
Rewarding the Unlikely: Lifting GRPO
Beyond Distribution Sharpening

Anonymous ACL submission

Abstract001

Reinforcement learning is emerging as a pri-002
mary driver for improving language model003
reasoning capabilities. A fundamental ques-004
tion is whether current reinforcement learn-005
ing algorithms—such as Group Relative Pol-006
icy Optimization (GRPO), the de facto stan-007
dard algorithm used to improve language model008
reasoning—merely sharpen the base model’s009
distribution around problems it can already010
solve. We investigate this question in the con-011
text of formal theorem proving, which has ac-012
cess to a perfect verifier. We identify a de-013
generate rank bias in GRPO in which highly014
probable trajectories are reinforced and rare015
ones are neglected. This results in distribution016
sharpening: the model can solve some prob-017
lems with fewer samples, but underperforms018
simply sampling more solutions from the origi-019
nal model. To overcome GRPO’s rank bias we020
introduce unlikeliness reward, a simple method021
for explicitly up-weighting rare but correct so-022
lutions. We show that unlikeliness reward miti-023
gates rank bias and improves pass@N across024
a large range of N in both synthetic and real025
theorem proving settings. We also uncover an026
unexpected link between rank bias and a seem-027
ingly mundane hyperparameter—the number028
of updates per batch—that leads to a second,029
complementary mitigation. We combine our030
insights into a revised GRPO training recipe031
for formal theorem proving, yielding an open032
pipeline that achieves competitive performance033
to DeepSeek-Prover-V1.5-RL on the miniF2F-034
test benchmark.035

1 Introduction036

Reinforcement learning (RL) has recently emerged037

as a powerful framework for enhancing the reason-038

ing capabilities of large language models (LLMs).039

In domains such as mathematics and code gener-040

ation, RL has been applied at scale to elicit com-041

plex reasoning behaviors using only problem in-042

/-- Prove that the sum of two even numbers

is also even -/

theorem even_add_even_is_even (a b :N)
(ha : Even a) (hb : Even b) : Even (a + b)

Theorem x

Proof 1

Proof 2

Proof 2

:= by

-- use closure property of evens

exact Even.add ha hb

Correct Proofs y1, . . . , yG

π0(y | x)

Base Model

y1 y2 . . . yG−1 yG

likely to be included in N samples

πGRPO(y | x)

GRPO

y1 y2 . . . yG−1 yG

πGRPO−UR(y | x)

GRPO-Unlikeliness

y1 y2 . . . yG−1 yG

Figure 1: We identify a rank bias in GRPO in which
model updates only reinforce already probable solutions
and fail to surface new ones. This sharpens the distribu-
tion and impairs pass@N performance for large N. Our
unlikeliness reward addresses rank bias by explicitly
encouraging uplifting low-probability correct solutions.

