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ABSTRACT

Diffusion policies for visuomotor robot manipulation tasks achieve remarkable
dexterity and robustness while only training on a small number of task demon-
strations. However, the reason for this performance remains a mystery. In this
paper, we offer a surprising hypothesis: diffusion policies essentially memorize
an action lookup table—and this is beneficial. We posit that, at runtime, diffusion
policies find the closest training image to the test image in a latent space, and
recall the associated training action (i.e. action chunk), offering reactivity with-
out the need for action generalization. This is effective in the sparse data regime,
where there is not enough data density for the model to learn action generaliza-
tion. We support this claim with systematic empirical evidence, showing that even
when conditioned on highly out of distribution (OOD) images, Diffusion Policy
still outputs an action chunk from the training data. We evaluate and compare
three representative policy families on the same data set: Diffusion Policy, Action
Chunking with Transformers (ACT), and GR00T, a pre-trained generalist Vision-
Language-Action (VLA) model. We show that Diffusion Policy gives strong ac-
tion memorization giving surprising robustness in OOD regimes, ACT shows ac-
tion interpolation with poor robustness in OOD regimes, and GR00T (benefiting
from substantial pre-training) shows both action interpolation and OOD robust-
ness. As a simple alternative to Diffusion Policy, we introduce the Action Lookup
Table (ALT) policy, showing that an explicit lookup table policy can perform com-
parably in this low data regime. Despite its simplicity, ALT attains Diffusion Pol-
icy–level performance while also providing faster inference and explicit OOD de-
tection via latent-distance thresholds. These results reframe diffusion policies for
robot manipulation as reactive memory retrieval under data sparsity, and provide
practical tools for interpreting, evaluating, and monitoring such policies. More
information can be found at: https://stanfordmsl.github.io/alt/.

1 INTRODUCTION

Imitation learning for robot manipulation requires training a policy to map from image inputs to
action sequence outputs given a relatively small number of demonstrations. Recently, the Diffusion
Policy Chi et al. (2023) has emerged as a powerful approach to this problem by modeling the robot’s
policy as a denoising diffusion probabilistic model Ho et al. (2020). The Diffusion Policy infers
an action chunk (a short action sequence, typically 16 time steps long) conditioned on the robot’s
camera views and joint angles. To infer an action chunk, the policy iteratively denoises a random
action chunk using a learned denoising filter. The denoised action chunk is applied to the robot (typ-
ically executing 8 of the 16 actions in the chunk), and the loop repeats. The architecture is derived
directly from a denoising diffusion model for image generation Saharia et al. (2022b); Rombach
et al. (2022), adapted to produce action chunk outputs. The primary advantage of the Diffusion
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Policy lies in its ability to model multi-modal action distributions, scale to high-dimensional robot
action spaces, and produce long-horizon action sequences. Indeed, recent studies have shown that
diffusion policies outperform many existing methods on challenging manipulation benchmarks Ze
et al. (2024); Wang et al. (2024a).

The performance of the Diffusion Policy is unquestionable, however the explanation for this per-
formance remains elusive. In particular, typical diffusion policies are trained on between 50 to 200
task demonstrations (small amounts of data), while maintaining the same number of parameters
(typically over 100 million) as image generation models trained on billions of images Saharia et al.
(2022b); Wikipedia contributors (2024). Furthermore, the common practice is to train diffusion
policies until the training loss is low, but the test loss is high — the classic signal for over-fitting.
Typically overfitting is associated with poor test-time performance and poor generalization. Yet, it is
observed that this overfitting is actually necessary for strong test time performance of the Diffusion
Policy. The natural question arises:

Why do diffusion policies trained to overfit small data sets appear to give strong test-time perfor-
mance in robot manipulation?

In this paper we show that, indeed, diffusion policies highly overfit the training data, such that they
essentially recall training action chunks at inference. They exhibit little generalization in the action
space, neither interpolation nor extrapolation. They effectively perform a lookup table that maps
runtime images to training action chunks. Combined with online closed-loop execution with run-
time images, this action chunk memorization appears to be a winning recipe for strong manipulation
policies obtained from small amounts of demonstration data. We show that for inference in in-
terpolation regimes, in extrapolation regimes, and in highly out-of-distribution (OOD) regimes the
diffusion model always recalls action chunks seen at training, giving the policy a surprising robust-
ness in these OOD regimes. We verified this through pick-and-place experiments on a real robot and
Can and Square experiments in Robomimic (more details can be found in Appendix D).

It is then reasonable to wonder whether action memorization a property shared by all imitation learn-
ing architectures when trained on small data sets, which motivates our second research question:

Do other imitation learning architectures for robot manipulation also exhibit action memorization
when trained on the same dataset?

We find that an Action Chunking Transformer Zhao et al. (2023); Wu et al. (2024) (ACT) policy
trained on the same dataset exhibits action generalization, often producing action chunks that are a
blend of several of the training action chunks. However, in OOD regimes ACT infers wild action
chunks quite different from the training data, and therefore lacks the robustness of the Diffusion
Policy. We also find that GR00T Bjorck et al. (2025), a generalist pre-trained Vision-Language-
Action policy, when fine-tuned on the same data also exhibits action generalization, but maintains
robustness in OOD regimes, likely benefiting from the large volume of pre-training data.

A key drawback of the Diffusion Policy is slow inference time, which leads to slow robot execution
punctuated by pauses as the model recomputes the next inference at the end of each action chunk.
This motivates our third research question:

Figure 1: Resulting latent space of our con-
strastive learning (CL) based ALT on our train-
ing data, illustrating the distribution of train-
ing examples and example in- (1,2) and out-of-
distribution (3) test images.

Can the same action chunk recall behavior be accom-
plished with a simpler, faster model architecture to
yield faster runtime performance?

To answer this question, we propose a simple lookup
table policy with a trained image encoder to map
from images to action chunks, which we call the Ac-
tion Lookup Table (ALT) policy, illustrated in Fig. 1.
The ALT policy has similar task success and robust-
ness properties as the Diffusion Policy, while being
300 times faster at inference, and requiring less than
1/100th the memory footprint. Our ALT policy is sim-
pler than previous parametric interpolation-based imi-
tation learning architectures Pari et al. (2021); Sridhar
et al. (2023; 2024b), as it does not attempt any interpo-
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lation in action space. We obtain multi-modality, similar to the diffusion policy, through a stochastic
k-nearest neighbor action chunk lookup.

Concretely, we design a lightweight image-joint pose encoder that maps each provided observation
into a low-dimensional feature representation (LFR). LFRs seen during training are labeled with
their associated action chunks, which are stored in a lookup table. At deployment time, new ob-
servations are encoded to their LFRs, the nearest training LFR is found (with a k-d tree), and the
associated action chunk is recalled from the lookup table. The encoder is trained using a contrastive
learning objective Chen et al. (2020), encouraging positive sample pairs to be closer while push-
ing negative pairs apart in the latent space. ALT avoids the costly iterative denoising steps of the
Diffusion Policy, enabling faster much inference and much smaller memory footprint.

