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ABSTRACT

Recent work has framed decision-making as a sequence modeling problem using
generative models such as diffusion models. Although promising, these approaches
often overlook latent factors that exhibit evolving dynamics, elements that are
fundamental to environment transitions, reward structures, and high-level agent
behavior. Explicitly modeling these hidden processes is essential for both precise
dynamics modeling and effective decision-making. In this paper, we propose a uni-
fied framework that explicitly incorporates latent dynamic inference into generative
decision-making from minimal yet sufficient observations. We theoretically show
that under mild conditions, the latent process can be identified from small temporal
blocks of observations. Building on this insight, we introduce Ada-Diffuser, a
causal diffusion model that learns the temporal structure of observed interactions
and the underlying latent dynamics simultaneously, and furthermore, leverages
them for planning and control. With a proper modular design, Ada-Diffuser
supports both planning and policy learning tasks, enabling adaptation to latent
variations in dynamics, rewards, and even recovering hidden action variables from
action-free demonstrations. Extensive experiments on locomotion and robotic
manipulation benchmarks demonstrate the model’s effectiveness in accurate latent
inference, long-horizon planning, and adaptive policy learning.

1 INTRODUCTION

Learning and planning in partially observable environments is a fundamental challenge in building
intelligent agents (Kaelbling et al., 1998). Recent work on casting decision-making as a generative
modeling problem, taking advantage of powerful models such as transformers (Chen et al., 2021;
Zheng et al., 2022; Kong et al., 2024) and diffusion models (Janner et al., 2022; Chi et al., 2023; Ren
et al., 2025), has achieved impressive results in a wide range of tasks. However, these methods often
fail to account for hidden latent variables and their temporal dynamics, factors that are prevalent
in real-world settings such as robotics (Lauri et al., 2022), autonomous driving (Huang et al., 2024),
healthcare (Hauskrecht & Fraser, 2000; Ehrmann et al., 2023), and economics (Brero et al., 2022).
Ignoring such latent processes can result in suboptimal decision-making, particularly when the
observational data does not provide full coverage of the latent factors underlying the environment’s
dynamics (Zintgraf et al., 2021; Xie et al., 2021; Swamy et al., 2022; Belkhale et al., 2023).

Early works address partial observability in reinforcement learning (RL) and imitation learning
(IL) by encoding historical observations and actions into belief states or latent embeddings, which
represent a distribution over the underlying latent state (Kaelbling et al., 1998; Hauskrecht, 2000; Guo
et al., 2018; Igl et al., 2018; Liang et al., 2024a; Xie et al., 2021). Policy optimization or planning is
then carried out based on these inferred belief states. However, learning such representations often
requires access to the historical trajectories or data from a diverse set of environments. This can be
prohibitively expensive, particularly in high-dimensional state or action spaces, posing challenges for
integrating these methods into modern generative decision-making models, which typically prioritize
scalability. Can we identify the latent factors that govern environment dynamics and rewards, and
integrate them into scalable generative decision-making models to enable adaptive planning and
policy learning, using only minimal observations, while preserving theoretical guarantees?

In this paper, we pursue this goal by addressing two fundamental questions. First, what is the
minimum set of observations required, in principle, to reliably identify the latent factors that govern
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the environment? Second, how can latent identification be effectively incorporated into generative
models (e.g., diffusion models) to enable adaptive planning and policy learning? To answer the first
question, we theoretically show that, under mild conditions, the latent factors at the time step t can
be block-wise identified using only four surrounding observable measurements (i.e., state-action
trajectories) within a small temporal window. This identification result implies that a small temporal
block is sufficient to infer the latent factors in observational RL trajectories in an online manner.

Guided by the theoretical findings, we propose Ada-Diffuser, a novel causal diffusion framework
with latent identification from temporal blocks, designed to model the data generation process of RL
trajectories influenced by latent factors. To reflect the autoregressive nature of sequential decision
making, we introduce a causal denoising schedule that aligns the denoising steps with the underlying
causal structure, drawing inspiration from recent advances in autoregressive diffusion models (Ho
et al., 2022; Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025). For temporal-block-wise latent
identification, during training, we propose a denoise-then-refine procedure that iteratively alternates
between denoising the observations and refining latent estimates. This enables Ada-Diffuser
to jointly learn a structured representation of latent variables and the corresponding observational
distribution. At inference time, Ada-Diffuser generates actions and states while estimating latent
variables in an online fashion. Since states and actions are conditioned on the latent factors, we employ
a zig-zag sampling scheme that alternates between sampling state-action pairs and updating latent
variables, ensuring consistency between generated sequences and their underlying latent dynamics.

Ada-Diffuser provides a unified generative framework for sequential decision-making. It is
applicable to both planning and policy learning tasks by conditioning on different types of obser-
vations and adapting the conditional generative process accordingly. The framework is flexible and
can accommodate various forms of latent, including ones that influence dynamics, rewards, or even
represent high-level latent actions. Importantly, even in environments without explicitly designed
latent variables, the block-wise latent identification mechanism improves generative modeling by
implicitly capturing structured temporal dependencies.

Contributions: (1) We establish sufficient conditions under which latent factors influencing environ-
ment dynamics and rewards can be identified from short temporal windows of RL trajectories, without
requiring full trajectory access or multi-environment data. (2) We develop Ada-Diffuser, a causal
diffusion model that performs block-wise latent inference to jointly model latent contexts and observ-
able trajectories. Unlike prior latent-augmented diffusion approaches, Ada-Diffuser introduces a
minimal-sufficient block with backward refinement for identifiable latents and uses fully autoregres-
sive denoising with zig–zag sampling to couple inference and generation. (3) Ada-Diffuser can
be adapted to a wide range of decision-making tasks by conditioning on different types of observation.
We empirically show the improved performance on a wide range of planning and control tasks,
including 8 environments under 23 different settings.

2 BACKGROUND AND RELATED WORK

In this section, we provide background and related work on diffusion-based decision-making. Addi-
tional discussions are provided in Appendix E, including related work on (1) learning latent belief
states in POMDPs (Kaelbling et al., 1998; Hauskrecht, 2000; Igl et al., 2018; Gregor et al., 2018;
Goyal et al., 2021), particularly in the context of transfer, meta, and nonstationary RL/IL (Zintgraf
et al., 2021; Liang et al., 2024a; Ni et al., 2023; Xie et al., 2021; Liang et al., 2024a), and (2)
autoregressive diffusion models (Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025; Wu et al., 2023).

Recent advances use diffusion models as planners and policies for both RL and IL. I. Diffusion Plan-
ner: Diffusion-based planning leverages generative models to sample future state-action trajectories
from a given state, using guidance techniques (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) to en-
courage desirable properties such as high expected rewards. Taking Denoising Diffusion Probabilistic
Models (DDPM (Ho et al., 2020))-based approaches as an example, these methods learn a generative
model over expert trajectories τ = {(s0,a0), . . . , (sT ,aT )} by modeling a forward-noising process:
q(xt | xt−1) = N (xt;

√
αt x

t−1, (1− αt)I), and a parameterized denoising model pθ(xt−1 | xt) to
reverse the process. Here, the superscript t denotes diffusion steps, T denotes the planning horizon,
x0 is a clean subsequence sampled from the expert trajectory τ , and αt controls the variance schedule
at diffusion step t. During inference, trajectories are generated by starting from Gaussian noise
and iteratively denoising through the learned reverse process. This generation can be optionally
conditioned on the initial state or other guidance signals y (e.g., goals, rewards): τ̂ ∼ pθ(τ | s0,y).
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II. Diffusion Policy: In contrast to diffusion planners, Diffusion Policy methods directly parameterize
the policy πθ(a | s) using diffusion models. For example, Diffusion Policy (Chi et al., 2023) uses a
diffusion model to generate multi-step actions with expressive multimodal distributions. DPPO (Ren
et al., 2025) extends this idea by modeling a two-layer MDP structure, which enables fine-tuning of
diffusion-based policies in RL settings. Another line of work uses diffusion models to parameterize
the policy networks for only the single current step (Wang et al., 2022; Hansen-Estruch et al., 2023;
Chen et al., 2023; Lu et al., 2023). Ada-Diffuser can generally accommodate both diffusion
planner and policies within the same framework.

3 LATENT IDENTIFICATION IN POMDP
In this section, we seek to formally model the structure of the decision-making system by answering
the following questions. First, where do the latent factors reside, and how do they influence the
observable variables such as states, actions, and rewards? Second, can they be identified from
demonstration data alone? We model the system that extends the standard MDP to include un-
observable, time-varying latent variables that affect both the transition dynamics and the reward
function. This model generalizes the contextual MDP by allowing the context to evolve stochastically
over time. We then formalize the data generation process under this model using structural causal
models (SCMs) (Pearl, 2010). Finally, we present theoretical results that characterize the minimal
observational requirements for identifying the latent variables.

3.1 LATENT CONTEXTUAL POMDP WITH TIME-DEPENDENT CONTEXT

We model the latent factors using a general contextual MDP framework, where the context it-
self evolves over time. Formally, we define a latent time-varying contextual MDP as a tuple
M = (S,A, C, T ,R, γ), where S is the state space, A is the action space, C is the latent con-
text space, T (st | st−1,at−1, ct) is the transition distribution, R(st,at, ct) is the reward function,
and γ ∈ [0, 1) is the discount factor. The latent context ct ∈ C follows a time-dependent (possibly
stochastic) process: ct ∼ p(ct | ct−1), and is unobserved during training and inference. The agent
only observes trajectories τ = {(s0,a0), . . . , (sT ,aT )}, and infers the latent context ct from the
observational data. This is naturally relevant to several MDP models, including (dynamic) hidden
parameter MDPs (Doshi-Velez & Konidaris, 2016; Perez et al., 2020; Xie et al., 2021), Bayes-adaptive
MDPs (Martin, 1965; Duff, 2002; Zintgraf et al., 2021), and factored MDPs (Guestrin et al., 2003).
A full comparison and analysis is given in App. C.

Given trajectories generated under this model, we can describe the data generation process using the
SCMs. Without the loss of generality, we consider the setting where an expert policy π is assumed to
generate the actions, as is standard in learning from demonstration data. The data generation process
can therefore be expressed as (l.h.s. Fig. 1):
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(a)

Figure 1: (a) SCM of the Latent Contextual POMDP. Gray/white nodes are observed/latent variables;
green/red edges represent transitions driven by latents/expert policies, respectively. (b) Examples
where latents influence either dynamics or rewards (affecting optimal actions).

where ηt, ϵt, and δt denote i.i.d. exogenous noise variables. Fig. 1(a) shows the graphical model.
Fig. 1(b) illustrates examples where latent factors on dynamics (e.g., external wind in locomotion)
and rewards (e.g., varying target objects in robot control) influence optimal decisions.

3.2 IDENTIFIABILITY OF LATENT FACTORS WITH MINIMAL MEASUREMENTS

To learn accurate dynamics and make reliable decisions, it is essential that the underlying latent factors
influencing the environment are identifiable with observational data. We present theoretical results
that characterize the minimal number of consecutive observations required for the identifiability of
the latent variables, under a set of mild and natural assumptions.
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Assumption 1 (First-order MDP). We consider the following conditions:

P (st,at, rt, ct | st−1,at−1, ct−1,ω<t−1) = P (st,at, rt, ct | st−1,at−1, ct−1) ,

where ω<t−1 = {st−2, . . . , s1,at−2, . . . ,a1, ct−2, . . . , c1}.

This is naturally satisfied under our setting described in Section 3.1.
Assumption 2 (Distributional Variability). There exist observed state and action variables xt such
that for any xt ∈ Xt, there exists a corresponding xt−1 ∈ Xt−1 and a neighborhood N r around
(xt,xt−1) satisfying that, for all xt−2 ∈ Xt−2, xt−1 ∈ Xt−1, xt ∈ Xt, and xt+1 ∈ Xt+1, the
following conditional distribution operators are injective: (i) Lxt−2|xt+1

, (ii) Lxt+1|xt,ct , and (iii)
Lxt|xt−2,xt−1

, where the conditional operator L represents transformations at the distribution level,
that is, how one probability distribution is pushed forward to another (Dunford & Schwartz, 1971).

Assumption justification. Conceptually, the injectivity of these operator L implies that
different inputs induce different output distributions, thus imposing a minimal condition on
distributional variability. In RL systems, this condition is naturally satisfied in most stochastic
environments where transitions produce sufficient diversity across different states and actions.
The assumption also aligns with the conditions in identifiability theory, particularly in works
using spectral decomposition and latent variable models (Hu & Schennach, 2008; Hu & Shum,
2012; Fu et al., 2025). We further verify this empirically using MuJoCo RL trajectories with
the context instantiated as time-varying wind (App. B.5.1).

Assumption 3 (Uniqueness of Spectral Decomposition). For any xt ∈ Xt and any c̄t ̸= c̃t ∈ Ct,
there exists a xt−1 ∈ Xt−1 and corresponding neighborhood N r satisfying Assumption 2 such that,
for some (x̄t, x̄t−1) ∈ N r with x̄t ̸= xt, x̄t−1 ̸= xt−1:

i. 0 < k(xt, x̄t,xt−1, x̄t−1, ct) < C <∞ for any ct ∈ Ct and some constant C;

ii. k(xt, x̄t,xt−1, x̄t−1, c̄t) ̸= k(xt, x̄t,xt−1, x̄t−1, c̃t), where

k(xt, x̄t,xt−1, x̄t−1, ct) =
pxt|xt−1,ct(xt | xt−1, ct)pxt|xt−1,ct(x̄t | x̄t−1, ct)

pxt|xt−1,ct(x̄t | xt−1, ct)pxt|xt−1,ct(xt | x̄t−1, ct)
. (1)

Assumption justification. Conceptually, Assumption 3 requires that k, which captures
second-order variations in transition dynamics at time t − 1 and t under the latent variable
c, yields distinct values for different c’s. This requirement is typically met in RL, as varied
latent dynamics or rewards often cause significant, observable shifts in behavior. Crucially,
this variability is precisely what motivates the need for the identification of the latent variable
ct, as it governs meaningful differences in learning underlying decision-making process. We
further verify this empirically using MuJoCo RL trajectories with the context instantiated as
time-varying wind (App. B.5.2).

These assumptions are mild and natural. While Assumption 1 is standard in RL, it can be relaxed
without violating our theory (App. B.3.4). Assumptions 2–3 are naturally satisfied in practice, as
they simply formalize that latent variables influence the dynamic, motivating why we need the
identification of them. Further validation and discussion are provided in App. A.4. Importantly, the
more strongly the context influences the dynamics (and thus the more critical it becomes to account
for c in decision-making), the more strongly these two assumptions are satisfied: the transition
operator becomes more injective as required in Assumption 2, and the spectral ratio k becomes more
separable across contexts as required in Assumption 3 (See empirical validation in App. B.5.3 ).
Under these assumptions, we establish an identifiability theory that characterizes the conditions under
which the latent factors can be recovered, and specifies the level of identifiability that can be achieved.
Theorem 1 (Identifiability on Latent Factors). Under Assumptions 1-3, the posterior distribution of
latent factor with consecutive observations p(ct | xt−2:t+1) can be identifiable up to an invertible
transformation on the latents ĉt = h(ct), where ĉt is estimated latents and h is an invertible function.

The proof is in App. B.2. Theorem 1 indicates that a short temporal window of observations (with
future frame at t+ 1) contains sufficient information to recover the posterior distribution over the
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Figure 2: Overview of the Ada-Diffuser framework. The modular design consists of two main
stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion model
(Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is
then used for planning or policy learning conditioned on the inferred latent context.

true latent factors (up to an invertible transformation) in an online manner, without requiring access
to the full trajectory. This form of identifiability is standard in representation learning and is sufficient
for downstream tasks such as dynamics modeling, planning, and control. Any policy or dynamics
model that conditions on ĉt can implicitly compose with h−1 without loss of expressiveness. We
further discuss the implications of this finding in greater detail in App. A.4.

4 LATENT-AWARE ADAPTIVE DIFFUSION PLANNER AND POLICY

Building on Theorem 1, we introduce the Ada-Diffuser framework for learning and planning
with latent identification. As illustrated in Fig. 2, Ada-Diffuser models the trajectory generation
process via two modules: (1) latent factor identification block, which estimates the sequence
of latent variables from the observable trajectories; and (2) causal diffusion model, which learns
the causal generative process of RL trajectories and explicitly infers latent context. Guided by the
theoretical findings in Theorem 1 and the generative process (Sec C), we use autoregressive denoising
for temporal dependencies and a backward-refinement step over a minimal–sufficient block, designed
via a tailored noise schedule and zig–zag sampling, to recover the latent posterior in an online manner.

In this section, we first present a general formulation of conditional diffusion modeling with latent
variables. We then describe the two modules of Ada-Diffuser in detail (Fig. 2). The complete
algorithmic pseudocode of the training and inference procedures are given in App. D.1.

4.1 LATENT-AUGMENTED DIFFUSION MODEL FOR PLANNING AND POLICY LEARNING

Without loss of generality, we denote the observable trajectory as τx, which may correspond to a
state-action sequence τsa or a state-only sequence τs, depending on the task setting. To incorporate
latent structure, we augment the observable trajectory with the estimated latent context, yielding the
full trajectory representation τ = [τx, τc], where τc denotes the inferred sequence of latent variables.