stances and their corresponding outcome rewards 043

(DeepSeek-AI et al., 2025; Yu et al., 2025). 044

Formal theorem proving is a particularly attrac- 045

tive domain for studying LLM reasoning. For- 046

mal systems such as Lean and Isabelle (de Moura 047

et al., 2015; Paulson, 1994) can verify mathemat- 048

ical proofs step-by-step, ensuring that models are 049

only rewarded for fully correct solutions. Since ver- 050

ification is fully automated and immune to spurious 051

solutions, formal mathematics serves as an ideal 052

testbed for reinforcement learning algorithms. 053

An important open challenge is designing rein- 054

forcement learning algorithms that do more than 055

“sharpen the distribution”—that is, we want the 056

RL-trained model to solve problems that cannot 057

1

be solved by simply sampling more from the orig-058

inal model. Consistent with the findings of Yue059

et al. (2025), our initial experiments identify this060

as a key limitation of existing RL recipes based on061

Group Relative Policy Optimization (GRPO) (Shao062

et al., 2024), the de facto standard algorithm for063

improving LLM reasoning. While GRPO improves064

single-sample accuracy, it often fails to improve065

and can even impair pass@N metrics at larger N066

in our theorem proving setting (Figure 2). This is067

a significant limitation in domains with a perfect068

verifier, such as formal mathematics, since these069

domains naturally lend themselves to sampling and070

verifying many candidates at test time.071

We argue that improving pass@N performance072

requires specifically increasing the probability of073

low probability correct responses under the model.074

We construct a toy model to demonstrate this phe-075

nomenon, and reveal empirically that GRPO suf-076

fers from rank bias: a tendency to reinforce already077

high-likelihood responses while neglecting the long078

tail of rare but correct ones. This reduces sample079

diversity and degrades multi-sample performance080

over time. To address this, we introduce Unlike-081

liness Reward, which up-weights correct outputs082

that are less likely than others. Doing so dramat-083

ically changes how GRPO learns from less likely084

trajectories, translating to more output diversity085

and higher pass@N across a range of N values.086

Furthermore, we uncover an unexpected link be-087

tween GRPO’s distribution sharpening and a seem-088

ingly mundane hyperparameter: the number of089

PPO epochs per batch. Increasing the number of090

epochs adds extra gradient steps on low-likelihood091

sequences after the high-likelihood ones saturate,092

amplifying training signal for unlikely solutions.093

Tuning this often-ignored hyperparameter is a com-094

plementary approach to the unlikeliness reward,095

and offers insight into the optimization dynamics096

that can lead to distribution sharpening.097

We demonstrate that our revised training recipe098

substantially improves pass@N metrics across a099

range of values for N , while also substantially100

outperforming standard expert iteration. We com-101

bine unlikeliness reward and our insights into PPO102

epochs into a full recipe for reinforcement learn-103

ing in formal theorem proving. We apply our104

recipe to theorem proving in Lean, resulting in105

a fully open pipeline that achieves competitive per-106

formance with DeepSeek-Prover-V1.5-RL on the107

miniF2F-test benchmark.108

2 Problem Setup 109

We study the problem of training a language model 110

for formal theorem proving, where the goal is to 111

generate valid proofs of theorems in a proof as- 112

sistant. We use Lean (de Moura et al., 2015), a 113

proof assistant based on dependent type theory that 114

supports the construction and verification of mathe- 115

matical proofs. Lean has recently attracted interest 116

in the AI and mathematics communities (e.g., Yang 117

et al. (2024); Tao (2025)). 118

Let D = {xi}Mi=1 be a dataset of theorem state- 119

ments. Each statement consists of a natural lan- 120

guage description and a formal statement express- 121

ing the theorem in Lean. Let R denote the verifier, 122

which also functions as the reward function. Given 123

a theorem statement x and a candidate proof y, 124

the Lean verifier returns a binary reward indicating 125

whether y constitutes a successful proof of x: 126

R(x, y) = 1{y proves x}. 127

We assume access to an initial prover model 128

πbase(y | x), a large language model (LLM) with 129

some basic capability to generate proofs. Given 130

a theorem statement x, the model samples a com- 131

pletion y that attempts to prove the statement. Our 132

goal is to fine-tune this model to improve its proof 133

success rate, using problem instances from D and 134

the reward signal provided by R. 135

2.1 Evaluation Metric 136

To evaluate the prover’s performance, we use the 137

pass@N metric, which measures the probability 138

that at least one of N independently sampled proof 139

attempts succeeds. This metric is widely adopted 140

in prior work due to its simplicity and close align- 141

ment with the practical use case of generating and 142

verifying many proof attempts per theorem to find 143

at least one that succeeds. 144

Let x ∈ Dtest be a theorem, and let {yj}Nj=1 ∼ 145

πθ(· | x) denote N independent samples drawn 146

from the model. The empirical pass@N metric for 147

a single theorem is defined as: 148

pass@N(x;πθ) = 1

{
max

1≤j≤N
R(x, yj) = 1

}
149

The average pass@N score on a test set Dtest = 150

{xi}Mi=1 is the average over individual theorems: 151

pass@N(πθ) =
1

M

M∑
i=1

pass@N(xi;πθ) 152

2

In the context of reinforcement learning, a high153

pass@N also indicates that we are likely to receive154

a positive reward signal when sampling N comple-155

tions per problem.156

2.2 Reinforcement Learning157

We use Group Relative Policy Optimization158

(GRPO) as the foundation of our reinforcement159

learning experiments. GRPO was introduced by160

(Shao et al., 2024) and has been successfully ap-161

plied to train models such as DeepSeek-R1 and162

DeepSeek-Prover-V1.5-RL (DeepSeek-AI et al.,163

2025; Xin et al., 2024), showing strong perfor-164

mance in both informal and formal settings.165

GRPO is an extension of Proximal Policy Opti-166

mization (PPO) (Schulman et al., 2017) that omits167

the critic model. For each question x, GRPO sam-168

ples a group of outputs {y1, . . . , yG} ∼ πθold(y |169

x) from the current policy and maximizes the fol-170

lowing objective:171

JGRPO(θ)172

=
1

G

G∑
i=1

min

(
πθ(yi | x)
πθold(yi | x)

Ai,173

clip
(

πθ(yi | x)
πθold(yi | x)

, 1− ϵ, 1 + ϵ

)
Ai

)
174

− βKLDKL[πθ ∥ πref]175

GRPO differs from PPO in how it computes the176

advantages Ai. Instead of subtracting a baseline177

predicted by the critic model, GRPO normalizes178

rewards within the group of samples. Let ri =179

R(x, yi), then the advantages are computed as:180

Ai =
ri − mean({r1, . . . , rG})

