{k_2})$, which is conditioned on the denoised history, the intermediate
 353 step with noise level k_1 , and the next step with noise level k_2 . We then use $\hat{\mathbf{c}}_t^{\text{post}}$ as the input to further
 354 denoise $\mathbf{x}_t^{k_1}$ to \mathbf{x}_t^0 . An illustration of the zig-zag inference process is provided in Fig. 3³.

355 In summary, Ada-Diffuser leverages autoregressive noise scheduling to reflect temporal structure,
 356 integrates latent context identification by the *denoise-and-refine* mechanism, and employs *zig-zag*
 357 sampling for online latent inference. This framework accommodates a wide range of scenarios,
 358 including latent dynamics/rewards, learning from action-free data with latent actions, and both state-
 359 and image-based environments. All variants share the same core, with task-specific modifications to
 360 the input/output only. Details of these architectural and variations are in App. H.

366 5 EXPERIMENTS

367 We aim to answer the following questions in the evaluation: (1) *Latent Identification*: How well can
 368 Ada-Diffuser capture latent factors in the environment? (2) *Learning with Latent Factors*: How
 369 effective is Ada-Diffuser in planning and control when learning with the latent context on dy-
 370 namics and reward? And can Ada-Diffuser infer latent actions from action-free demonstrations?
 371 (3) *Learning with Environments w/o Explicit Latents*: In environments without explicit latent factors,
 372 can modeling latent processes still bring performance gains? (4) *Ablation Studies*: What is the impact
 373 of key design choices in the framework?



374 Figure 3: zig-zag
 375 sampling (2 steps).

²Note on terminology: our use of “zig-zag” is purely descriptive, and there is no connection between the proposed sampling and Bai et al. (2024).

³A larger illustration with 4 steps are given in App. Fig. A3.

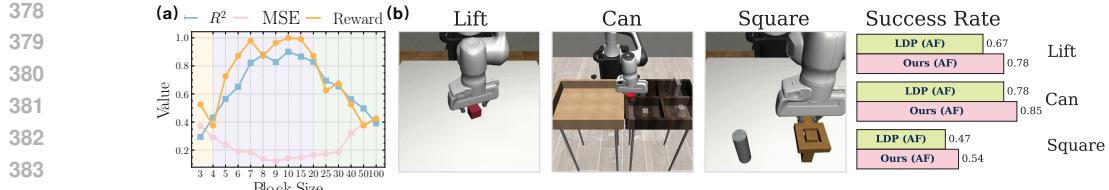


Figure 4: (a). Identification Results (i.e., Linear Probing MSE, R^2) and normalized rewards on the Cheetah environment with time-varying wind as the latent factor, evaluated across different block sizes. (b). Results (i.e., average success rate) on planning with action-free demonstrations on Robomimic benchmark. "AF" denotes Action-free.

5.1 SETTINGS

Benchmarks We consider a diverse set of benchmarks, including Mujoco-based locomotion tasks (Cheetah, Ant, Walker), a robot navigation task (Maze2D), and a robot arm control task (Franka–Kitchen) (Gupta et al., 2020), all from the D4RL benchmark suite (Fu et al., 2020). We also consider robotic manipulation tasks from RobotMimic (Mandlekar et al., 2021) and LIBERO-10 (Liu et al., 2023). A detailed description and illustration of these environments is provided in App. F. We introduce latent factors affecting both dynamics (c^s) and reward functions (c^r) in the Cheetah and Ant environments, considering two types of variations: episodic changes (E) and fine-grained, time-varying step-wise changes (S). The specific change functions for each setting are detailed in App. F.1. For evaluating latent action modeling, we follow the setup from LDP (Xie et al., 2025), using action-free, pixel-based demonstrations from the LIBERO benchmark (Liu et al., 2023). **We use our framework to learn the inverse dynamics model to infer the latent actions (details are in App. G.1).** In total, we evaluate on 8 environments with 23 settings.

Baselines We compare Ada–Diffuser with a diverse set of baselines for fair and comprehensive evaluation. (1) *Vanilla diffusion models*: For planning, we consider Diffuser (Janner et al., 2022) and DD (Ajay et al., 2022). For policy learning, we include DP and IDQL (Hansen-Estruch et al., 2023). We also evaluate LDCQ (Venkatraman et al., 2024), which learns a latent skill space and optimizes a value function conditioned on both states and latent skills. (2) *Latent context modeling*: We include MetaDiffuser (Ni et al., 2023) that learns contextual representations from multiple environments. We also consider using LILAC (Xie et al., 2021) and DynaMITE (Liang et al., 2024a) which models nonstationarity in RL through latent context learning using belief states. For a fair comparison, we integrate their context modules into diffusion planners and policies as plug-in components (detailed analysis in App. H.1). (3) *Latent action modeling*: We compare with LDP (Xie et al., 2025) with action-free demonstrations for planning. In total, we compare with 9 baselines across these settings.

Architecture Choices (Details are in App. D.2) For latent factor identification, we use GRU (Cho et al., 2014) embedding with MLP layers as both prior and posterior encoders to produce Gaussian distribution over latents. For decoders, we use MLP layers. For planning and policy learning, we use UNet (Ronneberger et al., 2015) or Transformers (Vaswani et al., 2017) as denoising networks and use MLPs to learn the IDM. We use VAE (Kingma & Welling, 2014) for the visual encoders.

5.2 RESULTS AND ANALYSIS

Results on Latent Identification To verify our identification theory, we evaluate model performance under different block sizes that contain varying amounts of temporal context. We include settings where all blocks have sufficient observations, as well as a challenging case with insufficient observations (i.e., without access to future observations). To quantify the quality of the learned latent representations, we adopt linear probing and the coefficient of determination R^2 as the evaluation metric. The results, together with normalized results, are shown in Fig. 4(a). Similarly, we also provide the clustering result in App. Fig. A7. The yellow region indicates settings with insufficient observations, resulting in lower identification results. The purple region corresponds to sufficient observations and yields relatively strong performance, and the green region reflects larger block sizes, which lead to degraded results due to redundant information or inherent difficulty for optimization. Notably, the reward is positively associated with the accuracy of latent identification, validating the importance of identifying latent factors in RL trajectories.

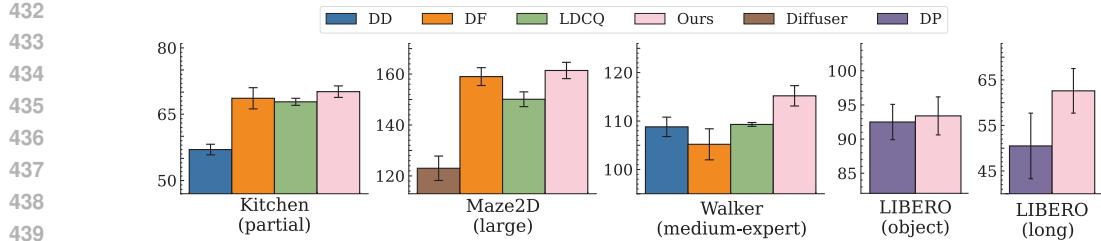


Figure 5: Results on environments without explicitly designed latent factors. Complete results are provided in App. Table A6–A9.

Environment	Diffuser	DF	DF + DynaMITE	DF + LILAC	MetaDiffuser	Ours
Cheetah-Wind-E (c^s)	-120.4 \pm 12.7	-105.8 \pm 9.6	-82.3 \pm 8.2	-91.5 \pm 7.8	-95.3 \pm 7.4	-68.9 \pm 7.6
Cheetah-Wind-S (c^s)	-148.5 \pm 9.8	-102.0 \pm 10.2	-87.2 \pm 10.4	-96.7 \pm 9.5	-105.6 \pm 14.5	-73.5 \pm 8.7
Cheetah-Vel-E (c^r)	-102.4 \pm 18.2	-85.6 \pm 18.3	-60.2 \pm 10.8	-67.8 \pm 11.0	-62.6 \pm 11.1	-45.8 \pm 9.5
Ant-Dir-E (c^r)	188.6 \pm 39.2	195.4 \pm 47.0	266.7 \pm 28.1	233.6 \pm 31.9	229.4 \pm 32.6	285.3 \pm 24.5

Table 1: Results (5 seeds) on Ada-Diffuser-Planner with latent factors that affects dynamics and rewards. c^s and c^r indicate the changes on dynamics and reward, E and S represent the episodic and time-step changes. All results are averaged over 5 random seeds.

Results on Decision-making We consider three groups based on the kind of latent factors.

> Group I: Latent factors on dynamics and reward: Table 1 presents the results of learning under latent factors that affect dynamics and rewards in locomotion tasks. To ensure a fair comparison, we implement autoregressive variants of DynaMITE and LILAC using the DF backbone. Results for the DP-backbone counterparts are provided in App. Tables A4, which are consistently worse than DF. Additional results, including using DP as backbones (Ada-Diffuser-policy), oracle variants and meta-learned versions of Ada-Diffuser that use ground-truth latents as input, are provided in App. Table A4–A5. From the results, we observe that Ada-Diffuser consistently achieves the best performance, with a significant margin over all baselines. In particular, it outperforms Diffusion planners and policies even when those models are enhanced with latent context modules such as DynaMITE and LILAC (pink area), which are most comparable to our setting. Furthermore, Ada-Diffuser outperforms DF, showing the effectiveness of our framework.

> Group II: Latent Actions: Following Xie et al. (2025), we consider learning from action-free demonstration data, where actions are treated as latent factors to be inferred. We adopt the same setup as in (Xie et al., 2025), using a pre-trained visual encoder obtained via a VAE to learn the latent space from pixel observations. We then train a latent planner and an IDM using a diffusion-based approach. Unlike prior work, our diffusion-based latent planner additionally incorporates latent factors c to model latent context. Importantly, we train only the planner using additional action-free demonstrations. Detailed training procedures are provided in App. G.1. Results on several tasks in Robomimic benchmark show that we can bring improvements on all tasks via modeling the latent process supplementary to the latent planner in (Xie et al., 2025). Here, the IDM is trained solely on expert demonstrations. Complete results are provided in App. Table A3.

> Group III: Environments w/o Explicitly Designed Latents: Crucially, in this scenario, the latent variable c effectively serves as a form of Bayesian filtering over the observed trajectories, capturing the inherent stochasticity in the data (a more detailed discussion in App. D.3). Such variability commonly arises from system noise, expert action noise, or high-level unobserved factors. The results, shown in Fig. 5 (full results provided in App. Table A6–A9), support this interpretation. Even in environments without explicitly designed latent contexts, incorporating latent modeling allows Ada-Diffuser to achieve performance that is comparable to or better than these baselines. By recovering the latent variables that capture stochasticity, nonstationarity, or unobserved structure in the offline trajectories, the model can produce rollouts that better match the underlying dynamics, even when the demonstrations are imperfect. These findings suggest that our framework can consistently capture implicit latent process in the data, improving both trajectory modeling and planning.

Latent Design		Orig.	w/o latents	Freeze	0.5×	2×	4×	6×
Cheetah (c ^s)	-73.5		-103.5	-110.4	-85.2	-77.6	-89.5	-102.4
LIBERO	93.4		89.3	90.2	90.9	89.4	87.6	85.0
Diffusion Design		Orig.	w/o refine	w/o zigzag	same NS	random NS		
Cheetah (c ^s)	-73.5		-82.0	-91.6	-89.7	-84.6		
LIBERO	93.4		83.9	91.4	85.2	88.5		

Table 2: Ablations on Cheetah-Wind-S (planner) and LIBERO (DP-policy).

5.3 ABLATION STUDIES

We conduct ablation studies to evaluate the contributions of key components in our framework. For **latent factor identification**, Fig. 4(a) shows the effect of different temporal block sizes, illustrating the benefit of incorporating future observations during inference. **Here, we also consider ablations where (i) the entire latent identification module is removed, (ii) the latent identification network is frozen after the first 10% of training steps, and (iii) different numbers of latent updates are used.** For the **causal diffusion model**, we examine the impact of the following design choices: (i) removing the refinement step (*w/o refine*); (ii) removing zig-zag sampling (*w/o zig-zag*); (iii) replacing the causal noise schedule with a fixed noise level across time steps (vanilla diffusion) or with random noise scaling as in DF (Chen et al., 2024) (*same NS, random NS*). The results in Table 2 demonstrate the effectiveness of these modules in our framework in both settings: with and without explicit latent factors. **Specifically, For the latent identification ablations, we find that the latent variables play a critical role.** In particular, freezing the latent module makes the model perform poorly, because the latent context follows a temporal process and must continue adapting during training. Varying the latent dimensionality within a moderate range (about 0.5×–2×) does not significantly change performance, but using overly large latent dimensions (e.g., 4×–6×) degrades results, likely due to redundant capacity and harder optimization.

In terms of causal diffusion, for refinement and zig-zag, we hypothesize the gains come from reducing posterior mismatch. We therefore run a latent probing test on Cheetah with changing wind and report linear-probe MSE across variants; Ada-Diffuser with both refinement and zig-zag attains the lowest error (Table 3; Details are in App. I.2.4). Removing backward refinement yields the largest degradation (0.18 → 0.28), consistent with the role of refinement in letting future evidence within a block update the latent posterior and reduce temporal lag. Disabling zig-zag also harms accuracy (0.18 → 0.23), suggesting that alternating conditioning helps align the denoising trajectory with the latent dynamics rather than purely following the forward temporal pass. Moreover, the gap between our full model (0.18) and the oracle that has access to true futures (0.12) is small, verifying that the predicted future is already sufficiently informative for reliable latent inference in practice. Together, these results support our claim that both components reduce posterior mismatch and improve latent identifiability, which in turn benefits planning and control in settings with evolving hidden factors.

Additional ablations are provided in App. I.2, including full results, comparisons of alternative noise schedules beyond linear (App. I.2.2), sweeps over temporal block length (App. I.2.3), and analyses of long-horizon planning (App. I.2.5). **Notably, we show that our method introduces no significant computational overhead in terms of training runtime and inference latency (App. I.1, Table A12-A13).**

6 CONCLUSIONS

We demonstrate that identifying latent factors from sequential observations is critical for effective decision-making. We provide theoretical results that establish conditions under which latent variables can be identified using small temporal blocks of observations. This insight enables a principled integration of latent identification into a diffusion-based generative framework, allowing us to capture the underlying causal process while maintaining scalability. Our proposed Ada-Diffuser is broadly applicable to a variety of settings, including planning and control tasks with or without explicit latent structure, and even action-free demonstrations. Results across diverse benchmarks show substantial improvements, validating the effectiveness of our method not only in environments with designed latent factors but also in general settings where latent structure is implicit but influential.

Variant	MSE
Oracle	0.12
Full	0.18
w/o refinement	0.28
w/o zig-zag	0.23

Table 3: Probing MSE for recovering the true latents.

540 REPRODUCIBILITY STATEMENT
541

542 For our method, details of the model choices and hyperparameters are provided in Appendix G.
543 Modifications to the benchmarks are described in Appendix F. Reproduction details of other meth-
544 ods and the specific baseline designs, particularly for DF, LILAC+DP/DF/Diffuser, and Dyna-
545 MITE++DP/DF/Diffuser, are given in Appendix H.

547 REFERENCES
548

549 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
550 ditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*,
551 2022.

552 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
553 Is conditional generative modeling all you need for decision making? In *The Eleventh International*
554 *Conference on Learning Representations*, 2023a. URL <https://openreview.net/forum?id=sP1fo2K9DFG>.

557 Anurag Ajay, Seungwook Han, Yilun Du, Shaung Li, Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum,
558 Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models for
559 hierarchical planning. *arXiv preprint arXiv:2309.08587*, 2023b.

560 Lichen Bai, Shitong Shao, Zikai Zhou, Zipeng Qi, Zhiqiang Xu, Haoyi Xiong, and Zeke Xie.
561 Zigzag diffusion sampling: Diffusion models can self-improve via self-reflection. *arXiv preprint*
562 *arXiv:2412.10891*, 2024.

564 Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. *Advances in*
565 *neural information processing systems*, 36:80375–80395, 2023.

566 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
567 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
568 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

570 Gianluca Brero, Alon Eden, Darshan Chakrabarti, Matthias Gerstgrasser, Amy Greenwald, Vincent
571 Li, and David C Parkes. Stackelberg pomdp: A reinforcement learning approach for economic
572 design. *arXiv preprint arXiv:2210.03852*, 2022.

573 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
574 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

576 Raymond J Carroll, Xiaohong Chen, and Yingyao Hu. Identification and estimation of nonlinear
577 models using two samples with nonclassical measurement errors. *Journal of nonparametric*
578 *statistics*, 22(4):379–399, 2010.

580 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
581 Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in Neural*
582 *Information Processing Systems*, 37:24081–24125, 2024.

583 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
584 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
585 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

586 Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy.
587 *arXiv preprint arXiv:2310.06343*, 2023.

589 Zhe Chen et al. Bayesian filtering: From kalman filters to particle filters, and beyond. *Statistics*, 182
590 (1):1–69, 2003.

592 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
593 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The*
594 *International Journal of Robotics Research*, pp. 02783649241273668, 2023.

594 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
 595 Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for
 596 statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods in
 597 Natural Language Processing (EMNLP)*, pp. 1724–1734, 2014.

598 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 599 in neural information processing systems*, 34:8780–8794, 2021.

600 Zibin Dong, Yifu Yuan, Jianye HAO, Fei Ni, Yao Mu, YAN ZHENG, Yujing Hu, Tangjie Lv, Changjie
 601 Fan, and Zhipeng Hu. Aligndiff: Aligning diverse human preferences via behavior-customisable
 602 diffusion model. In *The Twelfth International Conference on Learning Representations*, 2024.
 603 URL <https://openreview.net/forum?id=bxvfKIYfHyx>.

604 Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A semi-
 605 parametric regression approach for discovering latent task parametrizations. In *IJCAI: proceedings
 606 of the conference*, volume 2016, pp. 1432, 2016.

607 Michael O’Gordon Duff. *Optimal Learning: Computational procedures for Bayes-adaptive Markov
 608 decision processes*. University of Massachusetts Amherst, 2002.

609 Nelson Dunford and Jacob T. Schwartz. *Linear Operators*. John Wiley & Sons, New York, 1971.

610 Daniel E Ehrmann, Shalmali Joshi, Sebastian D Goodfellow, Mjaye L Mazwi, and Danny Eytan.
 611 Making machine learning matter to clinicians: model actionability in medical decision-making.
 612 *NPJ Digital Medicine*, 6(1):7, 2023.

613 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 614 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

615 Minghao Fu, Biwei Huang, Zijian Li, Yujia Zheng, Ignavier Ng, Guangyi Chen, Yingyao Hu, and
 616 Kun Zhang. Learning general causal structures with hidden dynamic process for climate analysis.
 617 *arXiv preprint arXiv:2501.12500*, 2025.

618 Tanmay Gangwani, Joel Lehman, Qiang Liu, and Jian Peng. Learning belief representations for
 619 imitation learning in pomdps. In *uncertainty in artificial intelligence*, pp. 1061–1071. PMLR,
 620 2020.

621 Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, and Dorsa Sadigh. Efficient data collection for
 622 robotic manipulation via compositional generalization. *arXiv preprint arXiv:2403.05110*, 2024a.

623 Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, and Jun Xiao. Vid-gpt: Introducing
 624 gpt-style autoregressive generation in video diffusion models. *arXiv preprint arXiv:2406.10981*,
 625 2024b.

626 Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
 627 and Bernhard Schölkopf. Recurrent independent mechanisms. In *International Conference on
 628 Learning Representations (ICLR)*, 2021. URL <https://openreview.net/forum?id=mLcmdlEUxy->.

629 Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Temporal
 630 difference variational auto-encoder. *arXiv preprint arXiv:1806.03107*, 2018.

631 Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms
 632 for factored mdps. *Journal of Artificial Intelligence Research*, 19:399–468, 2003.

633 Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and Rémi Munos.
 634 Neural predictive belief representations. *arXiv preprint arXiv:1811.06407*, 2018.

635 Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
 636 learning: Solving long-horizon tasks via imitation and reinforcement learning. In *Proceedings of
 637 the Conference on Robot Learning (CoRL)*. PMLR, 2020.

638 Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. *arXiv
 639 preprint arXiv:1502.02259*, 2015.

648 Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
 649 control. *arXiv preprint arXiv:2203.04955*, 2022.

650

651 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 652 Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023.

653

654 Milos Hauskrecht. Value-function approximations for partially observable markov decision processes.
 655 *Journal of artificial intelligence research*, 13:33–94, 2000.

656

657 Milos Hauskrecht and Hamish Fraser. Planning treatment of ischemic heart disease with partially
 658 observable markov decision processes. *Artificial intelligence in medicine*, 18(3):221–244, 2000.

659

660 Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
 661 long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
 662 learning. *Advances in neural information processing systems*, 36:64896–64917, 2023.

663

664 Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Re-mix: Optimizing
 665 data mixtures for large scale imitation learning. *arXiv preprint arXiv:2408.14037*, 2024.

666

667 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 668 2022.

669

670 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 671 neural information processing systems*, 33:6840–6851, 2020.

672

673 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 674 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 675 2022.

676

677 Yingyao Hu and Susanne M Schennach. Instrumental variable treatment of nonclassical measurement
 678 error models. *Econometrica*, 76(1):195–216, 2008.

679

680 Yingyao Hu and Matthew Shum. Nonparametric identification of dynamic models with unobserved
 681 state variables. *Journal of Econometrics*, 171(1):32–44, 2012.