We train a conditional diffusion model to generate trajectories conditioned on desired attributes
y(τ ) (e.g., reward or goal specification) and the identified c. The denoising model ϵθ is trained
to predict the noise added during the forward diffusion process via the objective: Ldiff =

Eτ0,y,t,ϵ

[
∥ϵθ(τ t, t,y(τ ), c)− ϵ∥2

]
, where τ 0 is a clean trajectory sample, ϵ ∼ N (0, I), and

the noisy trajectory at diffusion step t is constructed as: τ t =
√
ᾱtτ

0 +
√
1− ᾱtϵ, where ᾱt denotes

the cumulative product of the forward noise schedule. Here, the superscript t indexes diffusion steps,
and should not be confused with the environment time step indices within the trajectory.

Ada-Diffuser can flexibly adapt to generate different components of the trajectory depending on
the task. In the planning setting, the model generates full trajectories τ = {xt,xt+1, . . . ,xt+Tp},
where Tp denotes the planning horizon. Here, xt may have two cases: (i) xt = {st,at}, when
both states and actions are generated, (ii) xt = {st}, when only states are generated. In the latter
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case, we train an inverse dynamics model (IDM) (Ajay et al., 2023a) to infer the corresponding
actions from state transitions. In the policy learning setting, the model generates only actions,
i.e., τ = {at+1,at+2, . . . ,at+Ta}, where Ta is the action generation horizon. While multi-step
action generation methods (e.g., DP (Chi et al., 2023)) can also be viewed as a form of plan-
ning (Zhu et al., 2023), for generality, we categorize such settings under the policy framework.
Ada-Diffuser-Policy accommodates both variants: multi-step action generation (Ta > 1), as
in DP, and single-step decision-making (Ta = 1), as in IDQL (Hansen-Estruch et al., 2023).

4.2 STAGE 1: OFFLINE LATENT FACTOR IDENTIFICATION

Based on Theorem 1, we structure the latent inference process around temporal blocks, using short
segments of trajectories to identify the latent context at each time step. We adopt a variational
inference framework (Kingma & Welling, 2014) in which the latent variable ct is inferred block-wise.
Hence, different from prior approaches that also use variational objectives to learn latent variables
from observable RL trajectories (e.g., (Xie et al., 2021; Pertsch et al., 2021; Ni et al., 2023; Zeng
et al., 2023; Liang et al., 2024a))1, our method is operated in a block-wise manner, where each latent
is inferred from a temporal block that includes both minimal but sufficient historical and future steps.
That is, the prior distribution is conditioned on the latent variable from the previous step and the
in-block history, while the posterior additionally incorporates future observations. Specifically, given
a trajectory block t−Tx : t+1, where Tx is the block size, we have prior pϕ(ct | ct−1), and posterior
qψ(ct | xt−Tx:t+1), where x denotes the observed variables and may correspond to {s}, {s,a}, or
{s,a, r}. We then optimize the evidence lower bound (ELBO) of the observed trajectories:

LELBO,t = Eqψ(ct|xt−Tx:t+1) [− log pθ(xt | xt−1, ct)] +DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1)) .

Here, the reconstruction term, − log pθ(xt | xt−1, ct) is instantiated based on the available observa-
tion modalities. Specifically, (i) when only states are observed, the model reconstructs st conditioned
on (st−1, ct); and (ii) when rewards are available, the model also reconstructs rt from (st,at, ct).
The stage is learned through a sequential encoder and decoder (l.h.s., Fig. 2).

4.3 STAGE 2: CAUSAL DIFFUSION MODEL

We propose a causal diffusion model for learning the generative process described in Sec.3.1. By
“causal,” we refer to the modeling of the true underlying data generation process, which incorporates
two key desiderata: (1) the autoregressive process inherent in temporal sequential RL trajectories;
and (2) the latent factor process, capturing the causal influence of the unobserved context variables
ct on the observations (e.g., xt = [st,at, rt]). Thus, unlike prior diffusion-based RL methods and
latent-augmented variants (Sec. 2; see Table A11 for a comparison), our approach incorporates the
following design choices.

Autoregressive Denoising To model the autoregressive structure of trajectory generation, and
following the recent advances in autoregressive diffusion (Chen et al., 2024; Xie et al., 2024b; Wu
et al., 2023), we introduce a causal denoising schedule. Under this mechanism, each time step within
a local temporal block is assigned a denoising schedule that depends both on its temporal distance from
the conditioning anchor and on the inferred latent variables. This reflects the intuition that later time
steps exhibit higher uncertainty. Specifically, for a trajectory of length T , we assign monotonically
increasing noise levels {k1, . . . , kT }, sampled linearly as ki = i

TK where i ∈ {1, . . . , T} and K
denotes the maximum diffusion step.

Given the inferred latent context ĉ0:T , the model performs autoregressive denoising over the block in
T steps. The overall denoising process is defined as:

pθ

(
x0
0, . . . ,x

0
T−1 | xk10 , . . . ,xkTT−1, ĉ0:T

)
, (2)

where xkii denotes the noisy observation at time step i, and x0
i is the clean, denoised output.

Specifically, the first denoising step is: pθ(x0
0,x

k1
1 , . . . ,x

kT−1

T−1 | xk10 , . . . ,xkTT−1, ĉ0:T ), where the
first observation x0 has been fully denoised and other observations are partially denoised, followed by
the second step: pθ(x0

1,x
k1
2 , . . . ,x

kT−2

T−1 | x0
0,x

k1
1 , . . . ,x

kT−1

T−1 , ĉ0:T ), and finally until all observations
are denoised: pθ(x0

T−1 | x0
0, . . . ,x

0
T−2,x

k1
T−1, ĉ0:T ).

1Additional related works and extended discussions are in App. E.2.
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Denoise-and-refine Mechanism Theorem 1 indicates that both historical and future observations
are required for recovering the latents. However, these future observations are not accessible during
online inference, which results in a mismatch between identifiability requirements and available
information. Hence, guided by this insight with preserving the causal structure of the generative
process, we propose a novel denoise-and-refine mechanism that alternates between denoising the
observable sequences and refining the latent estimates, and is applied consistently during both training
and inference to ensure high-quality latent context recovery in an online manner. We introduce how
we implement this during training and inference.
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Figure 3: zig-zag
sampling (2 steps).

Training: Given a noisy input xktt with noise level kt, we first sample an initial
latent context from the prior: ĉprior

t ∼ pϕ(ct | ct−1), and use it to denoise
the observation: x̂(0)

t = ϵθ(x
kt
t , kt, ĉ

prior
t ). Then we infer the latent using the

posterior network, conditioned on a broader temporal window including future
observations (accessible in offline data): ĉpost

t ∼ qψ(ct | xt−k:t+1), and obtain
a refined denoised prediction: x̂(0)′

t = ϵθ(x
kt
t , kt, ĉ

post
t ).

We have two reconstruction losses: one from the prior-sampled latent,
Lprior = ∥x̂(0)

t − x0
t∥2, and one from the posterior-sampled latent, Lpost =

∥x̂(0)′
t − x0

t∥2. To encourage the posterior latent to produce better re-
constructions, we introduce a contrastive improvement loss: Lrel =
softplus

(
logLpost − log sg

(
Lprior

)
+m

)
, where sg(·) denotes stop-gradient,

softplus(u) = log(1 + eu), and m ≥ 0 is a margin hyperparameter. The final
objective for this denoise-and-refine step is: Ld-r = Lpost +λpriorLprior +λrelLrel, where λprior and λrel
are weighting coefficients. Ldiff updates only θ, Lpost updates only ψ, Lprior updates only ϕ, and Lrel
updates both ϕ and ψ.

Inference: During inference, future observations are not available, which prevents direct use of the
posterior network for latent inference. To address this, we adopt a zig-zag sampling strategy2 that
combines autoregressive denoising with latent refinement. Specifically, we first sample the entire
trajectory by applying the forward diffusion process with the maximum noise level K. We then
perform autoregressive denoising across time.

For each time step t, we begin by denoising xKt to an intermediate noise level k1 using ĉt sampled
from the prior: ĉprior

t ∼ pϕ(ct | ct−1). We then obtain updated ĉt from the posterior latent distribution
ĉpost
t ∼ qψ(ct | x0

t−k:t−1,x
k1
t ,x

k2
t+1), which is conditioned on the denoised history, the intermediate

step with noise level k1, and the next step with noise level k2. We then use ĉpost
t as the input to further

denoise xk1t to x0
t . An illustration of the zig-zag inference process is provided in Fig. 33.

In summary, Ada-Diffuser leverages autoregressive noise scheduling to reflect temporal structure,
integrates latent context identification by the denoise-and-refine mechanism, and employs zig-zag
sampling for online latent inference. This framework accommodates a wide range of scenarios,
including latent dynamics/rewards, learning from action-free data with latent actions, and both state-
and image-based environments. All variants share the same core, with task-specific modifications to
the input/output only. Details of these architectural and variations are in App. H.

5 EXPERIMENTS

We aim to answer the following questions in the evaluation: (1) Latent Identification: How well can
Ada-Diffuser capture latent factors in the environment? (2) Learning with Latent Factors: How
effective is Ada-Diffuser in planning and control when learning with the latent context on dy-
namics and reward? And can Ada-Diffuser infer latent actions from action-free demonstrations?
(3) Learning with Environments w/o Explicit Latents: In environments without explicit latent factors,
can modeling latent processes still bring performance gains? (4) Ablation Studies: What is the impact
of key design choices in the framework?

2Note on terminology: our use of “zig–zag” is purely descriptive, and there is no connection between the
proposed sampling and Bai et al. (2024).

3A larger illustration with 4 steps are given in App. Fig. A3.
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Figure 4: (a). Identification Results (i.e., Linear Probing MSE, R2) and normalized rewards on
the Cheetah environment with time-varying wind as the latent factor, evaluated across different
block sizes. (b). Results (i.e., average success rate) on planning with action-free demonstrations on
Robomimic benchmark. "AF" denotes Action-free.

5.1 SETTINGS

Benchmarks We consider a diverse set of benchmarks, including Mujoco-based locomotion tasks
(Cheetah, Ant, Walker), a robot navigation task (Maze2D), and a robot arm control task
(Franka-Kitchen) (Gupta et al., 2020), all from the D4RL benchmark suite (Fu et al., 2020).
We also consider robotic manipulation tasks from RobotMimic (Mandlekar et al., 2021) and
LIBERO-10 (Liu et al., 2023). A detailed description and illustration of these environments is
provided in App. F. We introduce latent factors affecting both dynamics (cs) and reward functions
(cr) in the Cheetah and Ant environments, considering two types of variations: episodic changes (E)
and fine-grained, time-varying step-wise changes (S). The specific change functions for each setting
are detailed in App. F.1. For evaluating latent action modeling, we follow the setup from LDP (Xie
et al., 2025), using action-free, pixel-based demonstrations from the LIBERO benchmark (Liu et al.,
2023). We use our framework to learn the inverse dynamics model to infer the latent actions (details
are in App. G.1). In total, we evaluate on 8 environments with 23 settings.

Baselines We compare Ada-Diffuser with a diverse set of baselines for fair and comprehensive
evaluation. (1) Vanilla diffusion models: For planning, we consider Diffuser (Janner et al., 2022) and
DD (Ajay et al., 2022). For policy learning, we include DP and IDQL (Hansen-Estruch et al., 2023).
We also evaluate LDCQ (Venkatraman et al., 2024), which learns a latent skill space and optimizes a
value function conditioned on both states and latent skills. (2) Latent context modeling: We include
MetaDiffuser (Ni et al., 2023) that learns contextual representations from multiple environments. We
also consider using LILAC (Xie et al., 2021) and DynaMITE (Liang et al., 2024a) which models
nonstationarity in RL through latent context learning using belief states. For a fair comparison, we
integrate their context modules into diffusion planners and policies as plug-in components (detailed
analysis in App. H.1). (3) Latent action modeling: We compare with LDP (Xie et al., 2025) with
action-free demonstrations for planning. In total, we compare with 9 baselines across these settings.

Architecture Choices (Details are in App. D.2) For latent factor identification, we use GRU (Cho
et al., 2014) embedding with MLP layers as both prior and posterior encoders to produce Gaussian
distribution over latents. For decoders, we use MLP layers. For planning and policy learning, we use
UNet (Ronneberger et al., 2015) or Transformers (Vaswani et al., 2017) as denoising networks and
use MLPs to learn the IDM. We use VAE (Kingma & Welling, 2014) for the visual encoders.

5.2 RESULTS AND ANALYSIS

Results on Latent Identification To verify our identification theory, we evaluate model performance
under different block sizes that contain varying amounts of temporal context. We include settings
where all blocks have sufficient observations, as well as a challenging case with insufficient obser-
vations (i.e., without access to future observations). To quantify the quality of the learned latent
representations, we adopt linear probing and the coefficient of determination R2 as the evaluation
metric. The results, together with normalized results, are shown in Fig. 4(a). Similarly, we also
provide the clustering result in App. Fig. A7. The yellow region indicates settings with insufficient
observations, resulting in lower identification results. The purple region corresponds to sufficient
observations and yields relatively strong performance, and the green region reflects larger block sizes,
which lead to degraded results due to redundant information or inherent difficulty for optimization.
Notably, the reward is positively associated with the accuracy of latent identification, validating the
importance of identifying latent factors in RL trajectories.
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Figure 5: Results on environments without explicitly designed latent factors. Complete results are
provided in App. Table A6–A9.

Environment Diffuser DF DF
+ DynaMITE

DF
+ LILAC MetaDiffuser Ours

Cheetah-Wind-E (cs) -120.4 ± 12.7 -105.8 ± 9.6 -82.3 ± 8.2 -91.5 ± 7.8 -95.3 ± 7.4 -68.9± 7.6
Cheetah-Wind-S (cs) -148.5 ± 9.8 -102.0 ± 10.2 -87.2 ± 10.4 -96.7 ± 9.5 -105.6 ± 14.5 -73.5± 8.7

Cheetah-Vel-E (cr) -102.4 ± 18.2 -85.6 ± 18.3 -60.2 ± 10.8 -67.8 ± 11.0 -62.6 ± 11.1 -45.8± 9.5
Ant-Dir-E (cr) 188.6 ± 39.2 195.4 ± 47.0 266.7 ± 28.1 233.6 ± 31.9 229.4 ± 32.6 285.3± 24.5

Table 1: Results (5 seeds) on Ada-Diffuser-Planner with latent factors that affects dynamics
and rewards. cs and cs indicate the changes on dynamics and reward, E and S represent the episodic
and time-step changes. All results are averaged over 5 random seeds.

Results on Decision-making We consider three groups based on the kind of latent factors.

> Group I: Latent factors on dynamics and reward: Table 1 presents the results of learning under
latent factors that affect dynamics and rewards in locomotion tasks. To ensure a fair comparison, we
implement autoregressive variants of DynaMITE and LILAC using the DF backbone. Results for
the DP-backbone counterparts are provided in App. Tables A4, which are consistently worse than
DF. Additional results, including using DP as backbones (Ada-Diffuser-policy), oracle variants
and meta-learned versions of Ada-Diffuser that use ground-truth latents as input, are provided
in App. Table A4–A5. From the results, we observe that Ada-Diffuser consistently achieves
the best performance, with a significant margin over all baselines. In particular, it outperforms
Diffusion planners and policies even when those models are enhanced with latent context modules
such as DynaMITE and LILAC (pink area), which are most comparable to our setting. Furthermore,
Ada-Diffuser outperforms DF, showing the effectiveness of our framework.

> Group II: Latent Actions: Following Xie et al. (2025), we consider learning from action-free
demonstration data, where actions are treated as latent factors to be inferred. We adopt the same
setup as in (Xie et al., 2025), using a pre-trained visual encoder obtained via a VAE to learn the latent
space from pixel observations. We then train a latent planner and an IDM using a diffusion-based
approach. Unlike prior work, our diffusion-based latent planner additionally incorporates latent
factors c to model latent context. Importantly, we train only the planner using additional action-free
demonstrations. Detailed training procedures are provided in App. G.1. Results on several tasks in
Robomimic benchmark show that we can bring improvements on all tasks via modeling the latent
process supplementary to the latent planner in (Xie et al., 2025). Here, the IDM is trained solely on
expert demonstrations. Complete results are provided in App. Table A3.

> Group III: Environments w/o Explicitly Designed Latents: Crucially, in this scenario, the latent
variable c effectively serves as a form of Bayesian filtering over the observed trajectories, capturing
the inherent stochasticity in the data (a more detailed discussion in App. D.3). Such variability
commonly arises from system noise, expert action noise, or high-level unobserved factors. The
results, shown in Fig. 5 (full results provided in App. Table A6–A9), support this interpretation. Even
in environments without explicitly designed latent contexts, incorporating latent modeling allows
Ada-Diffuser to achieve performance that is comparable to or better than these baselines. By
recovering the latent variables that capture stochasticity, nonstationarity, or unobserved structure in
the offline trajectories, the model can produce rollouts that better match the underlying dynamics, even
when the demonstrations are imperfect. These findings suggest that our framework can consistently
capture implicit latent process in the data, improving both trajectory modeling and planning.
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Latent Design Orig. w/o latents Freeze 0.5× 2× 4× 6×
Cheetah (cs) -73.5 -103.5 -110.4 -85.2 -77.6 -89.5 -102.4
LIBERO 93.4 89.3 90.2 90.9 89.4 87.6 85.0

Diffusion Design Orig. w/o refine w/o zigzag same NS random NS

Cheetah (cs) -73.5 -82.0 -91.6 -89.7 -84.6
LIBERO 93.4 83.9 91.4 85.2 88.5

Table 2: Ablations on Cheetah-Wind-S (planner) and LIBERO (DP-policy).

