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ABSTRACT

Differentiable Neural Architecture Search is one of the most popular Neural Ar-
chitecture Search (NAS) methods for its search efficiency and simplicity, accom-
plished by jointly optimizing the model weight and architecture parameters in a
weight-sharing supernet via gradient-based algorithms. At the end of the search
phase, the operations with the largest architecture parameters will be selected to
form the final architecture, with the implicit assumption that the values of archi-
tecture parameters reflect the operation strength. While much has been discussed
about the supernet’s optimization, the architecture selection process has received
little attention. We provide empirical and theoretical analysis to show that the
magnitude of architecture parameters does not necessarily indicate how much the
operation contributes to the supernet’s performance. We propose an alternative
perturbation-based architecture selection that directly measures each operation’s
influence on the supernet. We re-evaluate several differentiable NAS methods with
the proposed architecture selection and find that it is able to extract significantly
improved architectures from the underlying supernets consistently. Furthermore,
we find that several failure modes of DARTS can be greatly alleviated with the
proposed selection method, indicating that much of the poor generalization ob-
served in DARTS can be attributed to the failure of magnitude-based architecture
selection rather than entirely the optimization of its supernet.

1 INTRODUCTION

Neural Architecture Search (NAS) has been drawing increasing attention in both academia and in-
dustry for its potential to automatize the process of discovering high-performance architectures,
which have long been handcrafted. Early works on NAS deploy Evolutionary Algorithm (Stanley
& Miikkulainen, 2002; Real et al., 2017; Liu et al., 2017) and Reinforcement Learning (Zoph & Le,
2017; Pham et al., 2018; Zhong et al., 2018) to guide the architecture discovery process. Recently,
several one-shot methods have been proposed that significantly improve the search efficiency (Brock
et al., 2018; Guo et al., 2019; Bender et al., 2018).

As a particularly popular instance of one-shot methods, DARTS (Liu et al., 2019) enables the search
process to be performed with a gradient-based optimizer in an end-to-end manner. It applies contin-
uous relaxation that transforms the categorical choice of architectures into continuous architecture
parameters α. The resulting supernet can be optimized via gradient-based methods, and the opera-
tions associated with the largest architecture parameters are selected to form the final architecture.
Despite its simplicity, several works cast doubt on the effectiveness of DARTS. For example, a sim-
ple randomized search (Li & Talwalkar, 2019) outperforms the original DARTS; Zela et al. (2020)
observes that DARTS degenerates to networks filled with parametric-free operations such as the skip
connection or even random noise, leading to the poor performance of the selected architecture.

While the majority of previous research attributes the failure of DARTS to its supernet optimization
(Zela et al., 2020; Chen & Hsieh, 2020; Chen et al., 2021), little has been discussed about the validity
of another important assumption: the value of α reflects the strength of the underlying operations. In
this paper, we conduct an in-depth analysis of this problem. Surprisingly, we find that in many cases,
α does not really indicate the operation importance in a supernet. Firstly, the operation associated
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with larger α does not necessarily result in higher validation accuracy after discretization. Secondly,
as an important example, we show mathematically that the domination of skip connection observed
in DARTS (i.e. αskip becomes larger than other operations.) is in fact a reasonable outcome of the
supernet’s optimization but becomes problematic when we rely on α to select the best operation.

If α is not a good indicator of operation strength, how should we select the final architecture from a
pretrained supernet? Our analysis indicates that the strength of each operation should be evaluated
based on its contribution to the supernet performance instead. To this end, we propose an alternative
perturbation-based architecture selection method. Given a pretrained supernet, the best operation
on an edge is selected and discretized based on how much it perturbs the supernet accuracy; The
final architecture is derived edge by edge, with fine-tuning in between so that the supernet remains
converged for every operation decision. We re-evaluate several differentiable NAS methods (DARTS
(Liu et al., 2019), SDARTS (Chen & Hsieh, 2020), SGAS (Li et al., 2020)) and show that the
proposed selection method is able to consistently extract significantly improved architectures from
the supernets than magnitude-based counterparts. Furthermore, we find that the robustness issues
of DARTS can be greatly alleviated by replacing the magnitude-based selection with the proposed
perturbation-based selection method.

2 BACKGROUND AND RELATED WORK

Preliminaries of Differentiable Architecture Search (DARTS) We start by reviewing the for-
mulation of DARTS. DARTS’ search space consists of repetitions of cell-based microstructures.
Every cell can be viewed as a DAG with N nodes and E edges, where each node represents a latent
feature map xi, and each edge is associated with an operation o (e.g. skip connect, sep conv 3x3)
from the search space O. Continuous relaxation is then applied to this search space. Concretely,
every operation on an edge is activated during the search phase, with their outputs mixed by the ar-
chitecture parameter α to form the final mixed output of that edge m̄(xi) =

∑
o∈O

expαo∑
o′ expαo′

o(xi).
This particular formulation allows the architecture search to be performed in a differentiable manner:
DARTS jointly optimizes α and model weight w with the following bilevel objective via alternative
gradient updates:

min
α
Lval(w∗, α) s.t. w∗ = arg min

w
Ltrain(w,α). (1)

We refer to the continuous relaxed network used in the search phase as the supernet of DARTS.
At the end of the search phase, the operation associated with the largest αo on each edge will be
selected from the supernet to form the final architecture.