682

683 Zhiyu Huang, Chen Tang, Chen Lv, Masayoshi Tomizuka, and Wei Zhan. Learning online belief
 684 prediction for efficient pomdp planning in autonomous driving. *IEEE Robotics and Automation
 685 Letters*, 2024.

686

687 Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
 688 survey of learning methods. *ACM Computing Surveys (CSUR)*, 50(2):1–35, 2017.

689

690 Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
 691 reinforcement learning for pomdps. In *International conference on machine learning*, pp. 2117–
 692 2126. PMLR, 2018.

693

694 Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
 695 flexible behavior synthesis. *arXiv preprint arXiv:2205.09991*, 2022.

696

697 Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir Anguelov, et al.
 698 Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In *Proceedings of the
 699 IEEE/CVF conference on computer vision and pattern recognition*, pp. 9644–9653, 2023.

700

701 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
 702 observable stochastic domains. *Artificial intelligence*, 101(1-2):99–134, 1998.

703

704 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 705 2014.

706

707 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *The International Conference
 708 on Learning Representations (ICLR)*, 2014.

709

710 Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang,
 711 Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as latent
 712 space inference. *Advances in Neural Information Processing Systems*, 37:123379–123401, 2024.

702 Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes in
 703 robotics: A survey. *IEEE Transactions on Robotics*, 39(1):21–40, 2022.
 704

705 Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. *arXiv preprint*
 706 *arXiv:2503.00200*, 2025.

707 Wenhao Li. Efficient planning with latent diffusion. In *The Twelfth International Conference on Learn-*
 708 *ing Representations*, 2024. URL <https://openreview.net/forum?id=btpgDo4u4j>.

710 Anthony Liang, Guy Tennenholz, Chih-wei Hsu, Yinlam Chow, Erdem Bıyık, and Craig Boutilier.
 711 Dynamite-rl: A dynamic model for improved temporal meta-reinforcement learning. *arXiv preprint*
 712 *arXiv:2402.15957*, 2024a.

713

714 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 715 Diffusion models as adaptive self-evolving planners. *arXiv preprint arXiv:2302.01877*, 2023.

716

717 Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
 718 fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
 719 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 720 16467–16476, 2024b.

721

722 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 723 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information*
724 Processing Systems (NeurIPS), 36, 2023.

725

726 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 727 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
728 International Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.

729

730 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 731 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 732 human demonstrations for robot manipulation. In *Conference on Robot Learning (CoRL)*, 2021.

733

734 James John Martin. *Some Bayesian decision problems in a Markov chain*. PhD thesis, Massachusetts
 735 Institute of Technology, 1965.

736

737 Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic task modelling for meta-
 738 learning. In *Uncertainty in Artificial Intelligence*, pp. 781–791. PMLR, 2021.

739

740 Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
 741 Diffusion model as conditional planner for offline meta-rl. In *International Conference on Machine*
742 Learning, pp. 26087–26105. PMLR, 2023.

743

744 Judea Pearl. Causal inference. *Causality: objectives and assessment*, pp. 39–58, 2010.

745

746 Christian Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized hidden parameter
 747 mdps: Transferable model-based rl in a handful of trials. In *Proceedings of the AAAI Conference*
748 on Artificial Intelligence, volume 34, pp. 5403–5411, 2020.

749

750 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
 751 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021.

752

753 Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. *Neural*
754 computation, 3(1):88–97, 1991.

755

756 Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models. *ieee assp*
757 magazine, 3(1):4–16, 1986.

758

759 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 760 meta-reinforcement learning via probabilistic context variables. In *International conference on*
761 machine learning, pp. 5331–5340. PMLR, 2019.

756 Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha
 757 Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy
 758 optimization. In *The Thirteenth International Conference on Learning Representations*, 2025.
 759 URL <https://openreview.net/forum?id=mEpgHvbD2h>.

760 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 761 image segmentation. In *Medical image computing and computer-assisted intervention—MICCAI*
 762 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
 763 18, pp. 234–241. Springer, 2015.

764 Sand-AI. Magi-1: Autoregressive video generation at scale, 2025. URL https://static.magi.world/static/files/MAGI_1.pdf.

765 Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
 766 diffusion models. *Advances in Neural Information Processing Systems*, 36:4263–4276, 2023.

767 Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
 768 based representations. In *International Conference on Machine Learning*, pp. 9767–9779. PMLR,
 769 2021.

770 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 771 press Cambridge, 1998.

772 Gokul Swamy, Sanjiban Choudhury, J Bagnell, and Steven Z Wu. Sequence model imitation learning
 773 with unobserved contexts. *Advances in Neural Information Processing Systems*, 35:17665–17676,
 774 2022.

775 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 776 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 777 systems, 30, 2017.

778 Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and Glen
 779 Berseth. Reasoning with latent diffusion in offline reinforcement learning. In *The Twelfth*
 780 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=tGQirjzddO>.

781 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 782 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.

783 Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo,
 784 Nan Duan, and Weizhu Chen. Ar-diffusion: Auto-regressive diffusion model for text generation.
 785 *Advances in Neural Information Processing Systems*, 36:39957–39974, 2023.

786 Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, Ramin Hasani, Mathias Lechner, and Daniela Rus.
 787 Safediffuser: Safe planning with diffusion probabilistic models. In *The Thirteenth International*
 788 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ig2wk7kK9J>.

789 Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
 790 learning. *International Conference on Machine Learning (ICML)*, 2025.

791 Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst continual
 792 structured non-stationarity. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th*
 793 *International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning*
 794 *Research*, pp. 11393–11403. PMLR, 18–24 Jul 2021.

795 Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in imitation
 796 learning for visual robotic manipulation. In *2024 IEEE International Conference on Robotics and*
 797 *Automation (ICRA)*, pp. 3153–3160. IEEE, 2024a.

798 Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, and Yang Zhou.
 799 Progressive autoregressive video diffusion models. *arXiv preprint arXiv:2410.08151*, 2024b.

810 Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. Goal-conditioned predictive coding for offline
811 reinforcement learning. *Advances in Neural Information Processing Systems*, 36:25528–25548,
812 2023.

813

814 QinQing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In *international
815 conference on machine learning*, pp. 27042–27059. PMLR, 2022.

816

817 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
818 Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. *arXiv
819 preprint arXiv:2412.20404*, 2024.

820

821 Chunng Zhu, Raymond Yu, Siyuan Feng, Benjamin Burchfiel, Paarth Shah, and Abhishek Gupta.
822 Unified world models: Coupling video and action diffusion for pretraining on large robotic datasets.
823 *arXiv preprint arXiv:2504.02792*, 2025.

824

825 Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
826 Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. *arXiv preprint
827 arXiv:2311.01223*, 2023.

828

829 Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
830 Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
831 meta-learning. *Journal of Machine Learning Research*, 22(289):1–39, 2021.

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 Appendix of Latent-Aware Adaptive Diffusion for 865 Decision-Making 866

869	A Discussions and Overview	18
870	A.1 Broader Impact	18
871	A.2 Limitations and Future Work	19
872	A.3 Discussions on the Core Idea	19
873	A.4 Discussions on the Theoretical Assumptions and Results	20
874	A.5 Discussions on the Model Design	21
875	A.6 Overview	23
876		
877	B Theory	23
878	B.1 Notation List	23
879	B.2 Proof of Theorem 1	24
880	B.3 Theory-Algorithm Alignment	27
881	B.3.1 Non-Parametric Identifiability Theory	27
882	B.3.2 Model Design Guidance	27
883	B.3.3 Discussion on Assumptions	28
884	B.3.4 Relaxing Assumption 1 (beyond first-order Markov)	28
885	B.3.5 Cases in Assumption 2	29
886	B.4 ELBO	29
887	B.5 Assumption Verification	31
888	B.5.1 About Assumption 2	31
889	B.5.2 About Assumption 3	32
890	B.5.3 Policy Learning under Different Separability	32
891		
892	C Summary on Different MDPs	33
893	C.1 Contextual MDPs	33
894	C.2 Hidden-Parameter MDPs	33
895	C.3 Discussions and Comparisons	33
896		
897	D Details on Ada-Diffuser	34
898	D.1 Full Algorithm and Results	34
899	D.2 Architecture Choices and Hyper-parameters	35
900	D.2.1 Latent Factor Identification	35
901	D.2.2 Planner	38
902	D.2.3 Policy	38
903	D.2.4 Hyperparameters of Contrastive Improvement Loss	38
904	D.3 Connection to Bayesian Filtering	39

918	E Extended Related Works	39
919	E.1 Diffusion Model-based Decision-making	39
920	E.2 Latent Belief State Learning in POMDP	40
921	E.3 Autoregressive Diffusion Models	40
922	E.4 Summary	41
923		
924		
925		
926	F Benchmark Settings and Illustrations	41
927	F.1 Latent Change Factors Design	41
928	F.2 Overview on Other Benchmarks	42
929		
930		
931	G Other Details on Ada-Diffuser	43
932	G.1 Latent Action Planner	43
933	G.2 Noise Scheduling	43
934		
935		
936	H Specific Design Choices for Baselines	44
937	H.1 Details on LILAC and DynaMITE	44
938	H.2 Details on Diffusion Forcing	44
939		
940		
941		
942	I Ablation Analysis	44
943	I.1 Training/Inference Time Analysis	44
944	I.2 Ablation Results	45
945	I.2.1 Full Results Supplement to Table 2	45
946	I.2.2 Noise Schedule: Linear vs. Logistic vs. Sigmoid	45
947	I.2.3 Effect of Temporal Block Length on Latent Identification	46
948	I.2.4 Latent Probing: Effect of Backward Refinement and Zig-Zag	46
949	I.2.5 On the Effect of Planning and Execution Horizons: Long-horizon Planning	47
950		
951		
952		
953		
954	J LLM Usage Statement	53
955		
956		
957		
958		
959		
960		

A DISCUSSIONS AND OVERVIEW

In this section, we expand on the design and motivation behind Ada-Diffuser, including the rationale for modeling latent factors in decision-making, key architectural choices, and additional analysis of the experimental results presented in Section 5. We then provide an overview of the remaining contents of this appendix.

A.1 BROADER IMPACT

Our work aims to identify and leverage latent processes in generative decision-making, with applications in real-world domains such as robotics and healthcare. While these tasks may entail potential societal risks, we do not believe any specific concerns need to be highlighted here. Instead, by uncov-

972 ering and modeling the underlying hidden processes, our approach promotes greater transparency in
 973 decision-making, which can ultimately lead to more reliable and trustworthy outcomes.
 974

975 A.2 LIMITATIONS AND FUTURE WORK 976

977 One current limitation is that this work focuses primarily on theoretical formulation and algorithmic
 978 development. Although we evaluate on a variety of established benchmarks, real-world deployment,
 979 such as in self-driving, aerial drones, and physical robotics, remains an important direction for future
 980 work.
 981

982 A.3 DISCUSSIONS ON THE CORE IDEA 983

984 **Q1: On Latent Modeling.** *Why is it necessary to model latent processes when we already have
 985 access to a large amount of demonstration data?*

986 In many decision-making systems, there exist unobservable variables that influence both the dynamics
 987 and the reward structure. More generally, these latent variables often evolve over time. Such scenarios
 988 are common in real-world settings, for example, in robotic control, system dynamics can be affected
 989 by external forces (e.g., wind, friction), or by varying user demands (e.g., different target positions).
 990 In these cases, learning an optimal policy requires conditioning on the latent factors, especially
 991 when they are non-stationary or when transferring to new domains. Prior work has demonstrated the
 992 importance of latent variable modeling in both reinforcement learning (RL) and imitation learning
 993 (IL) (Zintgraf et al., 2021; Liang et al., 2024a; Nguyen et al., 2021; Rakelly et al., 2019; Ni et al.,
 994 2023; Xie et al., 2021).

995 Even with access to large demonstration datasets, it remains difficult to ensure sufficient coverage
 996 over the full space of environmental or task-specific latent factors relevant to decision-making. This
 997 limitation has been widely acknowledged in recent efforts focused on analyzing data quality and
 998 designing data collection protocols to promote generalization (Belkhale et al., 2023; Xie et al., 2024a;
 999 Hejna et al., 2024; Gao et al., 2024a). However, most of these works target fixed or task-specific
 1000 latent variables. In contrast, we consider a more general setting where latent factors evolve over time
 1001 and are not predefined. Our framework provides theoretical guarantees for identifying such latent
 1002 variables from partial observations and seamlessly integrates this identification process into diffusion
 1003 models, enabling scalability across complex decision-making tasks.

1004 **Q2: On the Scenarios w/o Explicit Latents.** *What does latent modeling represent when no
 1005 explicit latent factors are defined, and why can it still benefit decision-making?*

1006 First, **Latent stochasticity is always present** (in real-world systems). Even in settings where all
 1007 task-relevant observations are available, e.g., in locomotion tasks where full physical state information
 1008 is provided, or in robotic manipulation with access to both proprioceptive and visual inputs, there
 1009 may still exist underlying processes that are not directly observed. These include domain-specific
 1010 factors such as external forces (e.g., wind) or dynamically changing task goals (e.g., target positions),
 1011 which can be viewed as implicit latent variables. Hence, it is crucial to infer and condition on these
 1012 latent factors

1013 In the extreme case where such factors are also *fully observed*, latent modeling can still offer
 1014 significant benefits. Specifically, it can capture residual stochasticity present in the environment or
 1015 demonstration data, serving to explain variability not accounted for by observable features. As shown
 1016 in our formulation: $s_t = f(s_{t-1}, a_{t-1}, \epsilon_t)$, $r_t = g(s_t, a_t, \delta_t)$, the residual stochasticity (ϵ, δ) can
 1017 be interpreted as implicit latent variables (sometimes can be time-correlated) influencing transitions
 1018 and rewards. The model can then identify meaningful structure from irrelevant or noisy variations,
 1019 for instance, filtering out visual background artifacts that are not predictive of dynamics or optimal
 1020 actions. In this sense, the learning framework is conceptually similar to Bayesian Filtering

1021 Moreover, **partial observability and attribution gaps exist even in clean data**. Even in environments
 1022 with consistent near-deterministic demonstrations, the agent often lacks access to the full
 1023 set of latent causal factors or attributes that influence behavior. Specifically, many systems exhibit
 1024 structured yet unobserved variability (e.g., task goals, preferences, intentions), and modeling this
 1025 variability with latent variables improves generalization.

1026
1027
1028

Q3: On the Identification Theory. *What does the identification theory establish, and how does it inform algorithm design?*

The identification theory (Theorem 1) establishes that the distribution over latent variables can be provably recovered from observable trajectories using only a small temporal window, specifically, a small temporal block of four time steps. This provides a general non-parametric theoretical guarantee that latent factors can be identified without requiring strong inductive biases or restrictive assumptions on the model class or functional form.

This “four-step” result has direct implications for algorithm design. It suggests that latent identification can be effectively performed using a short temporal block, which aligns naturally with block-wise generative modeling approaches such as diffusion models. These models operate over segments or chunks of data, and our theoretical results justify using local temporal blocks to infer latent variables in a principled and scalable manner.

1039

1040 A.4 DISCUSSIONS ON THE THEORETICAL ASSUMPTIONS AND RESULTS

1041

Q4: On the Assumptions. *What do Assumption 2 (Distributional Variability) and Assumption 3 (Uniqueness of Spectral Decomposition) mean, and why are they considered mild?*

1044

We expand on the intuition and practical relevance of these two assumptions below.

Distributional Variability (Assumption 2) refers to the requirement that the conditional distributions

1047

$$p(\mathbf{x}_{t-2} | \mathbf{x}_{t+1}), \quad p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_t), \quad \text{and} \quad p(\mathbf{x}_t | \mathbf{x}_{t-2}, \mathbf{x}_{t-1})$$

1048

are sufficiently sensitive to variations in their input. That is, for different input pairs within a local neighborhood, the output distributions differ meaningfully, ensuring the system exhibits enough variability for identification. This assumption aligns with real-world decision-making settings (e.g., locomotion or robotic manipulation), where changes in inputs such as physical state, control policy, or reward function lead to observable changes in output distributions.

1053

1054

1055

Uniqueness of Spectral Decomposition (Assumption 3) builds on this by ensuring that changes in the latent variable \mathbf{c}_t induce distinct influences on the transition dynamics, specifically on the mapping from \mathbf{x}_{t-1} to \mathbf{x}_t . To formalize this, we consider the operator k :

1056

1057

1058

$$k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t) = \frac{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) \cdot p(\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}{p(\bar{\mathbf{x}}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) \cdot p(\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}, \quad (\text{A1})$$

1059

which separates into two multiplicative components:

1060

1061

$$k_1 = \frac{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)}{p(\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}, \quad (\text{A2})$$

1062

1063

$$k_2 = \frac{p(\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}{p(\bar{\mathbf{x}}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)}. \quad (\text{A3})$$

1064

1065

1066

1067

Here, k_1 and k_2 measure how changes in historical inputs affect the transition distribution at the current time step. The assumption requires that for any two distinct values of \mathbf{c}_t , the corresponding operator k is different, indicating that the latent variable has a sufficiently strong influence on the system dynamics.

1068

1069

1070

1071

Since $\bar{\mathbf{x}}$ is in the neighborhood of \mathbf{x} , this formulation effectively captures second-order changes in the transition dynamics with respect to the latent variable \mathbf{c}_t . This reflects many real-world RL systems, where even unobservable latent factors (e.g., wind speed or goal target) cause noticeable and structured changes in transition behavior over time, for instance, by considering velocity as states.

1072

1073

1074

1075

In summary, these two assumptions are not only theoretically necessary for identification, but also naturally hold in many RL and control systems. They justify *the need to explicitly model and identify latent variables*, as such variables often induce meaningful and structured changes in both dynamics and optimal decision-making behavior.

1076

1077

1078

1079

Q5: On the Identification of Posterior Distribution and up to the Invertible Function

(Theorem 1). *Why do we aim to identify the posterior distribution over latent variables, and what is the role of the invertible function h between the estimated and true latents?*

1080 Theorem 1 establishes that the posterior distribution over latent factors given surrounding observations,
 1081 $p(\mathbf{c}_t \mid \mathbf{x}_{t-2:t+1})$, is identifiable up to an invertible transformation. That is, the estimated latent $\hat{\mathbf{c}}_t$
 1082 satisfies $\hat{\mathbf{c}}_t = h(\mathbf{c}_t)$ for some invertible function h .

1083 This form of identifiability is sufficient for downstream tasks such as dynamics modeling, planning,
 1084 and control. Specifically, the learned dynamics or policy can be composed with h^{-1} without loss
 1085 of expressiveness or utility. Since we only need to condition on the inferred latent $\hat{\mathbf{c}}_t$ to perform
 1086 these tasks, any invertible transformation of the latent space preserves the representational capacity
 1087 required for decision-making. In other words, although we may not recover the true latent variable \mathbf{c}_t
 1088 exactly, the recovered representation $\hat{\mathbf{c}}_t$ contains the same information and can be used equivalently
 1089 in practice.

1090 Therefore, identifying the posterior distribution (up to an invertible transformation) is both theo-
 1091 retically meaningful and practically sufficient for learning accurate dynamics models and optimal
 1092 policies.

1094 **A.5 DISCUSSIONS ON THE MODEL DESIGN**

1096 **Q6: On Different Settings (Planning and Policy).** *How is Ada-Diffuser applied to both*
 1097 *planning and policy learning settings?*

1099 Ada-Diffuser is designed as a unified and generic framework that accommodates different types
 1100 of inputs \mathbf{x} (e.g., states, state-action pairs) and outputs (e.g., actions, trajectories, or state sequences).
 1101 This flexibility allows it to support a wide range of planning and policy learning paradigms. We
 1102 summarize four representative settings below:

- 1103 • **Planning with state-action generation:** The model generates both states and actions, with
 1104 latent variables influencing dynamics or rewards. This setting aligns with prior work such as
 1105 Diffuser (Janner et al., 2022).
- 1106 • **Planning with state-only generation:** The model generates future states, and an inverse
 1107 dynamics model is used to recover the corresponding actions. This setup follows Decision
 1108 Diffuser (Ajay et al., 2023a).
- 1109 • **Planning from action-free demonstrations:** Only state sequences are available, and latent
 1110 variables are assumed to capture high-level behaviors or skills. This setting extends latent
 1111 diffusion planning (Xie et al., 2025).
- 1112 • **Policy learning:** The model generates actions conditioned on the current or recent history of
 1113 states. This includes multi-step action generation (as in Diffusion Policy (Chi et al., 2023))
 1114 and one-step action generation (as in Implicit Diffusion Q-Learning, IDQL (Hansen et al.,
 1115 2022)). In both cases, latent factors may affect the underlying dynamics or rewards.

1117 These diverse settings demonstrate the universality of our framework and highlight that uncovering
 1118 latent structure is a broadly applicable and critical problem in generative decision-making.

1120 **Q7: On the Latent Identification.** *How is Stage 1 (Latent Identification) trained, and does it*
 1121 *introduce additional computational overhead?*

1123 In Stage 1, we train the latent identification module using an offline dataset, as commonly done in
 1124 offline RL and imitation learning tasks. Specifically, we employ a lightweight variational autoencoder
 1125 (VAE) to optimize the ELBO defined in Section 4.2. Empirically, this stage introduces minimal
 1126 computational overhead (Appendix I.1). We further provide an ablation study in Appendix I.1
 1127 showing the impact of the number of training samples on the effectiveness of the latent identification
 1128 module.