std({r1, . . . , rG})
181

Note that when all or none of the samples solve182

the problem, Ai = 0 for all i and there is no183

gradient with respect to model parameters θ (ex-184

cept for the KL term). To be more efficient with185

model updates, we implement a trick similar to186

Dynamic Sampling (Yu et al., 2025). We maintain187

a buffer of recent samples that have nonzero ad-188

vantage and only perform model updates once the189

buffer reaches the target batch size.190

3 Does GRPO Improve Pass@N?191

We begin by investigating how GRPO behaves192

when applied to formal theorem proving. Our setup193

closely follows Xin et al. (2024) in terms of model194

choice and hyperparameter settings, though we cu- 195

rate our own dataset, as theirs has not been released. 196

3.1 Dataset 197

The Lean Workbook dataset is a large-scale col- 198

lection of approximately 140K Lean 4 theorem 199

statements that were auto-formalized from natural 200

language math problems (Ying et al., 2024). Since 201

unsolvable problems do not provide useful gradi- 202

ents during RL, we select a 10K subset of prob- 203

lems that were found to be solvable in Wu et al. 204

(2024). These statements are still moderately chal- 205

lenging, as the solutions were discovered through 206

an extremely compute-intensive search process. In 207

addition, we also include the 244 problems from 208

miniF2F-valid (Zheng et al., 2021). 209

From this combined dataset, we hold-out 200 210

theorems for validation, leaving 9.6K for training. 211

Although miniF2F-test (Zheng et al., 2021) is a 212

standard benchmark for theorem proving, we found 213

high variance and inconsistent results on it when 214

training at our scale, likely due to distribution shift 215

and large difficulty gaps between problems. Thus, 216

we primarily evaluate on our I.I.D. held-out set 217

(Dval) and only use miniF2F-test for our final large- 218

scale experiments. We will refer to our training and 219

validation sets as Dtrain and Dval, respectively. 220

3.2 Training 221

Our implementation of GRPO is built on the verl 222

framework (Sheng et al., 2024), with modifications 223

to support reward feedback from the Lean REPL. 224

We use the Python wrapper for the Lean REPL 225

released by Xin et al. (2024), which we found 226

to be more robust than previous open-source al- 227

ternatives. The base model is DeepSeek-Prover- 228

V1.5-SFT, which has moderate theorem-proving 229

capabilities (Xin et al., 2024). We adopt the hy- 230

perparameters reported in Xin et al. (2024) where 231

available: 232

• Learning rate = 5e-6 233

• KL loss coefficient = 0.02 234

• Number of samples per problem = 32. 235

However, we found the original learning rate to be 236

unstable and use a reduced value of 1e-6. Due to 237

compute constraints, we only train for one epoch 238

on Dtrain and truncate the response length to 512 239

tokens, which suffices for over 99.5% of samples. 240

3

1 2 4 8 16 32 64 128 256 512
N

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Pa

ss
@

N
Model

DeepSeek-Prover-V1.5-SFT
GRPO-Default

Figure 2: Finetuning DeepSeek-Prover-V1.5-SFT with
GRPO, evaluated on Dval. GRPO improves pass@N
significantly for small N , but performs worse than the
base model for large N . We aim to understand this
behavior and develop methods to overcome it.

3.3 GRPO Fails to Improve Pass@N241

Figure 2 presents model performance on Dval, eval-242

uated up to pass@512. GRPO substantially boosts243

pass@1 to pass@16, but the improvement dimin-244

ishes for larger N. This pattern suggests that GRPO245

is effective at increasing the likelihood of already246

probable correct solutions but fails to surface new247

ones into the high-probability set, which is con-248

sistent with the findings of Yue et al. (2025) and249

Shao et al. (2024). Note that this is not an inherent250

failure of RL—boosting single-sample accuracy in-251

creases expected reward, but the benefit for formal252

theorem proving is limited. Next, we consider if253

and how RL can improve pass@N at large N .254

3.4 Can RL Optimize Pass@N?255

In this section, we argue that improving pass@N256

for large N specifically requires RL to increase257

the probability of low-probability correct solutions258

under the model.259

Suppose that the initial model π0 has a probabil-260

ity p0 to solve a problem x, i.e.,261 ∑
y s.t. R(x,y)=1

π0(y | x) = p0.262

The expected pass@N can then be expressed as:263

E[pass@N(π0)] = 1− (1− p0)
N .264

Now, we consider how RL training affects p0. The265

exact outcome of taking gradient steps against the266

GRPO objective is impossible to predict analyti-267

cally, but we can make estimates by assuming that268

we maximize the objective. For simplicity, we only269

consider early training steps, so that πθold ≈ π0,270

and disregard the KL term. The simplified GRPO271

11 2 4 8 16 32 64 128 256 512
N

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
ed

 Im
pr

ov
em

en
t i

n
pa

ss
@

N p0 values
p0 = 1

2

p0 = 1
8

p0 = 1
32

p0 = 1
128

p0 = 1
512

Figure 3: Improvement in expected pass@N assuming
RL increases correct solution probabilities by a factor
of 1 + ϵ with ϵ = 0.2. Each curve corresponds to an
initial p0 ∈ 1/2, 1/8, 1/32, 1/128, 1/512.

objective is: 272

JGRPO(θ) 273

=
1

G

G∑
i=1

min

(
πθ(yi | x)
π0(yi | x)

Ai, 274

clip
(
πθ(yi | x)
π0(yi | x)

, 1− ϵ, 1 + ϵ

)
Ai

)
. 275

We make the simplifying assumption that the prob- 276

ability of each positive sample y+ with Ai > 0 can 277

be optimized independently. In the GRPO objec- 278

tive, each sample stops contributing gradient once 279

πθ(y+ | x)/π0(y+ | x) ≥ 1 + ϵ, thus we expect 280

that the final ratio is close to the clipping bound: 281

πRL(y+ | x)
π0(y+ | x) ≈ 1 + ϵ. 282

We can then predict the accuracy of the trained 283

model: 284

pRL ≈ (1 + ϵ)p0 285
286

E[pass@N(πRL)] ≈ 1− (1− (1 + ϵ)p0)
N . 287

Figure 3 plots the expected improvement in 288

pass@N for different initial p0. When p0 is large, 289

the marginal gain in pass@512 is small. Con- 290

versely, when p0 is small, gains are negligible 291

for pass@1. In general, we see that increasing 292

pass@N requires the training algorithm to increase 293

the probability of solutions with p0 ≈ 1/N . Thus, 294

RL must specifically uplift the probability of low- 295

probability correct solutions to achieve improve- 296

ments in pass@N for large N . 297

3.5 Does GRPO Reinforce Unlikely Solutions? 298

The analysis above, and our empirical observation 299

that GRPO is not increasing pass@N , together 300

4

0 5 10 15 20 25 30
Rank of Sample in Group

0.05

0.10

0.15

0.20

0.25

0.30

Up
lif

t R
at

e

GRPO-Default

Figure 4: Uplift rate uj as a function of rank j among
positive samples. GRPO rarely increases the probability
of lowest-ranked (i.e. rarest) correct samples.

suggest that GRPO may not be effectively uplifting301

low-probability correct solutions. To verify this,302

we examine training samples for the first 800 prob-303

lems, computing their probabilities under the initial304

model and final GRPO-trained model.305

Let xi be the i-th training problem and yi,j be the306

j-th corresponding solution. We compute π0(yi,j |307

xi) and πGRPO(yi,j | xi) for all pairs. We are308

interested in whether πGRPO(yi,j | xi)/π0(yi,j |309

xi) ≈ 1 + ϵ, especially when π0(yi,j | xi) is small.310

We find that the raw probability ratios are highly311

variable, containing extreme outliers, and the scale312

of π0(yi,j | xi) also differs widely across prob-313

lems. This makes it difficult to analyze the raw314

model probabilities directly. Instead, we use the315

rank of a sample within its group as a proxy for its316

probability and consider the simpler, binary met-317

ric of whether πGRPO(yi,j | xi) is greater than318

π0(yi,j | xi).319

Formally, for each problem xi, we sort the320

solutions {yi,1, . . . , yi,G} in descending order of321

π0(yi,j | xi) to obtain {ỹi,1, . . . , ỹi,G}. We are in-322

terested in the relationship between the rank of a so-323

lution and how likely it is to be uplifted by GRPO.324

For each rank j ∈ {1, . . . , G}, we compute the325

"uplift rate", averaging over positive samples:326

uj = mean
i: R(xi,ỹi,j)=1

(
327

1{πGRPO(ỹi,j | xi) > π0(ỹi,j | xi)}
)