Failure mode analysis of DARTS Several works cast doubt on the robustness of DARTS. Zela
et al. (2020) tests DARTS on four different search spaces and observes significantly degenerated
performance. They empirically find that the selected architectures perform poorly when DARTS’
supernet falls into high curvature areas of validation loss (captured by large dominant eigenvalues of
the Hessian∇2

α,αLval(w,α)). While Zela et al. (2020) relates this problem to the failure of supernet
training in DARTS, we examine it from the architecture selection aspects of DARTS, and show that
much of DARTS’ robustness issue can be alleviated by a better architecture selection method.

Progressive search space shrinking There is a line of research on NAS that focuses on reducing
the search cost and aligning the model sizes of the search and evaluation phases via progressive
search space shrinking (Liu et al., 2018; Li et al., 2019; Chen et al., 2021; Li et al., 2020). The
general scheme of these methods is to prune out weak operations and edges sequentially during
the search phase, based on the magnitude of α following DARTS. Our method is orthogonal to
them in this respect, since we select operations based on how much it contributes to the supernet’s
performance rather than the α value. Although we also discretize edges greedily and fine-tune
the network in between, the purpose is to let the supernet recover from the loss of accuracy after
discretization to accurately evaluate operation strength on the next edge, rather than to reduce the
search cost.
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3 THE PITFALL OF MAGNITUDE-BASED ARCHITECTURE SELECTION IN
DARTS

In this section, we put forward the opinion that the architecture parameter α does not necessarily rep-
resent the strength of the underlying operation in general, backed by both empirical and theoretical
evidence. As an important example, we mathematically justify that the skip connection domination
phenomenon observed in DARTS is reasonable by itself, and becomes problematic when combined
with the magnitude-based architecture selection.

3.1 α MAY NOT REPRESENT THE OPERATION STRENGTH

Figure 1: α vs discretization accuracy at convergence of all operations on 3 randomly selected edges
from a pretrained DARTS supernet (one subplot per edge). The magnitude of α for each operation
does not necessarily agree with its relative discretization accuracy at convergence.
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Figure 2: Operation strength on each edge of S2 (skip connect, sep conv 3x3). (a). Operations
associated with the largest α. (b). Operations that result in the highest discretization validation
accuracy at convergence. Parameterized operations are marked red.

Following DARTS, existing differentiable NAS methods use the value of architecture parameters α
to select the final architecture from the supernet, with the implicit assumption that α represents the
strength of the underlying operations. In this section, we study the validity of this assumption in
detail.

Consider one edge on a pretrained supernet; the strength of an operation on the edge can be naturally
defined as the supernet accuracy after we discretize to this operation and fine-tune the remaining net-
work until it converges again; we refer to this as ”discretization accuracy at convergence” for short.
The operation that achieves the best discretization accuracy at convergence can be considered as
the best operation for the given edge. Figure 1 shows the comparison of α (blue) and operation
strength (orange) of randomly select edges on DARTS supernet. As we can see, the magnitude of α
for each operation does not necessarily agree with their relative strength measured by discretization
accuracy at convergence. Moreover, operations assigned with small αs are sometimes strong ones
that lead to high discretization accuracy at convergence. To further verify the mismatch, we inves-
tigate the operation strength on search space S2, where DARTS fails dramatically due to excessive
skip connections (Zela et al., 2020). S2 is a variant of DARTS search space that only contains two
operations per edge (skip connect, sep conv 3x3). Figure 2 shows the selected operations based
on α (left) and operation strength (right) on all edges on S2. From Figure 2a, we can see that
αskip connect > αsep conv 3x3 on 12 of 14 edges. Consequently, the derived child architecture will
lack representation ability and perform poorly due to too many skip connections. However, as shown
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in Figure 2b, the supernet benefits more from discretizing to sep conv 3x3 than skip connect on half
of the edges.

3.2 A CASE STUDY: SKIP CONNECTION

Several works point out that DARTS tends to assign large α to skip connections, resulting in shallow
architectures with poor generability (Zela et al., 2020; Liang et al., 2019; Bi et al., 2019). This ”skip
connection domination” issue is generally attributed to the failure of DARTS’ supernet optimiza-
tion. In contrast, we draw inspiration from research on ResNet (He et al., 2016) and show that this
phenomenon by itself is a reasonable outcome while DARTS refines its estimation of the optimal
feature map, rendering αskip ineffective in the architecture selection.