1129 **Q8: On the Temporal Block Design.** *How does this reflect Theorem 1, and why do we not use*
 1130 *exactly four steps in practice?*

1132 Our approach reflects the theoretical result in Theorem 1 by identifying latent variables using small
 1133 temporal blocks in both Stage 1 and Stage 2. In Stage 1, we segment trajectories into local blocks
 and optimize the ELBO to learn the posterior over latent variables. In Stage 2, we apply block-wise

refinement to improve the posterior estimates using both past and one-step future observations, making a more accurate identification than using the prior alone.

While Theorem 1 shows that four consecutive time steps are sufficient for identifiability in principle, we do not strictly limit the block size to four in practice. Empirically, we find that using slightly larger blocks (typically between 6 and 20 steps) leads to more stable optimization and better performance. Our ablations in Appendix I.2 show that without access to future observations, identifiability degrades, aligning with the theory.

We treat the "four-step" condition not as a strict architectural constraint but as a theoretical justification (sufficient condition) for using small temporal blocks. The optimal number of steps in practice may vary depending on data properties, task complexity, and model capacity.

Q9: On the Refinement Step. *Why is the refinement step necessary, how does it work, and does it introduce additional computational overhead?*

The refinement step is motivated by the identification theory, which suggests that incorporating the current and future observations (other than only using historical ones) allows the model to infer a more informative posterior over latent variables than relying on the prior alone. This posterior refinement helps the model better capture latent dynamics by leveraging richer temporal context.

During training, the refinement step encourages the model to extract meaningful information from the posterior. Since Stage 1 optimizes the ELBO, the learned prior is already aligned with the posterior to some extent. This prevents the prior from collapsing into a trivial solution. The refinement step builds on this by using the pre-trained prior while further improving inference through contrastive learning between prior and posterior samples.

Importantly, this procedure does not introduce significant computational overhead. As shown in Appendix I.2, the refinement uses the same denoising network with different latent inputs (c) and adds only a lightweight contrastive loss, making it efficient in practice.

Q10: On the Refinement Step. *Why we use diffusion models?*

Temporal latent identification and diffusion models act in synergy to learn the underlying structure of sequential decision-making. We clarify this intuition from two complementary perspectives: (i) why identifiable latents benefit a causal diffusion planner/policy, and (ii) why the diffusion architecture in turn enhances latent identification.

Latents for Diffusion As discussed above, once the latent variables are properly modeled, the diffusion process can more faithfully represent the true data-generation mechanism of RL trajectories. The latent factors capture slow-changing or unobserved influences on transitions and rewards, and our causal diffusion model explicitly conditions the denoising trajectory on these estimates. (i) The autoregressive noise schedule enforces the correct temporal dependence among (s_t, a_t) pairs and the latent c_t . (ii) The denoise-and-refine mechanism lets the diffusion model repeatedly update the trajectory using progressively more accurate latent estimates. (iii) The zig-zag sampling further ensures that the generated trajectory and latent context remain consistent, even during online sampling where future observations are unavailable.

Diffusion for Latents Conversely, the diffusion architecture naturally supports accurate latent inference, for two reasons. (i) Multi-step denoising aligns well with our identifiability condition and implementation. Theorem 1 indicates that small temporal blocks containing both past and future steps are necessary for identifying c_t . Specifically, to identify the latent context c_t , whose posterior depends on future observations (e.g., x_{t+1} , guided by Theorem 1), we introduce a backward refinement step. Diffusion model thereby provides progressively refined intermediate predictions along the process. We first denoise x_t into a partial state $x_t^{k_1}$ using x_{t-1}^0 and an initial estimate of c_t sampled from prior, then refine c_t with x_{t+1} to obtain the final x_t^0 . During training, we enforce this backward refinement to satisfy the theoretical identifiability conditions. At inference time (zig-zag sampling), we substitute x_{t+1} with a predicted estimate. These intermediate estimates act as "(soft) future observations," enabling the posterior network to approximate the required block $x_{t-k:t+1}$ even at test time. Hence, diffusion's iterative denoising gives us exactly the structure needed to approximate the future-augmented block and recover c_t online. (ii) Diffusion is a strong backbone for modeling RL/IL

1188 trajectories. Using it can make that the latent module receives high-quality, temporally consistent
 1189 denoised signals, which further stabilizes and improves latent recovery and policy learning.
 1190

1191 In summary, identifiable latents and causal diffusion reinforce each other: latents make diffusion-based
 1192 planning more accurate and adaptive, while diffusion provides the temporal refinement structure
 1193 needed to identify latents reliably, even under partial observability and in the absence of future
 1194 observations during inference.

1195 A.6 OVERVIEW

1197 In this appendix, we first present the theoretical analysis in Section B, including the proof of Theorem 1
 1198 and accompanying discussion, followed by the ELBO derivation for Ada-Diffuser. In Section C,
 1199 we provide an in-depth analysis of different types of MDPs and their interconnections. Section H
 1200 details the full Ada-Diffuser algorithm, model architectures, and its relation to Bayesian filtering.
 1201 Section E expands on related work, covering diffusion-based decision-making, latent state estimation
 1202 via belief learning, and autoregressive diffusion models. Finally, Sections F, G, H, and I provide
 1203 additional details on benchmarks, baseline implementations, and complete experimental results.

1204 B THEORY

1205 B.1 NOTATION LIST

1208 We summarize the key notations used throughout the paper in Table A1, including variables for
 1209 observed and latent states, temporal indices, and relevant mappings. These notations are used
 1210 consistently in our theoretical analysis and algorithmic framework.

1212 Index	1213 Explanation	1214 Support
\mathbf{x}_t	[$\mathbf{s}_t, \mathbf{a}_t$], observed trajectories including state and action at time step t	$\mathcal{X}_t \subseteq \mathbb{R}^{d_a + d_s}$
d_x	dimension of observed variables	$d_a + d_s$
\mathbf{s}_t	state variable at time t	$\mathbf{s}_t \in \mathcal{S}_t$
\mathbf{a}_t	action variable at time t	$\mathbf{a}_t \in \mathcal{A}_t$
r_t	reward received at time t	$r_t \in \mathbb{R}$
\mathbf{c}_t	latent context variable at time t	$\mathbf{c}_t \in \mathcal{C}_t$
τ	trajectory sequence of $(\mathbf{s}_t, \mathbf{a}_t)$	$\{(\mathbf{s}_0, \mathbf{a}_0), \dots, (\mathbf{s}_T, \mathbf{a}_T)\}$
τ_x	observable trajectory (states or state-actions)	τ_{sa} or τ_s
τ_c	sequence of latent contexts	$\{\mathbf{c}_0, \dots, \mathbf{c}_T\}$
τ	augmented trajectory with context	$[\tau_x, \tau_c]$
1221 Function		
\mathcal{T}	transition dynamics conditioned on \mathbf{c}_t	$\mathcal{T}(\mathbf{s}_t \mid \mathbf{s}_{t-1}, \mathbf{a}_{t-1}, \mathbf{c}_t)$
\mathcal{R}	reward function conditioned on state, action, and context	$\mathcal{R}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{c}_t)$
π^E	expert policy used for generating demonstrations	$\pi^E(\mathbf{s}_t, \mathbf{c}_t)$
q_ψ	variational posterior for latent inference	$q_\psi(\mathbf{c}_t \mid \mathbf{x}_{t-T_x:t+1})$
p_ϕ	latent prior distribution	$p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1})$
p_θ	generative model for transitions	$p_\theta(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t)$
ϵ_θ	denoising network in diffusion process	$\epsilon_\theta(\cdot)$
1228 Symbol		
$\eta_t, \epsilon_t, \delta_t$	exogenous noise in latent dynamics, state transitions, and reward	i.i.d. samples from noise distributions
$L_{a b}$	distribution operator from b to a	defined in Dunford & Schwartz (1971)
$k(\cdot)$	ratio of joint probabilities used in uniqueness assumption	defined in Eq. 1
$\bar{\alpha}_t$	cumulative noise schedule in diffusion	product of forward noise factors
K	maximum number of diffusion steps	$K \in \mathbb{N}$
T_p, T_a	planning and action generation horizons	$T_p, T_a \in \mathbb{N}$
T_x	temporal block size for latent inference	$T_x \in \mathbb{N}$

1234 Table A1: List of notations, explanations, and corresponding definitions.
 1235

1236 Also, we formally define the operators used in the following.

1237 **Definition 1 (Linear Operator)** ([Dunford & Schwartz, 1971](#)). *Let \mathbf{a} and \mathbf{b} be random variables with
 1238 supports \mathcal{A} and \mathcal{B} , respectively. The linear operator $L_{\mathbf{b}|\mathbf{a}}$ is defined as a mapping from a probability
 1239 function $p_{\mathbf{a}} \in \mathcal{F}(\mathcal{A})$ to a probability function $p_{\mathbf{b}} \in \mathcal{F}(\mathcal{B})$, given by*

$$1241 \mathcal{F}(\mathcal{A}) \rightarrow \mathcal{F}(\mathcal{B}) : p_{\mathbf{b}} = L_{\mathbf{b}|\mathbf{a}} \circ p_{\mathbf{a}} = \int_{\mathcal{A}} p_{\mathbf{b}|\mathbf{a}}(\cdot \mid \mathbf{a}) p_{\mathbf{a}}(\mathbf{a}) d\mathbf{a}. \quad (\text{A4})$$

1242 Intuitively, this operator characterizes the transformation of probability distributions induced by the
 1243 conditional distribution $p_{\mathbf{b}|\mathbf{a}}$. It provides a general representation of distributional change from \mathbf{a} to
 1244 \mathbf{b} , without imposing any parametric assumptions on the underlying distributions.

1245 **Definition 2 (Diagonal Operator).** *Let \mathbf{a} and \mathbf{b} be random variables with associated density
 1246 functions $p_{\mathbf{a}}$ and $p_{\mathbf{b}}$ defined on supports \mathcal{A} and \mathcal{B} , respectively. For a fixed value $\mathbf{b} \in \mathcal{B}$, the diagonal
 1247 operator $D_{\mathbf{b}|\mathbf{a}}$ is defined as a linear operator that maps a density function $p_{\mathbf{a}} \in \mathcal{F}(\mathcal{A})$ to a function
 1248 in $\mathcal{F}(\mathcal{A})$ via pointwise multiplication:*

$$1249 \quad D_{\mathbf{b}|\mathbf{a}} \circ p_{\mathbf{a}} = p_{\mathbf{b}|\mathbf{a}}(\mathbf{b} \mid \cdot) \cdot p_{\mathbf{a}}, \quad (\text{A5})$$

1250 where $D_{\mathbf{b}|\mathbf{a}} = p_{\mathbf{b}|\mathbf{a}}(\mathbf{b} \mid \cdot)$ acts as a multiplication operator indexed by \mathbf{b} .

1253 B.2 PROOF OF THEOREM 1

1255 *Proof.* By the definition of data generation process (Fig. 1), the observed density is represented by:

$$\begin{aligned} 1256 \quad & p_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} \\ 1257 \quad &= \int_{\mathcal{C}_t} \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{c}_t, \mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_t d\mathbf{c}_{t-1} \\ 1258 \quad &= \int_{\mathcal{C}_t} \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{c}_t, \mathbf{c}_{t-1}} p_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{c}_{t-1}} p_{\mathbf{c}_{t-1} \mid \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_t d\mathbf{c}_{t-1} \\ 1259 \quad &= \int_{\mathcal{C}_t} \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_{t-1}} p_{\mathbf{c}_{t-1} \mid \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_t d\mathbf{c}_{t-1} \\ 1260 \quad &= \int_{\mathcal{C}_t} \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t, \mathbf{c}_{t-1}} p_{\mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{c}_{t-1}} p_{\mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{c}_{t-1}} d\mathbf{c}_t d\mathbf{c}_{t-1} \\ 1261 \quad &= \int_{\mathcal{C}_t} \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t, \mathbf{c}_{t-1}} p_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{c}_{t-1}} d\mathbf{c}_t d\mathbf{c}_{t-1}. \\ 1262 \quad & \\ 1263 \quad & \\ 1264 \quad & \\ 1265 \quad & \\ 1266 \quad & \\ 1267 \quad & \\ 1268 \quad & \\ 1269 \quad & \end{aligned}$$

1270 Then, the property of Markov process presents conditional independence, organized as follows:

$$\begin{aligned} 1271 \quad p_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= \int_{\mathcal{C}_t} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t} \left(\int_{\mathcal{C}_{t-1}} p_{\mathbf{c}_t, \mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_{t-1} \right) d\mathbf{c}_t \\ 1272 \quad &= \int_{\mathcal{C}_t} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t} p_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_t. \end{aligned} \quad (\text{A6})$$

1273 Eq. A6 can be denoted in terms of operators: given values of $(\mathbf{x}_t, \mathbf{x}_{t-1}) \in \mathcal{X}_t \times \mathcal{X}_{t-1}$, Eq. A6 is

$$1274 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \quad (\text{A7})$$

1275 Notably, Eq. A7 is the operator representation of the observed density function in 4 measurements.

1276 Furthermore, the structure of Markov process implies the following two equalities:

$$\begin{aligned} 1277 \quad p_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= \int_{\mathcal{C}_t} p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} p_{\mathbf{x}_t, \mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_t, \\ 1278 \quad p_{\mathbf{x}_t, \mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_{t-1}} p_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_{t-1}. \end{aligned} \quad (\text{A8})$$

1279 For any fixed $(\mathbf{x}_t, \mathbf{x}_{t-1}) \in \mathcal{X}_t \times \mathcal{X}_{t-1}$, we notate Eq. A8 in terms of operators as follows:

$$\begin{aligned} 1280 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= L_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} L_{\mathbf{x}_t, \mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}, \\ 1281 \quad L_{\mathbf{x}_t, \mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= L_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_{t-1}} L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \end{aligned} \quad (\text{A9})$$

1282 Substituting the second line in Eq. A9 into R.H.S. of the first equation, we obtain

$$\begin{aligned} 1283 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= L_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t} L_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_{t-1}} L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} \\ 1284 \quad \Leftrightarrow L_{\mathbf{x}_t, \mathbf{c}_t \mid \mathbf{x}_{t-1}, \mathbf{c}_{t-1}} L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} &= L_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \end{aligned} \quad (\text{A10})$$

1296 The second line above uses Assumption 2 that $L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1}$ is injective. Next, we show how to
 1297 eliminate $L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}$ from the above. Consider 3 measurements $\{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}\}$, we have
 1298

$$1299 \quad p_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = \int_{\mathcal{C}_{t-1}} p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}} p_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} d\mathbf{c}_{t-1}, \quad (A11)$$

1300 which, in operator notation (for fixed \mathbf{x}_{t-1}), is denoted as
 1301

$$1302 \quad L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}} L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}, \\ 1303 \quad \Rightarrow \quad L_{\mathbf{c}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}}^{-1} L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \quad (A12)$$

1304 The R.H.S. applies Assumption 2. Hence, substituting the above into Eq. A10, we obtain:
 1305

$$1306 \quad L_{\mathbf{x}_t, \mathbf{c}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}} L_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}}^{-1} L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} \\ 1307 \quad \Rightarrow \quad L_{\mathbf{x}_t, \mathbf{c}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}^{-1} L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{c}_{t-1}}. \quad (A13)$$

1308 The second line applies Assumption 2 to post-multiply by $L_{\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}^{-1}$, while in the third line, we
 1309 postmultiply both sides by $L_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_{t-1}}$.
 1310

1311 For all \mathbf{x}_t , choose a \mathbf{x}_{t-1} and a neighborhood \mathcal{N}^r around $(\mathbf{x}_t, \mathbf{x}_{t-1})$ to satisfy Assumption 2, and pick
 1312 a $(\bar{\mathbf{x}}_t, \bar{\mathbf{x}}_{t-1})$ within the neighborhood \mathcal{N}^r . Because $(\bar{\mathbf{x}}_t, \bar{\mathbf{x}}_{t-1}) \in \mathcal{N}^r$, we also know that $(\mathbf{x}_t, \bar{\mathbf{x}}_{t-1})$,
 1313 $(\bar{\mathbf{x}}_t, \mathbf{x}_{t-1}) \in \mathcal{N}^r$. The joint distribution of of observations can be represented by Eq. A7:
 1314

$$1315 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \quad (A14)$$

1316 The first term on the R.H.S., $L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}$, does not depend on \mathbf{x}_{t-1} , and the last term $L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}$
 1317 does not depend on \mathbf{x}_t . This feature suggests that, by evaluating Eq. A7 at the four pairs of points
 1318 $(\mathbf{x}_t, \mathbf{x}_{t-1})$, $(\bar{\mathbf{x}}_t, \mathbf{x}_{t-1})$, $(\mathbf{x}_t, \bar{\mathbf{x}}_{t-1})$, $(\bar{\mathbf{x}}_t, \bar{\mathbf{x}}_{t-1})$, each pair of equations will share the same operator
 1319 representation in common. Specifically:
 1320

$$1321 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}, \quad (A15)$$

$$1322 \quad L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}, \quad (A16)$$

$$1323 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \bar{\mathbf{x}}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \bar{\mathbf{x}}_{t-1}, \mathbf{x}_{t-2}}, \quad (A17)$$

$$1324 \quad L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \bar{\mathbf{x}}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t} L_{\mathbf{c}_t, \bar{\mathbf{x}}_{t-1}, \mathbf{x}_{t-2}}. \quad (A18)$$

1325 Assumption 2 implies that $L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t}$ is injective. Moreover, Assumption 3 implies $p_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) > 0$ for all \mathbf{c}_t , so that $D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}$ is invertible. We can then solve for $L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}$ from
 1326 Eq. A16 as
 1327

$$1328 \quad D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{c}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \quad (A19)$$

1329 Plugging this expression into Eq. A15 leads to
 1330

$$1331 \quad L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}. \quad (A20)$$

1332 At this point, we have decomposed the observable joint operator and expressed it in terms of latent-
 1333 conditioned transitions, enabling spectral analysis for identifying latent structure.
 1334

1335 Lemma 1 of (Hu & Schennach, 2008) shows that, given the injectivity of $L_{\mathbf{x}_{t-2}, \bar{\mathbf{x}}_{t-1}, \mathbf{x}_t, \mathbf{x}_{t+1}}$ as in
 1336 Assumption 2, we can postmultiply by $L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}^{-1}$ to obtain:
 1337

$$1338 \quad \mathbf{M} \equiv L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} L_{\mathbf{x}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}^{-1} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t}^{-1}. \quad (A21)$$

1339 Similarly, manipulations of Eq. A17 and A18 lead to
 1340

$$1341 \quad \mathbf{N} \equiv L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}} L_{\mathbf{x}_{t+1}, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-2}}^{-1} = L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} D_{\mathbf{x}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1}. \quad (A22)$$

1342 Assumption 2 guarantees that, for any \mathbf{x}_t , $(\bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1})$ exist so that Eq. A21 and Eq. A22 are
 1343 valid operations. Finally, we postmultiply Eq. A21 by Eq. A22 to obtain:
 1344

$$1345 \quad \mathbf{MN} = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}^{-1} (L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t} L_{\mathbf{x}_{t+1}|\bar{\mathbf{x}}_t, \mathbf{c}_t}) \times D_{\bar{\mathbf{x}}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} D_{\mathbf{x}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1} \\ 1346 \quad = L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} \left(D_{\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t|\mathbf{x}_{t-1}, \mathbf{c}_t}^{-1} D_{\bar{\mathbf{x}}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} D_{\mathbf{x}_t|\bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} \right) L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1} \\ 1347 \quad \equiv L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} D_{\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}^{-1}, \quad (A23)$$

where

$$\begin{aligned}
(D_{\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t} h)(\mathbf{c}_t) &= \left(D_{\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t} D_{\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} D_{\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t} D_{\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}^{-1} h \right)(\mathbf{c}_t) \\
&= \frac{p_{\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) p_{\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t}(\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}{p_{\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t}(\bar{\mathbf{x}}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) p_{\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t}(\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)} h(\mathbf{c}_t) \\
&\equiv k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t) h(\mathbf{c}_t).
\end{aligned} \tag{A24}$$

This equation implies that the observed operator MN on the L.H.S. of Eq. A25 has an inherent eigenvalue–eigenfunction decomposition, with the eigenvalues corresponding to the function $k(x_t, \bar{x}_t, x_{t-1}, \bar{x}_{t-1}, c_t)$ and the eigenfunctions corresponding to the density $p_{x_{t+1}|x_t, c_t}(\cdot | x_t, c_t)$.

The decomposition in Eq. A25 is similar to the decomposition in nonparametric identification (Hu & Schennach, 2008; Carroll et al., 2010). First, Assumption 3 ensures this decomposition is unique. Second, the operator MN on the L.H.S. has the same spectrum as the diagonal operator $D_{\mathbf{x}_t, \mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{x}_{t-1}, \mathbf{c}_t}$. Assumption 3 guarantees that the spectrum of the diagonal operator is bounded. Since an operator is bounded by the largest element of its spectrum, Assumption 3 also implies that the operator MN is bounded, whence we can apply Theorem XV.4.3.5 from (Dunford & Schwartz, 1971) to show the uniqueness of the spectral decomposition of bounded linear operators:

$$L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t} = CL_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}P^{-1}, \quad D_{\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t} = PD_{\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t}P^{-1} \quad (\text{A25})$$

where C is a scalar accounting for scaling indeterminacy and P is a permutation on the order of elements in $D_{\hat{x}_t|\hat{c}_t}$, as discussed in (Dunford & Schwartz, 1971). These forms of indeterminacy are analogous to those in eigendecomposition, which can be viewed as a finite-dimensional special case.