Our contributions are as follows: (1) We hypothesize the Diffusion Policy implicitly memorizes an
action lookup table. We provide conceptual intuition for this hypothesis and support it through ex-
tensive empirical validation. For baselines, we compare to two other imitation learning models, ACT
and GR00T-N1.5, and show they provide comparatively more action generalization than Diffuion
Policy. (2) We propose a simple Action Lookup Table (ALT) policy (Fig. 1) that explicitly indexes
the nearest training action chunk from an observation embedding. We show that ALT delivers simi-
lar performance to a Diffusion Policy, while giving faster inference and requiring less memory. We
also propose an explicit OOD monitor for ALT using a distance threshold in the latent space.

2 RELATED WORK

Diffusion models, trained by gradually adding Gaussian noise to data during training Ho et al.
(2020); Ramesh et al. (2021); Blattmann et al. (2023), were originally developed for high-
dimensional data generation tasks such as image, video, or audio synthesis Nichol & Dhariwal
(2021); Rombach et al. (2022). These models can produce seemingly novel high-quality images and
videos in a variety of different styles through simple text Ramesh et al. (2021); Ruiz et al. (2023);
Balaji et al. (2022); Saharia et al. (2022b) and image Saharia et al. (2022a); Tumanyan et al. (2023);
Ceylan et al. (2023) prompt conditioning. In order to capture the complex multi-modal distributions
inherent in visual and auditory data, these models are often large, containing from hundreds of mil-
lions to billions of parameters Saharia et al. (2022b); Wikipedia contributors (2024), and are trained
over large datasets with hundreds of millions to billions of examples Rombach et al. (2022).

Leveraging the strong performance of diffusion models, the Diffusion Policy Chi et al. (2023)
achieves state-of-the-art performance in visuomotor control for single skill imitation learning.
Trained with a limited number of expert demonstrations, the model learns to predict a sequence
of robot actions Chi et al. (2023); Ren et al. (2024a); Lu et al. (2024); Lee & Kuo (2024) condi-
tioned on a given observation. This observation can be images Chi et al. (2023), point clouds Ze
et al. (2024), semantic labels Wang et al. (2024b); Li et al. (2024) or potential fields Mizuta & Leung
(2024). Due to its apparent robustness to perturbations, diffusion policies have been deployed for
a wide range of robotics tasks, including manipulation Black et al. (2023); Kim et al. (2022); Chi
et al. (2023), multi-skill learning Chen et al. (2023a); Xu et al. (2023), and motion planning Shaoul
et al. (2024); Serifi et al. (2024); Sridhar et al. (2024a). Diffusion models have also been used in
robotics for data augmentation Kapelyukh et al. (2023); Chen et al. (2023b) to aid in the training of
other models.

The phenomenon of memorization in diffusion models has been well-studied in image generation,
but not in robotics, to our knowledge. Gu et al. (2023) observed that smaller datasets are prone to
cause memorization, especially when conditioned with uninformative labels, while Somepalli et al.
(2023a) discovered that reconstructive memorization occurs even for models trained on enormous
datasets, with as much as 2% of the generated images being duplicates of the training data. Simi-
larly, Carlini et al. (2023) demonstrated a way to extract known training examples from state-of-the-
art models, such as DALL-E 2 Ramesh et al. (2022). Meanwhile, Gu et al. (2023) notes that the tra-
ditional denoising score matching objective used during training has a closed-form optimal solution
that can only replicate training images. Although, this can be mitigated with synthetic data augmen-
tation Xue et al. (2025), Jain et al. (2024) posits that the denoising process causes diffusion models
to learn an attraction basin for each training sample, thereby guiding prompt-conditioned generated
images towards memorized data. Wen et al. (2024) corroborates this by noting that diffusion models
tend to converge to a known training sample regardless of initialization, suggesting memorization of
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(a) low-capacity model,
small data (SD)

(b) low-capacity model,
large data (LD)

(c) high-capacity model,
SD (e.g. Diffusion Policy)

(d) high-capacity model,
LD (e.g. Image Diffusion)

Figure 2: Training a diffusion model from 2D points uniformly distributed on a star-shaped 1D manifold.
Each subplot shows a different training regime: (a) A low-capacity model (∼400 parameters) trained on a
small dataset (3k samples) gives erratic inferences. (b) The low-capacity model trained on a large dataset (100k
samples) generalizes to the wrong manifold. (c) A high-capacity model (∼9.5 million parameters) trained on a
small dataset (the Diffusion Policy regime) approximately memorizes the dataset, but does not generalize. All
the inferred outputs (blue) overlay the training data (orange) points, essentially implementing a lookup table.
(d) A high-capacity model trained on a large dataset shows strong generalization to the correct data manifold
(regime of large scale image diffusion models). See C for further discussion.

both the prompt and the denoising trajectory. Similarly, both Somepalli et al. (2023b) and Chen et al.
(2024b) indicate that, although less prevalent than conditioned models, memorization still occurs in
unconditioned models and Hintersdorf et al. (2024) finds that memorized data are often associated
with corresponding individual neurons.

Modifying the loss function Chen et al. (2024a), gradients Chen et al. (2024a), conditioning ap-
proach Jain et al. (2024), or keyword prompts Wen et al. (2024); Somepalli et al. (2023b); Ren et al.
(2024b) during training and inference are all typical methods for reducing model memorization.
However, we propose that while memorization is undesirable for image generation due to privacy
and copyright concerns, it is actually beneficial for robotics. When the diffusion model is used
in domains with rich input space (e.g., images) but limited output space (e.g., robot actions), the
gap between model capacity and output dimensionality, combined with the use of imitation learn-
ing (which inherently lacks task-level supervision), makes overfitting via memorization a plausible
explanation for its strong performance in in-distribution settings. Along these lines, previous ap-
proaches have explored reusing past demonstrations in conjunction with parametric generalizations.
They obtain the next action using frame-level nearest-neighbor action retrieval Pari et al. (2021), ac-
tion prototypes obtained based on a bounded residual Sridhar et al. (2023), or by utilizing a learned
context embedding composed of multiple trajectory fragments Sridhar et al. (2024b). In compar-
ison, our proposed ALT method directly obtains the closest action sequence from a lookup table
via a contrastive image encoder, bypassing any parametric policy entirely, thereby allowing it to be
lightweight and fast unlike more compute-intensive hybrid alternatives.