Table 1: Test accuracy before and after layer
(edge) shuffling on cifar10. For ResNet and VGG,
we randomly swap two layers in each stage (de-
fined as successive layers between two downsam-
pling blocks. For DARTS supernet, we randomly
swap two edges in every cell.

VGG ResNet DARTS
Before 92.69 93.86 88.44
After 9.83± 0.33 83.2015± 2.03 81.09± 1.87

In vanilla networks (e.g., VGG), each layer
computes a new level of feature map from the
output feature map of the predecessor layer;
thus, reordering layers at test time would dra-
matically hurt the performance (Veit et al.,
2016). Unlike vanilla networks, Greff et al.
(2017) and Veit et al. (2016) discover that suc-
cessive layers in ResNet with compatible chan-
nel sizes are in fact estimating the same optimal
feature map so that the outputs of these layers
stay relatively close to each other at convergence; As a result, ResNet’s test accuracy remains robust
under layer reordering. Greff et al. (2017) refers to this unique way of feature map estimation in
ResNet as the ”unrolled estimation.”

DARTS’ supernet resembles ResNet, rather than vanilla networks like VGG, in both appearance
and behavior. Appearance-wise, within a cell of DARTS’ supernet, edges with skip connection are
in direct correspondence with the successive residual layers in ResNet. Behavior-wise, DARTS’
supernet also exhibits a high degree of robustness under edge shuffling. As shown in Table 1,
randomly reordering edges on a pretrained DARTS’ supernet at test time also has little effect on
its performance. This evidence indicates that DARTS performs unrolled estimation like ResNet as
well, i.e., edges within a cell share the same optimal feature map that they try to estimate. In the
following proposition, we apply this finding and provide the optimal solution of α in the sense of
minimizing the variance of feature map estimation.
Proposition 1. 1 Without loss of generality, consider one cell from a simplified search space consists
of two operations: (skip, conv). Let m∗ denotes the optimal feature map, which is shared across all
edges according to the unrolled estimation view (Greff et al., 2017). Let oe(xe) be the output of
convolution operation, and let xe be the skip connection (i.e., the input feature map of edge e).
Assume m∗, oe(xe) and xe are normalized to the same scale. The current estimation of m∗ can then
be written as:

me(xe) =
exp(αconv)

exp(αconv) + exp(αskip)
oe(xe) +

exp(αskip)

exp(αconv) + exp(αskip)
xe, (2)

where αconv and αskip are the architecture parameters defined in DARTS. The optimal α∗conv and
α∗skip minimizing var(me(xe) − m∗), the variance of the difference between the optimal feature
map m∗ and its current estimation me(xe), are given by:

α∗conv ∝ var(xe −m∗) (3)
α∗skip ∝ var(oe(xe)−m∗). (4)

We refer the reader to Appendix A.4 for detailed proof. From eq. (3) and eq. (4), we can see that
the relative magnitudes of αskip and αconv come down to which one of xe or oe(xe) is closer to m∗
in variance:

• xe (input of edge e) comes from the mixed output of the previous edge. Since the goal of
every edge is to estimate m∗ (unrolled estimation), xe is also directly estimating m∗.

1Proposition 1 unfolds the optimal α in principle and does not constraint the particular optimization method
(i.e., bilevel, single-level, or blockwise update) to achieve it. Moreover, this proposition can be readily extended
to various other search spaces since we can group all non-skip operations into a single oe(·).

4



Published as a conference paper at ICLR 2021

• oe(xe) is the output of a single convolution operation instead of the complete mixed output
of edge e, so it will deviate from m∗ even at convergence.

Therefore, in a well-optimized supernet, xe will naturally be closer tom∗ than oe(xe), causing αskip
to be greater than αconv .

Figure 3: mean(αskip − αconv) (soft-
maxed) v.s. supernet’s validation accu-
racy. The gap of (αskip − αconv) in-
creases as supernet gets better.

Our analysis above indicates that the better the supernet,
the larger the (αskip − αconv) gap (softmaxed) will be-
come since xe gets closer and closer tom∗ as the supernet
is optimized. This result is evidenced in Figure 3, where
mean(αskip − αconv) continues to grow as the supernet
gets better. In this case, although αskip > αconv is rea-
sonable by itself, it becomes an inductive bias to NAS if
we were to select the final architecture based on α.

4 PERTURBATION-BASED
ARCHITECTURE SELECTION

Instead of relying on the α value to select the best opera-
tion, we propose to directly evaluate operation strength in
terms of its contribution to the supernet’s performance. The operation selection criterion is laid out
in section 4.1. In section 4.2, we describe the entire architecture selection process.