328

Figure 4 shows a clear positive correlation:329

GRPO is more likely to increase the probability of330

already high-probability correct solutions. In con-331

trast, the low-probability positive samples – those332

most critical for improving pass@N at large N –333

are almost never uplifted. We confirm this behavior334

in a controlled toy environment (see Appendix A)335

and refer to this phenomenon as rank bias.336

4 Improving GRPO for Multi-Sample 337

Performance 338

While the GRPO objective itself does not inherently 339

favor high-probability solutions, our earlier analy- 340

sis revealed a clear empirical bias: low-probability 341

correct solutions are rarely reinforced. This be- 342

havior is counterintuitive – when π0(y | x) is 343

small, increasing the ratio πRL(y | x)/π0(y | x) 344

requires less absolute probability mass and con- 345

tributes equally to the GRPO objective. In prin- 346

ciple, this should make low-probability solutions 347

more attractive to optimize. The observed rank 348

bias is therefore not a feature of the GRPO loss but 349

likely a consequence of the optimizer’s biases. 350

In this section, we introduce the unlikeliness re- 351

ward to directly counteract this implicit bias, with 352

the goal of improving pass@N performance at 353

large N . We also provide complementary analysis 354

on the effect of certain hyperparameters on rank 355

bias, which we later incorporate into our overall 356

training recipe. 357

4.1 Unlikeliness Reward 358

To explicitly correct for rank bias, we propose the 359

unlikeliness reward – a simple modification to 360

the reward function that discourages reinforcing 361

already high-probability solutions. For a group of 362

samples y1, . . . , yG, let rank(yi) ∈ {1, 2, . . . , G} 363

denote the rank of yi under the current policy 364

πθold(yi | x), with rank 0 corresponding to the 365

highest-probability sample. We modify the reward 366

to be 367

ri = R(x, yi)

(
1− βrank

G− rank(yi)
G

)
. 368

A multiplicative penalty is applied to higher- 369

probability solutions, increasing the relative advan- 370

tage of rarer positive samples. Incorrect solutions 371

remain unaffected, receiving ri = 0 regardless of 372

rank. The coefficient βrank controls the strength 373

of this perturbation; we fix βrank = 0.25 in our 374

experiments. 375

Moreover, we continue to skip all samples that 376

have zero advantage before the perturbation. This 377

ensures that no batch is dominated solely by the 378

unlikeliness reward, and R(x, yi) still determines 379

the direction of optimization for each sample. 380

4.2 Effects of PPO Epochs 381

In addition to perturbing rewards, we find that in- 382

creasing the number of optimization steps per sam- 383

5

ple (ppo-epochs) also mitigates rank bias. Stan-384

dard implementations of PPO and GRPO typically385

use a single optimization step per batch (Sun, 2024;386

Sheng et al., 2024; Yu et al., 2025), which we found387

to produce biased updates. When taking multiple388

gradient steps, the initial steps may push high-rank389

solutions beyond the clipping threshold, so that390

subsequent steps are forced to focus on low-rank391

samples that are still unclipped. In this way, in-392

creasing ppo-epochs indirectly amplifies learning393

signal for low-rank samples.394

However, increasing ppo-epochs makes training395

substantially slower (Appendix B.1) and potentially396

unstable. Thus, we prefer the unlikeliness reward397

as the more direct and efficient solution to address398

rank bias.399

5 Experiments400

For our main experiments, we use Dtrain and Dval401

for training and evaluation. We compare several402

GRPO variants with different hyperparameter set-403

tings, summarized in Table 1. We increase the404

KL penalty because we found that it helps pre-405

vent deteriorating pass@N , but this change alone406

was not enough to improve pass@N substantially407

(discussed in Appendix D). All unlisted hyperpa-408

rameters are kept the same.409

Model K βKL βrank
GRPO-Default 1 0.02 –
GRPO-Unlikeliness-1 1 0.10 0.25
GRPO-Unlikeliness-2 2 0.10 0.25
GRPO-Epochs-2 2 0.10 –
GRPO-Epochs-3 3 0.10 –

Table 1: Hyperparameter settings for GRPO variants in
our experiments. K is the number of PPO epochs.

5.1 Results: Pass@N410

Figure 5 shows the performance of GRPO variants411

evaluated on Dval. Introducing the unlikeliness re-412

ward leads to substantial improvements in pass@N413

at large N, with a minor tradeoff in pass@1 and414

pass@2. Interestingly, increasing PPO epochs also415

leads to improvements, consistent with our analysis416

in Section 4.2. However, increasing PPO epochs417

leads to a significant increase in training time (Ap-418

pendix B.1).419

We also track the cumulative accuracy of the420

32 samples generated per problem during train-421

ing, including the baseline performance of a static422

Model Solved ∆ Static
Static (V1.5-SFT) 7707 / 9600 –
GRPO-Default 7860 / 9600 +153
GRPO-Epochs-2 8008 / 9600 +301
GRPO-Epochs-3 8006 / 9600 +299
GRPO-Unlikeliness-1 8023 / 9600 +316
GRPO-Unlikeliness-2 8065 / 9600 +358

Table 2: Number of training problems solved during
one epoch on Dtrain. GRPO variants improve over the
static model, with GRPO-Unlikeliness-2 achieving the
largest gain.

