Under review as a conference paper at ICLR 2026

AN UNLEARNING FRAMEWORK FOR CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Growing concerns surrounding Al safety and data privacy have driven the devel-
opment of Machine Unlearning as a potential solution. However, current machine
unlearning algorithms are designed to complement the offline training paradigm.
The emergence of the Continual Learning (CL) paradigm promises incremental
model updates, enabling models to learn new tasks sequentially. Naturally, some
of those tasks may need to be unlearned to address safety or privacy concerns that
might arise. We find that applying conventional unlearning algorithms in continual
learning environments creates two critical problems: performance degradation on
retained tasks and task relapse, where previously unlearned tasks resurface during
subsequent learning. Furthermore, most unlearning algorithms require data to op-
erate, which conflicts with CL’s philosophy of discarding past data. A clear need
arises for unlearning algorithms that are data-free and mindful of future learning.
To that end, we propose UnCLe, an Unlearning framework for Continual Learn-
ing. UnCLe employs a hypernetwork that learns to generate task-specific network
parameters, using task embeddings. Tasks are unlearned by aligning the corre-
sponding generated network parameters with noise, without requiring any data.
Empirical evaluations on several vision data sets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal
disruption to previously acquired knowledge.

1 INTRODUCTION

Accelerating growth in Al adoption has brought with it safety and privacy concerns, leading to in-
creasing regulatory scrutiny [European Parliament & Council of the European Union|(2023). This has
led to the development of Machine Unlearning so that data found in violation of safety and privacy
can be selectively removed from a model with minimal effects on the rest of the model’s learned
knowledge. Algorithmic advances in unlearning have enabled the effective removal of unwanted
information whilst safely preserving the rest Nguyen et al.[(2022). However, the vast majority of
contemporary unlearning algorithms are designed to complement offline-trained models. Offline
training, which involves training a model on a large, monolithic dataset once and deploying it, is the
dominant paradigm of the day. However, the rigid nature of the paradigm, where a trained model
cannot be updated to reflect new data, is subject to rising criticism. Naively re-training an already
trained model can lead to the model forgetting what it already knows, due to differences in data
distributions. This phenomenon is known as catastrophic forgetting, and its mitigation has led to
the rise of an alternate training paradigm aptly dubbed Continual Learning (CL). CL allows the pro-
gressive update of models as new data arises, while ensuring that previously learned information is
preserved. Naturally, unlearning some of those incremental updates, termed tasks in the CL litera-
ture, is as important as learning them. The newfound flexibility to learn new tasks with time should
be complemented by effective unlearning strategies so that any privacy or safety concerns that may
arise with a newly learned task are promptly addressed. As depicted in Figure[T} a unified treatment
of CL and unlearning would empower models to learn new tasks and unlearn obsolete ones with
minimal interference to the rest. Yet, there is a lack of frameworks that simultaneously address both
challenges.

Integrating unlearning in a CL framework is not straightforward. One of the CL’s core principles is
to discard data from past tasks as new tasks are encountered. This is problematic as most unlearning
algorithms require either the data that needs to be unlearned (forget-set) or the entirety of the data

Under review as a conference paper at ICLR 2026

; z~N(0,1)
) Yt D — I\ L
A0S EEEEEEE -
(D) } (Ganw) | (Ganw) | (GED) § (GIn) | (GED)) (CID) ; ‘ i
Request init L1 L2 U1 L3 Lg U3 L5 Uz xt > F(-;60) _'D Yi u
time + 4
[E—— [E—
. . . . + +
Figure 1: A visualization of the model’s state TR TR
with time. With each learning operation L,, R R
the model gains expertise on a particular task =z, ATainble [e W | B] e

as represented by the colored tile added to the
model state. Conversely, an unlearning operation
U, erases the model’s expertise of task z.

Figure 2: Architecture schematic. A: Learning
and B: Unlearning. £: Learning Objective and
U: Unlearning Objective.

that the model was trained on (forget-set + retain-set). Even if we resolve the data requirement
deadlock through the use of replay buffers that contain representative subsets of data from past tasks,
we find that unlearning operations in a CL environment have harmful spillover effects, degrading
the model’s performance on other tasks. In addition, we find that, with conventional unlearning
methods, unlearned tasks relapse and recover lost performance as the model subsequently learns
new tasks. In other words, unlearning algorithms that have proven effective in offline settings do
not translate well when applied in a CL environment. This is because conventional methods were
simply not designed to operate on incrementally gathered knowledge or anticipate future learning
operations past the unlearning operation. This suggests the need for an unlearning solution that is
purpose-built to operate in a CL setting.