4.1 EVALUATING THE STRENGTH OF EACH OPERATION

In section 3.1, we define the strength of each operation on a given edge as how much it contributes
to the performance of the supernet, measured by discretization accuracy. To avoid inaccurate eval-
uation due to large disturbance of the supernet during discretization, we fine-tune the remaining
supernet until it converges again, and then compute its validation accuracy (discretization accuracy
at convergence). The fine-tuning process needs to be carried out for evaluating each operation on an
edge, leading to substantial computation costs.

To alleviate the computational overhead, we consider a more practical measure of operation strength:
for each operation on a given edge, we mask it out while keeping all other operations, and re-evaluate
the supernet. The one that results in the largest drop in the supernet’s validation accuracy will be
considered as the most important operation on that edge. This alternative criterion incurs much less
perturbation to the supernet than discretization since it only deletes one operation from the supernet
at a time. As a result, the supernet’s validation accuracy after deletion stays close to the unmodified
supernet, and thus it alleviates the requirement of tuning the remaining supernet to convergence.
Therefore, we implement this measurement for the operation selection in this work.

Algorithm 1: Perturbation-based Architecture Selection
Input: A pretrained supernet S, Set of edges E from S, Set of nodes N from S
Result: Set of selected operations {o∗e}e∈E
while |E| > 0 do

randomly select an edge e ∈ E (and remove it from E);
forall operation o on edge e do

evaluate the validation accuracy of S when o is removed (ACC\o);
end
select the best operation for e: o∗e ← arg minoACC\o;
discretize edge e to o∗e and tune the remaining supernet for a few epochs;

end

4.2 THE COMPLETE ARCHITECTURE SELECTION PROCESS

Our method operates directly on top of DARTS’ pretrained supernet. Given a supernet, we randomly
iterate over all of its edges. We evaluate each operation on an edge, and select the best one to be
discretized based on the measurement described in section 4.1. After that, we tune the supernet for
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a few epochs to recover the accuracy lost during discretization. The above steps are repeated until
all edges are decided. Algorithm 1 summarizes the operation selection process. The cell topology is
decided in a similar fashion. We refer the reader to Appendix A.3 for the full algorithm, including
deciding the cell topology. This simple method is termed ”perturbation-based architecture selection
(PT)” in the following sections.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate that the perturbation-based architecture selection method is able to
consistently find better architectures than those selected based on the values of α. The evaluation is
based on the search space of DARTS and NAS-Bench-201 (Dong & Yang, 2020), and we show that
the perturbation-based architecture selection method can be applied to several variants of DARTS.

5.1 RESULTS ON DARTS’ CNN SEARCH SPACE

We keep all the search and retrain settings identical to DARTS since our method only modifies
the architecture selection part. After the search phase, we perform perturbation-based architecture
selection following Algorithm 1 on the pretrained supernet. We tune the supernet for 5 epochs
between two selections as it is enough for the supernet to recover from the drop of accuracy after
discretization. We run the search and architecture selection phase with four random seeds and report
both the best and average test errors of the obtained architectures.

As shown in Table 2, the proposed method (DARTS+PT) improves DARTS’ test error from 3.00%
to 2.61%, with manageable search cost (0.8 GPU days). Note that by only changing the architecture
selection method, DARTS performs significantly better than many other differentiable NAS methods
that enjoy carefully designed optimization process of the supernet, such as GDAS (Dong & Yang,
2019) and SNAS (Xie et al., 2019). This empirical result suggests that architecture selection is
crucial to DARTS: with the proper selection algorithm, DARTS remains a very competitive method.

Our method is also able to improve the performance of other variants of DARTS. To show this, we
evaluate our method on SDARTS(rs) and SGAS (Chen & Hsieh, 2020; Li et al., 2020). SDARTS(rs)
is a variant of DARTS that regularizes the search phase by applying Gaussian perturbation to α.
Unlike DARTS and SDARTS, SGAS performs progressive search space shrinking. Concretely,
SGAS progressively discretizes its edges with the order from most to least important, based on a
novel edge importance score. For a fair comparison, we keep its unique search space shrinking
process unmodified and only replace its magnitude-based operation selection with ours. As we can
see from Table 2, our method consistently achieves better average test errors than its magnitude-
based counterpart. Concretely, the proposed method improves SDARTS’ test error from 2.67% to
2.54% and SGAS’ test error from 2.66% to 2.56%. Moreover, the best architecture discovered in
our experiments achieves a test error of 2.44%, ranked top among other NAS methods.

5.2 PERFORMANCE ON NAS-BENCH-201 SEARCH SPACE

Figure 4: Trajectory of test accuracy on space NAS-Bench-201 and three datasets (Left: cifar10,
Middle: cifar100, Right: Imagenet16-120). The test accuracy of our method is plotted by taking the
snapshots of DARTS’ supernet at corresponding epochs and run our selection method on top of it.