model with no updates. Table 2 reports the number 423

of problems solved by each variant. All GRPO 424

variants outperform the static model, with GRPO- 425

Unlikeliness-2 solving the most problems. Since 426

training runs for only one epoch, each example is 427

effectively unseen at the time of sampling, indicat- 428

ing generalization within the epoch. 429

5.2 Analysis: Rank Bias 430

To assess whether the proposed methods mitigate 431

rank bias, we repeat the analysis from Section 3.5 432

by computing the uj metrics over the training sam- 433

ples for each GRPO variant. The results, shown in 434

Figure 6, indicate substantial changes in GRPO’s 435

behavior. GRPO-Unlikeliness-2 reverses the orig- 436

inal pattern and is more likely to reinforce low- 437

probability solutions. We also show that unlikeli- 438

ness reward mitigates rank bias in our controlled 439

environment (see Appendix A.4). 440

In GRPO-Epochs-2 and GRPO-Epochs-3, the 441

bias remains, but the overall strength of reinforce- 442

ment is increased so that low-probability solutions 443

are also sufficiently uplifted. 444

5.3 Analysis: Sample Diversity 445

Throughout training, we track the number of 446

unique proofs generated per step, shown in Figure 7. 447

GRPO-Unlikeliness-2 exhibits unique dynamics 448

where diversity initially drops but later recovers, un- 449

like other variants where diversity declines mono- 450

tonically. This may reflect a self-correcting mech- 451

anism: initially dominant solutions are penalized, 452

allowing low-probability correct solutions to resur- 453

face. This continuous rebalancing helps preserve a 454

broad distribution of strategies throughout training. 455

We also observe that higher PPO epochs consis- 456

tently increases sample diversity, up to ppo-epochs 457

= 4 where training becomes unstable. While this 458

may seem counterintuitive – since more optimiza- 459

6

1 2 4 8 16 32 64 128 256 512
N

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
N

Model
DeepSeek-Prover-V1.5-SFT
GRPO-Default
GRPO-Unlikeliness-1
GRPO-Unlikeliness-2
GRPO-Epochs-2
GRPO-Epochs-3

Figure 5: Performance of GRPO variants on Dval. Both the unlikeliness reward and additional PPO epochs improve
pass@N. Appendix C details how we compute these metrics.

0 5 10 15 20 25 30
Rank of Sample in Group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Up
lif

t R
at

e

GRPO-Default
GRPO-Epochs-2
GRPO-Epochs-3
GRPO-Unlikeliness-1
GRPO-Unlikeliness-2

Figure 6: Uplift rate uj as a function of rank j for
GRPO variants. The proposed methods improve the rate
of reinforcing low-probability correct solutions.

tion steps deviate the model further from its initial460

distribution – it aligns with our earlier analysis.461

Higher PPO epochs indirectly amplifies rare so-462

lutions, thereby mitigating the sharpening effect463

typically caused by GRPO updates.464

5.4 Putting It All Together465

Finally, we evaluate GRPO-Unlikeliness-2 in a466

large-scale experiment. We train the model on a467

dataset of 11k theorems, a larger and more chal-468

lenging subset of Lean-Workbook that was solved469

and released by Lin et al. (2025b), making sure to470

exclude theorems in Dval. We evaluate the result-471

ing model on MiniF2F-test (Zheng et al., 2021),472

a widely recognized benchmark for neural theo-473

rem proving, as well as Dval. As reported in Ta-474

ble 3, GRPO-Unlikeliness-2 achieves competi-475

tive results compared to DeepSeek-Prover-V1.5-476

0 100 200 300 400 500 600
Training Step

150

200

250

300

350

400

450
Nu

m
be

r o
f U

ni
qu

e
Pr

oo
fs

 G
en

er
at

ed

GRPO-Default
GRPO-Unlikeliness-1
GRPO-Unlikeliness-2
GRPO-Epochs-2
GRPO-Epochs-3

Figure 7: Number of unique proofs generated at each
training step (smoothed with EMA). Unlikeliness re-
ward significantly improves sample diversity during
training.

RL (Xin et al., 2024) on both datasets. 477

6 Related Work 478

Automated Theorem Proving: Polu and 479

Sutskever (2020) pioneered transformer-based the- 480

orem provers that interact with proof assistants like 481

Lean or Isabelle (de Moura et al., 2015; Paulson, 482

1994). Subsequent work has developed state-tactic 483

models (Polu et al., 2022; Wu et al., 2024; Xin 484

et al., 2025) that generate one proof step at a time 485

and full-proof models (Xin et al., 2024; Lin et al., 486

2025b) that produce complete proofs autoregres- 487

sively, reducing interaction overhead. 488

Recent work has explored various directions in 489

LLM-based theorem proving. Lample et al. (2022), 490

Xin et al. (2024), and Xin et al. (2025) explore the 491

application of inference-time algorithms for proof 492

discovery. Jiang et al. (2023) and Lin et al. (2025a) 493

use informal reasoning to guide formal proofs by 494

integrating LLMs capable of reasoning in natural 495

7

Model pass@32 pass@128
MiniF2F-test

V1.5-SFT 47.1± 0.6% 49.2± 0.6%
V1.5-RL 49.2± 0.6% 51.2± 0.3%
Ours 48.8± 0.7% 50.6± 0.5%

Dval
V1.5-SFT 78.3± 0.9% 83.1± 0.2%
V1.5-RL 84.8± 0.9% 87.5± 0.7%
Ours 84.3± 0.9% 88.8± 0.9%

Table 3: pass@N performance of our model compared
to DeepSeek-Prover-V1.5-SFT and -RL from Xin et al.
(2024) on MiniF2F-test and Dval. Our model achieves
competitive performance with DeepSeek-Prover-V1.5-
RL while being fully open.