We will show why the uniqueness of spectral decomposition is informative for identifications. First,

$$\int_{\hat{\mathcal{X}}_{t+1}} p_{\hat{\mathbf{x}}_{t+1} | \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t} d\hat{\mathbf{x}}_{t+1} = 1 \quad (\text{A26})$$

must hold for every \hat{c}_t due to normalizing condition, one only solution is to set $C = 1$.

Second, Assumption 3 implies that Eq. A25 imply that the eigenvalues $k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)$ are distinct for different values \mathbf{c}_t . If several \mathbf{c}_t yield identical eigenvalues, the associated eigenfunctions cannot be uniquely identified, as any linear combination of them remains valid. Therefore, for each \mathbf{x}_t , one can choose $\bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}$ such that the eigenvalues differ for all \mathbf{c}_t .

Ultimately, the unorder of eigenvalues/eigenfunctions is left. The operator, $L_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}$, corresponding to the set $\{p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot \mid \mathbf{x}_t, \mathbf{c}_t)\}$ for all $\mathbf{x}_t, \mathbf{c}_t$, admits a unique solution (orderibng ambiguity of eigendecomposition only changes the entry position):

$$\{p_{\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{c}_t}(\cdot \mid \mathbf{x}_t, \mathbf{c}_t)\} = \{p_{\mathbf{x}_{t+1} \mid \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\mathbf{x}_{t+1} \mid \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t)\}, \quad \text{for all } \mathbf{x}_t, \mathbf{c}_t, \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t \quad (\text{A27})$$

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to exchange the conditioning variables, that is,

$$\begin{aligned}
& \{p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | \mathbf{x}_t^{(1)}, \mathbf{c}_t^{(1)}), p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | \mathbf{x}_t^{(2)}, \mathbf{c}_t^{(2)}), \dots\} \\
&= \{p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t^{(1)}, \hat{\mathbf{c}}_t^{(1)}), p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t^{(2)}, \hat{\mathbf{c}}_t^{(2)}), \dots\} \\
\Rightarrow & [p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | \mathbf{x}_t^{(\pi(1))}, \mathbf{c}_t^{(\pi(1))}), p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | \mathbf{x}_t^{(\pi(2))}, \mathbf{c}_t^{(\pi(2))}), \dots] \\
&= [p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t^{(\pi(1))}, \hat{\mathbf{c}}_t^{(\pi(1))}), p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t^{(\pi(2))}, \hat{\mathbf{c}}_t^{(\pi(2))}), \dots]
\end{aligned} \tag{A28}$$

where superscript (\cdot) denotes the index of the conditioning variables $[\mathbf{x}_t, \mathbf{c}_t]$, and π is reindexing the conditioning variables. We use a relabeling map H to represent its corresponding value mapping:

$$p_{\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_t}(\cdot \mid H(\mathbf{x}_t, \mathbf{c}_t)) = p_{\mathbf{x}_{t+1} | \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot \mid \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t), \quad \text{for all } \mathbf{x}_t, \mathbf{c}_t, \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t \quad (\text{A29})$$

By Assumption 3, different \mathbf{c}_t corresponds to different $p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | H(\mathbf{x}_t, \mathbf{c}_t))$, which indicates that there is no repeated element in $\{p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | H(\mathbf{x}_t, \mathbf{c}_t))\}$ and $\{p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t)\}$. Such uniqueness ensure that the relabelling map H is one-to-one.

Furthermore, Assumption 3 implies that $p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | H(\mathbf{x}_t, \mathbf{c}_t))$ corresponds to a unique $H(\mathbf{x}_t, \mathbf{c}_t)$. The same holds for the $p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t)$, implying that

$$p_{\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{c}_t}(\cdot | H(\mathbf{x}_t, \mathbf{c}_t)) = p_{\mathbf{x}_{t+1}|\hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t}(\cdot | \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t) \implies \hat{\mathbf{x}}_t, \hat{\mathbf{c}}_t = H(\mathbf{x}_t, \mathbf{c}_t) \quad (\text{A30})$$

Since the observation \mathbf{x}_t is known and suppose $\hat{\mathbf{x}}_t = \mathbf{x}_t$, this relationship indeed represents an invertible transformation between $\hat{\mathbf{c}}_t$ and \mathbf{c}_t as

$$\hat{\mathbf{c}}_t = h(\mathbf{c}_t). \quad (\text{A31})$$

which ensures that $p(\mathbf{c}_t | \mathbf{x}_{t-2:t+1})$ can be identifiable up to an invertible transformation on the latent variables $\hat{\mathbf{c}}_t = h(\mathbf{c}_t)$ \square

B.3 THEORY-ALGORITHM ALIGNMENT

Here, we provide a more detailed description of our theoretical foundations, model design guidance, and algorithmic implementation. This complements the high-level summary in the main paper and offers additional context about the technical depth behind our contributions.

B.3.1 NON-PARAMETRIC IDENTIFIABILITY THEORY

We establish this non-parametric identifiability result that gives sufficient conditions for recovering latent contexts from reinforcement learning (RL) trajectories using short temporal blocks. Each block includes a small number of future steps, which allows the model to reason about both the immediate past and the near future. Formally, we prove that under mild and broadly applicable assumptions, the latent context \mathbf{c}_t driving the generative process of the observed states and actions $(\mathbf{x}_t, \mathbf{a}_t)$ can be recovered up to an equivalence class. This identifiability guarantee is important because it shows that latent-aware planning can be theoretically justified even when the environment contains unobserved factors or task-dependent variations.

B.3.2 MODEL DESIGN GUIDANCE

The theoretical result directly guides the design of our causal diffusion model. To leverage Theorem 1, the diffusion model must not only generate trajectories but also recover the true latent factors. Concretely, the model must:

1. capture **temporal dependencies** across short blocks of states and actions;
2. jointly model **observable and latent variables**;
3. enforce **conditions for identifiability**, ensuring that the latent \mathbf{c}_t can be isolated from the observed sequence.

These design requirements inform our noise schedule and the coupling of autoregressive denoising with latent refinement.

This provides guidance for the algorithm design:

Autoregressive Denoising. We model temporal dependencies over both observable and latent variables using an autoregressive diffusion process. At each step, \mathbf{x}_t is denoised while conditioning on partially denoised past states and inferred latent variables from a short temporal block (Section 4.1). This schedule results in a structured temporal-latent modeling process that better preserves long-range dependencies.

Backward Refinement. To explicitly identify latent contexts whose posterior depends on future observations (e.g., x_{t+1} , guided by Theorem 1), we introduce a backward refinement step. At the second-to-last denoising stage, we refine a partial state $x_t^{k_1}$ using the initial estimate of $\hat{\mathbf{c}}_t$ sampled from the prior and x_{t+1} as additional evidence. The refined $\hat{\mathbf{c}}_t$ is then used to produce the final denoised state x_t^0 . During training, this backward refinement is enforced to satisfy the identifiability conditions. At inference time (zig-zag sampling), we substitute x_{t+1} with a predicted estimate to maintain efficiency.

1458 **Unification.** The autoregressive denoising and backward refinement are integrated into a single
 1459 noise schedule, enabling joint modeling of temporal dependencies and latent variables. Our imple-
 1460 mentation follows a four-step refinement scheme but can be extended to more steps if needed. Notably,
 1461 despite the additional refinement, the method remains computationally efficient (see Appendix I.1).
 1462 Further acceleration is possible via Picard iteration, which parallelizes refinement steps and reduces
 1463 inference runtime by about 25–30%.

1464 **B.3.3 DISCUSSION ON ASSUMPTIONS**

1465 **B.3.4 RELAXING ASSUMPTION 1 (BEYOND FIRST-ORDER MARKOV)**

1466 We can relax the first-order Markov assumption to an n -order Markov structure with delayed/cumu-
 1467 lative influences without altering the core identifiability argument. Suppose the generative process
 1468 satisfies

$$1469 \quad p(\mathbf{x}_{t+1} \mid \mathbf{x}_{1:t}, \mathbf{a}_{1:t}, \mathbf{c}_{1:t}) = p(\mathbf{v}(x_{t+1} \mid \mathbf{x}_{t:t-n+1}, \mathbf{a}_{t:t-n+1}, \mathbf{c}_{t:t-n+1})),$$

1470 and that the conditioning sets across *non overlapping* lags exhibit block-wise conditional inde-
 1471 pendence (the same separation conditions used in Theorem 1). Then there exists a finite window
 1472 of observations whose statistics identify the contemporaneous block $[\mathbf{c}_t, \mathbf{x}_t]$ up to an invertible
 1473 reparameterization.

1474 **Concrete identification statement.** Let $W_t = (\mathbf{x}_{t-2n:t+2n})$ denote a $4n+1$ -length observation
 1475 window.⁴ Assume: (i) time direction is known (so $[\mathbf{c}_t, \mathbf{x}_t] \rightarrow [\mathbf{c}_{t+1}, \mathbf{x}_{t+1}]$ is oriented); (ii) the
 1476 variability (support) conditions from Theorem 1 hold for the n -lag blocks; and (iii) block-wise
 1477 independence across non-overlapping lags is satisfied. Then there exists an invertible map H such
 1478 that

$$1479 \quad [\mathbf{c}_t, \mathbf{x}_t] = H(W_t),$$

1480 so \mathbf{c}_t (and \mathbf{x}_t) are identifiable up to an invertible transformation from a finite window of observations.

1481 **Illustration for $n=2$.** When $n=2$, block-wise separations allow identification of the joint variables
 1482 $[\mathbf{c}_t, \mathbf{c}_{t+1}, \mathbf{x}_t, \mathbf{x}_{t+1}]$ from $\mathbf{x}_{t-4:t+3}$ (length $8+1$). Knowing the temporal direction disambiguates
 1483 $[\mathbf{c}_t, \mathbf{x}_t]$ from $[\mathbf{c}_{t+1}, \mathbf{x}_{t+1}]$. Because \mathbf{x}_t is observed, we obtain $\mathbf{c}_t = h(\mathbf{x}_{t-4:t+3})$ for some invertible
 1484 h , and thus the contemporaneous pair $[\mathbf{c}_t, \mathbf{x}_t]$ is identified.

1485 **Connection to delayed/cumulative rewards.** Delayed and cumulative effects fit naturally in the
 1486 n -order view. For a delay ℓ ,

$$1487 \quad \mathbf{r}_{t+\ell} = \rho(\mathbf{x}_{t+\ell}, \mathbf{a}_{t+\ell}, \mathbf{c}_t) \quad (\text{delayed effect}),$$

1488 while cumulative influence over a horizon L can be written as

$$1489 \quad \mathbf{r}_{t+k} = \rho_k(\mathbf{x}_{t+k}, \mathbf{a}_{t+k}, \mathbf{c}_t), \quad k = 0, \dots, L-1,$$

1490 both of which are encompassed by the n -order Markov factorization above. Our cheetah variants
 1491 instantiate these with, e.g., $r_{t+\ell} = -\|\mathbf{v}_{t+\ell} - \mathbf{c}_t\|^2$ (delayed) and $r_{t+k} = -\|\mathbf{v}_{t+k} - \mathbf{c}_t\|^2$ (cumulative),
 1492 where \mathbf{v}_t denotes speed; the identification results remain valid.

1493 **Results.** We evaluate identification under delayed and cumulative latent effects in the Cheetah
 1494 environment using observation windows of length 6, 8, 10, and 20. In all cases, linear probes recover
 1495 the latent with high accuracy, and performance improves monotonically with longer context. For
 1496 *delayed* effects, probing accuracy rises from 0.81 to 0.91 and R^2 from 0.72 to 0.86 as block size
 1497 increases from 6 to 20. For *cumulative* effects, probing accuracy increases from 0.84 to 0.93 and R^2
 1498 from 0.75 to 0.88 over the same range. These results confirm that (i) the latent c_t is behaviorally
 1499 consequential in non-first-order settings and (ii) moderate temporal context suffices for accurate
 1500 recovery, supporting our relaxed n -order Markov analysis.

1501 ⁴Any window of length at least $4n+1$ suffices; we state one concrete choice for clarity.

Latent Type	Block size	Probing Acc	R^2
Delayed	6	0.81	0.72
Delayed	8	0.85	0.78
Delayed	10	0.88	0.81
Delayed	20	0.91	0.86
Cumulative	6	0.84	0.75
Cumulative	8	0.87	0.79
Cumulative	10	0.89	0.83
Cumulative	20	0.93	0.88

Table A2: Identification under delayed and cumulative latent effects. Larger is better.

B.3.5 CASES IN ASSUMPTION 2.

The assumption of the injectivity of a linear operator is commonly employed in the nonparametric identification (Hu & Schennach, 2008; Carroll et al., 2010; Hu & Shum, 2012). Intuitively, it means that different input distributions of a linear operator correspond to different output distributions of that operator. For a better understanding, we provide several examples in Fu et al. (2025) that describe the mapping from $p_a \Rightarrow p_b$, where a and b are random variables:

Example 1 (Invertible). $b = g(a)$, where g is an invertible function.

Example 2 (Additive). $b = a + \epsilon$, where $p(\epsilon)$ must not vanish everywhere after the Fourier transform.

Example 3 (Nonlinear Additive). $b = g(a) + \epsilon$, where conditions from **Examples 1-2** are required.

Example 4 (Post-nonlinear). $b = g_1(g_2(a) + \epsilon)$, a post-nonlinear model with invertible nonlinear functions g_1, g_2 , combining the assumptions in **Examples 1-3**.

Example 5 (Nonlinear with Exponential Family). $b = g(a, \epsilon)$, where the joint distribution $p(a, b)$ follows an exponential family.

Example 6 (Nonparametric). $b = g(a, \epsilon)$, a general nonlinear formulation. Certain deviations from the nonlinear additive model (**Example 3**), e.g., polynomial perturbations, can still be tractable.

B.4 ELBO

In this section, we provide analysis on the \mathbf{x}^0 -prediction Mean Squared Error (MSE) loss objectives used in the Denoise-and-Refine Mechanism of Ada-Diffuser. Our main argument establishes that minimizing the reconstruction losses $\mathcal{L}_{\text{prior}}$ and $\mathcal{L}_{\text{post}}$ corresponds to optimizing an ELBO on the conditional log-likelihood of the clean observation \mathbf{x}_t^0 , given a noisy observation \mathbf{x}_t^k and an inferred latent context \mathbf{c}_t .

Let $\mathbf{x}_t^0 \sim q(\mathbf{x}_t^0)$ be a clean data sample from the true data distribution at sequence time step t . Let \mathbf{c}_t be the inferred latent context relevant to \mathbf{x}_t^0 .

The forward diffusion process gradually adds Gaussian noise to \mathbf{x}_t^0 over K diffusion steps:

$$q(\mathbf{x}_t^k | \mathbf{x}_t^{k-1}) = \mathcal{N}(\mathbf{x}_t^k; \sqrt{\alpha_k} \mathbf{x}_t^{k-1}, (1 - \alpha_k) \mathbf{I})$$

for $k \in \{1, \dots, K\}$, where $\alpha_k \in (0, 1)$ are predefined noise schedule parameters. This process allows sampling \mathbf{x}_t^k directly from \mathbf{x}_t^0 :

$$\mathbf{x}_t^k = \sqrt{\bar{\alpha}_k} \mathbf{x}_t^0 + \sqrt{1 - \bar{\alpha}_k} \boldsymbol{\epsilon}, \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \text{ and } \bar{\alpha}_k = \prod_{i=1}^k \alpha_i.$$

The reverse process $p_\theta(\mathbf{x}_t^{k-1} | \mathbf{x}_t^k, \mathbf{c}_t)$ that parameterized by θ aims to denoise \mathbf{x}_t^k to \mathbf{x}_t^{k-1} conditioned on \mathbf{c}_t .

The derivation of the ELBO for diffusion models is standard following DDPM related derivations (Ho et al., 2020; Chen et al., 2024). The conditional log-likelihood $\log p_\theta(\mathbf{x}_t^0 | \mathbf{c}_t)$ can be lower-bounded using the ELBO:

$$\log p_\theta(\mathbf{x}_t^0 | \mathbf{c}_t) \geq \mathbb{E}_{q(\mathbf{x}_t^{1:K} | \mathbf{x}_t^0)} \left[\log p_\theta(\mathbf{x}_t^K | \mathbf{c}_t) + \sum_{k=1}^K \log \frac{p_\theta(\mathbf{x}_t^{k-1} | \mathbf{x}_t^k, \mathbf{c}_t)}{q(\mathbf{x}_t^{k-1} | \mathbf{x}_t^k, \mathbf{x}_t^0)} \right]$$

Assuming p_θ satisfies Markov Property (i.e., $p_\theta(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \dots, \mathbf{x}_t^K, \mathbf{c}_t) = p_\theta(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{c}_t)$), which is a standard structural assumption for diffusion models, the ELBO can be rewritten as:

$$\begin{aligned} \log p_\theta(\mathbf{x}_t^0|\mathbf{c}_t) &\geq \underbrace{\mathbb{E}_{q(\mathbf{x}_t^1|\mathbf{x}_t^0)}[\log p_\theta(\mathbf{x}_t^0|\mathbf{x}_t^1, \mathbf{c}_t)]}_{L_0} \\ &\quad - \sum_{k=2}^K \underbrace{\mathbb{E}_{q(\mathbf{x}_t^k|\mathbf{x}_t^0)}[D_{KL}(q(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{x}_t^0)||p_\theta(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{c}_t))]}_{L_{k-1}} \\ &\quad - \underbrace{D_{KL}(q(\mathbf{x}_t^K|\mathbf{x}_t^0)||p_\theta(\mathbf{x}_t^K|\mathbf{c}_t))}_{L_K}, \end{aligned}$$

This inequality holds with equality if and only if the model's true posterior over the latent diffusion path, $p_\theta(\mathbf{x}_t^{1:K}|\mathbf{x}_t^0, \mathbf{c}_t)$, is identical to the approximate posterior used to derive the ELBO, which is the forward noising process $q(\mathbf{x}_t^{1:K}|\mathbf{x}_t^0)$. This bound can also include an additive constant $C(\mathbf{x}_t^0, \mathbf{c}_t)$ which does not depend on the model parameters θ and is thus typically omitted when focusing on terms relevant to parameter optimization.

To maximize $\log p_\theta(\mathbf{x}_t^0|\mathbf{c}_t)$, we aim to maximize this lower bound by optimizing L_0 (i.e., maximizing this term) and each L_{k-1} term (i.e., minimizing these D_{KL} terms, as they appear with a negative sign). The term L_K is often treated as a constant (or absorbed into $C(\mathbf{x}_t^0, \mathbf{c}_t)$) if $p_\theta(\mathbf{x}_t^K|\mathbf{c}_t)$ is set to a standard Gaussian $\mathcal{N}(0, \mathbf{I})$ and $\bar{\alpha}_K \approx 0$.

We parameterize the reverse process $p_\theta(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{c}_t)$ as a Gaussian:

$$p_\theta(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{c}_t) = \mathcal{N}(\mathbf{x}_t^{k-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t^k, k, \mathbf{c}_t), \sigma_k^2 \mathbf{I})$$

The true posterior step $q(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{x}_t^0)$ is also Gaussian:

$$q(\mathbf{x}_t^{k-1}|\mathbf{x}_t^k, \mathbf{x}_t^0) = \mathcal{N}(\mathbf{x}_t^{k-1}; \tilde{\boldsymbol{\mu}}_k(\mathbf{x}_t^k, \mathbf{x}_t^0), \tilde{\sigma}_k^2 \mathbf{I})$$

where $\tilde{\boldsymbol{\mu}}_k(\mathbf{x}_t^k, \mathbf{x}_t^0) = \frac{\sqrt{\bar{\alpha}_{k-1}}(1-\alpha_k)}{1-\bar{\alpha}_k} \mathbf{x}_t^0 + \frac{\sqrt{\alpha_k}(1-\bar{\alpha}_{k-1})}{1-\bar{\alpha}_k} \mathbf{x}_t^k$ and $\tilde{\sigma}_k^2 = \frac{1-\bar{\alpha}_{k-1}}{1-\bar{\alpha}_k} (1-\alpha_k)$ is the variance.