To further verify the effectiveness of the proposed perturbation-based architecture selection, we con-
duct experiments on NAS-Bench-201. NAS-Bench-201 provides a unified cell-based search space
similar to DARTS. Every architecture in the search space is trained under the same protocol on three
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Table 2: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days)

Search
Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual
NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL
AmoebaNet-A (Real et al., 2019) 3.34± 0.06 3.2 3150 evolution
AmoebaNet-B (Real et al., 2019) 2.55± 0.05 2.8 3150 evolution
PNAS (Liu et al., 2018)? 3.41± 0.09 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
NAONet (Luo et al., 2018) 3.53 3.1 0.4 NAO
SNAS (moderate) (Xie et al., 2019) 2.85± 0.02 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.93 3.4 0.3 gradient
BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2 gradient
ProxylessNAS (Cai et al., 2019)† 2.08 5.7 4.0 gradient
NASP (Yao et al., 2020) 2.83± 0.09 3.3 0.1 gradient
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient
PC-DARTS (Xu et al., 2020) 2.57± 0.07 3.6 0.1 gradient
R-DARTS (L2) Zela et al. (2020) 2.95± 0.21 - 1.6 gradient
DARTS (Liu et al., 2019) 3.00± 0.14 3.3 0.4 gradient
SDARTS-RS (Chen & Hsieh, 2020) 2.67± 0.03 3.4 0.4 gradient
SGAS (Cri 1. avg) (Li et al., 2020) 2.66± 0.24 3.7 0.25 gradient
DARTS+PT (avg)∗ 2.61± 0.08 3.0 0.8‡ gradient
DARTS+PT (best) 2.48 3.3 0.8‡ gradient
SDARTS-RS+PT (avg)∗ 2.54± 0.10 3.3 0.8‡ gradient
SDARTS-RS+PT (best) 2.44 3.2 0.8‡ gradient
SGAS+PT (Crit.1 avg)∗ 2.56± 0.10 3.9 0.29‡ gradient
SGAS+PT (Crit.1 best) 2.46 3.9 0.29‡ gradient
† Obtained on a different space with PyramidNet (Han et al., 2017) as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.
∗ Obtained by running the search and retrain phase under four different seeds and computing

the average test error of the derived architectures.

datasets (cifar10, cifar100, and imagenet16-120), and their performance can be obtained by querying
the database. As in section 5.1, we take the pretrained supernet from DARTS and apply our method
on top of it. All other settings are kept unmodified. Figure 4 shows the performance trajectory of
DARTS+PT compared with DARTS. While the architectures found by magnitude-based selection
degenerates over time, the perturbation-based method is able to extract better architectures from the
same underlying supernets stably. The result implies that the DARTS’ degenerated performance
comes from the failure of magnitude based architecture selection.

6 ANALYSIS

6.1 ISSUE WITH THE ROBUSTNESS OF DARTS

Zela et al. (2020) observes that DARTS tends to yield degenerate architectures with abysmal per-
formance. We conjecture that this robustness issue of DARTS can be explained by the failure of
magnitude-based architecture selection.

Table 3: DARTS+PT on S1-S4 (test error (%)).
Dataset Space DARTS DARTS+PT (Ours) DARTS+PT (fix α)?

C10

S1 3.84 3.50 2.86
S2 4.85 2.79 2.59
S3 3.34 2.49 2.52
S4 7.20 2.64 2.58

C100

S1 29.46 24.48 24.40
S2 26.05 23.16 23.30
S3 28.90 22.03 21.94
S4 22.85 20.80 20.66

SVHN

S1 4.58 2.62 2.39
S2 3.53 2.53 2.32
S3 3.41 2.42 2.32
S4 3.05 2.42 2.39

? This column will be explained later in Section 6.3

To show this, we test DARTS’ perfor-
mance with perturbation-based architec-
ture selection on four spaces proposed by
Zela et al. (2020) (S1-S4). The complete
specifications of these spaces can be found
in Appendix A.2. Given a supernet, the
architecture selected based on α performs
poorly across spaces and datasets (column
3 in Table 3). However, our method is able
to consistently extract meaningful archi-
tectures with significantly improved per-
formance (Column 4 in Table 3).

Notably, DARTS+PT is able to find meaningful architecture on S2 (skip connect, sep conv 3x3) and
S4 (noise, sep conv 3x3), where DARTS failed dramatically. As shown in Figure 5, on S2, while
magnitude-based selection degenerates to architectures filled with skip connections, DARTS+PT is
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able to find architecture with 4 convolutions; On S4, DARTS+PT consistently favors sep conv 3x3
on edges where α selects noise.
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Figure 5: Comparison of normal cells found on S2 and S4. The perturbation-based architecture
selection (DARTS+PT) is able to find reasonable architectures in cases where the magnitude-based
method (DARTS) fails dramatically. The complete architecture can be found in Appendix A.9.
Non-trivial operations are marked red.