3 DIFFUSION POLICY ANALYSIS

3.1 PRELIMINARIES

The output, x0, of a diffusion model, εθ, is obtained by iteratively removing noise (i.e. denoising)
from a starting value, xk, sampled from a Normal Distribution, N (0, σ2I). The denoising process
evolves according to

xk−1 = α(xk − γεθ(x
k, k) +N (0, σ2I) (1)

to remove the noise in k steps based on a predetermined noise schedule that specifies the values of
α, σ, and γ at each iteration. This procedure can be thought of as a single stochastic gradient descent
step x′ = x − γ∇E(x), where the model εθ is used to predict the gradient field ∇E(x). A more
detailed explanation of the denoising process can be found in Chi et al. (2023) and Ho et al. (2020).

3.2 DIFFUSION MODEL GENERALIZATION REGIMES

We illustrate four generalization regimes for a simple Multi-Layer Perceptron (MLP)-based diffu-
sion denoising model trained to learn a ground-truth distribution consisting of 2D points uniformly
sampled on a 1D manifold shaped as a star (Fig. 2). We show qualitative model performance with
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a low-capacity vs high-capacity MLP, trained with small vs large data sets. As expected, when a
low-capacity model is trained on a small dataset (Fig. 2a), it fails to fit the data adequately. Simi-
larly, due to its limited capacity, when such a model is given sufficient data (Fig. 2b), it is only able
to learn an approximation that oversimplifies the data manifold (here, approximating a star shape
as a hexagon). In comparison, when a high-capacity model is trained on a small dataset (Fig. 2c),
the diffusion model tends to memorize the individual training samples rather than generalizing or
interpolating between them. This memorization allows accurate fitting of the limited training points
(good for robot manipulation tasks), but results in the model failing to capture the broader under-
lying data manifold, a behavior that is consistent with our findings for diffusion policies for robot
manipulation. This phenomenon is related to manifold overfitting Loaiza-Ganem et al. (2022): when
a powerful generative model is trained on data lying on a narrow sub-manifold, it might fit the data
too closely while struggling outside that sub-manifold. When the model is provided sufficient data
(Fig. 2d), it is now able to effectively fit both the data and the true underlying distribution, repre-
senting the regime common in large scale image generation models. However, acquiring large-scale
expert demonstrations for robot manipulation that evenly and densely cover the action sequence
space remains a significant practical challenge. As Diffusion Policies are trained on larger and
larger datasets, they may move toward the large data regime (Fig. 2d) with true generalization on
the action manifold, but this seems to be beyond the current state of the art.

3.3 HYPOTHESIS AND EXPERIMENTS

The core hypothesis of this paper is that the impressive reactivity, multimodality, and robustness
exhibited by the Diffusion Policy stems not from a deep understanding of the physical task, but from
the simple ability to memorize training action chunks and recall an appropriate action chunk when
prompted with an image. To evaluate this hypothesis, we designed a series of cup grasping ex-
periments.1 We trained a diffusion policy for cup grasping using the standard codebase from Chi
et al. (2023), trained with 30/120 demonstrations2 of cup locations evenly spaced throughout the
workspace, with a held-out square in the middle, as indicated by the green circles and blue tape
in Fig. 3. The robot has a third-person view fixed camera and a wrist mounted camera, both used
to condition the policy. For each position, we performed one demonstration (to remove the con-
founding effect of multi-modal action generation). We then validated the learned policy on the 30
in-distribution cases, confirming its ability to reproduce the training demonstrations.

Figure 3: The red outlined panel shows InD
tests. The green outlined panel shows InD in-
terpolation tests, with cups evenly placed be-
tween training positions. Purple and blue out-
lined panels illustrate cases where the cup is
gradually moved from an in-distribution loca-
tion to an OOD position. The remaining yellow
outlined panels introduce OOD image distrac-
tors to assess the model’s robustness.

To further investigate the action generalization be-
havior of the policy, we systematically introduced
a variety of interpolation and extrapolation in-
puts, ranging from in-distribution (InD) to out-of-
distribution (OOD) and analyzed the resulting behav-
ior. Specifically, we designed four scenarios: (1:InD-
Interpolate) Placing the cup at evenly spaced test po-
sitions located between the original training positions
(Fig. 3 green border); (2:OOD-Interpolate) Slowly
moving the cup from one in-distribution position
through an OOD region (blue tape square) to another
in-distribution position (Fig. 3 blue border); (3:OOD-
Extrapolate) Gradually moving the cup from an in-
distribution position to an OOD location outside the
fixed camera’s field of view (Fig. 3 purple border).
(4:OOD-Distractors) Introducing OOD visual dis-
tractors of varying difficulty levels (Fig. 3 yellow bor-
der), including wildly OOD images of a cat and a dog; These settings allowed us to explore and
analyze the generalization behavior and potential memory-driven characteristics of the Diffusion
Policy. If the Diffusion Policy were performing action generalization, one would expect the fol-
lowing in each scenario: (1:InD-Interpolate) interpolation in the action space; (2:OOD-Interpolate)
some action interpolation with degraded performance in the middle, where it is far from the train-

1We also verified the hypothesis in the simulation environment provided by Robomimic. For details, see
Section 3.5 Appendix D.2.

2We also conducted training with the standard scale set of 120 demonstrations, but for visualization we
present results using a smaller subset.
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ing examples; (3:OOD-Extrapolate) progressively degraded action performance as the object moves
farther from the training set; and (4:OOD-Distractors) degraded action performance as the number
and severity of distractors grows, with dog and cat inducing erratic action sequences.

In fact, all of these behavioral expectations are incorrect. In every case, the Diffusion Policy almost
exactly reproduces one of the training action sequences as explained below. This is consistent with
our action lookup table hypothesis.

3.4 REAL-WORLD RESULTS

In this subsection, we introduce a custom metric as a memory-audit, designed to quantify how
closely an inference action sequence resembles sequences from the training set. It is defined as:
S = 1− s(τ(r),τ(1))

s(τ(1),τ(2))
, where s(τ (r), τ (1)) denotes the average Euclidean distance between the matched

points on the current action sequence and its closest training sequence, and s(τ (1), τ (2)) denotes the
distance between the second-closest and the closest training action sequence. If an action sequence
closely follows a specific training sequence while maintaining a clear separation from other nearby
sequences, this provides strong evidence of memory-based retrieval rather than action generaliza-
tion. Note that this similarity metric does not measure action quality, just action recall. For example,
the robot may infer an ineffective action chunk, but if it closely matches one of the training action
chunks, the similarity score will be high. We make no claims on the effectiveness of the actions
generated by the policies; they are simply recalled from the training data.