For an \mathbf{x}^0 -prediction model, denoted as $\epsilon_\theta(\mathbf{x}_t^k, k, \mathbf{c}_t)$ in the main paper, that aims to predict \mathbf{x}_t^0 from the noisy input \mathbf{x}_t^k and context \mathbf{c}_t , the mean of the reverse model $\boldsymbol{\mu}_\theta$ can be expressed as:

$$\boldsymbol{\mu}_\theta(\mathbf{x}_t^k, k, \mathbf{c}_t) = \frac{\sqrt{\bar{\alpha}_{k-1}}(1-\alpha_k)}{1-\bar{\alpha}_k} \epsilon_\theta(\mathbf{x}_t^k, k, \mathbf{c}_t) + \frac{\sqrt{\alpha_k}(1-\bar{\alpha}_{k-1})}{1-\bar{\alpha}_k} \mathbf{x}_t^k$$

Choosing $\sigma_k^2 = \tilde{\sigma}_k^2$, the KL divergence term L_{k-1} simplifies to:

$$\begin{aligned} L_{k-1} &= \mathbb{E}_{q(\mathbf{x}_t^k|\mathbf{x}_t^0)} \left[\frac{1}{2\sigma_k^2} \|\tilde{\boldsymbol{\mu}}_k(\mathbf{x}_t^k, \mathbf{x}_t^0) - \boldsymbol{\mu}_\theta(\mathbf{x}_t^k, k, \mathbf{c}_t)\|^2 \right] + C'_k \\ &= \mathbb{E}_{\mathbf{x}_t^0, \epsilon} \left[\frac{1}{2\sigma_k^2} \left(\frac{\sqrt{\bar{\alpha}_{k-1}}(1-\alpha_k)}{1-\bar{\alpha}_k} \right)^2 \|\mathbf{x}_t^0 - \epsilon_\theta(\sqrt{\bar{\alpha}_k} \mathbf{x}_t^0 + \sqrt{1-\bar{\alpha}_k} \epsilon, k, \mathbf{c}_t)\|^2 \right] + C'_k \end{aligned}$$

where C'_k are constants not depending on θ . The expectation $\mathbb{E}_{\mathbf{x}_t^0, \epsilon}$ denotes averaging over clean data \mathbf{x}_t^0 and the noise ϵ used to construct \mathbf{x}_t^k . Thus, maximizing the ELBO contribution from $-L_{k-1}$ is equivalent to minimizing the following weighted MSE term:

$$\mathbb{E}_{\mathbf{x}_t^0, \epsilon, \mathbf{c}_t} \left[w(k) \|\mathbf{x}_t^0 - \epsilon_\theta(\sqrt{\bar{\alpha}_k} \mathbf{x}_t^0 + \sqrt{1-\bar{\alpha}_k} \epsilon, k, \mathbf{c}_t)\|^2 \right] \quad (\text{A32})$$

where $w(k) = \frac{1}{2\sigma_k^2} \left(\frac{\sqrt{\bar{\alpha}_{k-1}}(1-\alpha_k)}{1-\bar{\alpha}_k} \right)^2$ is a positive weighting factor.

The term $L_0 = \mathbb{E}_{q(\mathbf{x}_t^1|\mathbf{x}_t^0)}[\log p_\theta(\mathbf{x}_t^0|\mathbf{x}_t^1, \mathbf{c}_t)]$ can also be made proportional to an MSE if $p_\theta(\mathbf{x}_t^0|\mathbf{x}_t^1, \mathbf{c}_t)$ is a Gaussian centered at $\epsilon_\theta(\mathbf{x}_t^1, 1, \mathbf{c}_t)$:

$$\log p_\theta(\mathbf{x}_t^0|\mathbf{x}_t^1, \mathbf{c}_t) = -\frac{1}{2\sigma_1^2} \|\mathbf{x}_t^0 - \epsilon_\theta(\mathbf{x}_t^1, 1, \mathbf{c}_t)\|^2 + \text{const}$$

1620 Maximizing L_0 is then equivalent to minimizing this MSE.
 1621

1622 The diffusion model ϵ_θ is typically trained by minimizing a simplified objective (e.g., (Ho et al.,
 1623 2020)), often an unweighted or equally weighted sum of these MSE terms over uniformly sampled
 1624 diffusion steps $k \in [1, K]$ and data \mathbf{x}_t^0 :

$$1625 \quad \mathcal{L}_{\text{simple}}(\theta) = \mathbb{E}_{k \sim U[1, K], \mathbf{x}_t^0, \epsilon, \mathbf{c}_t} \left[\left\| \mathbf{x}_t^0 - \epsilon_\theta(\sqrt{\bar{\alpha}_k} \mathbf{x}_t^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, k, \mathbf{c}_t) \right\|^2 \right]$$

1627 This simplification is justified by arguing that reweighting terms $w(k)$ in Equation A32 can be
 1628 absorbed into the network or do not significantly alter the optimal solution for expressive models,
 1629 allowing $w(k)$ to be effectively set to 1.

1630 The Denoise-and-Refine losses are:

$$1631 \quad \mathcal{L}_{\text{prior}} = \mathbb{E}_{\mathbf{x}_t^0, \epsilon, \hat{\mathbf{c}}_t^{\text{prior}}} \left[\left\| \mathbf{x}_t^0 - \epsilon_\theta(\mathbf{x}_t^{k_i}, k_i, \hat{\mathbf{c}}_t^{\text{prior}}) \right\|^2 \right]$$

$$1634 \quad \mathcal{L}_{\text{post}} = \mathbb{E}_{\mathbf{x}_t^0, \epsilon, \hat{\mathbf{c}}_t^{\text{post}}} \left[\left\| \mathbf{x}_t^0 - \epsilon_\theta(\mathbf{x}_t^{k_i}, k_i, \hat{\mathbf{c}}_t^{\text{post}}) \right\|^2 \right]$$

1636 where $\mathbf{x}_t^{k_i} = \sqrt{\bar{\alpha}_{k_i}} \mathbf{x}_t^0 + \sqrt{1 - \bar{\alpha}_{k_i}} \epsilon$, and k_i is the specific input noise level for the observation \mathbf{x}_t
 1637 determined by the causal denoising schedule $k_i = \frac{i}{T} K$. These losses, $\mathcal{L}_{\text{prior}}$ and $\mathcal{L}_{\text{post}}$, are specific
 1638 instances of the simplified MSE loss objective in equation A32 with $w(k_i) \approx 1$, conditioned on the
 1639 inferred contexts $\hat{\mathbf{c}}_t^{\text{prior}}$ and $\hat{\mathbf{c}}_t^{\text{post}}$ respectively. Consequently, minimizing these MSE losses directly
 1640 optimizes the corresponding terms in the ELBO for $\log p_\theta(\mathbf{x}_t^0 | \mathbf{c}_t)$.

1641 Therefore, we have proven that minimizing $\mathcal{L}_{\text{prior}}$ and $\mathcal{L}_{\text{post}}$ as defined in the Denoise-and-Refine mechanism
 1642 serves to maximize a variational lower bound on the conditional log-likelihood $\log p_\theta(\mathbf{x}_t^0 | \mathbf{c}_t)$.
 1643 The underlying diffusion model $\epsilon_\theta(\cdot, k, \cdot)$ is trained to be proficient at denoising from a range of
 1644 noise levels k , as captured by objectives such as $\mathcal{L}_{\text{simple}}$. The specific monotonically increasing
 1645 noise schedule k_i used in $\mathcal{L}_{\text{prior}}$ and $\mathcal{L}_{\text{post}}$ represents a particular instance from this range of noise
 1646 levels. Thus, these objectives are theoretically grounded in the principles of variational inference for
 1647 diffusion models, adapted to conditioning on the inferred latent context \mathbf{c}_t and applied at specific
 1648 noise levels relevant to the autoregressive denoising process of Ada-Diffuser.

1650 B.5 ASSUMPTION VERIFICATION

1652 Here, we test whether Assumption 2 and Assumption 3 hold in practice, explain why we view them
 1653 as mild, and, importantly, analyze what happens when they fail. We use the Cheetah environment,
 1654 where the latent context corresponds to a time-varying wind speed $f_w = 5 + m \sin(nt)$ that perturbs
 1655 the agent’s dynamics. We sweep over combinations of (m, n) to address two questions: (1) whether
 1656 the setting used in the paper, $(m, n) = (5, 0.5)$, indeed satisfies these assumptions; and (2) how
 1657 violations of the assumptions affect our method and the associated analyses.

1658 B.5.1 ABOUT ASSUMPTION 2

1660 To evaluate Assumption 2, which requires that the conditional dynamics $P(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_t)$ be injective
 1661 in the context variable \mathbf{c}_t , we perform an empirical test to determine whether different contexts
 1662 induce measurably different transition dynamics. Given a fitted probabilistic dynamics model
 1663 $\hat{p}(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_t)$, we estimate the distribution of next states under each context $\mathbf{c} \in \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$
 1664 by drawing samples from the replay buffer and computing $\hat{p}(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c})$. For every pair of
 1665 contexts $(\mathbf{c}_i, \mathbf{c}_j)$, we quantify the difference between their induced transition distributions using the
 1666 1-Wasserstein distance:

$$1667 \quad \text{Inj}(\mathbf{c}_i, \mathbf{c}_j) = W_1(p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_i), p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_j)). \quad (\text{A33})$$

1668 Large values of $\text{Inj}(\mathbf{c}_i, \mathbf{c}_j)$ indicate that distinct contexts lead to distinct transition kernels, consistent
 1669 with injectivity, while values near zero suggest that different contexts produce nearly indistinguishable
 1670 dynamics. When $(m, n) = (5, 0.5)$ (Fig. A1(a)), we observe consistently non-zero Wasserstein
 1671 distances across contexts, indicating that $P(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{c}_t)$ is context-injective in the regime studied.
 1672 In contrast, when we reduce the context variation $(m, n) = (0.2, 0.2)$ (Fig. A1(b)), the distances are
 1673 toward zero, showing the failure mode of the assumption. This shows that Assumption 2 is mild in
 the latent-aware decision-making.

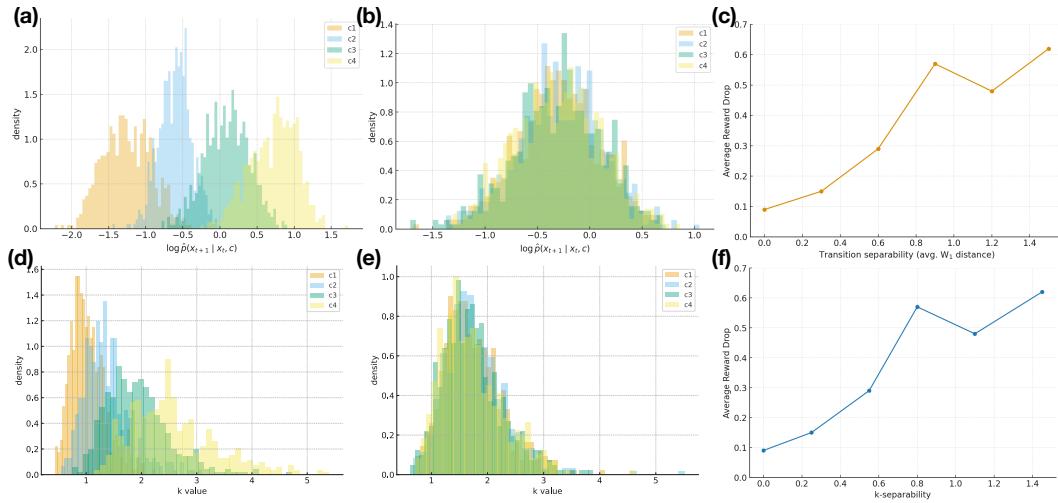


Figure A1: Verification of the assumptions. (a) Transition separability in Cheetah under the hyperparameter setting $(m, n) = (5, 0.5)$. (b) Transition separability under a weak-context setting $(m, n) = (0.2, 0.2)$, where the context barely affects the dynamics. (c) Average reward drop when planning with vs. without conditioning on c , plotted against the transition separability. (d) k -distributions for $(5, 0.5)$, (e) k -distributions for $(0.2, 0.2)$, (f) reward drop versus k -separability.

B.5.2 ABOUT ASSUMPTION 3

We provide an empirical test of the spectral ratio k to examine Assumption 3 in the RL setting. Using the dynamics model on Cheetah $\hat{p}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)$, we compute

$$k(\mathbf{x}_t, \bar{\mathbf{x}}_t, \mathbf{x}_{t-1}, \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t) = \frac{\hat{p}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) \hat{p}(\bar{\mathbf{x}}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}{\hat{p}(\bar{\mathbf{x}}_t | \mathbf{x}_{t-1}, \mathbf{c}_t) \hat{p}(\mathbf{x}_t | \bar{\mathbf{x}}_{t-1}, \mathbf{c}_t)}. \quad (\text{A34})$$

We draw transitions $(\mathbf{x}_{t-1}, \mathbf{x}_t)$ from the replay buffer (600 samples) and form cross-paired transitions $(\bar{\mathbf{x}}_{t-1}, \bar{\mathbf{x}}_t)$ by swapping endpoints across trajectories. For each context $\mathbf{c} \in \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$, this yields an empirical distribution of $k(\cdot; \mathbf{c})$. We then quantify how well k separates contexts using the 1-Wasserstein distance between pairs of k -distributions, i.e.,

$$\text{Sep}(\mathbf{c}_i, \mathbf{c}_j) = W_1(p(k | \mathbf{c}_i), p(k | \mathbf{c}_j)). \quad (\text{A35})$$

When Assumption 3 holds, k remains bounded and its distribution varies across contexts. Empirically, we observe clear multi-modal separation across contexts in the paper's setting $((m, n) = (5, 0.5)$, Fig. A1(d)), whereas in regimes where the dynamics become less context-dependent, the k -distributions overlap heavily.

When k is not distinguishable across contexts c $((m, n) = (0.2, 0.2)$, Fig A1(e)), it implies that c does not exert a noticeable effect on the transition dynamics. In this regime, explicitly modeling the context is unnecessary, since the environment effectively behaves as a single-context system. Hence, we believe Assumption 3 is mild in our main regime and also clarifies the failure mode when it is violated.

B.5.3 POLICY LEARNING UNDER DIFFERENT SEPARABILITY

When the conditional transition $P(x_{t+1} | x_t, c)$ is not injective in c or k is nearly the same for different c , different contexts induce nearly identical transition kernels. This means the context is not identifiable from the dynamics and does not meaningfully alter the environment; in such cases, explicitly modeling c brings little benefit for policy learning. Figures A1(c) and (f) illustrate this effect. We vary (m, n) to change the strength of the latent wind context, and compare policy performance when planning with the ground-truth context c versus ignoring c . We then plot the resulting performance gap (reward-drop ratio) against transition separability and k -separability. The gap shrinks when separability is small, indicating that when both the transition and k are weakly context-dependent, modeling c is unnecessary. Overall, these results verify that Assumption 2 and

1728
 1729 Assumption 3 are not only mild in our setting, but also clarify why modeling the latent context is
 1730 important precisely in regimes where the dynamics are strongly context-dependent.
 1731

1732 C SUMMARY ON DIFFERENT MDPs

1733
 1734 Our work considers a contextual POMDP setting with an evolving latent process, which naturally
 1735 relates to several established MDP formulations, including contextual MDPs (Hallak et al., 2015),
 1736 hidden-parameter MDPs (HiP-MDPs) (Doshi-Velez & Konidaris, 2016), and their variants. In this
 1737 section, we provide formal definitions of these models and discuss their relationships and distinctions.
 1738

1739 C.1 CONTEXTUAL MDPs

1740 A contextual Markov decision process (CMDP) (Hallak et al., 2015) is defined by the tuple
 1741 $\langle \mathcal{C}, \mathcal{S}, \mathcal{A}, \mathcal{M} \rangle$, where \mathcal{C} is the context space, \mathcal{S} is the state space, and \mathcal{A} is the action space. The
 1742 mapping \mathcal{M} assigns to each context $c \in \mathcal{C}$ a set of MDP parameters $\mathcal{M}(c) = \{R^c, T^c\}$, where R^c
 1743 and T^c are the reward and transition functions associated with context c .
 1744

1745 Sodhani et al. (2021) and Liang et al. (2024a) extend the CMDP framework to settings in which the
 1746 context variable \mathbf{c} evolves according to its own Markovian dynamics $p(\mathbf{c}_{t+1} \mid \mathbf{c}_t)$, closely aligning
 1747 with our formulation of a latent process evolving over time.
 1748

1749 C.2 HIDDEN-PARAMETER MDPs

1750 Hidden-Parameter MDPs (HiP-MDPs) (Doshi-Velez & Konidaris, 2016) are defined by the tuple
 1751 $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \Theta, \mathcal{T}, \mathcal{R}, \gamma, P_\Theta \rangle$, where \mathcal{S} is the state space, \mathcal{A} is the action space, and Θ is the space
 1752 of task-specific latent parameters. For each $\theta \in \Theta$, the transition and reward functions are given by
 1753 $\mathcal{T}_\theta : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$ and $\mathcal{R}_\theta : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, respectively. The parameter θ is sampled from a prior
 1754 distribution P_Θ at the beginning of an episode and remains fixed during the episode. The discount
 1755 factor is denoted by $\gamma \in [0, 1]$. This framework defines a family of MDPs indexed by the latent
 1756 parameter θ , with each θ inducing a different set of dynamics and reward functions. It can be seen as
 1757 a special case of a contextual MDP where the context is latent and fixed per episode. Xie et al. (2021)
 1758 further generalize this framework by allowing the task parameter θ to evolve dynamically across
 1759 episodes, rather than being fixed.
 1760

1761 Bayes-Adaptive MDPs (BAMDPs) are closely related to both HiP-MDPs and contextual MDPs
 1762 (CMDPs). In BAMDPs, the agent maintains a posterior distribution over MDPs based on its
 1763 interaction history. Specifically, it maintains a belief $b_t(R, T) = p(R, T \mid \tau_{:t})$, where $\tau_{:t} =$
 1764 $\{\mathbf{s}_0, \mathbf{a}_0, r_0, \dots, \mathbf{s}_t\}$ denotes the trajectory observed up to time t . This belief captures the agent's
 1765 uncertainty about the underlying transition and reward functions.
 1766

1767 The transition and reward functions can then be defined in expectation over this posterior, effectively
 1768 conditioning decision-making on the belief b_t . When the environment is driven by hidden contextual
 1769 variables or latent task parameters, such as in CMDPs or HiP-MDPs—this belief can be interpreted as
 1770 a distribution over these latent variables. In this view, BAMDPs provide a non-parametric framework
 1771 for reasoning over hidden structure, while approaches like ours explicitly model such latent variables
 1772 and infer their posterior distributions using amortized inference. Both aim to enable adaptive planning
 1773 and learning under uncertainty, but differ in how latent structure is represented and inferred.
 1774

1775 C.3 DISCUSSIONS AND COMPARISONS

1776 The key distinction between contextual MDPs and hidden-parameter MDPs lies in how the latent
 1777 factors are represented: contextual MDPs explicitly treat them as latent variables, while HiP-MDPs
 1778 model them implicitly as parameters governing the transition and reward functions. In our work, we
 1779 adopt the contextual MDP perspective, where the latent process is modeled as a random variable that
 evolves over time.
 1780

1781 However, our identification theory, focused on recovering the posterior distribution over latent
 1782 variables, also applies to the HiP-MDP setting. Once the posterior over the hidden parameters is
 1783 identified, the corresponding transition and reward functions can be recovered as well.
 1784

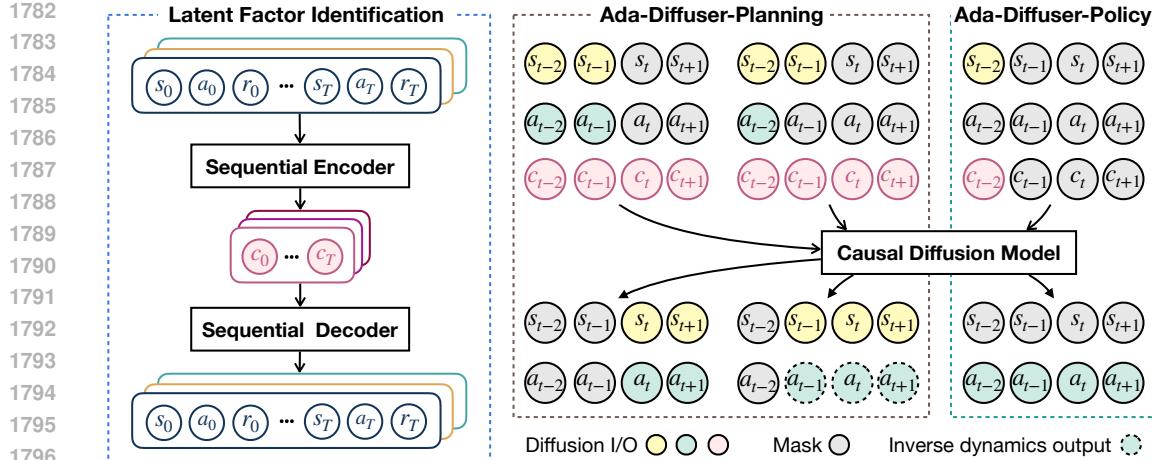


Figure A2: **Overview of the Ada-Diffuser framework.** The modular design consists of two main stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion process (Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is then used for planning or policy learning conditioned on the inferred latent context.

Additionally, our framework, which models a factorization over observed states and latent variables, is conceptually related to factored MDPs (Guestrin et al., 2003). In a factored MDP, the state space \mathcal{S} is represented as a set of variables $\mathcal{S} = \{s^{(1)}, s^{(2)}, \dots, s^{(n)}\}$, and the transition and reward functions are decomposed over these factors:

$$T(s' | s, a) = \prod_{i=1}^n T_i \left(s'^{(i)} | \text{Pa}_T^{(i)}(s, a) \right), \quad R(s, a) = \sum_{j=1}^m R_j \left(\text{Pa}_R^{(j)}(s, a) \right),$$

where $\text{Pa}_T^{(i)}$ and $\text{Pa}_R^{(j)}$ denote the parent variables (i.e., dependencies) for each transition and reward component, respectively. Our framework, while not relying on an explicit graphical structure, shares conceptual similarities with factored MDPs (Guestrin et al., 2003) through its coarse-grained factorization over observed states and latent variables. Specifically, we distinguish between latent variables that affect the transition dynamics and those that affect the reward function. Formally, we express the generative process as:

$$T(s_{t+1} | s_t, a_t, c_t^s), \quad R(r_t | s_t, a_t, c_t^r),$$

where c_t^s and c_t^r are distinct (or potentially overlapping) latent factors that influence transitions and rewards, respectively. This separation enables flexible modeling of partially observable environments where different unobserved processes govern the dynamics and task objectives.