6.2 PROGRESSIVE TUNING

Figure 6: The trajectory of validation accuracy in
the operation selection phase on S2. DARTS+PT
is able to select better operations that lead to
higher accuracy of the supernet than DARTS+PT-
Mag.

In addition to operation selection, we also tune
the supernet after an edge is discretized so
that the supernet could regain the lost accu-
racy. To measure the effectiveness of our op-
eration selection criterion alone, we conduct an
ablation study on the progressive tuning part.
Concretely, we test a baseline by combining
progressive tuning with magnitude-based op-
eration selection instead of our selection crite-
rion, which we code-named DARTS+PT-Mag.
Figure 6 plots the change of validation accu-
racy of DARTS+PT and DARTS+PT-Mag dur-
ing the operation selection phase. As we can
see, DARTS+PT is able to identify better op-
erations that lead to higher validation accuracy
than the magnitude-based alternative, revealing
the effectiveness of our operation selection cri-
teria. Moreover, DARTS+PT-Mag is only able
to obtain a test error of 2.85% on DARTS space
on cifar10, much worse than DARTS+PT (2.61%), indicating that the operation selection part plays
a crucial role in our method.

6.3 FIXING α AS UNIFORM

Table 4: DARTS+PT v.s. DARTS+PT (fixed α) on
more spaces (test error %) on cifar10.

Space DARTS DARTS+PT DARTS+PT (fix α)
DARTS Space 3.00 2.61 2.87

NAS-Bench-201 45.7 11.89 6.20

Since the proposed method does not rely
on α for architecture selection, a natural
question is whether it is necessary to opti-
mize a stand-alone α. We find that by fix-
ing α = 0 (uniform weights for all the op-
erations) while training supernet and ap-
plying perturbation-based architecture se-
lection, the resulting method performs on-par with DARTS+PT, and in some cases even better. For
example, DARTS+PT (fix α) achieves better performance than DARTS+PT on NAS-Bench-201. On
DARTS’ search space and its variants S1-S4, DARTS+PT (fix α) performs similarly to DARTS+PT.
The results can be found in Table 3 and Table 4. This surprising finding suggests that even the most
naive approach, simply training a supernet without α, will be a competitive method when combining
with the proposed perturbation-based architecture selection.
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7 CONCLUSION AND DISCUSSION

This paper attempts to understand Differentiable NAS methods from the architecture selection per-
spective. We re-examine the magnitude-based architecture selection process of DARTS and provide
empirical and theoretical evidence on why it does not indicate the underlying operation strength. We
introduce an alternative perturbation-based architecture selection method that directly measures the
operation strength via its contribution to the supernet performance. The proposed selection method
is able to consistently extract improved architecture from supernets trained identically to the respec-
tive base methods on several spaces and datasets.

Our method brings more freedom in supernet training as it does not rely on α to derive the final
architecture. We hope the perturbation-based architecture selection can bring a new perspective to
the NAS community to rethink the role of α in Differential NAS.
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A APPENDIX

A.1 DESCRIPTION ABOUT OUR BASELINE MODELS

A.1.1 DARTS

DARTS (Liu et al., 2019) is a pioneering work that introduces the general differentiable NAS frame-
work, which we reviewed in section 2. In DARTS, the topology and operation are searched together.
Concretely, at the end of the search, it selects one operation for every edge in the normal (reduction)
cell based on the architecture parameter α. Then it selects two input edges for each node in the cell
by comparing the largest α of every input edge. The final architecture consists of one operation on
each of the eight edges in the normal (reduction) cell. The operation on an edge will be selected
from a pool of seven candidates: skip connection, avg pool 3x3, max pool 3x3, sep conv 3x3,
sep conv 5x5, dil conv 3x3, and dil conv 5x5. In addition to these operations, DARTS also main-
tains a ”none” op, which is used exclusively for determining the topology rather than treated as an
operation (Liu et al., 2019). Since the main focus of our paper is operation assignment, we omit
none op when applying the proposed selection method on DARTS.

A.1.2 SDARTS

SDARTS (Chen & Hsieh, 2020) is a variant of DARTS aiming at regularizing the bilevel opti-
mization process in DARTS via random Gaussian perturbation, inspired by the recent finding that
regularizing DARTS’ supernet leads to improved performance. While the optimization of architec-
ture parameter α in SDARTS is identical to DARTS, it distorts the architecture parameters α with
random Gaussian noise while training the model weights w. This simple yet effective regularizer is
able to consistently improve the robustness and performance of DARTS.