5.3 ABLATION STUDIES

We conduct ablation studies to evaluate the contributions of key components in our framework. For
latent factor identification, Fig. 4(a) shows the effect of different temporal block sizes, illustrating
the benefit of incorporating future observations during inference. Here, we also consider ablations
where (i) the entire latent identification module is removed, (ii) the latent identification network is
frozen after the first 10% of training steps, and (iii) different numbers of latent updates are used. For
the causal diffusion model, we examine the impact of the following design choices: (i) removing the
refinement step (w/o refine); (ii) removing zig-zag sampling (w/o zig-zag); (iii) replacing the causal
noise schedule with a fixed noise level across time steps (vanilla diffusion) or with random noise
scaling as in DF (Chen et al., 2024) (same NS, random NS). The results in Table 2 demonstrate the
effectiveness of these modules in our framework in both settings: with and without explicit latent
factors. Specifically, For the latent identification ablations, we find that the latent variables play
a critical role. In particular, freezing the latent module makes the model perform poorly, because
the latent context follows a temporal process and must continue adapting during training. Varying
the latent dimensionality within a moderate range (about 0.5×–2×) does not significantly change
performance, but using overly large latent dimensions (e.g., 4×–6×) degrades results, likely due to
redundant capacity and harder optimization.

Variant MSE
Oracle 0.12
Full 0.18
w/o refinement 0.28
w/o zig–zag 0.23

Table 3: Probing
MSE for recovering
the true latents.

In terms of causal diffusion, for refinement and zig–zag, we hypothesize the
gains come from reducing posterior mismatch. We therefore run a latent
probing test on Cheetah with changing wind and report linear-probe MSE
across variants; Ada-Diffuser with both refinement and zig–zag attains
the lowest error (Table 3; Details are in App. I.2.4). Removing backward
refinement yields the largest degradation (0.18→ 0.28), consistent with the
role of refinement in letting future evidence within a block update the latent
posterior and reduce temporal lag. Disabling zig–zag also harms accuracy
(0.18→ 0.23), suggesting that alternating conditioning helps align the denoising trajectory with the
latent dynamics rather than purely following the forward temporal pass. Moreover, the gap between
our full model (0.18) and the oracle that has access to true futures (0.12) is small, verifying that the
predicted future is already sufficiently informative for reliable latent inference in practice. Together,
these results support our claim that both components reduce posterior mismatch and improve latent
identifiability, which in turn benefits planning and control in settings with evolving hidden factors.

Additional ablations are provided in App. I.2, including full results, comparisons of alternative noise
schedules beyond linear (App. I.2.2), sweeps over temporal block length (App. I.2.3), and analyses
of long-horizon planning (App. I.2.5). Notably, we show that our method introduces no significant
computational overhead in terms of training runtime and inference latency (App. I.1, Table A12-A13).

6 CONCLUSIONS

We demonstrate that identifying latent factors from sequential observations is critical for effective
decision-making. We provide theoretical results that establish conditions under which latent variables
can be identified using small temporal blocks of observations. This insight enables a principled
integration of latent identification into a diffusion-based generative framework, allowing us to capture
the underlying causal process while maintaining scalability. Our proposed Ada-Diffuser is
broadly applicable to a variety of settings, including planning and control tasks with or without
explicit latent structure, and even action-free demonstrations. Results across diverse benchmarks show
substantial improvements, validating the effectiveness of our method not only in environments with
designed latent factors but also in general settings where latent structure is implicit but influential.
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REPRODUCIBILITY STATEMENT

For our method, details of the model choices and hyperparameters are provided in Appendix G.
Modifications to the benchmarks are described in Appendix F. Reproduction details of other meth-
ods and the specific baseline designs, particularly for DF, LILAC+DP/DF/Diffuser, and Dyna-
MITE++DP/DF/Diffuser, are given in Appendix H.
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A DISCUSSIONS AND OVERVIEW

In this section, we expand on the design and motivation behind Ada-Diffuser, including the
rationale for modeling latent factors in decision-making, key architectural choices, and additional
analysis of the experimental results presented in Section 5. We then provide an overview of the
remaining contents of this appendix.

A.1 BROADER IMPACT

Our work aims to identify and leverage latent processes in generative decision-making, with applica-
tions in real-world domains such as robotics and healthcare. While these tasks may entail potential
societal risks, we do not believe any specific concerns need to be highlighted here. Instead, by uncov-
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ering and modeling the underlying hidden processes, our approach promotes greater transparency in
decision-making, which can ultimately lead to more reliable and trustworthy outcomes.

A.2 LIMITATIONS AND FUTURE WORK

One current limitation is that this work focuses primarily on theoretical formulation and algorithmic
development. Although we evaluate on a variety of established benchmarks, real-world deployment,
such as in self-driving, aerial drones, and physical robotics, remains an important direction for future
work.

A.3 DISCUSSIONS ON THE CORE IDEA

Q1: On Latent Modeling. Why is it necessary to model latent processes when we already have
access to a large amount of demonstration data?

In many decision-making systems, there exist unobservable variables that influence both the dynamics
and the reward structure. More generally, these latent variables often evolve over time. Such scenarios
are common in real-world settings, for example, in robotic control, system dynamics can be affected
by external forces (e.g., wind, friction), or by varying user demands (e.g., different target positions).
In these cases, learning an optimal policy requires conditioning on the latent factors, especially
when they are non-stationary or when transferring to new domains. Prior work has demonstrated the
importance of latent variable modeling in both reinforcement learning (RL) and imitation learning
(IL) (Zintgraf et al., 2021; Liang et al., 2024a; Nguyen et al., 2021; Rakelly et al., 2019; Ni et al.,
2023; Xie et al., 2021).

Even with access to large demonstration datasets, it remains difficult to ensure sufficient coverage
over the full space of environmental or task-specific latent factors relevant to decision-making. This
limitation has been widely acknowledged in recent efforts focused on analyzing data quality and
designing data collection protocols to promote generalization (Belkhale et al., 2023; Xie et al., 2024a;
Hejna et al., 2024; Gao et al., 2024a). However, most of these works target fixed or task-specific
latent variables. In contrast, we consider a more general setting where latent factors evolve over time
and are not predefined. Our framework provides theoretical guarantees for identifying such latent
variables from partial observations and seamlessly integrates this identification process into diffusion
models, enabling scalability across complex decision-making tasks.

Q2: On the Scenarios w/o Explicit Latents. What does latent modeling represent when no
explicit latent factors are defined, and why can it still benefit decision-making?

First, Latent stochasticity is always present (in real-world systems). Even in settings where all
task-relevant observations are available, e.g., in locomotion tasks where full physical state information
is provided, or in robotic manipulation with access to both proprioceptive and visual inputs, there
may still exist underlying processes that are not directly observed. These include domain-specific
factors such as external forces (e.g., wind) or dynamically changing task goals (e.g., target positions),
which can be viewed as implicit latent variables. Hence, it is crucial to infer and condition on these
latent factors

In the extreme case where such factors are also fully observed, latent modeling can still offer
significant benefits. Specifically, it can capture residual stochasticity present in the environment or
demonstration data, serving to explain variability not accounted for by observable features. As shown
in our formulation: st = f (st−1, at−1, ϵt) , rt = g (st, at, δt), the residual stochasticity (ϵ, δ) can
be interpreted as implicit latent variables (sometimes can be time-correlated) influencing transitions
and rewards. The model can then identify meaningful structure from irrelevant or noisy variations,
for instance, filtering out visual background artifacts that are not predictive of dynamics or optimal
actions. In this sense, the learning framework is conceptually similar to Bayesian Filtering

Moreover, partial observability and attribution gaps exist even in clean data. Even in environ-
ments with consistent near-deterministic demonstrations, the agent often lacks access to the full
set of latent causal factors or attributes that influence behavior. Specifically, many systems exhibit
structured yet unobserved variability (e.g., task goals, preferences, intentions), and modeling this
variability with latent variables improves generalization.
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Q3: On the Identification Theory. What does the identification theory establish, and how does
it inform algorithm design?

The identification theory (Theorem 1) establishes that the distribution over latent variables can be
provably recovered from observable trajectories using only a small temporal window, specifically, a
small temporal block of four time steps. This provides a general non-parametric theoretical guarantee
that latent factors can be identified without requiring strong inductive biases or restrictive assumptions
on the model class or functional form.

This “four-step” result has direct implications for algorithm design. It suggests that latent identification
can be effectively performed using a short temporal block, which aligns naturally with block-wise
generative modeling approaches such as diffusion models. These models operate over segments or
chunks of data, and our theoretical results justify using local temporal blocks to infer latent variables
in a principled and scalable manner.

A.4 DISCUSSIONS ON THE THEORETICAL ASSUMPTIONS AND RESULTS

Q4: On the Assumptions. What do Assumption 2 (Distributional Variability) and Assumption 3
(Uniqueness of Spectral Decomposition) mean, and why are they considered mild?

We expand on the intuition and practical relevance of these two assumptions below.

Distributional Variability (Assumption 2) refers to the requirement that the conditional distributions
p(xt−2 | xt+1), p(xt+1 | xt, ct), and p(xt | xt−2,xt−1)

are sufficiently sensitive to variations in their input. That is, for different input pairs within a local
neighborhood, the output distributions differ meaningfully, ensuring the system exhibits enough
variability for identification. This assumption aligns with real-world decision-making settings (e.g.,
locomotion or robotic manipulation), where changes in inputs such as physical state, control policy,
or reward function lead to observable changes in output distributions.

Uniqueness of Spectral Decomposition (Assumption 3) builds on this by ensuring that changes in the
latent variable ct induce distinct influences on the transition dynamics, specifically on the mapping
from xt−1 to xt. To formalize this, we consider the operator k:

k(xt, x̄t,xt−1, x̄t−1, ct) =
p(xt | xt−1, ct) · p(x̄t | x̄t−1, ct)

p(x̄t | xt−1, ct) · p(xt | x̄t−1, ct)
, (A1)

which separates into two multiplicative components:

k1 =
p(xt | xt−1, ct)

p(xt | x̄t−1, ct)
, (A2)

k2 =
p(x̄t | x̄t−1, ct)

p(x̄t | xt−1, ct)
. (A3)

Here, k1 and k2 measure how changes in historical inputs affect the transition distribution at the
current time step. The assumption requires that for any two distinct values of ct, the corresponding
operator k is different, indicating that the latent variable has a sufficiently strong influence on the
system dynamics.

Since x̄ is in the neighborhood of x, this formulation effectively captures second-order changes
in the transition dynamics with respect to the latent variable ct. This reflects many real-world RL
systems, where even unobservable latent factors (e.g., wind speed or goal target) cause noticeable and
structured changes in transition behavior over time, for instance, by considering velocity as states.

In summary, these two assumptions are not only theoretically necessary for identification, but also
naturally hold in many RL and control systems. They justify the need to explicitly model and identify
latent variables, as such variables often induce meaningful and structured changes in both dynamics
and optimal decision-making behavior.

Q5: On the Identification of Posterior Distribution and up to the Invertible Function
(Theorem 1). Why do we aim to identify the posterior distribution over latent variables, and
what is the role of the invertible function h between the estimated and true latents?
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Theorem 1 establishes that the posterior distribution over latent factors given surrounding observations,
p(ct | xt−2:t+1), is identifiable up to an invertible transformation. That is, the estimated latent ĉt
satisfies ĉt = h(ct) for some invertible function h.

This form of identifiability is sufficient for downstream tasks such as dynamics modeling, planning,
and control. Specifically, the learned dynamics or policy can be composed with h−1 without loss
of expressiveness or utility. Since we only need to condition on the inferred latent ĉt to perform
these tasks, any invertible transformation of the latent space preserves the representational capacity
required for decision-making. In other words, although we may not recover the true latent variable ct
exactly, the recovered representation ĉt contains the same information and can be used equivalently
in practice.

Therefore, identifying the posterior distribution (up to an invertible transformation) is both theo-
retically meaningful and practically sufficient for learning accurate dynamics models and optimal
policies.

A.5 DISCUSSIONS ON THE MODEL DESIGN

Q6: On Different Settings (Planning and Policy). How is Ada-Diffuser applied to both
planning and policy learning settings?

Ada-Diffuser is designed as a unified and generic framework that accommodates different types
of inputs x (e.g., states, state-action pairs) and outputs (e.g., actions, trajectories, or state sequences).
This flexibility allows it to support a wide range of planning and policy learning paradigms. We
summarize four representative settings below:

• Planning with state-action generation: The model generates both states and actions, with
latent variables influencing dynamics or rewards. This setting aligns with prior work such as
Diffuser (Janner et al., 2022).

• Planning with state-only generation: The model generates future states, and an inverse
dynamics model is used to recover the corresponding actions. This setup follows Decision
Diffuser (Ajay et al., 2023a).

• Planning from action-free demonstrations: Only state sequences are available, and latent
variables are assumed to capture high-level behaviors or skills. This setting extends latent
diffusion planning (Xie et al., 2025).

• Policy learning: The model generates actions conditioned on the current or recent history of
states. This includes multi-step action generation (as in Diffusion Policy (Chi et al., 2023))
and one-step action generation (as in Implicit Diffusion Q-Learning, IDQL (Hansen et al.,
2022)). In both cases, latent factors may affect the underlying dynamics or rewards.

These diverse settings demonstrate the universality of our framework and highlight that uncovering
latent structure is a broadly applicable and critical problem in generative decision-making.

Q7: On the Latent Identification. How is Stage 1 (Latent Identification) trained, and does it
introduce additional computational overhead?

In Stage 1, we train the latent identification module using an offline dataset, as commonly done in
offline RL and imitation learning tasks. Specifically, we employ a lightweight variational autoencoder
(VAE) to optimize the ELBO defined in Section 4.2. Empirically, this stage introduces minimal
computational overhead (Appendix I.1). We further provide an ablation study in Appendix I.1
showing the impact of the number of training samples on the effectiveness of the latent identification
module.

Q8: On the Temporal Block Design. How does this reflect Theorem 1, and why do we not use
exactly four steps in practice?

Our approach reflects the theoretical result in Theorem 1 by identifying latent variables using small
temporal blocks in both Stage 1 and Stage 2. In Stage 1, we segment trajectories into local blocks
and optimize the ELBO to learn the posterior over latent variables. In Stage 2, we apply block-wise
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refinement to improve the posterior estimates using both past and one-step future observations,
making a more accurate identification than using the prior alone.

While Theorem 1 shows that four consecutive time steps are sufficient for identifiability in principle,
we do not strictly limit the block size to four in practice. Empirically, we find that using slightly larger
blocks (typically between 6 and 20 steps) leads to more stable optimization and better performance.
Our ablations in Appendix I.2 show that without access to future observations, identifiability degrades,
aligning with the theory.

We treat the "four-step" condition not as a strict architectural constraint but as a theoretical justification
(sufficient condition) for using small temporal blocks. The optimal number of steps in practice may
vary depending on data properties, task complexity, and model capacity.

Q9: On the Refinement Step. Why is the refinement step necessary, how does it work, and does
it introduce additional computational overhead?

The refinement step is motivated by the identification theory, which suggests that incorporating the
current and future observations (other than only using historical ones) allows the model to infer
a more informative posterior over latent variables than relying on the prior alone. This posterior
refinement helps the model better capture latent dynamics by leveraging richer temporal context.

During training, the refinement step encourages the model to extract meaningful information from the
posterior. Since Stage 1 optimizes the ELBO, the learned prior is already aligned with the posterior
to some extent. This prevents the prior from collapsing into a trivial solution. The refinement step
builds on this by using the pre-trained prior while further improving inference through contrastive
learning between prior and posterior samples.

Importantly, this procedure does not introduce significant computational overhead. As shown in
Appendix I.2, the refinement uses the same denoising network with different latent inputs (c) and
adds only a lightweight contrastive loss, making it efficient in practice.

Q10: On the Refinement Step. Why we use diffusion models?

Temporal latent identification and diffusion models act in synergy to learn the underlying structure of
sequential decision-making. We clarify this intuition from two complementary perspectives: (i) why
identifiable latents benefit a causal diffusion planner/policy, and (ii) why the diffusion architecture in
turn enhances latent identification.

Latents for Diffusion As discussed above, once the latent variables are properly modeled, the
diffusion process can more faithfully represent the true data-generation mechanism of RL trajectories.
The latent factors capture slow-changing or unobserved influences on transitions and rewards, and
our causal diffusion model explicitly conditions the denoising trajectory on these estimates. (i) The
autoregressive noise schedule enforces the correct temporal dependence among (st, at) pairs and
the latent ct. (ii) The denoise-and-refine mechanism lets the diffusion model repeatedly update the
trajectory using progressively more accurate latent estimates. (iii) The zig–zag sampling further
ensures that the generated trajectory and latent context remain consistent, even during online sampling
where future observations are unavailable.

Diffusion for Latents Conversely, the diffusion architecture naturally supports accurate latent
inference, for two reasons. (i) Multi-step denoising aligns well with our identifiability condition and
implementation. Theorem 1 indicates that small temporal blocks containing both past and future steps
are necessary for identifying ct. Specifically, to identify the latent context ct, whose posterior depends
on future observations (e.g., xt+1, guided by Theorem 1), we introduce a backward refinement step.
Diffusion model thereby provides progressively refined intermediate predictions along the process.
We first denoise xt into a partial state xk1t using x0t−1 and an initial estimate of ct sampled from
prior, then refine ct with xt+1 to obtain the final x0t . During training, we enforce this backward
refinement to satisfy the theoretical identifiability conditions. At inference time (zig-zag sampling),
we substitute xt+1 with a predicted estimate. These intermediate estimates act as “(soft) future
observations,” enabling the posterior network to approximate the required block xt−k:t+1 even at test
time. Hence, diffusion’s iterative denoising gives us exactly the structure needed to approximate the
future-augmented block and recover ct online. (ii) Diffusion is a strong backbone for modeling RL/IL
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trajectories. Using it can make that the latent module receives high-quality, temporally consistent
denoised signals, which further stabilizes and improves latent recovery and policy learning.