3.4.1 DIFFUSION POLICY

Figure 4: Similarity and distance statistics between each inference trajectory and the training demonstrations
for Diffusion Policy, ACT, and GR00T-N1.5. Bars indicate similarity scores, where sharper (more one-hot–like)
distributions reflect stronger alignment with a specific training example, signaling stronger memorization be-
havior. From this comparison, Diffusion Policy exhibits the strongest action memorization, even under com-
pletely OOD conditions.

Our experimental results provide compelling evidence supporting the hypothesis that the Diffusion
Policy exhibits memory-based action cloning behavior. We first validate this in the in-distribution
(InD) setting, where cups are placed exactly as they were during training. In this case, each action
sequence almost perfectly overlaps with the corresponding training sequence (see Table 1), where
the memory-audit S close to 1. This indicates that the model is essentially replaying an action se-
quence memorized during training when presented with familiar inputs. This behavior persists even
under visual OOD scenarios, where we introduced distractors to the environment (OOD-Distractors)
as shown in Fig. 3 by the yellow border. Fig. 4 provides a global view of similarity scores across all
training trajectories under OOD scenarios. In the presence of distractors, almost all high-similarity
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matches are sharply concentrated on a single training trajectory, indicating a surprising OOD de-
fault behavior. The diffusion model seems to revert to one or two fallback action sequences when

Table 1: Average maximum similarity scores
for each method across the various scenarios.
Highest possible value is 1 (perfect match with
a training action chunk) and the lowest is 0
(far from all training action chunks). In OOD-
Extrapolate (side) the cup is moved leftward out
of the workspace and in OOD-Extrapolate (back)
is when the cup is moved backwards. Note that
since ALT directly selects a trajectory from the
dataset, it always has a similarity of 1.

Scenarios ALT DP ACT GR00T
InD 1 0.935 0.465 0.783

OOD-Distractors 1 0.837 0.278 0.798
OOD-Interpolate 1 0.690 0.406 0.725

OOD-Extrapolate (side) 1 0.838 0.428 0.463
OOD-Extrapolate (back) 1 0.875 0.355 0.745

presented with OOD images. Even when the in-
put is entirely unrelated to the task, for example,
an image of a cat or a dog, the diffusion model still
produces an action sequence that closely resembles
one from the training set. We believe these results
show that the Diffusion Policy’s decision-making is
largely governed by memory retrieval, rather than by
generalized reasoning over the action space. In both
clean and distractor scenarios, the model demon-
strates consistent action replay behavior, support-
ing our hypothesis that its decision-making is funda-
mentally memory-driven. Additional analyses and
results also support this observation. In the InD-
Interpolate cases, the Diffusion Policy outputs a tra-
jectory that closely matches one of the four corresponding nearest-neighbor training trajectories,
while in the OOD-Extrapolate cases the generated trajectories are still similar to the training trajec-
tories even once the cup is no longer in view of the 3rd person camera (see Table 1). See Appendix D
for more detailed InD visualization results and other OOD results.

3.4.2 ACTION CHUNKING WITH TRANSFORMERS

We evaluate Action Chunking with Transformers (ACT) Zhao et al. (2023) on the same datasets, test
scenarios (including InD and OOD cases). ACT already exhibits a notable degree of interpolation
in InD scenarios, which are typically where memorization effects are most evident. In scenarios
that are visually in distribution, but require OOD action generalization, the ACT policy seems to
sensibly compose action chunks to generalize its behavior. The 3D plot reveals clear evidence of
interpolation: several inference trajectories fall cleanly between nearby training trajectories in the
correct region.

However, in visual OOD regimes, when there are distractors, ACT produces almost random behav-
ior, which is quite different from Diffusion Policy. As shown in Fig. 4, the model failed to reproduce
the correct trajectory (traj15). Surprisingly, with distractor inputs (e.g., cats or dogs), the Dif-
fusion Policy returns a trajectory closely resembling some training demonstration (albeit not the
correct traj15). In comparison, ACT’s outputs are essentially random. For additional visualiza-
tions, including detailed InD results and further OOD analyses, see Appendix D.

3.4.3 GR00T-N1.5

Under full InD conditions, GR00T-N1.5 Bjorck et al. (2025) performs correct inference, consistently
matching the correct trajectory. However, GR00T-N1.5 displays mixed behavior in InD-Interpolate:
it sometimes interpolates trajectories between trained spots, while at other times it reverts to mem-
orization. In more challenging OOD-Interpolate cases, GR00T-N1.5 does not memorize like the
Diffusion Policy; instead, it produces trajectories that lie between training demonstrations. In OOD-
Extrapolate, when the cup moves outside the workspace and beyond view, GR00T-N1.5 initially
tracks correctly but then collapses to average-like predictions, indicating a lack of systematic ex-
trapolation capability.

In the OOD-Distractors scenario, GR00T-N1.5 demonstrates strong robustness, likely stemming
from its extensive vision-language-action pre-training. Unlike the Diffusion Policy, GR00T-N1.5
successfully produces the correct trajectory (traj15) under such conditions. It does so by relying
on consistent task-relevant cues from the first-person camera while ignoring irrelevant third-person
distractor images. Fig. 4 illustrates GR00T-N1.5’s behavior under OOD-Distractors: the close align-
ment between the predicted trajectory and traj15, together with the consistent similarity score
distribution across distractors, provides strong evidence of robustness. In contrast, both ACT and
the Diffusion Policy failed to produce the correct inference trajectory in some of these OOD cases.
This indicates that GR00T-N1.5 relies on task-relevant cues (e.g., first-person view of the cup),
likely thanks to its large-scale pretrained Vision-Language Model (VLM), rather than overfitting to
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spurious correlations, making it more reliable in visually perturbed environments. For other more
detailed results, see Appendix D.

3.4.4 ANALYSIS

Across the same pick-and-place task, we observe three distinct behaviors from the Diffusion Policy,
ACT, and GR00T-N1.5. Diffusion Policy acts like a retrieval controller in low-data settings: on
InD scenes it effectively replays a specific demo, and in the case of OOD, even when faced with
a completely incomprehensible scenario, it will still consider selecting one or two demonstrations
from the training data as the output. ACT shows less action memorization compared to the Dif-
fusion Policy: its chunked decoder with a smooth latent prior blends action segments, which can
appear reasonable in InD-Interpolate and OOD-Interpolate but, under strong distractors, drifts to-
ward prior or average chunks, essentially a hallucinated interpolation. GR00T-N1.5 exhibits a mix
of different behaviors: its diffusion-based action head retains a manifold-attraction effect (drawing
outputs toward training-set modes, which can cause memorization), while its VLM (pretrained on
internet-scale data) provides task-relevant invariances that resist spurious cues, resulting in better
OOD performance. Freezing the high-capacity Diffusion Transformer during fine-tuning on small
datasets avoids strong action memorization while keeping the model performant and robust, since the
pretrained VLM anchors it with stable conditioning. However, once the Diffusion Transformer itself
is fine-tuned, the model shifts toward memorizing specific actions. We speculate that score-based
models (e.g., DDPM Ho et al. (2020)) denoise by moving samples toward high-density regions of
the conditional data distribution. Mathematically, with xt = αtx0 + σtε, Tweedie’s formula Efron
(2011) gives

x̂0(xt) =
1

αt
(xt + σ2

t∇xt log pt(xt|cond)) ≈ xt − σtεθ(xt, t)

αt
, (2)

and the reverse-time SDE Song et al. (2020) is

dx = [f(x, t)− g2(t)∇x log pt(x|cond)]dt+ g(t)dω̄. (3)

Iterating these steps yields a manifold attraction effect: samples drift toward modes the diffusion
policy’s conditional distribution p(At|Ot). In small-data regimes, those modes can degenerate into
mixtures of narrow kernels around demonstrations, so generations tend to stick near particular demos
(a memory/replay effect).