D DETAILS ON ADA-DIFFUSER

D.1 FULL ALGORITHM AND RESULTS

As illustrated in Fig. A2, our framework consists of two stages: latent factor identification and diffusion-based planning or policy learning. Below, we provide the algorithmic pseudocode for both stages. Specifically, Algorithm A1 describes Stage 1: latent factor identification, while Algorithms A2 and A3 correspond to Ada-Diffuser-Planner and Ada-Diffuser-Policy, respectively.

For clarity, we omit the detailed step-by-step procedures for denoise-and-refine and zig-zag sampling (Lines 7–8, 11, and 19–22 in Algorithm A2; Lines 6–7 and 13 in Algorithm A3), as these are fully described in Section 4.3. For Ada-Diffuser-Policy, we show a Diffusion Policy (DP)-based algorithm, which provides a general framework for multi-step action generation. In the IDQL-based variant, both the action execution horizon and observation horizon are set to 1, corresponding to single-step policy inference conditioned only on the current observation.

Additionally, we provide the full results for all experiments: Table A3 reports results for the action-free setting; Tables A4 and A5 present results for environments with latent factors affecting dynamics

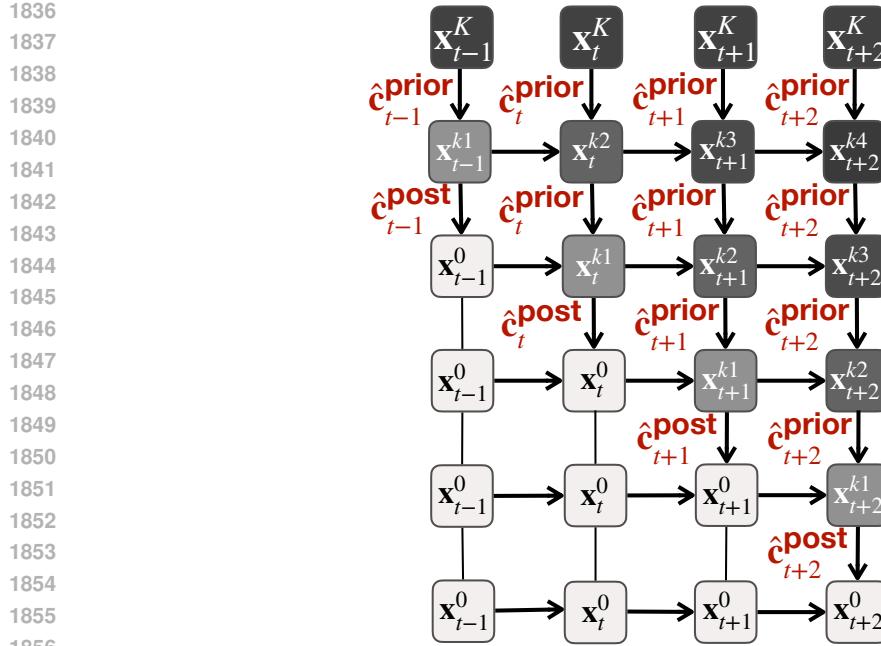


Figure A3: An illustration of the zig-zag sampling process with a block of 4 time steps. \downarrow and \rightarrow indicate denoising and identity mapping, respectively.

Algorithm A1: Latent Factor Identification.

- 1: **Input:** offline dataset \mathcal{D}
- 2: Randomly initialize decoder $p_\theta(\mathbf{s}_{t+1}, r_t \mid \mathbf{s}, \mathbf{a}, \mathbf{c})$,
encoder $q_\psi(\mathbf{c}_t \mid \mathbf{s}_{t-T_x:t+1}, \mathbf{a}_{t-T_x:t+1}, r_{t-T_x:t+1})$ and prior network $p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1})$,
- 3: **while** not done **do**
- 4: Sample batches of trajectories from \mathcal{D}
- 5: Compute ELBO and update θ, ψ, ϕ
- 6: **end while**

and rewards; and Tables A6, A7, A8, and A9 summarize results for environments without explicitly modeled latent factors.

D.2 ARCHITECTURE CHOICES AND HYPER-PARAMETERS

We detail the architectural design choices and hyperparameter settings used for model components, loss functions, and training procedures across all Ada-Diffuser variants under different environments and benchmarks.

D.2.1 LATENT FACTOR IDENTIFICATION

Architectures We use a variational autoencoder (VAE) (Kingma & Welling, 2014) to optimize the evidence lower bound (ELBO). The same architectural design is used across all variants of Ada-Diffuser and all benchmark settings.

For the encoder, we first embed states, actions, and rewards using separate MLPs with ReLU activations. The resulting embeddings are concatenated and passed through a two-layer MLP (each layer of size 64) followed by a GRU. The GRU output is used to parameterize a Gaussian distribution from which the latent variables are sampled.

The state and reward decoders are implemented as separate MLPs, each consisting of two fully connected layers of size 64 with ReLU activations. For the prior network, we use the output of the previous step's latent distribution embedding (shared GRU) and feed it into a two-layer MLP (each

1890
1891 **Algorithm A2: Ada-Diffuser-Planner.**
1892 1: **Input:** Env, offline dataset \mathcal{D} , pre-trained encoder q_ψ and prior network p_ϕ
1893 observation horizon T_o , planning horizon T_p , action execution horizon T_a , condition \mathbf{y}
1894 **// Training**
1895 2: Initialize noise predictor ϵ_θ , inverse dynamics model f_ϕ
1896 3: **while** not done **do**
1897 4: Sample $\mathbf{x}_{t-T_o:t+T_p}$ from \mathcal{D}
1898 5: Sample $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}}$ and $\hat{\mathbf{c}}_{t:t+T_p-2}^{\text{post}}$ from p_ϕ and q_ψ
1899 6: **if** using inverse dynamics model **then**
1900 7: Train Causal Diffusion Model (noise predictor ϵ_θ) with $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t-T_o:t}^{\text{prior}}$, and $\hat{\mathbf{c}}_{t-T_o:t}^{\text{post}}$ and
1901 other conditions \mathbf{y} , target outputs are $\mathbf{s}_{t+1:t+T_p}$
1902 8: Train encoder q_ψ with the contrastive improvement loss $\mathcal{L}_{\text{contrast}}$
1903 9: Train Inverse Dynamics Model f_ϕ to generate actions $\mathbf{a}_{t+1:t+T_p}$
1904 10: **else**
1905 11: Train Causal Diffusion Model (noise predictor ϵ_θ) with $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t-T_o:t}^{\text{prior}}$, and $\hat{\mathbf{c}}_{t-T_o:t}^{\text{post}}$ and
1906 other conditions \mathbf{y} , target outputs are $\{\mathbf{s}_{t+1:t+T_p}, \mathbf{a}_{t+1:t+T_p}\}$
1907 12: Train encoder q_ψ with the contrastive improvement loss $\mathcal{L}_{\text{contrast}}$
1908 13: **end if**
1909 14: **end while**
1910 **// Execution**
1911 15: Initialize environment: $s_0 \sim \text{Env.reset}()$, set $t \leftarrow 0$
1912 16: **while** not done **do**
1913 // Observe and infer latent factors
1914 17: Observe recent trajectory $\mathbf{x}_{t-T_o:t}$
1915 18: Sample latent variables $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}}$ from p_ϕ
1916 // Generate candidate trajectory
1917 19: **if** using inverse dynamics model **then**
1918 20: Generate future states (zig-zag sampling) $\hat{\mathbf{s}}_{t+1:t+T_p}$ conditioned on $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}}$, and \mathbf{y}
1919 via learned noise predictor ϵ_θ
1920 21: Generate actions $\hat{\mathbf{a}}_{t+1:t+T_p} \leftarrow f_\phi(\hat{\mathbf{s}}_{t+1:t+T_p}, \hat{\mathbf{s}}_{t:t+T_p-1})$
1921 22: **else**
1922 23: Generate future trajectory $\{\hat{\mathbf{s}}_{t+1:t+T_p}, \hat{\mathbf{a}}_{t+1:t+T_p}\}$ conditioned on $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}}$, and \mathbf{y}
1923 via learned noise predictor ϵ_θ
1924 24: **end if**
1925 // Execute action(s) in environment
1926 25: **for** each step $i = 1$ to T_a **do**
1927 26: Execute $\hat{\mathbf{a}}_{t+i}$ in Env, observe s_{t+i+1}, r_{t+i}
1928 27: Append $(s_{t+i}, \hat{\mathbf{a}}_{t+i}, r_{t+i})$ to trajectory buffer
1929 28: **end for**
1930 29: Update $t \leftarrow t + T_a$
1931 30: **end while**

1932 layer of size 32) to predict the parameters of the prior distribution. For the dimensionality of latents,
1933 we choose 20 for Cheetah, Walker, Ant, Maze; 64 for Robomimic, Kitchen, Libero.

1935 **Loss Function** At each time step t , we optimize the following losses:
1936

$$\mathcal{L}_{\text{ELBO},t} = \underbrace{\mathbb{E}_{q_\psi(\mathbf{c}_t | \mathbf{x}_{t-T_x:t+1})} [-\log p_\theta(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{c}_t)]}_{\text{Reconstruction loss}} + \underbrace{D_{\text{KL}}(q_\psi(\mathbf{c}_t | \mathbf{x}_{t-T_x:t+1}) \| p_\phi(\mathbf{c}_t | \mathbf{c}_{t-1}))}_{\text{KL regularization}}.$$

1942 Here, \mathbf{x}_t may include different components depending on the setting (e.g., $\mathbf{x}_t = \{\mathbf{s}_t, \mathbf{a}_t\}$ or $\mathbf{x}_t = \mathbf{s}_t$),
1943 and \mathbf{c}_t denotes the latent context variable inferred from a temporal block of observations. The first
term encourages accurate reconstruction of the current observation \mathbf{x}_t conditioned on its immediate

1944
1945 **Algorithm A3: Ada-Diffuser-Policy (DP-based)**
1946 1: **Input:** Env, offline dataset \mathcal{D} , pre-trained encoder q_ψ and prior network p_ϕ
1947 observation horizon T_o , action generation horizon T_p , action execution horizon T_a , condition y
1948 **// Training**
1949 2: Initialize noise predictor ϵ_θ
1950 3: **while** not done **do**
1951 4: Sample $\mathbf{x}_{t-T_o:t+T_p}$ from \mathcal{D}
1952 5: Sample latent variables $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}} \sim p_\phi$, $\hat{\mathbf{c}}_{t:t+T_p-2}^{\text{post}} \sim q_\psi$
1953 6: Train causal diffusion model (noise predictor ϵ_θ) to generate actions $\mathbf{a}_{t+1:t+T_p}$, conditioned
1954 on $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}}$, $\hat{\mathbf{c}}_{t:t+T_p-2}^{\text{post}}$, and y
1955 7: Train encoder q_ψ with the contrastive improvement loss $\mathcal{L}_{\text{contrast}}$
1956 8: **end while**
1957 **// Execution**
1958 9: Initialize environment: $s_0 \sim \text{Env.reset}()$, set $t \leftarrow 0$
1959 10: **while** not done **do**
1960 11: // Observe and infer latent factors
1961 12: Observe recent trajectory $\mathbf{x}_{t-T_o:t}$
1962 13: Sample latent variables $\hat{\mathbf{c}}_{t:t+T_p}^{\text{prior}} \sim p_\phi$
1963 // Generate actions using causal diffusion model
1964 14: Generate actions (zig-zag sampling) $\hat{\mathbf{a}}_{t+1:t+T_p}$ conditioned on $\mathbf{x}_{t-T_o:t}$, $\hat{\mathbf{c}}_{t:t+T_p}$, and y via
1965 learned noise predictor ϵ_θ
1966 // Execute action(s) in environment
1967 15: for each step $i = 1$ to T_a **do**
1968 16: Execute $\hat{\mathbf{a}}_{t+i}$ in Env, observe s_{t+i+1}, r_{t+i}
1969 17: Append $(s_{t+i}, \hat{a}_{t+i}, r_{t+i})$ to trajectory buffer
1970 18: Update $t \leftarrow t + T_a$
1971 19: **end while**

Environment	LDP (AF)	Ours (AF)	LDP (AF, SubOpt)	Ours (AF, SubOpt)
Lift	0.67 ± 0.01	0.78 ± 0.05	1.00 ± 0.00	0.98 ± 0.02
Can	0.78 ± 0.04	0.85 ± 0.07	0.98 ± 0.00	0.98 ± 0.02
Square	0.47 ± 0.03	0.54 ± 0.05	0.83 ± 0.01	0.89 ± 0.03

1980 Table A3: **Results (success rate) on action-free demonstrations.** Here, AF and SubOpt indicate
1981 using Action-free and suboptimal demonstrations on Robomimic tasks, respectively (following the
1982 settings in LDP (Xie et al., 2025)).

1983
1984
1985 past and the latent \mathbf{c}_t , while the second term regularizes the posterior to remain close to the learned
1986 prior $p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1})$.
1987

1988 We implement the ELBO loss as a weighted combination of the reconstruction loss and the KL
1989 divergence:

$$1991 \quad \mathcal{L}_{\text{ELBO}} = \sum_{t=1}^{T-2} [\|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2 + \lambda_{\text{KL}} \cdot D_{\text{KL}}(q_\psi(\mathbf{c}_t \mid \mathbf{x}_{t-T_x:t+1}) \parallel p_\phi(\mathbf{c}_t \mid \mathbf{c}_{t-1}))],$$

1994 where $\hat{\mathbf{x}}_t$ is the model’s reconstruction of the observation \mathbf{x}_t , and λ_{KL} is weighting coefficient. The
1995 reconstruction is computed using mean squared error (MSE), and the KL divergence is computed in
1996 closed form for Gaussian posteriors and priors. The hyperparameter λ_{KL} is set to be 0.01 and the
1997 learning rate is set to be $3e-4$.

1998
1999

D.2.2 PLANNER

2000 For the planner, we consider two scenarios: (i) generating both states and actions, and (ii) generating
 2001 states only. For the former, we build upon the Diffuser framework (Janner et al., 2022), which directly
 2002 models full trajectories. For the latter, we adopt the Decision Diffuser (DD) framework (Ajay et al.,
 2003 2022), where the model generates future states and uses an inverse dynamics model to recover the
 2004 corresponding actions via inverse dynamics model.

2005 For type (i) (full state-action trajectory generation), we apply our method to the Cheetah and Ant
 2006 environments. For the noise predictor, we use a 1D U-Net (Ronneberger et al., 2015) with a kernel
 2007 size of 5, channel multipliers set to (1, 2, 2, 2), and a base channel width of 32. The model is trained
 2008 using the Adam optimizer (Kingma, 2014) with a learning rate of 3×10^{-4} , a batch size of 64,
 2009 and for 1 million training steps. We adopt classifier guidance (CG) (Ho et al., 2020) with gradient
 2010 guidance on computed return, with a guidance scale $\omega = 1.5$. The observation horizon is set to 10
 2011 for both environments. The planning horizon T_p is set to 16 for Cheetah and 32 for Ant, with an
 2012 action execution horizon of 1. These hyperparameters are kept consistent across baselines, including
 2013 Diffuser, DF, MetaDiffuser, and Diffuser combined with LILAC and DynaMITE for the Cheetah
 2014 and Ant experiments (those in Table 1 and Appendix Table A4). For other components (e.g., VAE)
 2015 in LDCQ, we employ all the hyperparameters in their original implementation (Venkatraman et al.,
 2016 2024).

2017 For type (ii) (state-only generation with inverse dynamics), we use a Transformer-based noise
 2018 predictor with a hidden dimension of 256 and a head dimension of 32. The architecture includes 2
 2019 DiT blocks for Walker, Kitchen, and Maze2D, and 8 DiT blocks for LIBERO. The model is trained
 2020 using the Adam optimizer (Kingma, 2014) with a learning rate of 3×10^{-4} , a batch size of 128, and
 2021 for 1 million training steps. The number of diffusion timesteps is 500. The observation horizon is set
 2022 to 4 for Kitchen, 2 for LIBERO, and 10 for the other environments. The planning horizon T_p is set to
 2023 16 for Kitchen, 10 for LIBERO, and 32 for the others. The action execution horizon is 8 for both
 2024 Kitchen and LIBERO, and 10 for the remaining environments. For the inverse dynamics model, we
 2025 use an MLP-based diffusion model consisting of a 3-layer MLP with 128 hidden units, preceded by a
 2-layer embedding module with 64 hidden units. This model is trained for 1 million gradient steps.

2026 For both cases, we set the coefficient of the contrastive improvement loss $\mathcal{L}_{\text{contrast}} = \max\{0, \mathcal{L}_{\text{prior}} -$
 2027 $\mathcal{L}_{\text{post}}\}$ to 0.1. The key hyper-parameters are summarized in Table A10.

2028
2029

D.2.3 POLICY

2030 For the DP-based policy, we adopt the same architecture as the planner described earlier for Cheetah,
 2031 Maze2D, Kitchen, Ant, and Walker. For LIBERO, we use a Transformer-based noise predictor with a
 2032 decoder architecture comprising 12 layers, 12 attention heads, and a hidden embedding dimension
 2033 of 768. Following DP (Chi et al., 2023), we apply dropout with a rate of 0.1 to both the input
 2034 embeddings and attention weights. The number of diffusion timesteps is 500. When conditioning
 2035 is used, we incorporate a Transformer encoder with 4 layers to encode the condition tokens, which
 2036 include a sinusoidal timestep embedding and projected observed trajectory tokens (all mapped to
 2037 the same embedding dimension). In this encoder-decoder setup, causal masking is applied to ensure
 2038 autoregressive generation. In the unconditioned case, we prepend the sinusoidal timestep embedding
 2039 to the input sequence and use a BERT-style encoder-only Transformer. All environments (Cheetah,
 2040 Ant, Kitchen, Maze2D, Walker, and LIBERO) are trained using the AdamW optimizer with a learning
 2041 rate of 10^{-4} , weight decay 10^{-3} , $\beta_1 = 0.9$, and $\beta_2 = 0.95$. Layer normalization is applied before
 2042 each Transformer block for stability. The observation, planning, and action horizons follow the same
 2043 settings used for the planner in each environment.

2044 For the IDQL-based policy, we align all hyperparameters for Cheetah and Ant with the original IDQL
 2045 implementation, using an observation, planning, and action horizon of 1. Hence, in IDQL-based ones,
 2046 we do not consider autoregressive modeling. Similarly, for both cases, we use consider the coefficient
 2047 before the contrastive improvement loss as 0.1.

2048
2049

D.2.4 HYPERPARAMETERS OF CONTRASTIVE IMPROVEMENT LOSS

2050 We set λ_{prior} , λ_{rel} to be fixed as 0.1 across all settings. m is set to be the $0.05 \times \mathcal{L}_{\text{prior}}$ during the
 2051 beginning of each epoch.

2052
2053

D.3 CONNECTION TO BAYESIAN FILTERING

2054
2055
2056
2057
2058
2059
2060
2061

In the absence of explicitly designed latent variables, our model can be interpreted as a form of *Bayesian filtering* (Chen et al., 2003). Under a general formulation of the hidden Markov model (HMM) (Rabiner & Juang, 1986) with an additional latent dependency on observation ($c \rightarrow x$), the latent process over c captures the underlying stochasticity present in the demonstration data, which arises from both the environment dynamics and the behavior policy. In this view, the latent variable acts as a compact and expressive representation that summarizes the uncertainty in past observations, thereby improving the prediction of future observations. This, in turn, facilitates more robust policy learning and planning in the general settings.

2062

E EXTENDED RELATED WORKS

2063
2064
2065
2066

E.1 DIFFUSION MODEL-BASED DECISION-MAKING

2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

Recent advances use diffusion models as the planner and policy for both reinforcement learning (RL) and imitation learning (IL). RL agent aims to learn a policy that maximizes cumulative rewards through interaction with an environment (Sutton et al., 1998). The agent observes a sequence of transitions (s_t, a_t, r_t, s_{t+1}) , where $s_t \in \mathcal{S}$ denotes the state, $a_t \in \mathcal{A}$ the action, $r_t \in \mathbb{R}$ the received reward, and s_{t+1} the next state. The goal is to learn a policy $\pi(a | s)$ that maximizes the expected return: $\pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^t r_t]$, where $\gamma \in [0, 1]$ is the discount factor. In contrast, IL (Hussein et al., 2017) focuses on learning policies from expert demonstrations, often without access to the reward signal. A common approach is behavior cloning (BC) (Pomerleau, 1991), which formulates IL as a supervised learning problem by maximizing the likelihood of expert actions given observed states, i.e., learning a policy $\pi(a | s)$ that closely imitates the expert policy $\pi_e(a | s)$.

2077
2078
2079
2080
2081
2082
2083
2084
2085

Diffusion Planner Diffusion-based planning methods are commonly used to approximate the sequence of future states and actions from a given current state. By leveraging the conditional generation capabilities of diffusion models—such as guidance techniques (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)—these methods can generate plans (i.e., state trajectories) that satisfy desired properties, such as maximizing expected rewards. Taking Denoising Diffusion Probabilistic Models (DDPM (Ho et al., 2020))-based approaches as an example, these methods learn a generative model over expert trajectories $\tau = \{(s_0, a_0), \dots, (s_T, a_T)\}$ by modeling a forward-noising process: $q(x^k | x^{k-1}) = \mathcal{N}(x^k; \sqrt{\alpha_k} x^{k-1}, (1 - \alpha_k)I)$, and a parameterized denoising model $p_{\theta}(x^{k-1} | x^k)$ to reverse the process. Here, k denotes the diffusion step, x^0 is a clean sub-sequence sampled from the expert trajectory τ , and α_k controls the variance schedule at step k .