language. Hu et al. (2024) investigates training496

models that can incorporate novel context at test497

time. Our work is mainly focused on the post-498

training of theorem provers using reinforcement499

learning, which we detail next.500

Expert Iteration for Theorem Proving: Ex-501

pert iteration alternates between search and learn-502

ing (Anthony et al., 2017), and was first applied503

to theorem proving by Polu et al. (2022). It has504

since become the dominant paradigm, appearing505

in recent work like Wu et al. (2024), Xin et al.506

(2025), and Lin et al. (2025b). Xin et al. (2025)507

explores the viability of best-first search for data508

collection, while Wu et al. (2024) and Lin et al.509

(2025b) achieve state-of-the-art performance at the510

time by performing large-scale expert iteration on511

autoformalized theorem statements.512

RL for Theorem Proving: Compared to expert513

iteration, the use of more general RL algorithms514

is relatively underexplored. A notable exception515

is Xin et al. (2024), which showed GRPO can en-516

hance a SFT model using only additional theorem517

statements and the verifier reward. In the low-518

data setting, Gloeckle et al. (2024) successfully519

trained a strong theorem prover by adapting the520

AlphaZero algorithm (Silver et al., 2017) to proof521

trees. Xin et al. (2025) used direct preference op-522

timization (Rafailov et al., 2023) in their pipeline,523

but only for the minor role of training against proof524

steps that cause immediate errors.525

More recent work has begun adapting tech-526

niques from OpenAI o1 (OpenAI et al., 2024) and527

DeepSeek-R1 (DeepSeek-AI et al., 2025) to train528

reasoning models for theorem proving (Wang et al.,529

2025; Ren et al., 2025; Zhang et al., 2025). These530

works have achieved state-of-the-art performance531

by building models that can engage in long chain- 532

of-thought style reasoning, either calling formal 533

proof models as subroutines (Ren et al., 2025) or 534

devising hierarchical strategies to break down the 535

problem (Wang et al., 2025). 536

RL for Multi-Sample Performance: Several 537

existing works specifically investigate the issue 538

of RL’s pass@N performance. Yue et al. (2025) 539

argues that instead of learning novel capabilities, 540

RL with verifier reward mainly concentrates the 541

model’s outputs around correct answers already 542

present in the base model’s samples. Their experi- 543

ments also show an improvement in pass@ small 544

N and deterioration at large N . Chow et al. (2024) 545

and Tang et al. (2025) consider novel RL formu- 546

lations that explicitly optimize for best-of-N per- 547

formance. They derive BoN-aware RL algorithms 548

and demonstrate improved performance, but still 549

consider a smaller range of N (pass@32) than is 550

typical in formal theorem proving. In the expert 551

iteration setting, Dang et al. (2025) identifies that 552

pass@N deteriorates due to diversity collapse and 553

shows that interpolating model weights with an 554

early checkpoint mitigates this issue. 555

Compared to these previous works, we are the 556

first to attribute RL’s poor multi-sample perfor- 557

mance to an inability to reinforce low-probability 558

samples. We also provide a simple and direct so- 559

lution to address this issue and improve pass@N 560

performance. 561

7 Conclusion 562

We investigated GRPO’s poor multi-sample perfor- 563

mance in the setting of formal theorem proving, the- 564

orizing a connection between degraded pass@N at 565

large N and the failure to reinforce low-probability 566

solutions. Our analysis revealed an implicit bias 567

in GRPO: it preferentially reinforces already high- 568

probability sequences while largely ignoring rare 569

but correct ones. To address this, we introduced the 570

unlikeliness reward, a simple yet effective modifi- 571

cation that directly shifts reinforcement toward rare 572

samples. Our experiments confirm that the unlike- 573

liness reward enables GRPO to make significant 574

gains in pass@N at large N and drastically im- 575

proves sample diversity compared to existing meth- 576

ods. Using our revised recipe, we train a model 577

that is competitive with DeepSeek-Prover-V1.5-RL 578

and release our implementation publicly. 579

8

Limitations580

While we offer a lightweight solution for improving581

GRPO’s multi-sample performance, future work582

could explore other strategies for uniformly rein-583

forcing correct samples or for directly optimizing584

performance under specific inference-time algo-585

rithms. In particular, developing inference-aware586

reinforcement learning algorithms that are efficient587

to train remains an open direction.588

Moreover, recent applications of RL have shifted589

toward the reasoning paradigm, where models590

generate long reasoning paths often involving be-591

haviors such as planning, backtracking, and self-592

critique. In these settings, the behavior of algo-593

rithms like GRPO may differ qualitatively due to594

the increased diversity and complexity of possible595

reasoning paths. We leave as future work to deter-596

mine whether methods that amplify rare but correct597

solutions can similarly enhance exploration and598

generalization in reasoning models.599

References600

Thomas Anthony, Zheng Tian, and David Barber. 2017.601
Thinking fast and slow with deep learning and tree602
search. Preprint, arXiv:1705.08439.603

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent604
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier,605
Rishabh Agarwal, Aviral Kumar, and Aleksandra606
Faust. 2024. Inference-aware fine-tuning for best-607
of-n sampling in large language models. Preprint,608
arXiv:2412.15287.609

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter,610
and Aditi Raghunathan. 2025. Weight ensembling611
improves reasoning in language models. Preprint,612
arXiv:2504.10478.613

Leonardo Mendonça de Moura, Soonho Kong, Jeremy614
Avigad, Floris van Doorn, and Jakob von Raumer.615
2015. The lean theorem prover (system description).616
In CADE.617

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,618
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,619
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,620
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-621
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.622
2025. Deepseek-r1: Incentivizing reasoning capa-623
bility in llms via reinforcement learning. Preprint,624
arXiv:2501.12948.625

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve,626
and Amaury Hayat. 2024. ABEL: Sample efficient627
online reinforcement learning for neural theorem628
proving. In The 4th Workshop on Mathematical Rea-629
soning and AI at NeurIPS’24.630

Jiewen Hu, Thomas Zhu, and Sean Welleck. 2024. 631
minictx: Neural theorem proving with (long-) con- 632
texts. arXiv preprint arXiv:2408.03350. 633