In summary, identifiable latents and causal diffusion reinforce each other: latents make diffusion-based
planning more accurate and adaptive, while diffusion provides the temporal refinement structure
needed to identify latents reliably, even under partial observability and in the absence of future
observations during inference.

A.6 OVERVIEW

In this appendix, we first present the theoretical analysis in Section B, including the proof of Theorem 1
and accompanying discussion, followed by the ELBO derivation for Ada-Diffuser. In Section C,
we provide an in-depth analysis of different types of MDPs and their interconnections. Section H
details the full Ada-Diffuser algorithm, model architectures, and its relation to Bayesian filtering.
Section E expands on related work, covering diffusion-based decision-making, latent state estimation
via belief learning, and autoregressive diffusion models. Finally, Sections F, G, H, and I provide
additional details on benchmarks, baseline implementations, and complete experimental results.

B THEORY

B.1 NOTATION LIST

We summarize the key notations used throughout the paper in Table A1, including variables for
observed and latent states, temporal indices, and relevant mappings. These notations are used
consistently in our theoretical analysis and algorithmic framework.

Index Explanation Support

xt [st,at], observed trajectories including state and action at time step t Xt ⊆ Rda+ds
dx dimension of observed variables da + ds
st state variable at time t st ∈ St
at action variable at time t at ∈ At
rt reward received at time t rt ∈ R
ct latent context variable at time t ct ∈ Ct
τ trajectory sequence of (st,at) {(s0,a0), . . . , (sT ,aT )}
τx observable trajectory (states or state-actions) τsa or τs
τc sequence of latent contexts {c0, . . . , cT }
τ augmented trajectory with context [τx, τc]

Function
T transition dynamics conditioned on ct T (st | st−1,at−1, ct)
R reward function conditioned on state, action, and context R(st,at, ct)
πE expert policy used for generating demonstrations πE(st, ct)
qψ variational posterior for latent inference qψ(ct | xt−Tx:t+1)
pϕ latent prior distribution pϕ(ct | ct−1)
pθ generative model for transitions pθ(xt | xt−1, ct)
ϵθ denoising network in diffusion process ϵθ(·)

Symbol
ηt, ϵt, δt exogenous noise in latent dynamics, state transitions, and reward i.i.d. samples from noise distributions
La|b distribution operator from b to a defined in Dunford & Schwartz (1971)
k(·) ratio of joint probabilities used in uniqueness assumption defined in Eq. 1
ᾱt cumulative noise schedule in diffusion product of forward noise factors
K maximum number of diffusion steps K ∈ N

Tp, Ta planning and action generation horizons Tp, Ta ∈ N
Tx temporal block size for latent inference Tx ∈ N

Table A1: List of notations, explanations, and corresponding definitions.

Also, we formally define the operators used in the following.
Definition 1 (Linear Operator (Dunford & Schwartz, 1971)). Let a and b be random variables with
supports A and B, respectively. The linear operator Lb|a is defined as a mapping from a probability
function pa ∈ F(A) to a probability function pb ∈ F(B), given by

F(A) → F(B) : pb = Lb|a ◦ pa =

∫
A
pb|a(· | a) pa(a) da. (A4)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Intuitively, this operator characterizes the transformation of probability distributions induced by the
conditional distribution pb|a. It provides a general representation of distributional change from a to
b, without imposing any parametric assumptions on the underlying distributions.
Definition 2 (Diagonal Operator). Let a and b be random variables with associated density
functions pa and pb defined on supportsA and B, respectively. For a fixed value b ∈ B, the diagonal
operator Db|a is defined as a linear operator that maps a density function pa ∈ F(A) to a function
in F(A) via pointwise multiplication:

Db|a ◦ pa = pb|a(b | ·) · pa, (A5)

where Db|a = pb|a(b | ·) acts as a multiplication operator indexed by b.

B.2 PROOF OF THEOREM 1

Proof. By the definition of data generation process (Fig. 1), the observed density is represented by:

pxt+1,xt,xt−1,xt−2

=

∫
Ct

∫
Ct−1

pxt+1,xt,ct,ct−1,xt−1,xt−2
dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,xt−1,xt−2,ct,ct−1
pxt,ct|xt−1,xt−2,ct−1

pct−1,xt−1,xt−2
dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt,ct|xt−1,ct−1
pct−1,xt−1,xt−2

dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt|xt−1,ct,ct−1
pct|xt−1,xt−2,ct−1

pxt−1,xt−2,ct−1
dctdct−1.

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt|xt−1,ct,ct−1
pct,xt−1,xt−2,ct−1dctdct−1.

Then, the property of Markov process presents conditional independence, organized as follows:

pxt+1,xt,xt−1,xt−2
=

∫
Ct
pxt+1|xt,ctpxt|xt−1,ct

(∫
Ct−1

pct,ct−1,xt−1,xt−2
dct−1

)
dct

=

∫
Ct
pxt+1|xt,ctpxt|xt−1,ctpct,xt−1,xt−2

dct. (A6)

Eq. A6 can be denoted in terms of operators: given values of (xt,xt−1) ∈ Xt ×Xt−1, Eq. A6 is

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

. (A7)

Notably, Eq. A7 is the operator representation of the observed density function in 4 measurements.

Furthermore, the structure of Markov process implies the following two equalities:

pxt+1,xt,xt−1,xt−2 =

∫
Ct
pxt+1|xt,ctpxt,ct,xt−1,xt−2 dct,

pxt,ct,xt−1,xt−2
=

∫
Ct−1

pxt,ct|xt−1,ct−1
pct−1,xt−1,xt−2

dct−1. (A8)

For any fixed (xt,xt−1) ∈ Xt ×Xt−1, we notate Eq. A8 in terms of operators as follows:

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctLxt,ct,xt−1,xt−2

,

Lxt,ct,xt−1,xt−2 = Lxt,ct|xt−1,ct−1
Lct−1,xt−1,xt−2 . (A9)

Substituting the second line in Eq. A9 into R.H.S. of the first equation, we obtain

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctLxt,ct|xt−1,ct−1

Lct−1,xt−1,xt−2

⇔ Lxt,ct|xt−1,ct−1
Lct−1,xt−1,xt−2 = L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2 . (A10)
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The second line above uses Assumption 2 that L−1
xt+1|xt,ct is injective. Next, we show how to

eliminate Lct−1,xt−1,xt−2
from the above. Consider 3 measurements {xt,xt−1,xt−2}, we have

pxt,xt−1,xt−2
=

∫
Ct−1

pxt|xt−1,ct−1
pct−1,xt−1,xt−2

dct−1, (A11)

which, in operator notation (for fixed xt−1), is denoted as
Lxt,xt−1,xt−2

= Lxt|xt−1,ct−1
Lct−1,xt−1,xt−2

,

⇒ Lct−1,xt−1,xt−2 = L−1
xt|xt−1,ct−1

Lxt,xt−1,xt−2 . (A12)

The R.H.S. applies Assumption 2. Hence, substituting the above into Eq. A10, we obtain:
Lxt,ct|xt−1,ct−1

L−1
xt|xt−1,ct−1

Lxt,xt−1,xt−2
= L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2

⇒ Lxt,ct|xt−1,ct−1
= L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2
L−1
xt,xt−1,xt−2

Lxt,xt−1,ct−1
. (A13)

The second line applies Assumption 2 to post-multiply by L−1
xt,xt−1,xt−2

, while in the third line, we
postmultiply both sides by Lxt|xt−1,ct−1

.

For all xt, choose a xt−1 and a neighborhoodN r around (xt,xt−1) to satisfy Assumption 2, and pick
a (x̄t, x̄t−1) within the neighborhood N r. Because (x̄t, x̄t−1) ∈ N r, we also know that (xt, x̄t−1),
(x̄t,xt−1) ∈ N r. The joint distribution of of observations can be represented by Eq. A7:

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

. (A14)
The first term on the R.H.S., Lxt+1|xt,ct , does not depend on xt−1, and the last term Lct,xt−1,xt−2

does not depend on xt. This feature suggests that, by evaluating Eq. A7 at the four pairs of points
(xt,xt−1), (x̄t,xt−1), (xt, x̄t−1), (x̄t, x̄t−1), each pair of equations will share the same operator
representation in common. Specifically:

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

, (A15)

Lxt+1,x̄t,xt−1,xt−2 = Lxt+1|x̄t,ctDx̄t|xt−1,ctLct,xt−1,xt−2
, (A16)

Lxt+1,xt,x̄t−1,xt−2 = Lxt+1|xt,ctDxt|x̄t−1,ctLct,x̄t−1,xt−2 , (A17)

Lxt+1,x̄t,x̄t−1,xt−2
= Lxt+1|x̄t,ctDx̄t|x̄t−1,ctLct,x̄t−1,xt−2

. (A18)

Assumption 2 implies that Lxt+1|x̄t,ct is injective. Moreover, Assumption 3 implies pxt|xt−1,ct(xt |
xt−1, ct) > 0 for all ct, so that Dx̄t|xt−1,ct is invertible. We can then solve for Lct,xt−1,xt−2 from
Eq. A16 as

D−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ctLxt+1,x̄t,xt−1,xt−2

= Lct,xt−1,xt−2
. (A19)

Plugging this expression into Eq. A15 leads to
Lxt+1,xt,xt−1,xt−2 = Lxt+1|xt,ctDxt|xt−1,ctD

−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ctLxt+1,x̄t,xt−1,xt−2

. (A20)

At this point, we have decomposed the observable joint operator and expressed it in terms of latent-
conditioned transitions, enabling spectral analysis for identifying latent structure.

Lemma 1 of (Hu & Schennach, 2008) shows that, given the injectivity of Lxt−2,x̄t−1,xt,xt+1 as in
Assumption 2, we can postmultiply by L−1

xt+1,xt,xt−1,xt−2
to obtain:

M ≡ Lxt+1,xt,xt−1,xt−2
L−1
xt+1,xt,xt−1,xt−2

= Lxt+1|xt,ctDxt|xt−1,ctD
−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ct .

(A21)

Similarly, manipulations of Eq. A17 and A18 lead to
N ≡ Lxt+1,x̄t,xt−1,xt−2

L−1
xt+1,xt,x̄t−1,xt−2

= Lxt+1|x̄t,ctDx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

L−1
xt+1|xt,ct . (A22)

Assumption 2 guarantees that, for any xt, (x̄t,xt−1, x̄t−1) exist so that Eq. A21 and Eq. A22 are
valid operations. Finally, we postmultiply Eq. A21 by Eq. A22 to obtain:
MN = Lxt+1|xt,ctDxt|xt−1,ctD

−1
x̄t|xt−1,ct

(
Lxt+1|x̄t,ctLxt+1|x̄t,ct

)
×Dx̄t|x̄t−1,ctD

−1
xt|x̄t−1,ct

L−1
xt+1|xt,ct

= Lxt+1|xt,ct

(
Dxt|xt−1,ctD

−1
x̄t|xt−1,ct

Dx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

)
L−1
xt+1|xt,ct

≡ Lxt+1|xt,ctDxt,x̄t,xt−1,x̄t−1,ctL
−1
xt+1|xt,ct , (A23)
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where(
Dxt,x̄t,xt−1,x̄t−1,cth

)
(ct) =

(
Dxt|xt−1,ctD

−1
x̄t|xt−1,ct

Dx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

h
)
(ct)

=
pxt|xt−1,ct(xt | xt−1, ct)pxt|xt−1,ct(x̄t | x̄t−1, ct)

pxt|xt−1,ct(x̄t | xt−1, ct)pxt|xt−1,ct(xt | x̄t−1, ct)
h(ct)

≡ k(xt, x̄t,xt−1, x̄t−1, ct)h(ct). (A24)

This equation implies that the observed operator MN on the L.H.S. of Eq. A25 has an inher-
ent eigenvalue–eigenfunction decomposition, with the eigenvalues corresponding to the function
k(xt, x̄t,xt−1, x̄t−1, ct) and the eigenfunctions corresponding to the density pxt+1|xt,ct(· | xt, ct).
The decomposition in Eq. A25 is similar to the decomposition in nonparametric identification (Hu
& Schennach, 2008; Carroll et al., 2010). First, Assumption 3 ensures this decomposition is
unique. Second, the operator MN on the L.H.S. has the same spectrum as the diagonal oper-
ator Dxt,x̄t,xt−1,x̄t−1,ct . Assumption 3 guarantees that the spectrum of the diagonal operator is
bounded. Since an operator is bounded by the largest element of its spectrum, Assumption 3 also
implies that the operator MN is bounded, whence we can apply Theorem XV.4.3.5 from (Dunford &
Schwartz, 1971) to show the uniqueness of the spectral decomposition of bounded linear operators:

Lxt+1|xt,ct = CLxt+1|xt,ctP
−1. Dxt,x̄t,xt−1,x̄t−1,ct = PDxt,x̄t,xt−1,x̄t−1,ctP

−1 (A25)

where C is a scalar accounting for scaling indeterminacy and P is a permutation on the order of
elements in Dx̂t|ĉt , as discussed in (Dunford & Schwartz, 1971). These forms of indeterminacy are
analogous to those in eigendecomposition, which can be viewed as a finite-dimensional special case.

We will show why the uniqueness of spectral decomposition is informative for identifications. First,∫
X̂t+1

px̂t+1|x̂t,ĉt dx̂t+1 = 1 (A26)

must hold for every ĉt due to normalizing condition, one only solution is to set C = 1.

Second, Assumption 3 implies that Eq. A25 imply that the eigenvalues k(xt, x̄t,xt−1, x̄t−1, ct) are
distinct for different values ct. If several ct yield identical eigenvalues, the associated eigenfunctions
cannot be uniquely identified, as any linear combination of them remains valid. Therefore, for each
xt, one can choose x̄t,xt− 1, x̄t−1 such that the eigenvalues differ for all ct.

Ultimately, the unorder of eigenvalues/eigenfunctions is left. The operator, Lxt+1|xt,ct , corresponding
to the set {pxt+1|xt,ct(· | xt, ct)} for all xt, ct, admits a unique solution (orderibng ambiguity of
eigendecomposition only changes the entry position):

{pxt+1|xt,ct(· | xt, ct)} = {pxt+1|x̂t,ĉt(xt+1 | x̂t, ĉt)}, for all xt, ct, x̂t, ĉt (A27)

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to
exchange the conditioning variables, that is,

{pxt+1|xt,ct(· | x
(1)
t , c

(1)
t ), pxt+1|xt,ct(· | x

(2)
t , c

(2)
t ), . . .}

= {pxt+1|x̂t,ĉt(· | x̂
(1)
t , ĉ

(1)
t ), pxt+1|x̂t,ĉt(· | x̂

(2)
t , ĉ

(2)
t ), . . .}

(A28)

⇒ [pxt+1|xt,ct(· | x
(π(1))
t , c

(π(1))
t ), pxt+1|xt,ct(· | x

(π(2))
t , c

(π(2))
t ), . . .]

= [pxt+1|x̂t,ĉt(· | x̂
(π(1))
t , ĉ

(π(1))
t ), pxt+1|x̂t,ĉt(· | x̂

(π(2))
t , ĉ

(π(2))
t ), . . .]

where superscript (·) denotes the index of the conditioning variables [xt, ct], and π is reindexing the
conditioning variables. We use a relabeling map H to represent its corresponding value mapping:

pxt+1|xt,ct(· | H(xt, ct)) = pxt+1|x̂t,ĉt(· | x̂t, ĉt), for all xt, ct, x̂t, ĉt (A29)

By Assumption 3, different ct corresponds to different pxt+1|xt,ct(· | H(xt, ct)), which indicates
that there is no repeated element in {pxt+1|xt,ct(· | H(xt, ct))} and {pxt+1|x̂t,ĉt(· | x̂t, ĉt)}. Such
uniqueness ensure that the relabelling map H is one-to-one.
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Furthermore, Assumption 3 implies that pxt+1,|xt,ct(· | H(xt, ct)) corresponds a unique H(xt, ct).
The same holds for the pxt+1|x̂t,ĉt(· | x̂t, ĉt), implying that

pxt+1|xt,ct(· | H(xt, ct)) = pxt+1|x̂t,ĉt(· | x̂t, ĉt) =⇒ x̂t, ĉt = H(xt, ct) (A30)

Since the observation xt is known and suppose x̂t = xt, this relationship indeed represents an
invertible transformation between ĉt and ct as

ĉt = h(ct). (A31)

which ensures that p(ct | xt−2:t+1) can be identifiable up to an invertible transformation on the latent
variables ĉt = h(ct)

B.3 THEORY-ALGORITHM ALIGNMENT

Here, we provide a more detailed description of our theoretical foundations, model design guidance,
and algorithmic implementation. This complements the high-level summary in the main paper and
offers additional context about the technical depth behind our contributions.