Using the same hardware setup as for ACT and Diffusion Policy (RTX 4090), we kept the Diffusion
Transformer frozen to avoid out-of-memory issues, following the official GR00T-N1.5 recommen-
dation (--no-tune diffusion model). In the above experiments, only the small adapter lay-
ers and embodiment-specific action heads (a few million parameters) were fine-tuned, while both
the VLM and the action expert remained frozen. However, we also fine-tuned the entire action
expert (which includes the diffusion transformer), which led to much stronger action memoriza-
tion compared to runs where the diffusion transformer was kept frozen. We believe that even large
diffusion-based architectures tend to memorize when fully tuned or trained from scratch on small
datasets. For pretrained VLA models, freezing most of the system and tuning only a small set
of parameters can achieve a good balance between generalization/interpolation and in-distribution
performance—especially when fine-tuning on small datasets.

3.5 SIMULATION RESULTS

In addition to our physical robot experiments, we further validated our hypothesis on the Robomimic
benchmark using the official training demonstrations, evaluation trajectories, and pretrained check-
points provided in the original Diffusion Policy release. As summarized in Table 2, we observe that,
except for the Lift task, the rollout trajectories generated by Diffusion Policy exhibit a high degree of
similarity to their training demonstrations. This consistent overlap strongly supports our claim that
the model’s impressive performance often arises from memorization rather than true generalization
across unseen states. The comparatively lower similarity observed in the Lift task can be attributed
to its simpler nature and the fact that it was trained for substantially fewer epochs in the official setup
(only 300 and 450 epochs).

Overall, our findings reveal a systematic tendency of Diffusion Policies to reproduce familiar action
patterns encountered during training, rather than synthesizing novel behaviors. Importantly, this
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Epochs # Demos Image Obs. Epochs # Demos Low Dimensional
Can 1150 200 0.828 (4.032) 750 200 0.765 (5.408)

Square 2600 200 0.885 (2.086) 1750 200 0.799 (3.538)
Lift 300 200 0.578 (4.196) 450 200 0.580 (4.092)

Tool Hang 2650 200 0.962 (0.563) 3750 200 0.932 (1.016)
Transport 2750 200 0.965 (0.860) 2800 200 0.904 (2.356)

Block Push - - 4800 1000 0.963 (0.322)
Kitchen - - 4600 566 0.704 (14.231)

Table 2: Image Obs. are models conditioned using image observations. Low Dimensional are models
conditioned on low dimensional states. First number is the average highest similarity with respect to the training
trajectories. Second number is the average euclidean distance to the nearest trajectory. Entries with ’-’ are for
tasks with no available checkpoints and therefore could not be evaluated. Epochs specify at what epoch the
model weights were frozen. All demonstrations and model checkpoints were obtained from Chi et al. (2023).

behavior was consistent across both simulation and real-robot evaluations, reinforcing the robustness
of our observations. We acknowledge that extending this analysis to more complex, multi-skill,
or longer-horizon tasks, such as sequential, multi-step missions or dexterous hand manipulation,
would further strengthen the generality of our conclusions. However, these tasks typically require
additional infrastructure and substantially larger demonstration datasets that are difficult to obtain.
We therefore leave this analysis for future investigations.

4 ACTION LOOKUP TABLE

Figure 5: Contrastive training (top, above the yellow dashed line)
and inference (bottom) phases of our ALT policy. The inference
process has two stages: the green arrows indicate building the ALT
latent space with the trained model, while blue arrows represent
real-time inference.

Building upon these results, we de-
sign a lightweight alternative method
while still achieving comparable
functionality to show the bound of
memorization mechanism. Our pol-
icy, functioning similarly to a lookup
table, uses an image encoder trained
with contrastive learning as a hash
function to retrieve demonstration
trajectories (as shown in Fig. 1). If
our hypothesis holds, this method
should deliver performance on par
with the Diffusion Policy, while also
offering more predictable fallback
behaviors in the presence of out-of-
distribution (OOD) inputs, therefore
improving safety and robustness.

4.1 METHOD

At each timestep, the dataset includes a first-person end-effector view, a third-person view, and the
end-effector pose, denoted as: D = {(Ihi , Iti , pi)}Ni=1, where Ihi and Iti are the hand- and third-view
images, and pi is the end-effector position and orientation. We employ a fusion encoder to integrate
these inputs into a unified embedding for contrastive learning (Fig. 5). A ResNet-18 He et al. (2016),
pretrained on a large-scale dataset, serves as the image encoder backbone.

We adopt a contrastive learning framework to extract robust and discriminative representations from
each frame using alignment across multiple modalities. We generate two different augmented views
for each sample di = (Ihi , I

t
i , pi). Specifically, we apply a composed image augmentation pipeline

A1 and A2 that transforms each input di into augmented version views v(1)i and v
(2)
i . We feed v

(1)
i

and v
(2)
i into the fusion encoder to obtain their embeddings z

(1)
i and z

(2)
i . These two embeddings

form a positive pair, and we train the network using the normalized temperature-scaled cross-entropy
(NT-Xent) loss Chen et al. (2020) as our contrastive loss function:

Lc = − 1

2B

B∑
i=1

[log
exp (sim(z

(1)
i , z

(2)
i )/τ)∑2B

k ̸=i exp (sim(z
(1)
i , zk)/τ)

+ (1 ↔ 2)], (4)
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Table 3: Experimental Results. InD and OOD denote in- and out-of-distribution cases. The first column
reports trajectory retrieval success rate, the second real-robot task success rate, and the remaining columns
correspond to Fig. 3. MIT indicates model inference time (s). w/p and w/op refer to using or omitting the
end-effector pose as input.