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda 634
Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix, 635
Yuhuai Wu, and Guillaume Lample. 2023. Draft, 636
sketch, and prove: Guiding formal theorem provers 637
with informal proofs. Preprint, arXiv:2210.12283. 638

Guillaume Lample, Marie-Anne Lachaux, Thibaut 639
Lavril, Xavier Martinet, Amaury Hayat, Gabriel 640
Ebner, Aurélien Rodriguez, and Timothée Lacroix. 641
2022. Hypertree proof search for neural theorem 642
proving. Preprint, arXiv:2205.11491. 643

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming 644
Yang. 2025a. Lean-star: Learning to interleave think- 645
ing and proving. Preprint, arXiv:2407.10040. 646

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, 647
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou 648
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. 649
2025b. Goedel-prover: A frontier model for 650
open-source automated theorem proving. Preprint, 651
arXiv:2502.07640. 652

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, 653
Adam Richardson, Ahmed El-Kishky, Aiden Low, 654
Alec Helyar, Aleksander Madry, Alex Beutel, Alex 655
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard 656
Passos, Alexander Neitz, Alexander Prokofiev, 657
Alexander Wei, Allison Tam, and 244 others. 2024. 658
Openai o1 system card. Preprint, arXiv:2412.16720. 659

Lawrence C. Paulson. 1994. Isabelle: A Generic Theo- 660
rem Prover. Springer Verlag. 661

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man- 662
tas Baksys, Igor Babuschkin, and Ilya Sutskever. 663
2022. Formal mathematics statement curriculum 664
learning. Preprint, arXiv:2202.01344. 665

Stanislas Polu and Ilya Sutskever. 2020. Generative 666
language modeling for automated theorem proving. 667
Preprint, arXiv:2009.03393. 668

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 669
pher D Manning, Stefano Ermon, and Chelsea Finn. 670
2023. Direct preference optimization: Your language 671
model is secretly a reward model. In Thirty-seventh 672
Conference on Neural Information Processing Sys- 673
tems. 674

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, 675
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, 676
Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shi- 677
rong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao, 678
Daya Guo, and Chong Ruan. 2025. Deepseek-prover- 679
v2: Advancing formal mathematical reasoning via 680
reinforcement learning for subgoal decomposition. 681
Preprint, arXiv:2504.21801. 682

John Schulman, Filip Wolski, Prafulla Dhariwal, 683
Alec Radford, and Oleg Klimov. 2017. Prox- 684
imal policy optimization algorithms. Preprint, 685
arXiv:1707.06347. 686

9

https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2504.10478
https://api.semanticscholar.org/CorpusID:232990
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,687
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan688
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.689
Deepseekmath: Pushing the limits of mathemati-690
cal reasoning in open language models. Preprint,691
arXiv:2402.03300.692

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin693
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin694
Lin, and Chuan Wu. 2024. Hybridflow: A flexible695
and efficient rlhf framework. arXiv preprint arXiv:696
2409.19256.697

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-698
nis Antonoglou, Matthew Lai, Arthur Guez, Marc699
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore700
Graepel, Timothy Lillicrap, Karen Simonyan, and701
Demis Hassabis. 2017. Mastering chess and shogi702
by self-play with a general reinforcement learning703
algorithm. Preprint, arXiv:1712.01815.704

Zhiqing Sun. 2024. Gpt-accelera: Simple and efficient705
pytorch-native transformer training and inference706
(batched). https://github.com/Edward-Sun/707
gpt-accelera.708

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and709
Rémi Munos. 2025. Optimizing language models710
for inference time objectives using reinforcement711
learning. Preprint, arXiv:2503.19595.712

Terence Tao. 2025. Machine-assisted proof. Notices of713
the American Mathematical Society, 72(1):6–15.714

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas715
Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,716
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jian-717
qiao Lu, Hugues de Saxcé, Bolton Bailey, Chen-718
dong Song, Chenjun Xiao, Dehao Zhang, Ebony719
Zhang, Frederick Pu, Han Zhu, and 21 others. 2025.720
Kimina-prover preview: Towards large formal rea-721
soning models with reinforcement learning. Preprint,722
arXiv:2504.11354.723

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan724
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.725
Internlm2.5-stepprover: Advancing automated theo-726
rem proving via expert iteration on large-scale lean727
problems. Preprint, arXiv:2410.15700.728

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao,729
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,730
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, De-731
jian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and732
Chong Ruan. 2024. Deepseek-prover-v1.5: Har-733
nessing proof assistant feedback for reinforcement734
learning and monte-carlo tree search. Preprint,735
arXiv:2408.08152.736

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang737
Wu, Xia Xiao, Yifan Sun, Shen Zheng, and Kai Shen.738
2025. Bfs-prover: Scalable best-first tree search739
for llm-based automatic theorem proving. Preprint,740
arXiv:2502.03438.741

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, 742
Kristin Lauter, Swarat Chaudhuri, and Dawn Song. 743
2024. Formal mathematical reasoning: A new fron- 744
tier in ai. Preprint, arXiv:2412.16075. 745

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, 746
Dahua Lin, and Kai Chen. 2024. Lean work- 747
book: A large-scale lean problem set formalized 748
from natural language math problems. Preprint, 749
arXiv:2406.03847. 750

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, 751
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong 752
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, 753
Bole Ma, Guangming Sheng, Yuxuan Tong, Chi 754
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, 755
and 16 others. 2025. Dapo: An open-source llm 756
reinforcement learning system at scale. Preprint, 757
arXiv:2503.14476. 758

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai 759
Wang, Yang Yue, Shiji Song, and Gao Huang. 2025. 760
Does reinforcement learning really incentivize rea- 761
soning capacity in llms beyond the base model? 762
Preprint, arXiv:2504.13837. 763