2086
2087
2088
2089

During inference, trajectories are generated by starting from Gaussian noise and iteratively denoising through the learned reverse process. This generation can be optionally conditioned on the initial state or other guidance signals y , such as rewards, goals, or other constraints: $\hat{\tau} \sim p_{\theta}(\tau | s_0, y)$.

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100

These methods generally fall into two main categories: (1) learning a joint distribution over state-action trajectories, as in Diffuser (Janner et al., 2022), or (2) learning only state trajectories via diffusion and using an inverse dynamics model to recover actions, as in Decision Diffuser (DD) (Ajay et al., 2022). Beyond these, several variants extend diffusion-based planning in different directions. For example, Latent Diffuser (Li, 2024) plans in a high-level latent skill space to improve generalization and LDP (Xie et al., 2025) plans with high-level latent actions directly from high-dimensional action-free demonstrations. Other approaches incorporate multi-task context to enhance adaptation and performance in unseen tasks, including MetaDiffuser (Ni et al., 2023), AdaptDiffuser (Liang et al., 2023), and MTDiff-p (He et al., 2023). In addition, recent efforts have explored various extensions of diffusion planning, such as ensuring safety during generation (Xiao et al., 2025), handling multi-agent scenarios (Jiang et al., 2023; Ajay et al., 2023b), learning skills (Liang et al., 2024b), and application in RL from human feedback (RLHF) (Dong et al., 2024).

2101
2102
2103
2104
2105

Diffusion Policy In contrast to diffusion-based planners, Diffusion Policy methods directly parameterize the policy $\pi_{\theta}(a | s)$ using diffusion models. For example, Diffusion Policy (Chi et al., 2023) uses a diffusion model to generate actions with expressive, multimodal distributions. DPPO (Ren et al., 2025) extends this idea by modeling a two-layer MDP structure, where the inner MDP represents the denoising process and the outer MDP corresponds to the environment. This framework enables fine-tuning of diffusion-based policies in RL settings. Another line of work integrates diffusion

models with model-free methods for offline RL by using diffusion models as to model the action distributions (Wang et al., 2022; Hansen-Estruch et al., 2023; Chen et al., 2023; Lu et al., 2023).

Recent explorations have also aimed to unify diffusion-based planning and policy learning within a single framework. For example, the Unified Video Action model (UVA) (Li et al., 2025) and Unified World Models (UWM) (Zhu et al., 2025) leverage diffusion models to jointly model planning and action generation, demonstrating scalability on large-scale robotic tasks with pre-training. In a similar spirit, Ada-Diffuser provides a general framework that can be integrated into both diffusion planners and diffusion-based policies. However, Ada-Diffuser differs in its explicit modeling of latent factors that influence the data generation process. By incorporating latent identification directly into the diffusion process, Ada-Diffuser enables more structured, context-aware decision-making in partially observable and dynamically changing environments.

E.2 LATENT BELIEF STATE LEARNING IN POMDP

In partially observable Markov decision processes (POMDPs), single-step observations are typically insufficient for making optimal decisions. A common strategy to overcome this limitation involves encoding an agent’s history, encoding past observations and actions into a belief state that captures a distribution over latent environmental states. Although such belief representations can, in theory, support optimal policy derivation (Kaelbling et al., 1998; Hauskrecht, 2000; Gangwani et al., 2020), their exact computation depends on full knowledge of the transition and observation models. This requirement quickly becomes intractable in high-dimensional settings.

To address this, recent work has focused on learning approximate belief representations directly from data. Notable approaches include those using recurrent neural networks (Guo et al., 2018) and variational inference methods (Igl et al., 2018; Gregor et al., 2018), which enable agents to encode temporal structure and uncertainty into compact latent embeddings. These representations are then used to inform downstream policy learning, optimizing for cumulative rewards.

This direction also aligns with developments in meta-reinforcement learning and non-stationarity, where belief states or Bayesian embeddings are used to capture hidden task contexts. Agents trained across a distribution of tasks can use these latent variables to infer new environments and adapt quickly (Zintgraf et al., 2021; Liang et al., 2024a; Nguyen et al., 2021; Rakelly et al., 2019; Xie et al., 2021). For example, MetaDiffuser (Ni et al., 2023) incorporates task context as conditioning input to diffusion-based decision models. **Similarly, Pertsch et al. (2021) and Zeng et al. (2023) use similar variational objectives (ELBO loss) to learn latent skill priors and predictive information for RL, where these latents greatly help policy learning.**

Our approach diverges from these by offering theoretical guarantees on the identifiability of latent factors from minimal temporal observations. Rather than depending on diverse multi-environment data, we introduce a framework that captures the full data generation process in RL using diffusion models. In contrast to MetaDiffuser, which assumes static task-level context, our model treats the latent context as a dynamic, time-evolving process that governs both environment transitions and agent behavior, capturing the underlying temporal structure of RL trajectories more faithfully.

E.3 AUTOREGRESSIVE DIFFUSION MODELS

To model temporal consistency and dynamics in sequential data such as videos and audios, recent work has incorporated autoregressive structures into diffusion models. These approaches differ in how they condition on prior time steps during generation and can be categorized into two main categories. **(1) Conditioning on clean (denoised) inputs** ((Zheng et al., 2024; Gao et al., 2024b; Blattmann et al., 2023)). At each time step t , the denoising model is conditioned on the previously denoised outputs $\{\mathbf{x}_{<t}^0\}$: $p_\theta(\mathbf{x}_t^{k-1} | \mathbf{x}_t^k, \mathbf{x}_{<t}^0)$, where \mathbf{x}_t^k is the current noisy input, and $\mathbf{x}_{<t}^0$ denotes the clean (fully denoised) observations from earlier time steps. **(2) Conditioning on noisy inputs** ((Ho et al., 2022; Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025)). These methods instead condition on previous time steps at their corresponding noise levels. This setting can be further divided into two cases: (a) *fully noisy conditioning* (Ho et al., 2022): the model conditions on all prior time steps at the same noise level k : $p_\theta(\mathbf{x}_{<t}^{k-1}, \mathbf{x}_t^{k-1} | \mathbf{x}_t^k, \mathbf{x}_{<t}^k)$. (b) *partially noisy conditioning*: each previous time step $i < t$ is conditioned at its own noise level k_i , which may vary over time: $p_\theta(\mathbf{x}_0^{k_0-1}, \mathbf{x}_1^{k_1-1}, \dots, \mathbf{x}_T^{k_T-1} | \mathbf{x}_0^{k_0}, \mathbf{x}_1^{k_1}, \dots, \mathbf{x}_T^{k_T})$. Specifically, Diffusion Forcing (DF) (Chen et al.,

2160 2024) proposes a general framework in which each time step \mathbf{x}_t assigns an independent noise level.
 2161 In contrast, other works adopt time-dependent noise schedules that vary with the temporal index (Xie
 2162 et al., 2024b; Sand-AI, 2025; Wu et al., 2023).

2163 To model the causal generative process of RL trajectories, our approach also employs time-dependent
 2164 noise scheduling to capture temporal dynamics. However, unlike prior work, we further integrate
 2165 the identification of latent factors directly into the denoising process. This is achieved through a
 2166 structured reinforcement step during training and a zig-zag inference procedure at test time, enabling
 2167 our model to more faithfully recover the underlying causal structure in sequential decision-making.
 2168

2169 E.4 SUMMARY

2170 To sum up, we compare our approach with representative diffusion- and meta-learning-based base-
 2171 lines (Table A11). Diffuser, DP, IDQL, and DD do not model or infer latent contexts; DF adopts
 2172 autoregressive denoising but still lacks context inference. Meta-Diffuser, LILAC, and DynaMITE
 2173 learn latents via meta-learning but omit our minimal-sufficient block design and backward refine-
 2174 ment. LDCQ and LDP model only high-level latent actions/skills without explicit context identifi-
 2175 cation. In contrast, our method jointly models latent factors, employs full autoregressive denoising with zig-zag
 2176 sampling, and introduces a backward refinement mechanism that enables identifiable latent contexts.
 2177

2179 Method	2180 Latent Factors	2181 AR Denoising	2182 Min. & Suff. Obs.
2183 Ours	2184 Yes (dyn., rew., act.)	2185 Yes	2186 Yes (refine, zig-zag)
2187 Diffuser / DP / DD / IDQL	2188 No	2189 No	2190 No
2191 DF	2192 No	2193 Yes	2194 No
2195 Meta-Diffuser / LILAC / DynaMITE	2196 Yes (dyn., rew. only)	2197 No	2198 No
2199 LDCQ	2200 Yes (hi-level act.)	2201 No	2202 No
2203 LDP	2204 Yes (hi-level act.)	2205 No	2206 No

2186 Table A11: Comparison with representative baselines on whether they model latent contexts, use
 2187 autoregressive (AR) denoising, and enforce minimal & sufficient observation blocks.
 2188

2189 F BENCHMARK SETTINGS AND ILLUSTRATIONS

2190 F.1 LATENT CHANGE FACTORS DESIGN

2191 We consider the latent change factors on dynamics and rewards. We consider the Half-Cheetah
 2192 and Ant environments from the OpenAI Gym suite, which are widely used MuJoCo locomotion
 2193 benchmarks (Brockman et al., 2016) for evaluating continuous control algorithms. In Half-Cheetah,
 2194 the agent is a planar bipedal robot with a 17-dimensional state space and a 6-dimensional continuous
 2195 action space, where the goal is to move forward by applying torques to six actuated joints. In Ant, a
 2196 quadrupedal robot operates in a 3D space with a 111-dimensional state space and an 8-dimensional
 2197 action space, requiring more complex coordination across its four legs. In both environments, the
 2198 reward encourages forward velocity while penalizing excessive control inputs and, in the case of Ant,
 2199 also promotes stable contact with the ground. We consider variants of the Half-Cheetah environment
 2200 to study changes in dynamics, specifically **Cheetah-Wind-E** and **Cheetah-Wind-S**, which introduce
 2201 external wind forces applied to the agent. In **Cheetah-Wind-E**, an opposing wind force is applied at
 2202 the beginning of each episode and remains constant throughout, defined as $f_w = 10 + 5 \sin(0.8i)$,
 2203 where i is the episode index. For this case, since c change over episode, we use data from several
 2204 consecutive episodes to estimate it. In **Cheetah-Wind-S**, the wind force varies at every time step
 2205 according to the same formula $f_w = 5 + 5 \sin(0.5t)$, with t now representing the time step in
 2206 each episode. We also consider variations in the reward function. In **Cheetah-Dir-E**, the reward
 2207 depends on a time-varying goal direction, requiring the agent to alternate between moving forward
 2208 and backward. Specifically, the reward at episode t is defined as
 2209

$$2210 r_t = d_t \cdot v_t - 0.1 \|\mathbf{a}_t\|^2, \\$$

2211 where v_t is the agent's forward velocity, \mathbf{a}_t is the action vector (torques applied), and $d_t \in \{-1, +1\}$
 2212 indicates the target direction at time t . The direction signal d_t changes, giving a non-stationary reward
 2213

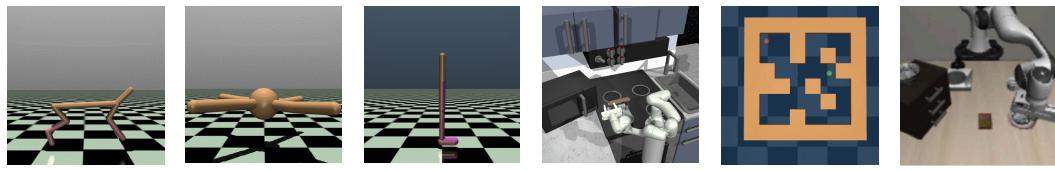


Figure A4: **Illustrations of the Benchmarks.** From left to right: Half-Cheetah, Ant, Walker, Franka-Kitchen, Maze2D, and LIBERO.

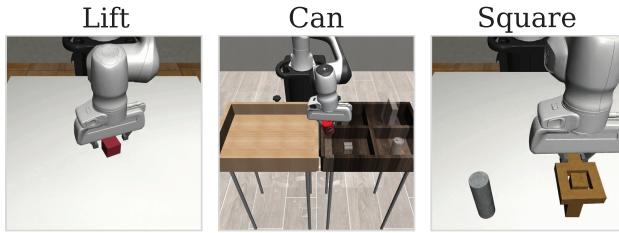


Figure A5: **Illustrations of RoboMimic Benchmark.**

function that challenges the policy to adapt to shifting goals. Specifically, we consider

$$d_t = \sigma(5 \cdot \sin(2\pi t/200)),$$

where $\sigma(\cdot)$ denotes the sigmoid function, α controls the sharpness of the transition, and T determines the switching period. This formulation induces a smooth periodic change in the preferred direction of movement, requiring the policy to adapt to gradually shifting objectives.

We also consider a directional reward variant for the **Ant** environment, denoted as **Ant-Dir-E**, where the agent is required to alternate its movement direction over time. The reward function at time step t is defined as

$$r_t = (2d_t - 1) \cdot v_t^x - 0.1\|\mathbf{a}_t\|^2,$$

where v_t^x is the velocity of the agent's torso along the x-axis (forward direction), \mathbf{a}_t is the 8-dimensional action vector, and $d_t \in [0, 1]$ is a smooth directional signal. Similarly, we define d_t as:

$$d_t = \sigma(5 \cdot \sin(2\pi t/200)),$$

where $\sigma(\cdot)$ denotes the sigmoid function. This formulation causes the preferred movement direction to alternate approximately every 100 steps. Notably, for these settings with periodic changes (i.e., where latent factors do not evolve at every timestep), we estimate the latent variables periodically and perform refinement in the causal diffusion model only when changes are detected. This follows the same overall framework, but operates at a coarser temporal resolution aligned with the latent change frequency.

F.2 OVERVIEW ON OTHER BENCHMARKS

Fig. A4-A5 give the illustrations on the used benchmarks. Specifically, other than Cheetah and Ant we introduced before, for others, we consider the basic settings in offline RL. Specifically,

Maze2D. Maze2D tasks focus on goal-directed navigation in a 2D plane, where the agent must traverse a maze-like environment to reach specified targets. These settings are designed to evaluate an agent's ability to reason spatially and follow optimal trajectories based solely on positional and velocity observations.

Franka-Kitchen. The Franka-Kitchen environment (Gupta et al., 2020) involves a robotic arm interacting with a series of articulated objects in a realistic kitchen setting. Tasks are composed of multiple stages, such as opening doors or toggling switches, and are intended to assess an agent's capability in handling long-horizon, multi-step manipulation.

2268 **Walker.** The Walker2D environment features a two-legged robot that must learn to walk and balance
 2269 using continuous torque control. The agent’s objective is to maintain forward motion while remaining
 2270 upright, which requires learning dynamic stability and coordination.
 2271

2272 **LIBERO (Liu et al., 2023).** The Libero benchmark offers a diverse set of continual learning tasks
 2273 focused on object manipulation and generalization:
 2274

- 2275 • **LIBERO-Object:** The robot is required to manipulate a variety of novel objects through
 2276 pick-and-place operations. Each task introduces previously unseen objects, encouraging the
 2277 agent to incrementally build knowledge about object-specific properties and behaviors.
- 2278 • **LIBERO-Goal:** All tasks share a common object set and spatial layout, but vary in goal
 2279 specifications. This setup tests the agent’s ability to continually adapt to new task intents
 2280 and motion targets without changes in the visual scene.
- 2281 • **LIBERO-Spatial:** Tasks involve repositioning a bowl onto different plate locations. Al-
 2282 though the objects remain fixed, the spatial configurations vary across tasks, requiring the
 2283 robot to incrementally acquire relational spatial understanding.
 2284

2285 **RoboMimic.** RoboMimic (Mandlekar et al., 2021) provides a set of manipulation tasks based on
 2286 human teleoperation demonstrations, varying in difficulty and required precision:
 2287

- 2288 • **Lift:** The robot arm is tasked with lifting a small cube off the table. This task serves as a
 2289 foundational manipulation scenario focused on grasping and vertical motion.
- 2290 • **Can:** The robot must retrieve a cylindrical can from a cluttered bin and place it into a
 2291 designated smaller container. This task introduces greater complexity due to object shape
 2292 and the need for accurate placement.
- 2293 • **Square:** A fine-grained insertion task where the robot picks up a square nut and places it
 2294 onto a vertical rod. This is the most challenging of the three, requiring precise alignment
 2295 and control for successful completion.
 2296

2297 G OTHER DETAILS ON ADA-DIFFUSER

2299 G.1 LATENT ACTION PLANNER

2300 For the latent action planner, we align our settings with those used in LDP (Xie et al., 2025),
 2301 specifically focusing on learning directly from image-based demonstrations. We first use a variational
 2302 autoencoder (VAE) to extract latent representations \mathbf{z} from raw images via image encoders. An
 2303 inverse dynamics model is then trained to recover actions \mathbf{a}_t from pairs of latent states $(\mathbf{z}_t, \mathbf{z}_{t+1})$.
 2304 A planner is subsequently trained to forecast future latents \mathbf{z} . Hence, the objective function is
 2305 $\mathcal{L}_{\text{IDM}}(\xi, \mathbf{z}) = \mathbb{E}_{t, \epsilon} \left[\|\epsilon_\xi(\hat{\mathbf{a}}_k; \mathbf{c}_k, \mathbf{z}_k, \mathbf{z}_{k+1}, t) - \epsilon\|^2 \right]$, where where k is the time step and t is the
 2306 diffusion step.
 2307

2308 In our framework, we treat the latent factors \mathbf{c} as high-level latent actions that influence the evolution
 2309 of \mathbf{z} . These latent factors are jointly used with \mathbf{z} to perform both inverse dynamics modeling and
 2310 latent forecasting, enabling structured planning in the latent space.
 2311

2312 We follow the experimental settings established in LDP (Xie et al., 2025). Specifically, we use
 2313 expert demonstrations alongside action-free and suboptimal demonstrations. All hyperparameters
 2314 and architectural choices for the diffusion models are kept identical to those used in the original LDP
 2315 implementation. We also directly utilize the pre-trained image encoder provided by LDP. The only
 2316 modification in our framework is the introduction of an additional latent factor \mathbf{c} trained by our latent
 2317 factor identification stage, which is incorporated into the model to enhance latent action planning.
 2318

2319 G.2 NOISE SCHEDULING

2320 In the autoregressive setting, we consider a monotonic increasing denoising schedule $\{k_1, \dots, k_T\}$.
 2321 In practice, we use a linear schedule where $k_i = \frac{i}{T}K$, with K denoting the maximum diffusion
 step used in both training and sampling. We segment the sequence into temporal blocks of length
 2322

2322 $T_x + 1$ ($T_x = T_o$ in all settings), and slide the time window forward by one step at a time. This
 2323 design ensures that the denoising steps progressively increase across the block, aligning the diffusion
 2324 process with the underlying temporal structure. Such a schedule encourages early steps to rely more
 2325 on strong priors and later steps to refine based on more contextual information. Additionally, for
 2326 better illustration, Fig. A3 provides a detailed illustration of the zig-zag sampling process within a
 2327 temporal block of 4 timesteps.

2328

2329 H SPECIFIC DESIGN CHOICES FOR BASELINES

2330

2331 For all baselines, unless otherwise specified, we use the same set of diffusion parameters detailed in
 2332 Appendix D.2.2–D.2.3. Below, we provide additional details on how specific methods are evaluated.
 2333 While their diffusion backbones remain consistent as in Appendix D.2.2–D.2.3, these methods include
 2334 custom design choices and method-specific hyperparameters that are evaluated accordingly.

2335

2336 H.1 DETAILS ON LILAC AND DYNAMITE

2337

2338 In these settings, we extend both LILAC and DynaMITE by incorporating a context encoder to
 2339 infer latent context variables c_t , following their respective designs. Both methods learn belief
 2340 state embeddings from historical observations. For a fair comparison, we use the same latent
 2341 identification network architecture as in our framework, but modify the inputs according to each
 2342 method’s assumptions.

2343

2344 Specifically, LILAC and DynaMITE condition their inference networks solely on the historical
 2345 trajectory $\mathbf{x}_{1:t}$, without access to current and future information. Additionally, consistent with
 2346 their original implementations, we do not include a separate prior head on top of the GRU; both
 2347 methods share the encoder for posterior inference and prior prediction. And the primary difference
 2348 (in implementation) between these two methods lies in the temporal context used: LILAC maintains
 2349 the full belief over the entire history, i.e., it conditions on $\mathbf{x}_{1:t}$ to infer c_{t+1} , while DynaMITE uses
 2350 only the most recent context, i.e., it infers c_{t+1} based solely on \mathbf{x}_t .

2351

2352 All other hyperparameters are aligned with those used in our Stage 1 training. The estimated context
 2353 variables are then provided as additional conditioning inputs to the diffusion-based models.

2354

2355 H.2 DETAILS ON DIFFUSION FORCING

2356

2357 For Diffusion Forcing, we adopt the same autoregressive noise schedule as in our method, which
 2358 accounts for causal uncertainty, similarly to the formulation in Eq. D.1 of (Chen et al., 2024), to ensure
 2359 a fair comparison. Additionally, we use the Monte Carlo Guidance (MCG) mechanism introduced
 2360 in (Chen et al., 2024) for Maze2D, following the original setup. For all other environments, we use
 2361 the same classifier guidance scheme as the other baselines to maintain consistency in evaluation.