B.3.1 NON-PARAMETRIC IDENTIFIABILITY THEORY

We establish this non-parametric identifiability result that gives sufficient conditions for recovering
latent contexts from reinforcement learning (RL) trajectories using short temporal blocks. Each block
includes a small number of future steps, which allows the model to reason about both the immediate
past and the near future. Formally, we prove that under mild and broadly applicable assumptions,
the latent context ct driving the generative process of the observed states and actions (xt,at) can be
recovered up to an equivalence class. This identifiability guarantee is important because it shows that
latent-aware planning can be theoretically justified even when the environment contains unobserved
factors or task-dependent variations.

B.3.2 MODEL DESIGN GUIDANCE

The theoretical result directly guides the design of our causal diffusion model. To leverage Theorem 1,
the diffusion model must not only generate trajectories but also recover the true latent factors.
Concretely, the model must:

1. capture temporal dependencies across short blocks of states and actions;

2. jointly model observable and latent variables;

3. enforce conditions for identifiability, ensuring that the latent ct can be isolated from the
observed sequence.

These design requirements inform our noise schedule and the coupling of autoregressive denoising
with latent refinement.

This provides guidance for the algorithm design:

Autoregressive Denoising. We model temporal dependencies over both observable and latent
variables using an autoregressive diffusion process. At each step, xt is denoised while conditioning
on partially denoised past states and inferred latent variables from a short temporal block (Section 4.1).
This schedule results in a structured temporal-latent modeling process that better preserves long-range
dependencies.

Backward Refinement. To explicitly identify latent contexts whose posterior depends on future
observations (e.g., xt+1, guided by Theorem 1), we introduce a backward refinement step. At the
second-to-last denoising stage, we refine a partial state xk1t using the initial estimate of ĉt sampled
from the prior and xt+1 as additional evidence. The refined ĉt is then used to produce the final
denoised state x0t . During training, this backward refinement is enforced to satisfy the identifiability
conditions. At inference time (zig-zag sampling), we substitute xt+1 with a predicted estimate to
maintain efficiency.
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Unification. The autoregressive denoising and backward refinement are integrated into a single
noise schedule, enabling joint modeling of temporal dependencies and latent variables. Our imple-
mentation follows a four-step refinement scheme but can be extended to more steps if needed. Notably,
despite the additional refinement, the method remains computationally efficient (see Appendix I.1).
Further acceleration is possible via Picard iteration, which parallelizes refinement steps and reduces
inference runtime by about 25˘30%.

B.3.3 DISCUSSION ON ASSUMPTIONS

B.3.4 RELAXING ASSUMPTION 1 (BEYOND FIRST–ORDER MARKOV)

We can relax the first–order Markov assumption to an n-order Markov structure with delayed/cumu-
lative influences without altering the core identifiability argument. Suppose the generative process
satisfies

p(xt+1 | x1:t,a1:t, c1:t) = p
(
v(xt+1 | xt:t−n+1,at:t−n+1, ct:t−n+1

)
,

and that the conditioning sets across non overlapping lags exhibit block–wise conditional inde-
pendence (the same separation conditions used in Theorem 1). Then there exists a finite window
of observations whose statistics identify the contemporaneous block [ct,xt] up to an invertible
reparameterization.

Concrete identification statement. Let Wt =
(
xt−2n:t+2n

)
denote a 4n+1-length observation

window.4 Assume: (i) time direction is known (so [ct,xt] → [ct+1v, xt+1] is oriented); (ii) the
variability (support) conditions from Theorem 1 hold for the n-lag blocks; and (iii) block–wise
independence across non–overlapping lags is satisfied. Then there exists an invertible map H such
that

[ct,xt] = H
(
Wt

)
,

so ct (and xt) are identifiable up to an invertible transformation from a finite window of observations.

Illustration for n=2. When n=2, block–wise separations allow identification of the joint variables
[ct, ct+1,xt,xt+1] from xt−4:t+3 (length 8+1). Knowing the temporal direction disambiguates
[ct,xt] from [ct+1,xt+1]. Because xt is observed, we obtain ct = h(xt−4:t+3) for some invertible
h, and thus the contemporaneous pair [ct,xt] is identified.

Connection to delayed/cumulative rewards. Delayed and cumulative effects fit naturally in the
n-order view. For a delay ℓ,

rt+ℓ = ρ
(
xt+ℓ,at+ℓ, ct

)
(delayed effect),

while cumulative influence over a horizon L can be written as

rt+k = ρk
(
xt+k,at+k, ct

)
, k = 0, . . . , L− 1,

both of which are encompassed by the n-order Markov factorization above. Our cheetah variants
instantiate these with, e.g., rt+ℓ = −∥vt+ℓ−ct∥2 (delayed) and rt+k = −∥vt+k−ct∥2 (cumulative),
where vt denotes speed; the identification results remain valid.

Results. We evaluate identification under delayed and cumulative latent effects in the Cheetah
environment using observation windows of length 6, 8, 10, and 20. In all cases, linear probes recover
the latent with high accuracy, and performance improves monotonically with longer context. For
delayed effects, probing accuracy rises from 0.81 to 0.91 and R2 from 0.72 to 0.86 as block size
increases from 6 to 20. For cumulative effects, probing accuracy increases from 0.84 to 0.93 and R2

from 0.75 to 0.88 over the same range. These results confirm that (i) the latent ct is behaviorally
consequential in non–first-order settings and (ii) moderate temporal context suffices for accurate
recovery, supporting our relaxed n-order Markov analysis.

4Any window of length at least 4n+1 suffices; we state one concrete choice for clarity.
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Latent Type Block size Probing Acc R2

Delayed 6 0.81 0.72
Delayed 8 0.85 0.78
Delayed 10 0.88 0.81
Delayed 20 0.91 0.86

Cumulative 6 0.84 0.75
Cumulative 8 0.87 0.79
Cumulative 10 0.89 0.83
Cumulative 20 0.93 0.88

Table A2: Identification under delayed and cumulative latent effects. Larger is better.

B.3.5 CASES IN ASSUMPTION 2.

The assumption of the injectivity of a linear operator is commonly employed in the nonparametric
identification (Hu & Schennach, 2008; Carroll et al., 2010; Hu & Shum, 2012). Intuitively, it means
that different input distributions of a linear operator correspond to different output distributions of that
operator. For a better understanding, we provide several examples in Fu et al. (2025) that describe
the mapping from pa ⇒ pb, where a and b are random variables:
Example 1 (Invertible). b = g(a), where g is an invertible function.
Example 2 (Additive). b = a+ ϵ, where p(ϵ) must not vanish everywhere after the Fourier transform.
Example 3 (Nonlinear Additive). b = g(a) + ϵ, where conditions from Examples 1-2 are required.
Example 4 (Post-nonlinear). b = g1(g2(a) + ϵ), a post-nonlinear model with invertible nonlinear
functions g1, g2, combining the assumptions in Examples 1-3.
Example 5 (Nonlinear with Exponential Family). b = g(a, ϵ), where the joint distribution p(a, b)
follows an exponential family.
Example 6 (Nonparametric). b = g(a, ϵ), a general nonlinear formulation. Certain deviations from
the nonlinear additive model (Example 3), e.g., polynomial perturbations, can still be tractable.

B.4 ELBO

In this section, we provide analysis on the x0-prediction Mean Squared Error (MSE) loss objectives
used in the Denoise-and-Refine Mechanism of Ada-Diffuser. Our main argument establishes
that minimizing the reconstruction losses Lprior and Lpost corresponds to optimizing an ELBO on the
conditional log-likelihood of the clean observation x0

t , given a noisy observation xkt and an inferred
latent context ct.

Let x0
t ∼ q(x0

t ) be a clean data sample from the true data distribution at sequence time step t. Let ct
be the inferred latent context relevant to x0

t .

The forward diffusion process gradually adds Gaussian noise to x0
t over K diffusion steps:

q(xkt |xk−1
t ) = N (xkt ;

√
αkx

k−1
t , (1− αk)I)

for k ∈ {1, ...,K}, where αk ∈ (0, 1) are predefined noise schedule parameters. This process allows
sampling xkt directly from x0

t :

xkt =
√
ᾱkx

0
t +
√
1− ᾱkϵ, where ϵ ∼ N (0, I), and ᾱk =

k∏
i=1

αi.

The reverse process pθ(xk−1
t |xkt , ct) that parameterized by θ aims to denoise xkt to xk−1

t conditioned
on ct.

The derivation of the ELBO for diffusion models is standard following DDPM related derivations (Ho
et al., 2020; Chen et al., 2024). The conditional log-likelihood log pθ(x

0
t |ct) can be lower-bounded

using the ELBO:

log pθ(x
0
t |ct) ≥ Eq(x1:K

t |x0
t )

[
log pθ(x

K
t |ct) +

K∑
k=1

log
pθ(x

k−1
t |xkt , ct)

q(xk−1
t |xkt ,x0

t )

]
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Assuming pθ satisfies Markov Property (i.e., pθ(xk−1
t |xkt , . . . ,xKt , ct) = pθ(x

k−1
t |xkt , ct)), which

is a standard structural assumption for diffusion models, the ELBO can be rewritten as:

log pθ(x
0
t |ct) ≥Eq(x1

t |x0
t )
[log pθ(x

0
t |x1

t , ct)]︸ ︷︷ ︸
L0

−
K∑
k=2

Eq(xkt |x0
t )
[DKL(q(x

k−1
t |xkt ,x0

t )||pθ(xk−1
t |xkt , ct))]︸ ︷︷ ︸

Lk−1

−DKL(q(x
K
t |x0

t )||pθ(xKt |ct))︸ ︷︷ ︸
LK

,

This inequality holds with equality if and only if the model’s true posterior over the latent diffusion
path, pθ(x1:K

t |x0
t , ct), is identical to the approximate posterior used to derive the ELBO, which is

the forward noising process q(x1:K
t |x0

t ). This bound can also include an additive constant C(x0
t , ct)

which does not depend on the model parameters θ and is thus typically omitted when focusing on
terms relevant to parameter optimization.

To maximize log pθ(x0
t |ct), we aim to maximize this lower bound by optimizing L0 (i.e., maximizing

this term) and each Lk−1 term (i.e., minimizing these DKL terms, as they appear with a negative
sign). The term LK is often treated as a constant (or absorbed into C(x0

t , ct)) if pθ(xKt |ct) is set to a
standard Gaussian N (0, I) and ᾱK ≈ 0.

We parameterize the reverse process pθ(xk−1
t |xkt , ct) as a Gaussian:

pθ(x
k−1
t |xkt , ct) = N (xk−1

t ;µθ(x
k
t , k, ct), σ

2
kI)

The true posterior step q(xk−1
t |xkt ,x0

t ) is also Gaussian:

q(xk−1
t |xkt ,x0

t ) = N (xk−1
t ; µ̃k(x

k
t ,x

0
t ), σ̃

2
kI)

where µ̃k(x
k
t ,x

0
t ) =

√
ᾱk−1(1−αk)

1−ᾱk x0
t +

√
αk(1−ᾱk−1)

1−ᾱk xkt and σ̃2
k = 1−ᾱk−1

1−ᾱk (1− αk) is the variance.

For an x0-prediction model, denoted as ϵθ(xkt , k, ct) in the main paper, that aims to predict x0
t from

the noisy input xkt and context ct, the mean of the reverse model µθ can be expressed as:

µθ(x
k
t , k, ct) =

√
ᾱk−1(1− αk)

1− ᾱk
ϵθ(x

k
t , k, ct) +

√
αk(1− ᾱk−1)

1− ᾱk
xkt

Choosing σ2
k = σ̃2

k, the KL divergence term Lk−1 simplifies to:

Lk−1 = Eq(xkt |x0
t )

[
1

2σ2
k

∥∥µ̃k(xkt ,x0
t )− µθ(x

k
t , k, ct)

∥∥2]+ C ′
k

= Ex0
t ,ϵ

[
1

2σ2
k

(√
ᾱk−1(1− αk)

1− ᾱk

)2 ∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2]+ C ′
k

where C ′
k are constants not depending on θ. The expectation Ex0

t ,ϵ
denotes averaging over clean data

x0
t and the noise ϵ used to construct xkt . Thus, maximizing the ELBO contribution from −Lk−1 is

equivalent to minimizing the following weighted MSE term:

Ex0
t ,ϵ,ct

[
w(k)

∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2] (A32)

where w(k) = 1
2σ2
k

(√
ᾱk−1(1−αk)

1−ᾱk

)2
is a positive weighting factor.

The termL0 = Eq(x1
t |x0

t )
[log pθ(x

0
t |x1

t , ct)] can also be made proportional to an MSE if pθ(x0
t |x1

t , ct)

is a Gaussian centered at ϵθ(x1
t , 1, ct):

log pθ(x
0
t |x1

t , ct) = −
1

2σ2
1

∥∥x0
t − ϵθ(x1

t , 1, ct)
∥∥2 + const
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Maximizing L0 is then equivalent to minimizing this MSE.

The diffusion model ϵθ is typically trained by minimizing a simplified objective (e.g., (Ho et al.,
2020)), often an unweighted or equally weighted sum of these MSE terms over uniformly sampled
diffusion steps k ∈ [1,K] and data x0

t :

Lsimple(θ) = Ek∼U [1,K],x0
t ,ϵ,ct

[∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2]
This simplification is justified by arguing that reweighting terms w(k) in Equation A32 can be
absorbed into the network or do not significantly alter the optimal solution for expressive models,
allowing w(k) to be effectively set to 1.

The Denoise-and-Refine losses are:

Lprior = Ex0
t ,ϵ,ĉ

prior
t

[∥∥∥x0
t − ϵθ(xkit , ki, ĉprior

t )
∥∥∥2]

Lpost = Ex0
t ,ϵ,ĉ

post
t

[∥∥∥x0
t − ϵθ(xkit , ki, ĉpost

t )
∥∥∥2]

where xkit =
√
ᾱkix

0
t +
√
1− ᾱkiϵ, and ki is the specific input noise level for the observation xt

determined by the causal denoising schedule ki = i
TK. These losses, Lprior and Lpost, are specific

instances of the simplified MSE loss objective in equation A32 with w(ki) ≈ 1, conditioned on the
inferred contexts ĉprior

t and ĉpost
t respectively. Consequently, minimizing these MSE losses directly

optimizes the corresponding terms in the ELBO for log pθ(x0
t |ct).

Therefore, we have proven that minimizingLprior andLpost as defined in the Denoise-and-Refine mech-
anism serves to maximize a variational lower bound on the conditional log-likelihood log pθ(x

0
t |ct).

The underlying diffusion model ϵθ(·, k, ·) is trained to be proficient at denoising from a range of
noise levels k, as captured by objectives such as Lsimple. The specific monotonically increasing
noise schedule ki used in Lprior and Lpost represents a particular instance from this range of noise
levels. Thus, these objectives are theoretically grounded in the principles of variational inference for
diffusion models, adapted to conditioning on the inferred latent context ct and applied at specific
noise levels relevant to the autoregressive denoising process of Ada-Diffuser.

B.5 ASSUMPTION VERIFICATION

Here, we test whether Assumption 2 and Assumption 3 hold in practice, explain why we view them
as mild, and, importantly, analyze what happens when they fail. We use the Cheetah environment,
where the latent context corresponds to a time-varying wind speed fw = 5 +m sin(nt) that perturbs
the agent’s dynamics. We sweep over combinations of (m,n) to address two questions: (1) whether
the setting used in the paper, (m.n) = (5, 0.5), indeed satisfies these assumptions; and (2) how
violations of the assumptions affect our method and the associated analyses.

B.5.1 ABOUT ASSUMPTION 2

To evaluate Assumption 2, which requires that the conditional dynamics P (xt+1 | xt, ct) be injective
in the context variable ct, we perform an empirical test to determine whether different contexts
induce measurably different transition dynamics. Given a fitted probabilistic dynamics model
p̂(xt+1 | xt, ct), we estimate the distribution of next states under each context c ∈ {c1, . . . , cM}
by drawing samples from the replay buffer and computing p̂(xt+1 | xt, c). For every pair of
contexts (ci, cj), we quantify the difference between their induced transition distributions using the
1-Wasserstein distance:

Inj(ci, cj) =W1

(
p(xt+1 | xt, ci), p(xt+1 | xt, cj)

)
. (A33)

Large values of Inj(ci, cj) indicate that distinct contexts lead to distinct transition kernels, consistent
with injectivity, while values near zero suggest that different contexts produce nearly indistinguishable
dynamics. When (m,n) = (5, 0.5) (Fig. A1(a)), we observe consistently non-zero Wasserstein
distances across contexts, indicating that P (xt+1 | xt, ct) is context-injective in the regime studied.
In contrast, when we reduce the context variation (m,n) = (0.2, 0.2) (Fig. A1(b)), the distances are
toward zero, showing the failure mode of the assumption. This shows that Assumption 2 is mild in
the latent-aware decision-making.
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(a) (b) (c)

(d) (e) (f)

Figure A1: Verification of the assumptions. (a) Transition separability in Cheetah under the
hyperparameter setting (m,n) = (5, 0.5). (b) Transition separability under a weak–context setting
(m,n) = (0.2, 0.2), where the context barely affects the dynamics. (c) Average reward drop
when planning with vs. without conditioning on c, plotted against the transition separability. (d)
k–distributions for (5, 0.5), (e) k–distributions for (0.2, 0.2), (f) reward drop versus k–separability.