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, 764
Yang Yue, Fuzheng Zhang, Di Zhang, Guorui 765
Zhou, and Kun Gai. 2025. Leanabell-prover: Post- 766
training scaling in formal reasoning. Preprint, 767
arXiv:2504.06122. 768

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. 769
2021. Minif2f: a cross-system benchmark for for- 770
mal olympiad-level mathematics. arXiv preprint 771
arXiv:2109.00110. 772

A Toy Environment 773

After observing that GRPO failed to improve 774

pass@N metrics, we constructed a simplified toy 775

environment to isolate the issue and efficiently test 776

potential solutions. This appendix details the de- 777

sign of the environment and presents our experi- 778

mental results within it. 779

A.1 Environment Design 780

We design a minimalistic toy environment for rapid 781

experimentation. The environment is fully observ- 782

able, with state space S = R10 and discrete action 783

space A = {1, . . . , 128}. Each action a ∈ A is 784

associated with a fixed, randomly initialized but 785

hidden vector va ∈ R10. 786

The binary reward function Rτ : S × A → 787

{0, 1} is defined as: 788

Rτ (s, a) = 1{s⊤va ≥ τ}
Here, τ is a threshold controlling environment 789

difficulty. Higher τ values restrict the reward to 790

fewer actions, thus increasing difficulty. We fix τ = 791

10

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://github.com/Edward-Sun/gpt-accelera
https://github.com/Edward-Sun/gpt-accelera
https://github.com/Edward-Sun/gpt-accelera
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://doi.org/10.1090/noti3041
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.06122
https://arxiv.org/abs/2504.06122
https://arxiv.org/abs/2504.06122

1.0 during training but vary τ during evaluation to792

simulate different difficulty levels.793

A.2 Policy Model794

The policy model πθ(a | s) is a simple two-layer795

multilayer perceptron (MLP) mapping state s to a796

probability distribution over actions in A.797

A.3 GRPO Training and Diagnosis798

We train the model using GRPO for 200 steps and799

evaluate pass@N metrics at N ∈ {1, 4, 8, 16, 32}.800

Initial evaluations at training difficulty τ = 1.0801

suggest GRPO improves pass rates across all N :802

803

However, evaluations at increased difficulties804

(τ = 4.0 and τ = 5.0) reveal pass@32 deterio-805

rates over training, aligning with observations in806

the original setting:807

808

809

Analyzing uplift rate metrics (Section 3.5), we810

identify a rank bias in GRPO, showing preferen-811

tial reinforcement of already high-probability solu-812

tions:813

814

A.4 Unlikeliness Reward 815

We investigate the impact of unlikeliness reward 816

within this toy environment. It effectively neutral- 817

izes the rank bias, making the uplift rates notably 818

more uniform: 819

820

Consequently, the unlikeliness reward signifi- 821

cantly improves pass@32 performance in the dif- 822

ficult setting τ = 5.0, contrasting sharply with de- 823

fault GRPO, whose pass@32 performance declines 824

to near chance levels: 825

826

Additionally, incorporating the unlikeliness re- 827

ward substantially increases the entropy of the pre- 828

dicted action distribution: 829

11

830

B Training Setup831

The main experiments in Section 5 are conducted832

on 4 NVIDIA L40S GPUs, with 500GB of RAM833

and 48–64 CPUs allocated for running parallel in-834

stances of the Lean REPL.835

B.1 Training Time836

All training runs in the main experiment complete837

within 36 hours. Each training step primarily con-838

sists of three stages: sequence generation, proof839

verification, and policy model updates. The gener-840

ation and verification stages are shared across all841

methods and take approximately 120 seconds per842

batch (16 problems × 32 attempts). The duration843

of the policy update step depends on the number of844

PPO epochs, as shown below:845

PPO Epochs Policy Update Time (s)
1 ≈ 70
2 ≈ 140
3 ≈ 210

846

C Evaluation Metrics847

We begin by selecting a maximum sample size848

Nmax (512 in our experiments) and generate Nmax849

responses for each problem. To compute pass@n,850

we divide the responses for each problem into851

Nmax/n chunks and assign each chunk a binary852

reward indicating whether any proof within it is853

valid. The i-th trial of pass@n is then computed by854

averaging the binary rewards across the i-th chunk855

of all problems. We report the mean and standard856

deviation across trials. Note that for pass@512,857

there is only a single trial, so we omit the standard858

deviation in our plots.859

D Effects of KL Penalty860

Recent results have shown that the pass rates of the-861

orem prover models can continue to improve with862

increased sampling, up to hundreds of thousands 863

of passes (Lin et al., 2025b). This suggests that 864

the distribution of the base model is highly diverse 865

and crucial to preserve during fine-tuning. Prior 866

work addressed this in the SFT setting by ensem- 867

bling fine-tuned model weights with the original 868

(Dang et al., 2025). Since GRPO already has a 869

regularization mechanism through the KL penalty, 870

we simply increase the KL loss coefficient to 0.1 871

to better preserve the original distribution. 872

We find that this change by itself did not im- 873

prove pass@N, likely because the updates still fail 874

to uplift low-rank samples. Thus, we treat KL reg- 875

ularization as a supporting modification rather than 876

a solution in itself. 877

12

	Introduction
	Problem Setup
	Evaluation Metric
	Reinforcement Learning

	Does GRPO Improve Pass@N?
	Dataset
	Training
	GRPO Fails to Improve Pass@N
	Can RL Optimize Pass@N?
	Does GRPO Reinforce Unlikely Solutions?

	Improving GRPO for Multi-Sample Performance
	Unlikeliness Reward
	Effects of PPO Epochs

	Experiments
	Results: Pass@N
	Analysis: Rank Bias
	Analysis: Sample Diversity
	Putting It All Together

	Related Work
	Conclusion
	Toy Environment
	Environment Design
	Policy Model
	GRPO Training and Diagnosis
	Unlikeliness Reward

	Training Setup
	Training Time

	Evaluation Metrics
	Effects of KL Penalty