2362

2363 I ABLATION ANALYSIS

2364

2365 I.1 TRAINING/INFERENCE TIME ANALYSIS

2366

2367 We conduct all experiments on 4× NVIDIA A100 or 8× RTX 4090 GPUs, depending on the model
 2368 scale and environment requirements. The main computational overhead in our framework arises from
 2369 two components: (i) the latent factor identification network, and (ii) the denoise-and-refine steps
 2370 in the diffusion model. During sampling, the additional cost comes from zig-zag latent exploration
 2371 and latent variable sampling. However, these steps do not substantially increase either training or
 2372 inference time.

2373

2374 To quantify this, we report the training and inference speed of our method compared to the base
 2375 models DD and DP across all environments (Table A12). Our framework introduces only a moderate
 2376 computational overhead — typically 1.2–1.3× the runtime of vanilla diffusion backbones, corre-
 2377 sponding to roughly 20–30% extra training time and inference latency. This cost can be further
 2378 reduced through parallel latent sampling, lightweight context encoders, or refinement only at infer-
 2379 ence. Moreover, we additionally evaluate a Picard-accelerated variant (Table A13, Shih et al. (2023)),
 2380 where iterative refinement is parallelized by conditioning each denoising step on previously denoised

nodes. With Picard iteration, inference time drops to 0.7–0.8× of our default iterative sampler while maintaining comparable performance, demonstrating the potential for further acceleration.

Environment	Training Time (sec/epoch)		Inference Latency (ms)	
	Ours vs DD	Ours vs DP	Ours vs DD	Ours vs DP
Cheetah	72.1 / 60.1 (1.20)	69.8 / 58.4 (1.20)	182 / 114 (1.16)	160 / 125 (1.28)
Ant	79.5 / 64.3 (1.24)	76.0 / 62.0 (1.23)	148 / 125 (1.19)	172 / 139 (1.24)
Walker	85.3 / 67.1 (1.27)	81.5 / 64.2 (1.27)	182 / 144 (1.28)	170 / 130 (1.31)
Maze2D	90.2 / 72.0 (1.25)	88.3 / 69.2 (1.28)	184 / 149 (1.24)	196 / 152 (1.29)
Libero	104.0 / 81.0 (1.28)	102.1 / 78.0 (1.31)	209 / 169 (1.24)	219 / 162 (1.35)
Kitchen	117.8 / 88.1 (1.34)	115.3 / 85.0 (1.36)	228 / 180 (1.27)	211 / 168 (1.26)

Table A12: Training and inference time comparison for Ada-Diffuser-planning and Ada-Diffuser-policy variants. We report absolute times (sec/epoch or sec/rollout) and relative overheads.

Environment	Ours (sec)	Ours+Picard (sec)
Cheetah	1.51	1.15
Ant	1.67	1.25
Walker	1.83	1.40
Maze2D	1.94	1.47
Libero	2.18	1.62
Kitchen	2.45	1.84

Table A13: Picard-accelerated inference.

I.2 ABLATION RESULTS

I.2.1 FULL RESULTS SUPPLEMENT TO TABLE 2

Table A14 presents the full ablation results across all environments, as a supplement to Table 2. Overall, the results highlight the importance of the two key components in causal diffusion modeling: latent identification and autoregressive diffusion, both of which are critical for performance.

I.2.2 NOISE SCHEDULE: LINEAR VS. LOGISTIC VS. SIGMOID

We adopt a linear noise schedule by default since any monotonic, bounded schedule suffices to model the data-generation process and linear is simple and stable in practice. To validate this choice, we compare linear, logistic, and sigmoid schedules on three representative tasks. As shown in Table A15, performance remains stable across schedules with no significant differences, supporting our default choice.

Task	Schedule	Performance
Cheetah	linear	-68.9
	logistic	-63.6
	sigmoid	-70.4
Maze2D	linear	161.4
	logistic	157.6
	sigmoid	168.5
Franka-Kitchen	linear	0.70
	logistic	0.72
	sigmoid	0.66

Table A15: Ablation on noise schedules. “Performance” is the task score (higher is better for Maze2D/Kitchen; lower magnitude negative is better for Cheetah as per the benchmark).

I.2.3 EFFECT OF TEMPORAL BLOCK LENGTH ON LATENT IDENTIFICATION

We further analyze the impact of temporal block length on latent identification. As shown in Fig. A6, the results are consistent with findings reported in the main paper. When the number of observations is insufficient (e.g., ≤ 4), identification performance degrades. Performance improves when the block length is in a moderate range (5–20), indicating that sufficient temporal context is beneficial. However, using overly long blocks (> 20) introduces redundancy and increases optimization difficulty, which in turn harms performance.

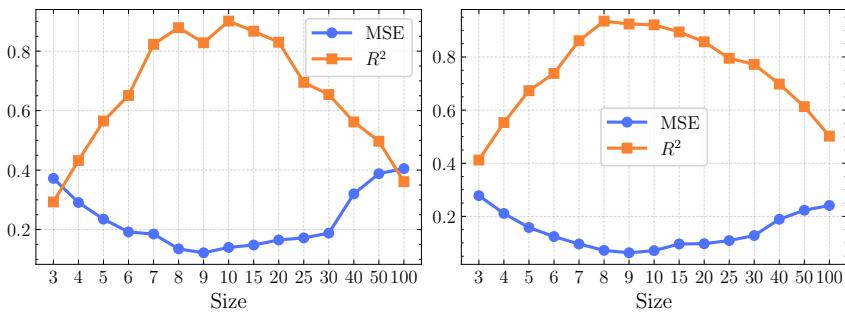


Figure A6: **Identification results (MSE of linear probing and R^2) versus the length of temporal blocks.** Left: Cheetah with time-varying wind; Right: Cheetah with time-varying rewards.

Clustering We assess whether the learned latent space organizes states by the underlying context on the Cheetah wind-change task, where the ground-truth latent evolves as $f_w(t) = 5 + 5 \sin(0.5t)$. We sample 1000 time steps, discretize $f_w(t)$ into five equal-frequency bins to define target clusters, embed the corresponding observations into the 20-dimensional learned latent representation, and run k -means with $k = 5$. We compare our method with LILAC and DynaMIE, together with an ablation that without refinement. Results are given in Fig. A7.

I.2.4 LATENT PROBING: EFFECT OF BACKWARD REFINEMENT AND ZIG-ZAG

To test whether backward refinement and zig-zag primarily help by correcting posterior mismatch, we perform a latent probing analysis on CHEETAH with changing wind. We linearly map the learned latent representation to the ground-truth wind variable using a simple least-squares probe (trained on a subset of blocks and evaluated on held-out blocks). Table A16 reports the mean squared error (MSE) of this probe for three variants: (i) the full model with backward refinement and zig-zag; (ii) without refinement; and (iii) without zig-zag.

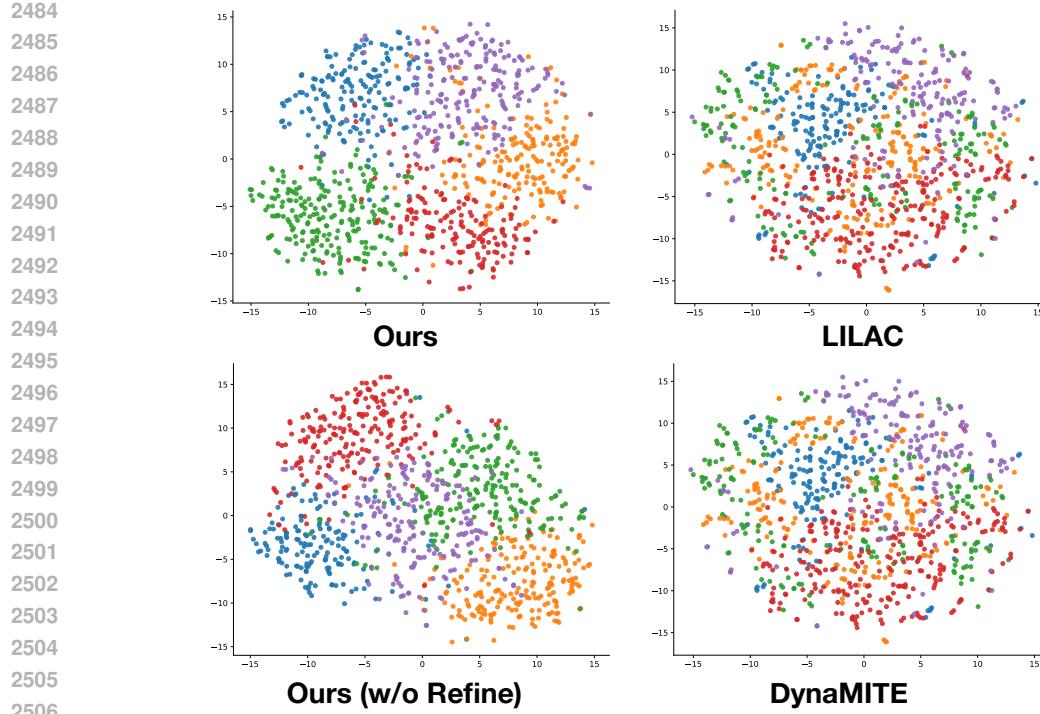


Figure A7: Clustering (t-SNE) results on Cheetah wind-change.

Variant	MSE
Full (with refinement + zig-zag)	0.18
w/o refinement	0.28
w/o zig-zag	0.23

Table A16: Linear probing MSE for recovering the ground-truth wind latent on CHEETAH (changing wind). Lower is better.

Analysis. The full model achieves the lowest MSE, indicating more accurate recovery of the latent wind. Removing backward refinement yields the largest degradation ($0.18 \rightarrow 0.28$), consistent with the role of refinement in letting future evidence within a block update the latent posterior and reduce temporal lag. Disabling zig-zag also harms accuracy ($0.18 \rightarrow 0.23$), suggesting that alternating conditioning helps align the denoising trajectory with the latent dynamics rather than purely following the forward temporal pass. Together, these results support our claim that both components reduce posterior mismatch and improve latent identifiability, which in turn benefits planning and control in settings with evolving hidden factors.

I.2.5 ON THE EFFECT OF PLANNING AND EXECUTION HORIZONS: LONG-HORIZON PLANNING

We study the robustness of our approach under increased planning and execution horizons (T_p and T_a). Specifically, we evaluate on two challenging tasks—Franka-Kitchen-Partial and Libero-Long, where the original settings are Kitchen ($T_p = 16, T_a = 8$) and Libero ($T_p = 10, T_a = 8$). Results are in Fig. A8. When we increase these horizons, we observe that the baselines, DP and DF, suffer significant performance drops. In contrast, Ada-Diffuser maintains relatively high performance. This demonstrates that modeling the underlying causal generative process, through autoregressive structure and latent representations, enables better **long-horizon planning**. Although

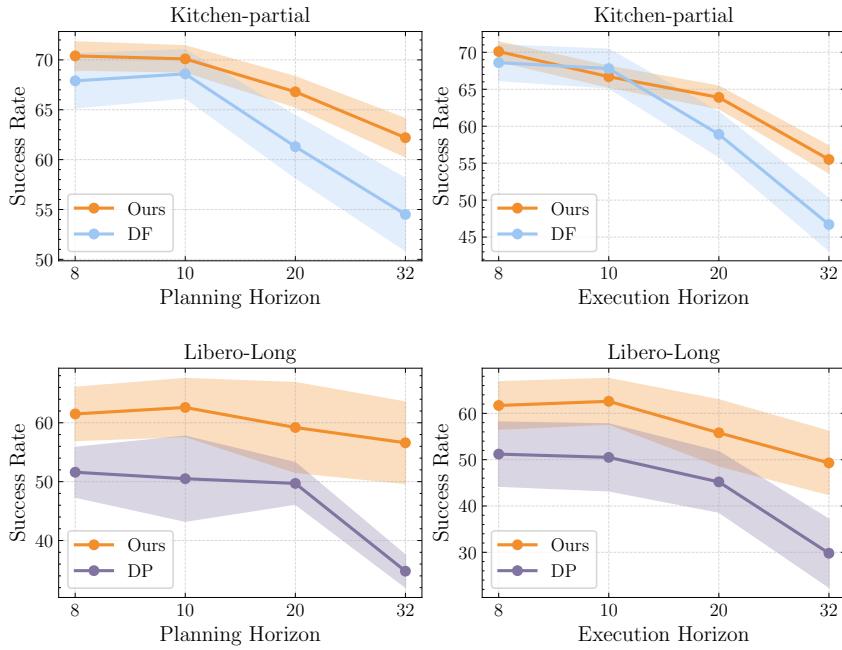


Figure A8: **Results with different planning and execution horizons.** We evaluate on Kitchen-partial and Libero-Long experiments.

we do not explicitly impose latent variables, our model implicitly learns representations that can track stochasticity and support smooth control.

2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

Environment	Diffuser	DF	MetaDiffuser	Diffuser + DynaMITE	Diffuser + LILAC	Ours	Ours + Meta	Oracle
Cheetah-Wind-E (\mathbf{c}^s)	-120.4 \pm 12.7	-105.8 \pm 9.6	-89.7 \pm 6.5	-79.2 \pm 11.0	-95.3 \pm 7.4	-68.9 \pm 7.6	-62.4 \pm 3.9	-57.8 \pm 6.7
Cheetah-Wind-S (\mathbf{c}^s)	-148.5 \pm 9.8	-102.0 \pm 10.2	-106.8 \pm 11.4	-94.3 \pm 9.6	-105.6 \pm 14.5	-73.5 \pm 8.7	-65.3 \pm 11.2	-58.1 \pm 9.0
Cheetah-Dir-E (\mathbf{c}^r)	850.8 \pm 54.2	902.1 \pm 45.8	912.5 \pm 37.9	930.4 \pm 29.5	908.5 \pm 37.6	943.3 \pm 25.6	949.8 \pm 24.1	962.1 \pm 21.9
Cheetah-Vel-E (\mathbf{c}^r)	-102.4 \pm 18.2	-85.6 \pm 18.3	-69.2 \pm 7.5	-76.3 \pm 11.7	-62.6 \pm 11.1	-45.8 \pm 9.5	-39.2 \pm 7.6	-38.3 \pm 8.9
Ant-Dir-E (\mathbf{c}^r)	188.6 \pm 39.2	195.4 \pm 47.0	245.9 \pm 41.0	262.8 \pm 27.5	229.4 \pm 32.6	285.3 \pm 24.5	296.4 \pm 22.2	300.7 \pm 23.6

Table A4: **Results (average returns) on Ada-Diffuser-Planner with latent factors that affects dynamics and rewards.** \mathbf{c}^s and \mathbf{c}^r indicate the changes on dynamics and reward, E and S represent the episodic and time-step changes. The results are with 5 random seeds. The bold ones are the best-performing ones, excluding meta-learning and oracle ones.

2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699

Environment	DP	DP + DynaMITE	Ours + DP	Ours + DP (Oracle)	IDQL	IDQL + DynaMITE	Ours + IDQL	Ours + IDQL (Oracle)
Cheetah-Wind-E (\mathbf{c}^s)	-104.8 \pm 10.9	-72.2 \pm 5.9	-58.5 \pm 4.6	-52.0 \pm 3.5	-97.5 \pm 9.4	-59.0 \pm 11.2	-48.5 \pm 7.9	-41.6 \pm 6.2
Cheetah-Wind-S (\mathbf{c}^s)	-120.6 \pm 11.5	-76.5 \pm 15.6	-52.9 \pm 9.8	-42.3 \pm 6.7	-87.8 \pm 12.2	-63.4 \pm 6.7	-48.0 \pm 7.2	-44.7 \pm 6.1
Cheetah-Dir-E (\mathbf{c}^r)	892.5 \pm 60.8	949.6 \pm 36.1	960.7 \pm 40.2	972.4 \pm 37.5	902.4 \pm 45.2	938.6 \pm 49.4	965.0 \pm 37.5	969.8 \pm 39.2
Cheetah-Vel-E (\mathbf{c}^r)	-87.9 \pm 6.5	-72.7 \pm 5.8	-41.0 \pm 7.2	-39.8 \pm 6.7	-80.2 \pm 11.4	-59.4 \pm 6.5	-38.6 \pm 7.7	-33.8 \pm 6.5
Ant-Dir-E (\mathbf{c}^r)	182.5 \pm 41.2	275.2 \pm 27.0	290.4 \pm 49.4	312.5 \pm 37.2	204.6 \pm 25.6	269.3 \pm 29.5	295.8 \pm 32.7	309.6 \pm 25.4

Table A5: **Results (average returns) on Ada-Diffuser-Policy with latent factors.** \mathbf{c}^s and \mathbf{c}^r indicate the changes on dynamics and reward, E and S represent the episodic and time-step changes. The results are with 5 random seeds. The bold ones are the best-performing ones, excluding meta-learning and oracle ones.

Environment	Diffuser	DD	DF	LDCQ	Ours (DD)
Mixed	52.6 ± 2.3	75.2 ± 1.4	73.7 ± 1.9	73.3 ± 0.5	74.6 ± 1.6
Partial	55.8 ± 1.9	57.3 ± 1.2	68.6 ± 2.4	67.8 ± 0.8	70.1 ± 1.3

Table A6: **Results (success rate (%)) on Ada-Diffuser-Planner without explicit latent factors on Franka-kitchen environment.** The results are with 5 random seeds.

Environment	Diffuser	DD	DF	LDCQ	Ours (DD)
umaze	113.5 ± 2.8	114.8 ± 3.2	116.7 ± 2.0	134.2 ± 4.1	148.6 ± 3.7
medium	121.5 ± 5.6	129.6 ± 2.9	149.4 ± 7.5	125.3 ± 2.5	148.6 ± 3.1
large	123.0 ± 4.8	131.5 ± 4.2	159.0 ± 2.7	150.1 ± 2.9	161.4 ± 3.2

Table A7: **Results on Ada-Diffuser-Planner without explicit latent factors on Maze-2D environment.** The results are averaged across 5 random seeds.

Environment	Diffuser	DD	DF	LDCQ	Ours (DD)
medium-expert	106.2 ± 0.7	108.8 ± 2.0	105.4 ± 3.2	109.3 ± 0.4	115.7 ± 2.1
medium	79.6 ± 9.8	82.5 ± 1.6	66.2 ± 1.9	69.4 ± 2.4	83.6 ± 3.5
medium-replay	70.6 ± 0.6	75.0 ± 3.2	72.2 ± 2.6	68.5 ± 4.3	74.3 ± 2.8

Table A8: **Results on Ada-Diffuser-Planner without explicit latent factors on Walker environment.** The results are averaged across 5 random seeds.

Environment	DP	Ours (DP)
Spatial	78.3 ± 3.9	79.2 ± 4.2
Object	92.5 ± 2.6	93.4 ± 2.8
Long	50.5 ± 7.2	62.6 ± 4.9

Table A9: **Results on Ada-Diffuser-Policy without explicit latent factors on Libero environment.** The results are averaged across 5 random seeds.

Component	Type (i): Full Trajectory	Type (ii): State-Only
Model Backbone	1D U-Net (Ronneberger et al., 2015)	Transformer (DiT)
Architecture	Kernel size: 5; channels: (1,2,2,2); base: 32	Hidden dim: 256; head dim: 32
# DiT Blocks	–	2 (Walker, Kitchen, Maze2D), 8 (LIBERO)
Optimizer	Adam, lr = 3×10^{-4}	Adam, lr = 3×10^{-4}
Batch Size	64	128
Training Steps	1M	1M
Diffusion Timesteps	150	200
Observation Horizon T_o	10	4 (Kitchen), 2 (LIBERO), 10 (others)
Planning Horizon T_p	16 (Cheetah), 32 (Ant)	16 (Kitchen), 10 (LIBERO), 32 (others)
Execution Horizon T_o	1	8 (Kitchen, LIBERO), 10 (others)
Guidance	CG, $\omega = 1.5$	CFG
Inverse Dynamics Model	–	2-layer embed (64), 3-layer MLP (128), 1M steps
Refinement Loss Coefficient	0.1	0.1

Table A10: Planner configurations for type (i): full trajectory generation and type (ii): state-only generation with inverse dynamics.

2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774

Cases	Cheetah-1	Cheetah-2	Ant	Maze2D	Walker	Kitchen	RoboMimic	LIBERO
Original	-73.5	-52.9	295.8	161.4	115.7	0.70	0.85	93.4
w/o refine	-82.0	-60.7	261.2	156.5	107.4	0.63	0.78	90.2
w/o zig-zag	-91.6	-56.1	258.3	147.6	107.9	0.59	0.75	91.6
same NS	-89.7	-62.4	259.7	140.1	105.8	0.56	0.72	85.2
random NS	-84.6	-62.9	266.4	146.3	109.1	0.61	0.76	88.5

2782
 2783 Table A14: **Ablation on Design Choices.** We conduct ablation studies across a diverse set of tasks,
 2784 including: Cheetah-Wind-S with a planner-based approach (denoted as Cheetah-1 in the table),
 2785 Cheetah-Wind-S with a diffusion policy (Cheetah-2), Ant-Dir-E (policy, IDQL-based), Maze2D-
 2786 Large (planner), Walker2D-Medium-Expert (planner), Kitchen-Partial (planner), LIBERO-Object
 2787 (diffusion policy), and RoboMimic-Can.

2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807

2808 **J LLM USAGE STATEMENT**
2809

2810 We disclose that LLMs were used solely to correct grammatical issues in this paper. It did not author
2811 any sentence-level content. No part of the research ideas, experimental design, implementation, or
2812 analysis relied on LLMs.

2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861