A.1.3 SGAS

SGAS (Li et al., 2020) represents a line of research on improving the search efficiency of differen-
tiable NAS by progressively shrinking the search space. It first trains the model weights w alone for
10 epochs. After that, it selects one edge from the supernet and then selects the best operation on
that edge based on α to be discretized. The edge selection is based on the ranking of the proposed
edge importance score. The process stops after all eight edges of the final architecture are decided.

A.2 MICROARCHITECTURE OF SPACE S1 - S4

Zela et al. (2020) introduces four variants of the DARTS’ space (S1, S2, S3, and S4) to study the
robustness of DARTS. These spaces differ from DARTS’ original space only in the number and
types of operations on each edge. Apart from that, everything else is the same.

• S1 is a pre-optimized search space consisting of top2 operations selected by DARTS. As a
result, each edge contains a different set of operations to be searched from.

• S2 consists of two operations: skip connect and sep conv 3x3.

• S3 consists of three operations: none, skip connect and sep conv 3x3.

• S4 consists of two operations: noise and sep conv 3x3. The noise operation outputs a
random Gaussian noise N (0, 1) regardless of the input. This operation generally hurts the
performance of discretized architecture, and should be avoided by NAS algorithm.
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A.3 THE COMPLETE ALGORITHM OF PERTURBATION-BASED ARCHITECTURE SELECTION

Algorithm 2: Perturbation-based Architecture Selection
Input: A pretrained Supernet S, Set of Edges E from S, Set of Nodes N from S
Result: Set of selected operations {o∗e}e∈E , and top2 input edges for each node

{(e(1)∗n , e
(2)∗
n }n∈N

while |E| > 0 do // operation selection phase
randomly select an edge e ∈ E (and remove it from E);
forall operation o on edge e do

evaluate the validation accuracy of S when o is removed (ACC\o);
end
select the best operation on e: o∗e ← arg minoACC\o;
discretize edge e to o∗e and train the remaining supernet until it converges again;

end
while |N | > 0 do // topology selection phase

randomly select a node n ∈ N (and remove it from N );
forall input edge e of node n do

evaluate the validation accuracy of S when e is removed (ACC\e);
end
set top2 edges on n (e

(1)∗
n , e

(2)∗
n ) to be the ones with lowest and second lowest ACC\e;

prune out all other edges of n and train the remaining supernet until it converges again;
end

A.4 PROOF OF PROPOSITION 1

Proof. Let θskip = Softmax(αskip) and θconv = Softmax(αconv). Then the mixed operation
can be written as me(xe) = θconvoe(xe) + θskipxe. We formally formulate the objective to be:

min
θskip,θconv

V ar(me(xe)−m∗) (5)

s.t. θskip + θconv = 1 (6)

This constraint optimization problem can be solved with Lagrangian multipliers:

L(θskip, θconv, λ) = V ar(me(xe)−m∗)− λ(θskip + θconv − 1) (7)
= V ar(θconvoe(xe) + θskipxe −m∗)− λ(θskip + θconv − 1) (8)
= V ar(θconv(oe(xe)−m∗) + θskip(xe −m∗))
− λ(θskip + θconv − 1) (9)

= V ar(θconv(oe(xe)−m∗)) + V ar(θskip(xe −m∗))
+ 2Cov(θconv(oe(xe)−m∗), θskip(xe −m∗))
− λ(θskip + θconv − 1) (10)

= θ2convV ar(oe(xe)−m∗) + θ2skipV ar(xe −m∗)
+ 2θconvθskipCov(oe(xe)−m∗, xe −m∗)
− λ(θskip + θconv − 1) (11)

Setting:
∂L

∂λ
= θconv + θskip − 1 = 0 (12)

∂L

∂θconv
= 2θconvV ar(oe(xe)−m∗) + 2θskipCov(oe(xe)−m∗, xe −m∗)

− λ = 0 (13)
∂L

∂θskip
= 2θconvCov(oe(xe)−m∗, xe −m∗) + 2θskipV ar(xe −m∗)

− λ = 0 (14)

13



Published as a conference paper at ICLR 2021

Solving the above equations will give us:

(15)

θ∗conv =
V ar(xe −m∗)− Cov(oe(xe)−m∗, xe −m∗)

Z
(16)

θ∗skip =
V ar(oe(xe)−m∗)− Cov(oe(xe)−m∗, xe −m∗)

Z
(17)

Where Z = V ar(oe(xe)−m∗)−Cov(oe(xe)−m∗, xe−m∗) + V ar(xe−m∗)−Cov(oe(xe)−
m∗, xe −m∗). Aligning basis with DARTS, we get:

α∗conv = log
[
V ar(xe −m∗)− Cov(oe(xe)−m∗, xe −m∗)

]
+ C (18)

α∗skip = log
[
V ar(oe(xe)−m∗)− Cov(oe(xe)−m∗, xe −m∗)

]
+ C (19)

The only term that differentiates αskip from αconv is the first term inside the logarithm, therefore:

α∗conv ∝ var(xe −m∗) (20)
α∗skip ∝ var(oe(xe)−m∗) (21)

A.5 MORE FIGURES ON α AND DISCRETIZATION ACCURACY AT CONVERGENCE

We provide extra figures similar to Figure 1 to take into account the randomness of supernet’s train-
ing. We first train 6 supernets with different seeds, and then randomly select 1 edge from each of
them. We can see that the results are consistent with Figure 1. As shown in Figure 7, the magni-
tude of α for each operation does not necessarily agree with its relative discretization accuracy at
convergence.