B.5.2 ABOUT ASSUMPTION 3

We provide an empirical test of the spectral ratio k to examine Assumption 3 in the RL setting. Using
the dynamics model on Cheetah p̂(xt | xt−1, ct), we compute

k(xt, x̄t,xt−1, x̄t−1, ct) =
p̂(xt | xt−1, ct) p̂(x̄t | x̄t−1, ct)

p̂(x̄t | xt−1, ct) p̂(xt | x̄t−1, ct)
. (A34)

We draw transitions (xt−1,xt) from the replay buffer (600 samples) and form cross-paired transitions
(x̄t−1, x̄t) by swapping endpoints across trajectories. For each context c ∈ {c1, . . . , cM}, this
yields an empirical distribution of k(· ; c). We then quantify how well k separates contexts using the
1-Wasserstein distance between pairs of k-distributions, i.e.,

Sep(ci, cj) =W1

(
p(k | ci), p(k | cj)

)
. (A35)

When Assumption 3 holds, k remains bounded and its distribution varies across contexts. Empirically,
we observe clear multi-modal separation across contexts in the paper’s setting ((m,n) = (5, 0.5),
Fig. A1(d)), whereas in regimes where the dynamics become less context-dependent, the k-
distributions overlap heavily.

When k is not distinguishable across contexts c ((m,n) = (0.2, 0.2), Fig A1(e)), it implies that c
does not exert a noticeable effect on the transition dynamics. In this regime, explicitly modeling the
context is unnecessary, since the environment effectively behaves as a single-context system. Hence,
we believe Assumption 3 is mild in our main regime and also clarifies the failure mode when it is
violated.

B.5.3 POLICY LEARNING UNDER DIFFERENT SEPARABILITY

When the conditional transition P (xt+1 | xt, c) is not injective in c or k is nearly the same for
different c, different contexts induce nearly identical transition kernels. This means the context
is not identifiable from the dynamics and does not meaningfully alter the environment; in such
cases, explicitly modeling c brings little benefit for policy learning. Figures A1(c) and (f) illustrate
this effect. We vary (m,n) to change the strength of the latent wind context, and compare policy
performance when planning with the ground-truth context c versus ignoring c. We then plot the
resulting performance gap (reward-drop ratio) against transition separability and k–separability. The
gap shrinks when separability is small, indicating that when both the transition and k are weakly
context-dependent, modeling c is unnecessary. Overall, these results verify that Assumption 2 and
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Assumption 3 are not only mild in our setting, but also clarify why modeling the latent context is
important precisely in regimes where the dynamics are strongly context-dependent.

C SUMMARY ON DIFFERENT MDPS

Our work considers a contextual POMDP setting with an evolving latent process, which naturally
relates to several established MDP formulations, including contextual MDPs (Hallak et al., 2015),
hidden-parameter MDPs (HiP-MDPs) (Doshi-Velez & Konidaris, 2016), and their variants. In this
section, we provide formal definitions of these models and discuss their relationships and distinctions.

C.1 CONTEXUTAL MDPS

A contextual Markov decision process (CMDP) (Hallak et al., 2015) is defined by the tuple
⟨C,S,A,M⟩, where C is the context space, S is the state space, and A is the action space. The
mappingM assigns to each context c ∈ C a set of MDP parametersM(c) = {Rc, T c}, where Rc
and T c are the reward and transition functions associated with context c.

Sodhani et al. (2021) and Liang et al. (2024a) extend the CMDP framework to settings in which the
context variable c evolves according to its own Markovian dynamics p(ct+1 | ct), closely aligning
with our formulation of a latent process evolving over time.

C.2 HIDDEN-PARAMETER MDPS

Hidden-Parameter MDPs (HiP-MDPs) (Doshi-Velez & Konidaris, 2016) are defined by the tuple
M = ⟨S,A,Θ, T ,R, γ, PΘ⟩, where S is the state space, A is the action space, and Θ is the space
of task-specific latent parameters. For each θ ∈ Θ, the transition and reward functions are given by
Tθ : S × A → P(S) andRθ : S × A → R, respectively. The parameter θ is sampled from a prior
distribution PΘ at the beginning of an episode and remains fixed during the episode. The discount
factor is denoted by γ ∈ [0, 1). This framework defines a family of MDPs indexed by the latent
parameter θ, with each θ inducing a different set of dynamics and reward functions. It can be seen as
a special case of a contextual MDP where the context is latent and fixed per episode.Xie et al. (2021)
further generalize this framework by allowing the task parameter θ to evolve dynamically across
episodes, rather than being fixed.

Bayes-Adaptive MDPs (BAMDPs) are closely related to both HiP-MDPs and contextual MDPs
(CMDPs). In BAMDPs, the agent maintains a posterior distribution over MDPs based on its
interaction history. Specifically, it maintains a belief bt(R, T ) = p(R, T | τ:t), where τ:t =
{s0,a0, r0, . . . , st} denotes the trajectory observed up to time t. This belief captures the agent’s
uncertainty about the underlying transition and reward functions.

The transition and reward functions can then be defined in expectation over this posterior, effectively
conditioning decision-making on the belief bt. When the environment is driven by hidden contextual
variables or latent task parameters, such as in CMDPs or HiP-MDPs—this belief can be interpreted as
a distribution over these latent variables. In this view, BAMDPs provide a non-parametric framework
for reasoning over hidden structure, while approaches like ours explicitly model such latent variables
and infer their posterior distributions using amortized inference. Both aim to enable adaptive planning
and learning under uncertainty, but differ in how latent structure is represented and inferred.

C.3 DISCUSSIONS AND COMPARISONS

The key distinction between contextual MDPs and hidden-parameter MDPs lies in how the latent
factors are represented: contextual MDPs explicitly treat them as latent variables, while HiP-MDPs
model them implicitly as parameters governing the transition and reward functions. In our work, we
adopt the contextual MDP perspective, where the latent process is modeled as a random variable that
evolves over time.

However, our identification theory, focused on recovering the posterior distribution over latent
variables, also applies to the HiP-MDP setting. Once the posterior over the hidden parameters is
identified, the corresponding transition and reward functions can be recovered as well.
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Figure A2: Overview of the Ada-Diffuser framework. The modular design consists of two
main stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion process
(Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is
then used for planning or policy learning conditioned on the inferred latent context.

Additionally, our framework, which models a factorization over observed states and latent variables,
is conceptually related to factored MDPs (Guestrin et al., 2003). In a factored MDP, the state space S
is represented as a set of variables S = {s(1), s(2), . . . , s(n)}, and the transition and reward functions
are decomposed over these factors:

T (s′ | s,a) =
n∏
i=1

Ti

(
s′(i) | Pa(i)T (s,a)

)
, R(s,a) =

m∑
j=1

Rj

(
Pa(j)R (s,a)

)
,

where Pa(i)T and Pa(j)R denote the parent variables (i.e., dependencies) for each transition and reward
component, respectively. our framework, while not relying on an explicit graphical structure, shares
conceptual similarities with factored MDPs (Guestrin et al., 2003) through its coarse-grained factor-
ization over observed states and latent variables. Specifically, we distinguish between latent variables
that affect the transition dynamics and those that affect the reward function. Formally, we express the
generative process as:

T (st+1 | st,at, cs
t), R(rt | st,at, cr

t),

where cs
t and cr

t are distinct (or potentially overlapping) latent factors that influence transitions and
rewards, respectively. This separation enables flexible modeling of partially observable environments
where different unobserved processes govern the dynamics and task objectives.

D DETAILS ON ADA-DIFFUSER

D.1 FULL ALGORITHM AND RESULTS

As illustrated in Fig. A2, our framework consists of two stages: latent factor identification and
diffusion-based planning or policy learning. Below, we provide the algorithmic pseudocode for both
stages. Specifically, Algorithm A1 describes Stage 1: latent factor identification, while Algorithms A2
and A3 correspond to Ada-Diffuser-Planner and Ada-Diffuser-Policy, respectively.

For clarity, we omit the detailed step-by-step procedures for denoise-and-refine and zig-zag sampling
(Lines 7–8, 11, and 19–22 in Algorithm A2; Lines 6–7 and 13 in Algorithm A3), as these are fully
described in Section 4.3. For Ada-Diffuser-Policy, we show a Diffusion Policy (DP)-based
algorithm, which provides a general framework for multi-step action generation. In the IDQL-based
variant, both the action execution horizon and observation horizon are set to 1, corresponding to
single-step policy inference conditioned only on the current observation.

Additionally, we provide the full results for all experiments: Table A3 reports results for the action-
free setting; Tables A4 and A5 present results for environments with latent factors affecting dynamics
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Figure A3: An illustration of the zig-zag sampling process with a block of 4 time steps. ↓ and |
indicate denoising and identity mapping, respectively.

Algorithm A1: Latent Factor Identification.
1: Input: offline dataset D
2: Randomly initialize decoder pθ(st+1, rt | s,a, c),

encoder qψ(ct | st−Tx:t+1,at−Tx:t+1, rt−Tx:t+1) and prior network pϕ(ct | ct−1),
3: while not done do
4: Sample batches of trajectories from D
5: Compute ELBO and update θ, ψ, ϕ
6: end while

and rewards; and Tables A6, A7, A8, and A9 summarize results for environments without explicitly
modeled latent factors.

D.2 ARCHITECTURE CHOICES AND HYPER-PARAMETERS

We detail the architectural design choices and hyperparameter settings used for model components,
loss functions, and training procedures across all Ada-Diffuser variants under different environ-
ments and benchmarks.

D.2.1 LATENT FACTOR IDENTIFICATION

Architectures We use a variational autoencoder (VAE) (Kingma & Welling, 2014) to optimize
the evidence lower bound (ELBO). The same architectural design is used across all variants of
Ada-Diffuser and all benchmark settings.

For the encoder, we first embed states, actions, and rewards using separate MLPs with ReLU
activations. The resulting embeddings are concatenated and passed through a two-layer MLP (each
layer of size 64) followed by a GRU. The GRU output is used to parameterize a Gaussian distribution
from which the latent variables are sampled.

The state and reward decoders are implemented as separate MLPs, each consisting of two fully
connected layers of size 64 with ReLU activations. For the prior network, we use the output of the
previous step’s latent distribution embedding (shared GRU) and feed it into a two-layer MLP (each
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Algorithm A2: Ada-Diffuser-Planner.
1: Input: Env, offline dataset D, pre-trained encoder qψ and prior network pϕ

observation horizon To, planning horizon Tp, action execution horizon Ta, condition y
// Training

2: Initialize noise predictor ϵθ, inverse dynamics model fϕ
3: while not done do
4: Sample xt−To:t+Tp from D
5: Sample ĉprior

t:t+Tp
and ĉpost

t:t+Tp−2 from pϕ and qψ
6: if using inverse dynamics model then
7: Train Causal Diffusion Model (noise predictor ϵθ) with xt−To:t, ĉ

prior
t−To:t, and ĉpost

t−To:t and
other conditions y, target outputs are st+1:t+Tp

8: Train encoder qψ with the contrastive improvement loss Lcontrast
9: Train Inverse Dynamics Model fϕ to generate actions at+1:t+Tp

10: else
11: Train Causal Diffusion Model (noise predictor ϵθ) with xt−To:t, ĉ

prior
t−To:t, and ĉpost

t−To:t and
other conditions y, target outputs are {st+1:t+Tp ,at+1:t+Tp}

12: Train encoder qψ with the contrastive improvement loss Lcontrast
13: end if
14: end while

// Execution
15: Initialize environment: s0 ∼ Env.reset(), set t← 0
16: while not done do

// Observe and infer latent factors
17: Observe recent trajectory xt−To:t
18: Sample latent variables ĉprior

t:t+Tp
from pϕ

// Generate candidate trajectory
19: if using inverse dynamics model then
20: Generate future states (zig-zag sampling) ŝt+1:t+Tp conditioned on xt−To:t, ĉ

prior
t:t+Tp

, and y

via learned noise predictor ϵθ
21: Generate actions ât+1:t+Tp ← fϕ(ŝt+1:t+Tp , ŝt:t+Tp−1)
22: else
23: Generate future trajectory {ŝt+1:t+Tp , ât+1:t+Tp} conditioned on xt−To:t, ĉ

prior
t:t+Tp

, and y

via learned noise predictor ϵθ
24: end if

// Execute action(s) in environment
25: for each step i = 1 to Ta do
26: Execute ât+i in Env, observe st+i+1, rt+i
27: Append (st+i, ât+i, rt+i) to trajectory buffer
28: end for
29: Update t← t+ Ta
30: end while

layer of size 32) to predict the parameters of the prior distribution. For the dimensionality of latents,
we choose 20 for Cheetah, Walker, Ant, Maze; 64 for Robomimic, Kitchen, Libero.

Loss Function At each time step t, we optimize the following losses:

LELBO,t = Eqψ(ct|xt−Tx:t+1) [− log pθ(xt | xt−1, ct)]︸ ︷︷ ︸
Reconstruction loss

+DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1))︸ ︷︷ ︸
KL regularization

.

Here, xt may include different components depending on the setting (e.g., xt = {st,at} or xt = st),
and ct denotes the latent context variable inferred from a temporal block of observations. The first
term encourages accurate reconstruction of the current observation xt conditioned on its immediate

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Algorithm A3: Ada-Diffuser-Policy (DP-based)

1: Input: Env, offline dataset D, pre-trained encoder qψ and prior network pϕ
observation horizon To, action generation horizon Tp, action execution horizon Ta, condition y
// Training

2: Initialize noise predictor ϵθ
3: while not done do
4: Sample xt−To:t+Tp from D
5: Sample latent variables ĉprior

t:t+Tp
∼ pϕ, ĉpost

t:t+Tp−2 ∼ qψ
6: Train causal diffusion model (noise predictor ϵθ) to generate actions at+1:t+Tp , conditioned

on xt−To:t, ĉ
prior
t:t+Tp

, ĉpost
t:t+Tp−2, and y

7: Train encoder qψ with the contrastive improvement loss Lcontrast
8: end while

// Execution
9: Initialize environment: s0 ∼ Env.reset(), set t← 0

10: while not done do
// Observe and infer latent factors

11: Observe recent trajectory xt−To:t
12: Sample latent variables ĉprior

t:t+Tp
∼ pϕ

// Generate actions using causal diffusion model
13: Generate actions (zig-zag sampling) ât+1:t+Tp conditioned on xt−To:t, ĉt:t+Tp , and y via

learned noise predictor ϵθ
// Execute action(s) in environment

14: for each step i = 1 to Ta do
15: Execute ât+i in Env, observe st+i+1, rt+i
16: Append (st+i, ât+i, rt+i) to trajectory buffer
17: end for
18: Update t← t+ Ta
19: end while

Environment LDP (AF) Ours (AF) LDP (AF, SubOpt) Ours (AF, SubOpt)

Lift 0.67± 0.01 0.78± 0.05 1.00± 0.00 0.98± 0.02

Can 0.78± 0.04 0.85± 0.07 0.98± 0.00 0.98± 0.02

Square 0.47± 0.03 0.54± 0.05 0.83± 0.01 0.89± 0.03

Table A3: Results (success rate) on action-free demonstrations. Here, AF and SubOpt indicate
using Action-free and suboptimal demonstrations on Robomimic tasks, respectively (following the
settings in LDP (Xie et al., 2025)).

past and the latent ct, while the second term regularizes the posterior to remain close to the learned
prior pϕ(ct | ct−1).

We implement the ELBO loss as a weighted combination of the reconstruction loss and the KL
divergence:

LELBO =

T−2∑
t=1

[
∥x̂t − xt∥22 + λKL ·DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1))

]
,

where x̂t is the model’s reconstruction of the observation xt, and λKL is weighting coefficient. The
reconstruction is computed using mean squared error (MSE), and the KL divergence is computed in
closed form for Gaussian posteriors and priors. The hyperparameter λKL is set to be 0.01 and the
learning rate is set to be 3e− 4.
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D.2.2 PLANNER

For the planner, we consider two scenarios: (i) generating both states and actions, and (ii) generating
states only. For the former, we build upon the Diffuser framework (Janner et al., 2022), which directly
models full trajectories. For the latter, we adopt the Decision Diffuser (DD) framework (Ajay et al.,
2022), where the model generates future states and uses an inverse dynamics model to recover the
corresponding actions via inverse dynamics model.

For type (i) (full state-action trajectory generation), we apply our method to the Cheetah and Ant
environments. For the noise predictor, we use a 1D U-Net (Ronneberger et al., 2015) with a kernel
size of 5, channel multipliers set to (1, 2, 2, 2), and a base channel width of 32. The model is trained
using the Adam optimizer (Kingma, 2014) with a learning rate of 3 × 10−4, a batch size of 64,
and for 1 million training steps. We adopt classifier guidance (CG) (Ho et al., 2020) with gradient
guidance on computed return, with a guidance scale ω = 1.5. The observation horizon is set to 10
for both environments. The planning horizon Tp is set to 16 for Cheetah and 32 for Ant, with an
action execution horizon of 1. These hyperparameters are kept consistent across baselines, including
Diffuser, DF, MetaDiffuser, and Diffuser combined with LILAC and DynaMITE for the Cheetah
and Ant experiments (those in Table 1 and Appendix Table A4). For other components (e.g., VAE)
in LDCQ, we employ all the hyperparameters in their original implementation (Venkatraman et al.,
2024).

For type (ii) (state-only generation with inverse dynamics), we use a Transformer-based noise
predictor with a hidden dimension of 256 and a head dimension of 32. The architecture includes 2
DiT blocks for Walker, Kitchen, and Maze2D, and 8 DiT blocks for LIBERO.The model is trained
using the Adam optimizer (Kingma, 2014) with a learning rate of 3× 10−4, a batch size of 128, and
for 1 million training steps. The number of diffusion timesteps is 500. The observation horizon is set
to 4 for Kitchen, 2 for LIBERO, and 10 for the other environments. The planning horizon Tp is set to
16 for Kitchen, 10 for LIBERO, and 32 for the others. The action execution horizon is 8 for both
Kitchen and LIBERO, and 10 for the remaining environments. For the inverse dynamics model, we
use an MLP-based diffusion model consisting of a 3-layer MLP with 128 hidden units, preceded by a
2-layer embedding module with 64 hidden units. This model is trained for 1 million gradient steps.