Methods Recall InDs ID-1 OOD1 OOD2 OOD3 OOD4 OOD5 OOD6 OOD7 MIT

K-D Tree 100% 63.3% ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ∼0.09

Diffusion Policy 100% 100% ✓ ✓ ✓ ✓ × × ✓ ✓ ∼2.65

ALT w/ p, γ = 0.9 100% - ✓ ✓ OOD OOD OOD OOD OOD ✓ ∼0.009

ALT w/o p, γ = 0.9 100% - ✓ OOD OOD OOD OOD OOD OOD OOD ∼0.009

ALT w/o p, γ = 0.75 100% 100% ✓ ✓ ✓ ✓ ✓ ✓ OOD OOD ∼0.009

where sim(·, ·) denotes the cosine similarity, and both inputs are L2-normalized prior to computa-
tion. The parameter τ is the temperature (set as 0.4 in practice), which controls the sharpness of the
similarity distribution, effectively scaling the logits to adjust the contrastive loss sensitivity.

After training, we construct a low-dimensional latent space to enable trajectory matching and pre-
diction (Fig. 5). Each frame in the dataset is encoded by the fusion encoder, and the resulting
embeddings, along with trajectory IDs and frame indices, are stored in a database. At inference,
the current observation (views and pose) is encoded and compared via cosine similarity against this
space. If similarity falls below a threshold γ, the input is treated as OOD and triggers a safe fallback.
Otherwise, the system retrieves the matched trajectory ID and frame index for real-time prediction
and policy execution. Although ALT is not a universally scalable solution in its most basic form,
as larger datasets can result in higher memory usage and potentially slower lookup, its scalability
can be improved through various strategies, including utilizing better data structures, approximate
nearest neighbor search, state or action clustering Pertsch et al. (2025); Rothfuss et al. (2018), or
through action based contrastive learning Lee et al. (2025).

4.2 RESULTS

We evaluate the ALT policy through two experiments: task execution on a real robot under InD
conditions, and performance under OOD-Distractors. Comparisons with KD-Tree retrieval and Dif-
fusion Policy validate the explicit action memorization mechanism and the role of representation
learning. Results in Table 3 show successful matches (✓) vs. failures (×). Green OOD cases indi-
cate robust OOD detection with correct matches, while red OOD cases denote detected OOD inputs
that lead to incorrect trajectories. Our ablations disentangle what enables memorization from how
it is implemented.3 A naı̈ve KD-tree nearest neighbor baseline underperforms, showing that memo-
rization is not just feature proximity—without task-aligned embeddings and temporal alignment, re-
trieval fails. In contrast, ALT, an explicit action lookup indexed by contrastive embeddings, matches
diffusion policy performance on InD and OOD tasks while using far less compute and memory.
These results suggest that representation-driven memory is key to closed-loop success: diffusion
policy acts as an implicit retrieval system, while ALT exposes the same mechanism explicitly, with
lower latency and an interpretable OOD flag.

5 CONCLUSION

We investigated why diffusion policies are able to obtain strong performance with few task demon-
strations in Visuomotor robot manipulation. We found that much of their closed-loop success in the
low-data regime stems from retrieval-style action memorization, not sequence-level action general-
ization. Our comparative study revealed that diffusion policies consistently recall verbatim action
sequences from the training data, ACT exhibits interpolation across action segments showing better
action generalization, and GR00T-N1.5 balances action memorization from the fine-tuning phase
with robustness likely stemming from the large data volume pretraining of the policy. To probe the
limits of simplicity of action memorization, we introduced ALT, a minimal, explicit lookup base-
line, which reproduces diffusion-level behavior on small datasets while running orders of magnitude
faster and offering a simple OOD flag. These findings reframe diffusion policies as powerful action
retrieval memory systems that can attain proficiency in a single task, but do not achieve generalizable
manipulation skills.

3Additional details on the encoder architecture and the ablation study of the latent dimension are provided
in the Appendix F.
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A DATA COLLECTION PIPELINE

A.1 ROBOT ARM DATA COLLECTION

Choosing an efficient, cheap, and safe method for data collection, crucial for robot imitation learn-
ing, remains an open problem. One of the most common solutions is to use remote controllers, such
as VR, 3D space mouse, or smartphones. However, due to high latency and indirect operation, the
data collected in this way is often messy and low-quality, making it difficult to accurately capture
human skills. Fully synchronized systems with human operators, such as ALOHA Zhao et al. (2023)
and GELLO Wu et al. (2024), can solve this problem by allowing humans to teleoperate the robot
in a more intuitive way while tracking the actions of this system in real time. But, these methods
require an additional specialized puppeting system, which incurs an additional cost. In comparison,
UMI-gripper Chi et al. (2024) is a cheap, intuitive, and robot-agnostic solution for data collection.
Yet, it cannot be used in our work as it is incompatible with situations where third-person perspec-
tives are necessary, and limits the robot to a single manipulator that requires an expensive hardware
interface. Thus, to collect the necessary data, we utilized a motion capture data collection method,
MoDA, to capture high-quality action sequences with low latency.

Figure 6: The data collection pipeline of MoDA (Motion-captured Demonstration for Arms). The
green arrows indicate the process of aligning the relative positions of human’s hand and the robotic
arm, and the blue arrows indicate the data of collecting the robotic arm.

A.2 MOTION-CAPTURED DEMONSTRATION FOR ARMS

Data collection plays a critical role in imitation learning, as the quality and generalizability of the
learned policy depends heavily on the fidelity of the demonstrations. In this work, we introduce
MoDA (Motion-captured Demonstration for Arms), a streamlined and cost-effective data collection
pipeline built upon motion capture (MoCap) systems that are commonly available in robotics labo-
ratories (see Fig. 6). This pipeline provides high-fidelity human demonstrations for the robot, where
a human demonstrator performs the cup grasping motion while wearing specialized trackers, and
the system translates these motions into corresponding joint targets for a 6-DoF robot arm. MoDA
can be extended to any other robot arm system with almost negligible cost, because our data col-
lection pipeline is both task-agnostic and robot-agnostic. To collect the necessary expert training
demonstration data, we use an OptiTrack system to track the 6-DoF pose of the human palm in
real time and map it directly to the end-effector of a robotic arm. Simultaneously, we estimate the
inter-finger distance to control the opening and closing of the gripper, thereby allowing us to sig-
nal when to grasp the cup. We then synchronize these actions with the corresponding in-hand and
3rd person camera views. Compared to systems such as ALOHA, which rely on specialized and
expensive teleoperation interfaces, our method does not need any active electronics or specialized
wearables. Instead, the setup requires only a few 3D-printed brackets to attach passive IR reflective
markers to the palm and fingers, making it an extremely low-cost and accessible solution when a
MoCap system is already available in the lab. Furthermore, unlike UMI Gripper, which requires
direct human interaction during data collection, our setup allows human demonstrators to operate
out of frame, thereby ensuring clean third-person video demonstrations. Compared to systems such
as ALOHA, which rely on external equipment like teleoperation interfaces or instrumented gloves,
our approach avoids the need for expensive or specialized hardware. In contrast to the UMI Gripper
generated data, which often involves complex scenes with human demonstrators visibly present in
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the frame, our setup enables the collection of clean third-person video demonstrations where human
demonstrators are minimally visible. This is particularly beneficial for training diffusion policies,
as it minimizes noise and ambiguity in both the action and visual observation spaces, reducing the
risk of learning failures due to poor-quality data. In summary, unlike alternative setups that rely on
specialized grippers, force sensors, or teleoperation rigs, our system can be assembled in-house with
minimal resources and negligible additional expense. Moreover, MoDA is not only task-agnostic,
but also robot-agnostic, it does not rely on any specific type or model of robotic arm, making it
highly adaptable across different hardware platforms and manipulation scenarios. This flexibility
enables seamless integration into a wide range of experimental setups with minimal modification.