Figure 7: α v.s. discretization accuracy at convergence of all the operations on 6 randomly selected
edges from DARTS’ supernet trained with different seeds (one subfigure for each edge).

A.6 PERFORMANCE TRAJECTORY OF DARTS+PT (FIX α) ON NAS-BENCH-201

We plot the performance trajectory of DARTS+PT (fixα) on NAS-Bench-201 similar to Figure 4. As
shown in Figure 8, it consistently achieves strong performance without training α at all, indicating
that the extra freedom of supernet training without α can be explored to develop improved search
algorithm in the future.
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Figure 8: Trajectory of test accuracy of architectures found by DARTS+PT (fix α) on space NAS-
Bench-201 and 3 datasets (Left: cifar10, Middle: cifar100, Right: Imagenet16-120).

Table 5: Evaluation of the derived architecture on ImageNet in the mobile setting.

Architecture Test Error(%) Params
(M)

Search
Methodtop-1 top-5

DARTS (Liu et al., 2019) 26.7 8.7 4.7 gradient
DARTS+PT 25.5 8.0 4.6 gradient

A.7 ABLATION STUDY ON THE NUMBER OF FINE-TUNING EPOCHS

As described in section 4.2, we perform fine-tuning between two edge decisions to recover supernet
from the accuracy drop after discretization. The number of fine-tuning epochs is set to 5 for all
experiments because empirically we find that it is enough for the supernet to converge again. In this
section, we conduct an ablation study on the effect of the number of fine-tuning epochs. As shown
in Figure 9, the gain from tuning the supernet longer than 5 epochs is marginal.

Figure 9: Performance of DARTS+PT under different number of fine-tuning epochs on NAS-Bench-
201. Tuning the supernet longer results in marginal improvement on the proposed method.

A.8 ARCHITECTURE TRANSFERABILITY EVALUATION ON IMAGENET

We further evaluate the performance of the derived architecture on ImageNet. We strictly follow
the training protocals as well as the hyperparameter settings of DARTS (Liu et al., 2019) for this
experiment. As shown in Table 5, the proposed method improves the top1 performance of DARTS
by 1.2%.

A.9 SEARCHED ARCHITECTURES
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Figure 10: Normal and Reduction cells discovered by DARTS+PT on cifar10
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Figure 11: Normal and Reduction cells discovered by SDARTS+PT on cifar10
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Figure 12: Normal and Reduction cells discovered by SGAS-PT on cifar10
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Figure 13: Normal and Reduction cells discovered by DARTS+PT on cifar10 on Space S1
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Figure 14: Normal and Reduction cells discovered by DARTS+PT on cifar10 on Space S2
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Figure 15: Normal and Reduction cells discovered by DARTS+PT on cifar10 on Space S3
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Figure 16: Normal and Reduction cells discovered by DARTS+PT on cifar10 on Space S4
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Figure 17: Normal and Reduction cells discovered by DARTS+PT on cifar100 on Space S1
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Figure 18: Normal and Reduction cells discovered by DARTS+PT on cifar100 on Space S2
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Figure 19: Normal and Reduction cells discovered by DARTS+PT on cifar100 on Space S3
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Figure 20: Normal and Reduction cells discovered by DARTS+PT on cifar100 on Space S4
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Figure 21: Normal and Reduction cells discovered by DARTS+PT on svhn on Space S1

c_{k-2}

0

skip_connect
1

sep_conv_3x3

2
sep_conv_3x3

c_{k-1}
skip_connect

skip_connect
3sep_conv_3x3

c_{k}

sep_conv_3x3
skip_connect

(a) Normal Cell

c_{k-2}

0

sep_conv_3x3

1skip_connect

3
sep_conv_3x3

c_{k-1}

skip_connect

2sep_conv_3x3

skip_connect

sep_conv_3x3

c_{k}
sep_conv_3x3

(b) Reduction Cell

Figure 22: Normal and Reduction cells discovered by DARTS+PT on svhn on Space S2
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Figure 23: Normal and Reduction cells discovered by DARTS+PT on svhn on Space S3
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Figure 24: Normal and Reduction cells discovered by DARTS+PT on svhn on Space S4
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