For both cases, we set the coefficient of the contrastive improvement loss Lcontrast = max{0,Lprior −
Lpost} to 0.1. The key hyper-parameters are summarized in Table A10.

D.2.3 POLICY

For the DP-based policy, we adopt the same architecture as the planner described earlier for Cheetah,
Maze2D, Kitchen, Ant, and Walker. For LIBERO, we use a Transformer-based noise predictor with a
decoder architecture comprising 12 layers, 12 attention heads, and a hidden embedding dimension
of 768. Following DP (Chi et al., 2023), we apply dropout with a rate of 0.1 to both the input
embeddings and attention weights. The number of diffusion timesteps is 500. When conditioning
is used, we incorporate a Transformer encoder with 4 layers to encode the condition tokens, which
include a sinusoidal timestep embedding and projected observed trajectory tokens (all mapped to
the same embedding dimension). In this encoder-decoder setup, causal masking is applied to ensure
autoregressive generation. In the unconditioned case, we prepend the sinusoidal timestep embedding
to the input sequence and use a BERT-style encoder-only Transformer. All environments (Cheetah,
Ant, Kitchen, Maze2D, Walker, and LIBERO) are trained using the AdamW optimizer with a learning
rate of 10−4, weight decay 10−3, β1 = 0.9, and β2 = 0.95. Layer normalization is applied before
each Transformer block for stability. The observation, planning, and action horizons follow the same
settings used for the planner in each environment.

For the IDQL-based policy, we align all hyperparameters for Cheetah and Ant with the original IDQL
implementation, using an observation, planning, and action horizon of 1. Hence, in IDQL-based ones,
we do not consider autoregressive modeling. Similarly, for both cases, we use consider the coefficient
before the contrastive improvement loss as 0.1.

D.2.4 HYPERPARAMETERS OF CONTRASTIVE IMPROVEMENT LOSS

We set λprior, λrel to be fixed as 0.1 across all settings. m is set to be the 0.05 × Lprior during the
beginning of each epoch.
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D.3 CONNECTION TO BAYESIAN FILTERING

In the absence of explicitly designed latent variables, our model can be interpreted as a form of
Bayesian filtering (Chen et al., 2003). Under a general formulation of the hidden Markov model
(HMM) (Rabiner & Juang, 1986) with an additional latent dependency on observation (c→ x), the
latent process over c captures the underlying stochasticity present in the demonstration data, which
arises from both the environment dynamics and the behavior policy. In this view, the latent variable
acts as a compact and expressive representation that summarizes the uncertainty in past observations,
thereby improving the prediction of future observations. This, in turn, facilitates more robust policy
learning and planning in the general settings.

E EXTENDED RELATED WORKS

E.1 DIFFUSION MODEL-BASED DECISION-MAKING

Recent advances use diffusion models as the planner and policy for both reinforcement learning
(RL) and imitation learning (IL). RL agent aims to learn a policy that maximizes cumulative rewards
through interaction with an environment (Sutton et al., 1998). The agent observes a sequence
of transitions (st,at, rt, st+1), where st ∈ S denotes the state, at ∈ A the action, rt ∈ R the
received reward, and st+1 the next state. The goal is to learn a policy π(a | s) that maximizes the
expected return: π∗ = argmaxπ Eπ [

∑∞
t=0 γ

trt] , where γ ∈ [0, 1) is the discount factor. In contrast,
IL (Hussein et al., 2017) focuses on learning policies from expert demonstrations, often without
access to the reward signal. A common approach is behavior cloning (BC) (Pomerleau, 1991), which
formulates IL as a supervised learning problem by maximizing the likelihood of expert actions given
observed states, i.e., learning a policy π(a | s) that closely imitates the expert policy πe(a | s).
Diffusion Planner Diffusion-based planning methods are commonly used to approximate the
sequence of future states and actions from a given current state. By leveraging the conditional
generation capabilities of diffusion models—such as guidance techniques (Dhariwal & Nichol,
2021; Ho & Salimans, 2022)—these methods can generate plans (i.e., state trajectories) that satisfy
desired properties, such as maximizing expected rewards. Taking Denoising Diffusion Probabilistic
Models (DDPM (Ho et al., 2020))-based approaches as an example, these methods learn a generative
model over expert trajectories τ = {(s0,a0), . . . , (sT ,aT )} by modeling a forward-noising process:
q(xk | xk−1) = N (xk;

√
αk x

k−1, (1− αk)I), and a parameterized denoising model pθ(xk−1 | xk)
to reverse the process. Here, k denotes the diffusion step, x0 is a clean sub-sequence sampled from
the expert trajectory τ , and αk controls the variance schedule at step k.

During inference, trajectories are generated by starting from Gaussian noise and iteratively denoising
through the learned reverse process. This generation can be optionally conditioned on the initial state
or other guidance signals y, such as rewards, goals, or other constraints: τ̂ ∼ pθ(τ | s0,y).
These methods generally fall into two main categories: (1) learning a joint distribution over state-
action trajectories, as in Diffuser (Janner et al., 2022), or (2) learning only state trajectories via
diffusion and using an inverse dynamics model to recover actions, as in Decision Diffuser (DD) (Ajay
et al., 2022). Beyond these, several variants extend diffusion-based planning in different directions.
For example, Latent Diffuser (Li, 2024) plans in a high-level latent skill space to improve generaliza-
tion and LDP (Xie et al., 2025) plans with high-level latent actions directly from high-dimensional
action-free demonstrations. Other approaches incorporate multi-task context to enhance adaptation
and performance in unseen tasks, including MetaDiffuser (Ni et al., 2023), AdaptDiffuser (Liang et al.,
2023), and MTDiff-p (He et al., 2023). In addition, recent efforts have explored various extensions of
diffusion planning, such as ensuring safety during generation (Xiao et al., 2025), handling multi-agent
scenarios (Jiang et al., 2023; Ajay et al., 2023b), learning skills (Liang et al., 2024b), and application
in RL from human feedback (RLHF) (Dong et al., 2024).

Diffusion Policy In contrast to diffusion-based planners, Diffusion Policy methods directly parameter-
ize the policy πθ(a | s) using diffusion models. For example, Diffusion Policy (Chi et al., 2023) uses
a diffusion model to generate actions with expressive, multimodal distributions. DPPO (Ren et al.,
2025) extends this idea by modeling a two-layer MDP structure, where the inner MDP represents
the denoising process and the outer MDP corresponds to the environment. This framework enables
fine-tuning of diffusion-based policies in RL settings. Another line of work integrates diffusion
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models with model-free methods for offline RL by using diffusion models as to model the action
distributions (Wang et al., 2022; Hansen-Estruch et al., 2023; Chen et al., 2023; Lu et al., 2023).

Recent explorations have also aimed to unify diffusion-based planning and policy learning within a
single framework. For example, the Unified Video Action model (UVA) (Li et al., 2025) and Unified
World Models (UWM) (Zhu et al., 2025) leverage diffusion models to jointly model planning and
action generation, demonstrating scalability on large-scale robotic tasks with pre-training. In a similar
spirit, Ada-Diffuser provides a general framework that can be integrated into both diffusion
planners and diffusion-based policies. However, Ada-Diffuser differs in its explicit modeling of
latent factors that influence the data generation process. By incorporating latent identification directly
into the diffusion process, Ada-Diffuser enables more structured, context-aware decision-making
in partially observable and dynamically changing environments.

E.2 LATENT BELIEF STATE LEARNING IN POMDP

In partially observable Markov decision processes (POMDPs), single-step observations are typically
insufficient for making optimal decisions. A common strategy to overcome this limitation involves
encoding an agent’s history, encoding past observations and actions into a belief state that captures
a distribution over latent environmental states. Although such belief representations can, in theory,
support optimal policy derivation (Kaelbling et al., 1998; Hauskrecht, 2000; Gangwani et al., 2020),
their exact computation depends on full knowledge of the transition and observation models. This
requirement quickly becomes intractable in high-dimensional settings.

To address this, recent work has focused on learning approximate belief representations directly
from data. Notable approaches include those using recurrent neural networks (Guo et al., 2018) and
variational inference methods (Igl et al., 2018; Gregor et al., 2018), which enable agents to encode
temporal structure and uncertainty into compact latent embeddings. These representations are then
used to inform downstream policy learning, optimizing for cumulative rewards.

This direction also aligns with developments in meta-reinforcement learning and non-stationarity,
where belief states or Bayesian embeddings are used to capture hidden task contexts. Agents trained
across a distribution of tasks can use these latent variables to infer new environments and adapt
quickly (Zintgraf et al., 2021; Liang et al., 2024a; Nguyen et al., 2021; Rakelly et al., 2019; Xie
et al., 2021). For example, MetaDiffuser (Ni et al., 2023) incorporates task context as conditioning
input to diffusion-based decision models. Similarly, Pertsch et al. (2021) and Zeng et al. (2023) use
similar variational objectives (ELBO loss) to learn latent skill priors and predictive information for
RL, where these latents greatly help policy learning.

Our approach diverges from these by offering theoretical guarantees on the identifiability of latent
factors from minimal temporal observations. Rather than depending on diverse multi-environment
data, we introduce a framework that captures the full data generation process in RL using diffusion
models. In contrast to MetaDiffuser, which assumes static task-level context, our model treats the
latent context as a dynamic, time-evolving process that governs both environment transitions and
agent behavior, capturing the underlying temporal structure of RL trajectories more faithfully.

E.3 AUTOREGRESSIVE DIFFUSION MODELS

To model temporal consistency and dynamics in sequential data such as videos and audios, recent
work has incorporated autoregressive structures into diffusion models. These approaches differ in
how they condition on prior time steps during generation and can be categorized into two main
categories. (1) Conditioning on clean (denoised) inputs ((Zheng et al., 2024; Gao et al., 2024b;
Blattmann et al., 2023)). At each time step t, the denoising model is conditioned on the previously
denoised outputs {x0

<t}: pθ(xk−1
t | xkt ,x0

<t), where xkt is the current noisy input, and x0
<t denotes

the clean (fully denoised) observations from earlier time steps. (2) Conditioning on noisy inputs
((Ho et al., 2022; Chen et al., 2024; Xie et al., 2024b; Sand-AI, 2025)). These methods instead
condition on previous time steps at their corresponding noise levels. This setting can be further
divided into two cases: (a) fully noisy conditioning (Ho et al., 2022): the model conditions on all prior
time steps at the same noise level k: pθ(xk−1

<t ,x
k−1
t | xkt ,xk<t, ). (b) partially noisy conditioning:

each previous time step i < t is conditioned at its own noise level ki, which may vary over time:
pθ(x

k0−1
0 ,xk1−1

1 , . . . ,xkT−1
T | xk00 ,xk11 , . . . ,xkTT ). Specifically, Diffusion Forcing (DF) (Chen et al.,
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2024) proposes a general framework in which each time step xt assigns an independent noise level.
In contrast, other works adopt time-dependent noise schedules that vary with the temporal index (Xie
et al., 2024b; Sand-AI, 2025; Wu et al., 2023).

To model the causal generative process of RL trajectories, our approach also employs time-dependent
noise scheduling to capture temporal dynamics. However, unlike prior work, we further integrate
the identification of latent factors directly into the denoising process. This is achieved through a
structured reinforcement step during training and a zig-zag inference procedure at test time, enabling
our model to more faithfully recover the underlying causal structure in sequential decision-making.

E.4 SUMMARY

To sum up, we compare our approach with representative diffusion- and meta-learning–based base-
lines (Table A11). Diffuser, DP, IDQL, and DD do not model or infer latent contexts; DF adopts
autoregressive denoising but still lacks context inference. Meta-Diffuser, LILAC, and DynaMITE
learn latents via meta-learning but omit our minimal–sufficient block design and backward refinement.
LDCQ and LDP model only high-level latent actions/skills without explicit context identification. In
contrast, our method jointly models latent factors, employs full autoregressive denoising with zig-zag
sampling, and introduces a backward refinement mechanism that enables identifiable latent contexts.

Method Latent Factors AR Denoising Min. & Suff. Obs.
Ours Yes (dyn., rew., act.) Yes Yes (refine, zig-zag)
Diffuser / DP / DD / IDQL No No No
DF No Yes No
Meta-Diffuser / LILAC / DynaMITE Yes (dyn., rew. only) No No
LDCQ Yes (hi-level act.) No No
LDP Yes (hi-level act.) No No

Table A11: Comparison with representative baselines on whether they model latent contexts, use
autoregressive (AR) denoising, and enforce minimal & sufficient observation blocks.

F BENCHMARK SETTINGS AND ILLUSTRATIONS

F.1 LATENT CHANGE FACTORS DESIGN

We consider the latent change factors on dynamics and rewards. We consider the Half-Cheetah
and Ant environments from the OpenAI Gym suite, which are widely used MuJoCo locomotion
benchmarks (Brockman et al., 2016) for evaluating continuous control algorithms. In Half-Cheetah,
the agent is a planar bipedal robot with a 17-dimensional state space and a 6-dimensional continuous
action space, where the goal is to move forward by applying torques to six actuated joints. In Ant, a
quadrupedal robot operates in a 3D space with a 111-dimensional state space and an 8-dimensional
action space, requiring more complex coordination across its four legs. In both environments, the
reward encourages forward velocity while penalizing excessive control inputs and, in the case of Ant,
also promotes stable contact with the ground. We consider variants of the Half-Cheetah environment
to study changes in dynamics, specifically Cheetah-Wind-E and Cheetah-Wind-S, which introduce
external wind forces applied to the agent. In Cheetah-Wind-E, an opposing wind force is applied at
the beginning of each episode and remains constant throughout, defined as fw = 10 + 5 sin(0.8i),
where i is the episode index. For this case, since c change over episode, we use data from several
consecutive episodes to estimate it. In Cheetah-Wind-S, the wind force varies at every time step
according to the same formula fw = 5 + 5 sin(0.5t), with t now representing the time step in
each episode. We also consider variations in the reward function. In Cheetah-Dir-E, the reward
depends on a time-varying goal direction, requiring the agent to alternate between moving forward
and backward. Specifically, the reward at episode t is defined as

rt = dt · vt − 0.1∥at∥2,
where vt is the agent’s forward velocity, at is the action vector (torques applied), and dt ∈ {−1,+1}
indicates the target direction at time t. The direction signal dt changes, giving a non-stationary reward
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Figure A4: Illustrations of the Benchmarks. From left to right: Half-Cheetah, Ant, Walker, Franka-
Kitchen, Maze2D, and LIBERO.

Figure A5: Illustrations of RoboMimic Benchmark.

function that challenges the policy to adapt to shifting goals. Specifically, we consider

dt = σ(5 · sin(2πt/200)),
where σ(·) denotes the sigmoid function, α controls the sharpness of the transition, and T determines
the switching period. This formulation induces a smooth periodic change in the preferred direction of
movement, requiring the policy to adapt to gradually shifting objectives.

We also consider a directional reward variant for the Ant environment, denoted as Ant-Dir-E, where
the agent is required to alternate its movement direction over time. The reward function at time step t
is defined as

rt = (2dt − 1) · vxt − 0.1∥at∥2,
where vxt is the velocity of the agent’s torso along the x-axis (forward direction), at is the 8-
dimensional action vector, and dt ∈ [0, 1] is a smooth directional signal. Similarly, we define dt
as:

dt = σ(5 · sin(2πt/200)),
where σ(·) denotes the sigmoid function. This formulation causes the preferred movement direction
to alternate approximately every 100 steps. Notably, for these settings with periodic changes (i.e.,
where latent factors do not evolve at every timestep), we estimate the latent variables periodically and
perform refinement in the causal diffusion model only when changes are detected. This follows the
same overall framework, but operates at a coarser temporal resolution aligned with the latent change
frequency.

F.2 OVERVIEW ON OTHER BENCHMARKS

Fig. A4-A5 give the illustrations on the used benchmarks. Specifically, other than Cheetah and Ant
we introduced before, for others, we consider the basic settings in offline RL. Specifically,

Maze2D. Maze2D tasks focus on goal-directed navigation in a 2D plane, where the agent must
traverse a maze-like environment to reach specified targets. These settings are designed to evaluate
an agent’s ability to reason spatially and follow optimal trajectories based solely on positional and
velocity observations.

Franka-Kitchen. The Franka-Kitchen environment (Gupta et al., 2020) involves a robotic arm
interacting with a series of articulated objects in a realistic kitchen setting. Tasks are composed of
multiple stages, such as opening doors or toggling switches, and are intended to assess an agent’s
capability in handling long-horizon, multi-step manipulation.
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Walker. The Walker2D environment features a two-legged robot that must learn to walk and balance
using continuous torque control. The agent’s objective is to maintain forward motion while remaining
upright, which requires learning dynamic stability and coordination.

LIBERO (Liu et al., 2023). The Libero benchmark offers a diverse set of continual learning tasks
focused on object manipulation and generalization:

• LIBERO-Object: The robot is required to manipulate a variety of novel objects through
pick-and-place operations. Each task introduces previously unseen objects, encouraging the
agent to incrementally build knowledge about object-specific properties and behaviors.

• LIBERO-Goal: All tasks share a common object set and spatial layout, but vary in goal
specifications. This setup tests the agent’s ability to continually adapt to new task intents
and motion targets without changes in the visual scene.