B EARLY STOPPING EXPERIMENT

To further support our hypothesis, we conducted an early stopping experiment. Early stopping is a
common technique used to prevent potential overfitting during training, with the goal of improving a
model’s generalization ability. In this experiment, we reserved one-third of the dataset as a validation
set and used the remaining two-thirds for training. During training, we recorded both the validation
loss and the mean squared error (MSE) between the predicted actions and ground-truth actions on
the training set. The first metric, validation loss, is used to determine when to stop training, thus
preserving the model version with the best generalization. The second metric, actions MSE on
training set, is used to monitor the model’s performance on the training set. As shown in Fig. 7,
although the validation loss reaches its minimum at a certain point, the corresponding action MSE
remains high, around 1800. This result indicates that overfitting a diffusion policy model to the
training data is a necessary requirement for producing accurate trajectories, as choosing the best
model (chosen based on the validation loss) results in a policy that cannot reproduce the correct
in-distribution trajectories.

Figure 7: Early Stopping Experiment. The validation loss (left) reaches its minimum around step
650 before beginning to rise, indicating the onset of overfitting. However, at this point, the training
action MSE (right) has not yet converged and remains as high as 1800. This suggests that more
extensive training is necessary for the Diffusion Policy to output effective actions, even the input is
in-distribution.

C DIFFUSION MECHANISM ANALYSIS

In this section, we present additional examples to further illustrate the behavior of diffusion models
under varying model capacities and dataset scales, as discussed in Section 3.2. Specifically, we
examine three additional 2D manifolds: an ellipse 8, a rectangle 9 and a heart shape 10.

Consistent with the observations from Section 3.2, low-capacity models trained on small datasets fail
to accurately reconstruct manifolds, often producing noisy or collapsed outputs. Even when trained
on large datasets, these models are limited by their representational capacity: simple shapes like
ellipses can be approximated reasonably well (albeit still worse than with high-capacity models),
more complex structures suffer significant distortion. For example, due to limited model expressive-
ness, low-capacity models approximate the heart shape as a crude triangle and smooth out the sharp
corners of the rectangle.

Memorization behaviors are obvious when high-capacity models are trained on small datasets. In-
terestingly, although global structure reconstruction fails, local smoothness can still emerge. For
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instance, while the overall manifold may not be recovered, segments of an ellipse can still be accu-
rately captured. This suggests that memorization in diffusion models is not absolute: when the train-
ing data is locally dense, models may still interpolate between nearby points, preserving some local
structure. However, when larger gaps exist between segments, interpolation fails, and the model in-
stead memorizes discrete samples without capturing the broader underlying manifold. When high-
capacity models are instead trained on large datasets, all manifolds are accurately reconstructed,
almost perfectly matching the true geometry. In practice, though, acquiring such large-scale ex-
pert demonstrations that sufficiently cover the state space remains a significant challenge in robotic
manipulation tasks.

Figure 8: Training a generative model from 2D points on a ellipse-shaped 1D manifold. Orange
points indicate training samples, gray points are noisy inputs, blue points are denoised outputs, and
cyan lines shows the denoising directions.

D ADDITIONAL RESULTS: DIFFUSION POLICY

D.1 REAL-WORLD

Fig. 11 Shows the trajectory similarity between the predicted trajectory and the nearest ground-truth
trajectory for the real-world cup placement experiment. The distance to the nearest neighbor (yellow
polyline) is near zero (implying high similarity), while the distance to the second nearest trajectory
is substantially larger, resulting in a similarity score that is close to 1 (the blue bar).

Fig. 12 presents additional supplementary visualization of the trajectory matching results under in-
distribution conditions. In the left panels, for each case, the first blue bar represents the similarity
score of the most closely matched training trajectory, while the second blue bar the similarity score
of second closest trajectory. The consistently high top-1 similarity scores, combined with significant
gaps to the second closest match, indicate clear and confident retrieval from the training data. As
shown in the right panels, the closest trajectory (blue) in the training dataset almost perfectly over-
laps with the inference trajectory in all examples, showing that the Diffusion Policy can accurately
retrieve the correct demonstration when the input remains within the training distribution. These re-
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Figure 9: Training a generative model from 2D points on a rectangle-shaped 1D manifold.

Figure 10: Training a generative model from 2D points on a heart-shaped 1D manifold.

sults strongly support our hypothesis that the Diffusion Policy depends on a memory-based retrieval
mechanism to achieve its compelling results. The sharp similarity peaks and trajectory overlaps
provide strong evidence that the model is not merely approximating the behavior, but is explicitly
recalling memorized training trajectories under in-distribution conditions.

We further analyzed several additional out-of-distribution (OOD) scenarios, including: placing the
cup evenly between three or four in-distribution positions (as shown in Fig. 13), gradually moving
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Figure 11: Similarity and distance statistics between inference and training trajectories. Each sub-
plot shows the similarity scores (blue bars) and average distances (orange lines) between the Diffu-
sion Policy inference and training trajectories. The large gap between the closest and second-closest
neighbors indicates strong alignment with specific training examples.

the cup out of the field of view from the edge of an in-distribution position (Fig. 14), and slowly tran-
sitioning the cup between two distant in-distribution positions (Fig. 15). It is evident that under these
OOD conditions, the Diffusion Policy continues to produce trajectories that closely resemble those
seen during training. These experimental results provide further support for our core hypothesis
regarding the memory-driven behavior of diffusion policies.