• LIBERO-Spatial: Tasks involve repositioning a bowl onto different plate locations. Al-
though the objects remain fixed, the spatial configurations vary across tasks, requiring the
robot to incrementally acquire relational spatial understanding.

RoboMimic. RoboMimic (Mandlekar et al., 2021) provides a set of manipulation tasks based on
human teleoperation demonstrations, varying in difficulty and required precision:

• Lift: The robot arm is tasked with lifting a small cube off the table. This task serves as a
foundational manipulation scenario focused on grasping and vertical motion.

• Can: The robot must retrieve a cylindrical can from a cluttered bin and place it into a
designated smaller container. This task introduces greater complexity due to object shape
and the need for accurate placement.

• Square: A fine-grained insertion task where the robot picks up a square nut and places it
onto a vertical rod. This is the most challenging of the three, requiring precise alignment
and control for successful completion.

G OTHER DETAILS ON ADA-DIFFUSER

G.1 LATENT ACTION PLANNER

For the latent action planner, we align our settings with those used in LDP (Xie et al., 2025),
specifically focusing on learning directly from image-based demonstrations. We first use a variational
autoencoder (VAE) to extract latent representations z from raw images via image encoders. An
inverse dynamics model is then trained to recover actions at from pairs of latent states (zt, zt+1).
A planner is subsequently trained to forecast future latents z. Hence, the objective function is
LIDM(ξ, z) = Et,ϵ

[
∥ϵξ (âk; ck, zk, zk+1, t)− ϵ∥2

]
, where where k is the time step and t is the

diffusion step.

In our framework, we treat the latent factors c as high-level latent actions that influence the evolution
of z. These latent factors are jointly used with z to perform both inverse dynamics modeling and
latent forecasting, enabling structured planning in the latent space.

We follow the experimental settings established in LDP (Xie et al., 2025). Specifically, we use
expert demonstrations alongside action-free and suboptimal demonstrations. All hyperparameters
and architectural choices for the diffusion models are kept identical to those used in the original LDP
implementation. We also directly utilize the pre-trained image encoder provided by LDP. The only
modification in our framework is the introduction of an additional latent factor c trained by our latent
factor identification stage, which is incorporated into the model to enhance latent action planning.

G.2 NOISE SCHEDULING

In the autoregressive setting, we consider a monotonic increasing denoising schedule {k1, . . . , kT }.
In practice, we use a linear schedule where ki = i

TK, with K denoting the maximum diffusion
step used in both training and sampling. We segment the sequence into temporal blocks of length
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Tx + 1 (Tx = To in all settings), and slide the time window forward by one step at a time. This
design ensures that the denoising steps progressively increase across the block, aligning the diffusion
process with the underlying temporal structure. Such a schedule encourages early steps to rely more
on strong priors and later steps to refine based on more contextual information. Additionally, for
better illustration, Fig. A3 provides a detailed illustration of the zig-zag sampling process within a
temporal block of 4 timesteps.

H SPECIFIC DESIGN CHOICES FOR BASELINES

For all baselines, unless otherwise specified, we use the same set of diffusion parameters detailed in
Appendix D.2.2–D.2.3. Below, we provide additional details on how specific methods are evaluated.
While their diffusion backbones remain consistent as in Appendix D.2.2–D.2.3, these methods include
custom design choices and method-specific hyperparameters that are evaluated accordingly.

H.1 DETAILS ON LILAC AND DYNAMITE

In these settings, we extend both LILAC and DynaMITE by incorporating a context encoder to
infer latent context variables ct, following their respective designs. Both methods learn belief
state embeddings from historical observations. For a fair comparison, we use the same latent
identification network architecture as in our framework, but modify the inputs according to each
method’s assumptions.

Specifically, LILAC and DynaMITE condition their inference networks solely on the historical
trajectory x1:t, without access to current and future information. Additionally, consistent with
their original implementations, we do not include a separate prior head on top of the GRU; both
methods share the encoder for posterior inference and prior prediction. And the primary difference
(in implementation) between these two methods lies in the temporal context used: LILAC maintains
the full belief over the entire history, i.e., it conditions on x1:t to infer ct+1, while DynaMITE uses
only the most recent context, i.e., it infers ct+1 based solely on xt.

All other hyperparameters are aligned with those used in our Stage 1 training. The estimated context
variables are then provided as additional conditioning inputs to the diffusion-based models.

H.2 DETAILS ON DIFFUSION FORCING

For Diffusion Forcing, we adopt the same autoregressive noise schedule as in our method, which
accounts for causal uncertainty, similarly to the formulation in Eq. D.1 of (Chen et al., 2024), to ensure
a fair comparison. Additionally, we use the Monte Carlo Guidance (MCG) mechanism introduced
in (Chen et al., 2024) for Maze2D, following the original setup. For all other environments, we use
the same classifier guidance scheme as the other baselines to maintain consistency in evaluation.

I ABLATION ANALYSIS

I.1 TRAINING/INFERENCE TIME ANALYSIS

We conduct all experiments on 4× NVIDIA A100 or 8× RTX 4090 GPUs, depending on the model
scale and environment requirements. The main computational overhead in our framework arises from
two components: (i) the latent factor identification network, and (ii) the denoise-and-refine steps
in the diffusion model. During sampling, the additional cost comes from zig-zag latent exploration
and latent variable sampling. However, these steps do not substantially increase either training or
inference time.

To quantify this, we report the training and inference speed of our method compared to the base
models DD and DP across all environments (Table A12). Our framework introduces only a moderate
computational overhead — typically 1.2–1.3× the runtime of vanilla diffusion backbones, corre-
sponding to roughly 20–30% extra training time and inference latency. This cost can be further
reduced through parallel latent sampling, lightweight context encoders, or refinement only at infer-
ence. Moreover, we additionally evaluate a Picard-accelerated variant (Table A13, Shih et al. (2023)),
where iterative refinement is parallelized by conditioning each denoising step on previously denoised
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nodes. With Picard iteration, inference time drops to 0.7–0.8× of our default iterative sampler while
maintaining comparable performance, demonstrating the potential for further acceleration.

Environment Training Time (sec/epoch) Inference Latency (ms)
Ours vs DD Ours vs DP Ours vs DD Ours vs DP

Cheetah 72.1 / 60.1 (1.20) 69.8 / 58.4 (1.20) 182 / 114 (1.16) 160 / 125 (1.28)
Ant 79.5 / 64.3 (1.24) 76.0 / 62.0 (1.23) 148 / 125 (1.19) 172 / 139 (1.24)
Walker 85.3 / 67.1 (1.27) 81.5 / 64.2 (1.27) 182 / 144 (1.28) 170 / 130 (1.31)
Maze2D 90.2 / 72.0 (1.25) 88.3 / 69.2 (1.28) 184 / 149 (1.24) 196 / 152 (1.29)
Libero 104.0 / 81.0 (1.28) 102.1 / 78.0 (1.31) 209 / 169 (1.24) 219 / 162 (1.35)
Kitchen 117.8 / 88.1 (1.34) 115.3 / 85.0 (1.36) 228 / 180 (1.27) 211 / 168 (1.26)

Table A12: Training and inference time comparison for Ada-Diffuser-planning and
Ada-Diffuser-policy variants. We report absolute times (sec/epoch or sec/rollout) and relative
overheads.

Environment Ours (sec) Ours+Picard (sec)
Cheetah 1.51 1.15
Ant 1.67 1.25
Walker 1.83 1.40
Maze2D 1.94 1.47
Libero 2.18 1.62
Kitchen 2.45 1.84

Table A13: Picard-accelerated inference.

I.2 ABLATION RESULTS

I.2.1 FULL RESULTS SUPPLEMENT TO TABLE 2

Table A14 presents the full ablation results across all environments, as a supplement to Table 2.
Overall, the results highlight the importance of the two key components in causal diffusion modeling:
latent identification and autoregressive diffusion, both of which are critical for performance.

I.2.2 NOISE SCHEDULE: LINEAR VS. LOGISTIC VS. SIGMOID

We adopt a linear noise schedule by default since any monotonic, bounded schedule suffices to model
the data-generation process and linear is simple and stable in practice. To validate this choice, we
compare linear, logistic, and sigmoid schedules on three representative tasks. As shown in Table A15,
performance remains stable across schedules with no significant differences, supporting our default
choice.
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Task Schedule Performance
Cheetah linear −68.9

logistic −63.6
sigmoid −70.4

Maze2D linear 161.4
logistic 157.6
sigmoid 168.5

Franka-Kitchen linear 0.70
logistic 0.72
sigmoid 0.66

Table A15: Ablation on noise schedules. “Performance” is the task score (higher is better for
Maze2D/Kitchen; lower magnitude negative is better for Cheetah as per the benchmark).

I.2.3 EFFECT OF TEMPORAL BLOCK LENGTH ON LATENT IDENTIFICATION

We further analyze the impact of temporal block length on latent identification. As shown in Fig. A6,
the results are consistent with findings reported in the main paper. When the number of observations
is insufficient (e.g., ≤ 4), identification performance degrades. Performance improves when the block
length is in a moderate range (5–20), indicating that sufficient temporal context is beneficial. However,
using overly long blocks (> 20) introduces redundancy and increases optimization difficulty, which
in turn harms performance.

3 4 5 6 7 8 9 10 15 20 25 30 40 50100
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0.2

0.4

0.6

0.8
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R2

3 4 5 6 7 8 9 10 15 20 25 30 40 50100
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0.8
MSE
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Figure A6: Identification results (MSE of linear probing and R2) versus the length of temporal
blocks. Left: Cheetah with time-varying wind; Right: Cheetah with time-varying rewards.

Clustering We assess whether the learned latent space organizes states by the underlying context
on the Cheetah wind-change task, where the ground-truth latent evolves as fw(t) = 5 + 5 sin(0.5t).
We sample 1000 time steps, discretize fw(t) into five equal-frequency bins to define target clusters,
embed the corresponding observations into the 20-dimensional learned latent representation, and run
k-means with k = 5. We compare our method with LILAC and DynaMIE, together with an ablation
that without refinement. Results are given in Fig. A7.

I.2.4 LATENT PROBING: EFFECT OF BACKWARD REFINEMENT AND ZIG–ZAG

To test whether backward refinement and zig–zag primarily help by correcting posterior mismatch,
we perform a latent probing analysis on CHEETAH with changing wind. We linearly map the learned
latent representation to the ground-truth wind variable using a simple least-squares probe (trained
on a subset of blocks and evaluated on held-out blocks). Table A16 reports the mean squared error
(MSE) of this probe for three variants: (i) the full model with backward refinement and zig–zag; (ii)
without refinement; and (iii) without zig–zag.
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Ours

Ours (w/o Refine)

LILAC

DynaMITE
s

Figure A7: Clustering (t-SNE)results on Cheetah wind-change.

Variant MSE
Full (with refinement + zig–zag) 0.18
w/o refinement 0.28
w/o zig–zag 0.23

Table A16: Linear probing MSE for recovering the ground-truth wind latent on CHEETAH (changing
wind). Lower is better.

Analysis. The full model achieves the lowest MSE, indicating more accurate recovery of the latent
wind. Removing backward refinement yields the largest degradation (0.18→ 0.28), consistent with
the role of refinement in letting future evidence within a block update the latent posterior and reduce
temporal lag. Disabling zig–zag also harms accuracy (0.18 → 0.23), suggesting that alternating
conditioning helps align the denoising trajectory with the latent dynamics rather than purely following
the forward temporal pass. Together, these results support our claim that both components reduce
posterior mismatch and improve latent identifiability, which in turn benefits planning and control in
settings with evolving hidden factors.

I.2.5 ON THE EFFECT OF PLANNING AND EXECUTION HORIZONS: LONG-HORIZON
PLANNING

We study the robustness of our approach under increased planning and execution horizons (Tp
and Ta). Specifically, we evaluate on two challenging tasks—Franka-Kitchen-Partial and Libero-
Long, where the original settings are Kitchen (Tp = 16, Ta = 8) and Libero (Tp = 10, Ta = 8).
Results are in Fig. A8. When we increase these horizons, we observe that the baselines, DP and
DF, suffer significant performance drops. In contrast, Ada-Diffusermaintains relatively high
performance. This demonstrates that modeling the underlying causal generative process, through
autoregressive structure and latent representations, enables better long-horizon planning. Although
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Figure A8: Results with different planning and execution horizons. We evaluate on Kitchen-partial
and Libero-Long experiments.

we do not explicitly impose latent variables, our model implicitly learns representations that can track
stochasticity and support smooth control.
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Table A4: Results (average returns) on Ada-Diffuser-Planner with latent factors that affects
dynamics and rewards. cs and cr indicate the changes on dynamics and reward, E and S represent
the episodic and time-step changes. The results are with 5 random seeds. The bold ones are the
best-performing ones, excluding meta-learning and oracle ones.
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Table A5: Results (average returns) on Ada-Diffuser-Policy with latent factors. cs and
cr indicate the changes on dynamics and reward, E and S represent the episodic and time-step
changes. The results are with 5 random seeds. The bold ones are the best-performing ones, excluding
meta-learning and oracle ones.
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Environment Diffuser DD DF LDCQ Ours (DD)

Mixed 52.6 ± 2.3 75.2 ± 1.4 73.7 ± 1.9 73.3 ± 0.5 74.6± 1.6

Partial 55.8± 1.9 57.3± 1.2 68.6± 2.4 67.8± 0.8 70.1± 1.3

Table A6: Results (success rate (%)) on Ada-Diffuser-Planner without explicit latent factors
on Franka-kitchen environment. The results are with 5 random seeds.

Environment Diffuser DD DF LDCQ Ours (DD)

umaze 113.5 ± 2.8 114.8 ± 3.2 116.7 ± 2.0 134.2 ± 4.1 148.6± 3.7

medium 121.5 ± 5.6 129.6 ± 2.9 149.4± 7.5 125.3± 2.5 148.6± 3.1

large 123.0± 4.8 131.5± 4.2 159.0± 2.7 150.1± 2.9 161.4± 3.2

Table A7: Results on Ada-Diffuser-Planner without explicit latent factors on Maze-2D
environment. The results are averaged across 5 random seeds.

Environment Diffuser DD DF LDCQ Ours (DD)

medium-expert 106.2 ± 0.7 108.8 ± 2.0 105.4 ± 3.2 109.3 ± 0.4 115.7 ± 2.1

medium 79.6± 9.8 82.5± 1.6 66.2± 1.9 69.4± 2.4 83.6± 3.5

medium-replay 70.6± 0.6 75.0 ± 3.2 72.2± 2.6 68.5± 4.3 74.3± 2.8

Table A8: Results on Ada-Diffuser-Planner without explicit latent factors on Walker envi-
ronment. The results are averaged across 5 random seeds.

Environment DP Ours (DP)

Spatial 78.3 ± 3.9 79.2 ± 4.2

Object 92.5± 2.6 93.4± 2.8

Long 50.5 ± 7.2 62.6 ± 4.9

Table A9: Results on Ada-Diffuser-Policy without explicit latent factors on Libero environ-
ment. The results are averaged across 5 random seeds.

Component Type (i): Full Trajectory Type (ii): State-Only

Model Backbone 1D U-Net (Ronneberger et al., 2015) Transformer (DiT)
Architecture Kernel size: 5; channels: (1,2,2,2); base: 32 Hidden dim: 256; head dim: 32
# DiT Blocks – 2 (Walker, Kitchen, Maze2D), 8 (LIBERO)
Optimizer Adam, lr = 3 × 10−4 Adam, lr = 3 × 10−4

Batch Size 64 128
Training Steps 1M 1M
Diffusion Timesteps 150 200
Observation Horizon To 10 4 (Kitchen), 2 (LIBERO), 10 (others)
Planning Horizon Tp 16 (Cheetah), 32 (Ant) 16 (Kitchen), 10 (LIBERO), 32 (others)
Execution Horizon To 1 8 (Kitchen, LIBERO), 10 (others)
Guidance CG, ω = 1.5 CFG
Inverse Dynamics Model – 2-layer embed (64), 3-layer MLP (128), 1M steps
Refinement Loss Cofficient 0.1 0.1

Table A10: Planner configurations for type (i): full trajectory generation and type (ii): state-only
generation with inverse dynamics.
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Cases Cheetah-1 Cheetah-2 Ant Maze2D Walker Kitchen RoboMimic LIBERO

Original -73.5 -52.9 295.8 161.4 115.7 0.70 0.85 93.4
w/o refine -82.0 -60.7 261.2 156.5 107.4 0.63 0.78 90.2
w/o zig-zag -91.6 -56.1 258.3 147.6 107.9 0.59 0.75 91.6
same NS -89.7 -62.4 259.7 140.1 105.8 0.56 0.72 85.2
random NS -84.6 -62.9 266.4 146.3 109.1 0.61 0.76 88.5

Table A14: Ablation on Design Choices. We conduct ablation studies across a diverse set of tasks,
including: Cheetah-Wind-S with a planner-based approach (denoted as Cheetah-1 in the table),
Cheetah-Wind-S with a diffusion policy (Cheetah-2), Ant-Dir-E (policy, IDQL-based), Maze2D-
Large (planner), Walker2D-Medium-Expert (planner), Kitchen-Partial (planner), LIBERO-Object
(diffusion policy), and RoboMimic-Can.
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We disclose that LLMs were used solely to correct grammatical issues in this paper. It did not author
any sentence-level content. No part of the research ideas, experimental design, implementation, or
analysis relied on LLMs.
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