D.2 SIMULATIONS

We also see similar results for the two different simulated manipulation tasks: Can, and Square. Both
tasks are drawn from the Robomimic simulation benchmark and contain 196 training trajectories
and four validation trajectories. In the Can task, the model is taught to transfer a can from one
table to another table while in the “Square” task, the model is trained to place a square ring on a
square peg. We observed that these experiments also display action memorization (see Fig. 16 and
Fig. 20), as each training observation was found to closely align with the corresponding ground-truth
demonstration. We observe similar memorization when examining the diffusion policy’s rollouts
from observations taken from the validation set (see Figs. 17 through 19, and Figs. 21 through 23)
for can and square experiments respectively. Overall, in the Can task, we observed an average
similarity score of 0.88 and an average deviation of 2.0 mm. In comparison, in the “Square” task,
we observe a similarity score of 0.82 with an average deviation of 4.4 mm.

E ADDITIONAL RESULTS: ACT AND GR00T-N1.5

We provide further results for experiments discussed in 3 for both the ACT and GR00T-N1.5 poli-
cies on the following scenarios being: (1:InD-Interpolate), (2:OOD-Interpolate), and (3:OOD-
Extrapolate).

E.1 ACT

For OOD-Interpolation in 24 we see trajectories that lie cleanly between training trajectories,
demonstrating successful interpolation.

The OOD-Extrapolation case in 25 often extrapolates in the wrong direction leading to incorrect
trajectories.
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Encoder-Dim InDs InD-1 OOD1 OOD2 OOD3 OOD4 OOD5 OOD6 OOD7
ResNet-64 100% ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

ResNet-128 100% ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓
ResNet-256 100% ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

SimpleCNN-64 19.35% ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SimpleCNN-128 22.58% ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SimpleCNN-256 22.58% ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ViT-64 12.9% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
ViT-128 12.9% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ViT-256 16.13% ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CLIP-64 22.58% ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

CLIP-128 100% ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
CLIP-256 51.61% ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Swin-64 77.42% ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Swin-128 83.87% ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
Swin-256 90.32% ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Table 4: Performance of ALT under Different Encoder Architectures and Feature Dimensions.

E.2 GR00T-N1.5

From the InD-Interpolation of 26 we see high similarity scores to a single trained trajectory over
many samples. This demonstrates high action-memorization while sometimes interpolating.

The OOD-Interpolation in 27 show some successful interpolation, but we see lower action-
memorization through the increased number of higher similarity score candidate trajectories.

For OOD-Extrapolation, 28, highly OOD inputs can lead to incorrect extrapolations. There is some
minor-action memorization for successful extrapolations.

F ENCODER ARCHITECTURE AND LATENT DIMENSION

To further understand the role of representation quality in ALT, we evaluated the system under
five different encoder architectures—ResNet-18, SimpleCNN, ViT, CLIP, and Swin—while varying
their feature dimensions. The results in Table 4 reveal several consistent trends. First, ResNet-18
achieves uniformly high performance across all dimensions, reflecting the stability and strong in-
ductive biases of convolutional networks, which are well suited for manipulation-oriented visual
inputs. In contrast, SimpleCNN and ViT perform significantly worse: the former lacks sufficient
representational capacity, while the latter requires large-scale pretraining and offers limited spatial
inductive bias, making its embeddings unstable in our domain. CLIP produces strong features but is
highly sensitive to output dimensionality—dimensions that are too small under-represent the feature
manifold, whereas excessively large dimensions distort it, leading to degraded contrastive align-
ment. Finally, Swin exhibits a clear performance improvement as dimensionality increases, consis-
tent with its hierarchical, local-window design that combines CNN-like locality with transformer
expressiveness. Overall, these results highlight that encoder choice and representation quality have
a substantial impact on ALT performance, confirming that representation quality is a critical factor
for contrastive training.
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Figure 12: The Diffusion Policy inference result analysis under in-distribution conditions. On the
left, each subplot shows the similarity distribution between the query inference trajectory and all
stored trajectories in the database. On the right, the three figures provide 3D visualizations of repre-
sentative matching cases. The green line represents the inference trajectory, while the blue and red
dots show the closest and second-closest trajectories retrieved from the training set, respectively.
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Figure 13: Inference trajectory analysis when the cup is placed between multiple In-distribution
positions.
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Figure 14: Inference trajectory analysis when the cup is gradually moved out of view from an in-
distribution boundary.

Figure 15: Inference trajectory analysis when the cup is gradually moved between two distant in-
distribution positions.
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Figure 16: A subset of the total analysis done for the roll-outs of a Diffusion Policy model from
the training set with respect to all ground-truth training trajectories. The model was trained on the
“Can” pickup benchmark.

Figure 17: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to all
ground-truth validation trajectories. The model was trained on the “Can” pickup benchmark.

24



Published as a conference paper at ICLR 2026

Figure 18: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to both
the ground-truth training and validation trajectories. The model was trained on the “Can” pickup
benchmark.

Figure 19: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to the
ground-truth training trajectories. The model was trained on the “Can” pickup benchmark.
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Figure 20: A subset of the total analysis done for the roll-outs of a Diffusion Policy model from
the training set with respect to all ground-truth training trajectories. The model was trained on the
“Square” pickup benchmark.

Figure 21: Analysis of a Diffusion Policy model roll-outs on validation set with respect to all ground-
truth validation trajectories. The model was trained on the “Square” benchmark.
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Figure 22: Analysis of a Diffusion Policy model roll-outs on validation set with respect to both the
ground-truth training and validation trajectories. The model was trained on the “Square” pickup
benchmark.

Figure 23: Analysis of a Diffusion Policy model roll-outs on training set with respect to all ground-
truth training trajectories. The model was trained on the “Square” benchmark.

Figure 24: ACT Out of Distribution Interpolation Distance and Similarity Scores Across Six Roll-
outs.
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Figure 25: ACT Out of Distribution Extrapolation Distance and Similarity Scores Across Six Roll-
outs.

Figure 26: GR00T-N1.5 In Distribution Interpolation Distance and Similarity Scores Across Six
Rollouts.

Figure 27: GR00T-N1.5 Out of Distribution Interpolation Distance and Similarity Scores Across
Six Rollouts.

Figure 28: GR00T-N1.5 Out of Distribution Extrapolation Distance and Similarity Scores Across
Six Rollouts.

28


	Introduction
	Related Work
	Diffusion Policy Analysis
	Preliminaries
	Diffusion Model Generalization Regimes
	Hypothesis and Experiments
	Real-world Results
	Diffusion Policy
	Action Chunking with Transformers
	GR00T-N1.5
	Analysis

	Simulation Results

	Action Lookup Table
	Method
	Results

	Conclusion
	Data Collection Pipeline
	Robot Arm Data Collection
	Motion-captured Demonstration for Arms

	Early Stopping Experiment
	Diffusion Mechanism Analysis
	Additional Results: Diffusion Policy
	Real-World
	Simulations

	Additional Results: ACT and GR00T-N1.5
	ACT
	GR00T-N1.5

	Encoder Architecture and Latent Dimension 