Furthermore, in compliance with CL desiderata, a unified solution should be able to perform both
learning and unlearning operations in the absence of historical data. In light of such requirements,
we propose UnCLe: an Unlearning Framework for Continual Learning. UnCLe employs a hyper-
network that learns to generate task-specific network parameters, conditioned on corresponding task
embeddings. Tasks are unlearned by aligning generated network parameters with noise, without
requiring any data. Empirical evaluations on several vision datasets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal disruption to previ-
ously acquired knowledge.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

CL methods largely fall into one of the three schools of thought. (1) Regularization-based methods
mitigate forgetting through an additional regularization term in the learning objective that constrains
model changes to minimize interference to previous tasks. This can take the form of a direct penalty
on changes to model parameters weighted by some importance metric, as in EWC [Kirkpatrick et al.
(2017). Alternatively, the penalty could functionally regularize model updates such that behavior on
previous tasks is preserved. This usually takes the form of a distillation objective between old and
new model states L1 & Hoiem| (2017). Hypernetworks |Ha et al.[| (2017); von Oswald et al.| (2020)
present a new spin on this by sequentially learning to generate task-specific networks, conditioned
on corresponding task embeddings. Forgetting is mitigated via distillation by ensuring the new
hypernetwork generates similar parameters as the old hypernetwork for previous task embeddings.
(2) Architecture-based methods involve the use of non-overlapping sets of parameters for each task.
This is either done through the use of separate networks or partitioning a single network to create
task-specific sub-networks [Mallya & Lazebnik (2018) or expanding the network progressively by
adding neurons to accommodate new tasks |Yoon et al.| (2018)). Such methods nullify catastrophic
forgetting but come at the cost of parameter growth and inter-task knowledge transfer. (3) Replay-
based methods relax the data restriction and allow a small subset of historical data to be stored
in a buffer and replayed when training new tasks Rolnick et al.| (2019); Riemer et al.| (2019). The
idea is that the buffer should serve as a good approximation of past task distributions, and replaying
them whenever a new task is learned should therefore mitigate forgetting. Replay-based methods
mostly differ in their buffer sample selection strategy. Some methods replace the replay buffer with
a generative model that is continually trained to generate historical data|Shin et al.[(2017).

Under review as a conference paper at ICLR 2026

50

—_—
UnCLe
40 -
° ssD
@
@ 30 GKT
c
o
> R
T
Z20 Ji
5 T
3
£ SalUun
10 -
SCRUB
——
0 BadTeacher
MmO L 9 L AN N A $ L 9 A N O b o9 vy HL P L O Y YN Y NS
NN VYOOI YIS IY Sy

Figure 3: Plot tracking Task 0’s accuracy through a sequence of learning and unlearning operations
on the TinyImageNet dataset. We present more such plots in Appendix H. UniCLUN is ignored as
it is effectively equivalent to our adaptation of BadTeacher.

2.2 MACHINE UNLEARNING

Most unlearning methods are designed to operate on offline-trained models. We review some of the
latest unlearning methods in the literature and adopt them as baselines. BadTeacher |(Chundawat
et al.| (2023a) uses a random teacher network for the forget set and KL-divergence to match distri-
butions, while retaining set training minimizes cross-entropy. SalUn [Fan et al.| (2024) generates a
gradient-based weight saliency map and modifies only the salient model weights impacted by the
forget set, rather than the entire model. SCRUB |[Kurmanji et al.| (2023) employs a student-teacher
model where the student deviates from the teacher on the forget set while retaining performance on
the rest. SSD |[Foster et al.| (2024b) is a post hoc method that avoids retraining. It first selects pa-
rameters using the Fisher information matrix, then dampens their effects to ensure unlearning while
preserving model performance. GKT |Chundawat et al.|(2023b)) uses a generator to synthesize sam-
ples for unlearning. JiT [Foster et al.|(2024a)) leverages Lipschitz continuity for zero-shot unlearning
by smoothing model outputs relative to input perturbations.

2.3 UNIFIED SOLUTIONS

The following are unlearning methods that are designed to operate in a continual setting. CLPU
Liu et al.| (2022) involves learning independent networks for each task and discarding them upon
request, thereby achieving unlearning. Although CLPU achieves exact unlearning, it comes at the
cost of rampant parameter growth, making it unsustainable for long task sequences. UniCLUN
Chatterjee et al.| (2024) adapts BadTeacher (Chundawat et al.| (2023a)) to a continual setting with a
replay buffer. Distilling from a random teacher network enables forgetting, and distillation from the
previous task’s network helps mitigate forgetting when learning new tasks.

Unlearning methods vary in their data requirements. BadTeacher, SCRUB, SalUN, SSD, and Uni-
CLUN require both the forget and retain sets. JiT requires only the Forget set. GKT and the proposed
method, UnCLe, are data-free unlearning methods.

3 PROBLEM FORMULATION

The goal is to continually learn and unlearn tasks. The setting involves a model encountering a
sequence of requests R = {I%Z-}JEI1 where each request R; = (I;,T;, D;) is a triplet comprising the
instruction I;, the task identifier 7T;; and the dataset D;. Given an instruction to learn, i.e., I; = L,
the model is to learn task 7; = ¢ through its corresponding dataset D; = D,. Note that the CL

setup does not allow us to store the task-specific data from past requests. This work considers a

supervised setting with each task’s dataset D; = {z}, ¢/ }Ijitl‘ containing | D;| input-output pairs.

For an unlearn instruction I; = U, the model is required to unlearn a task 7; = ¢ in the absence of
the task data D; = {}. This data-free unlearning requirement is a key characteristic of the continual
setting, which assumes that once a task is learned, the corresponding data is foregone.

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF CONTEMPORARY UNLEARNING

In this section, we analyze how current unlearning algorithms fare in a continual setting. Given the
data requirements of most current unlearning algorithms, we adopt a replay-based CL strategy to
adapt them to a continual setting. The replay buffer enables both unlearning and forgetting mitiga-
tion. For our replay strategy, we choose the ubiquitous DER++ Buzzega et al.| (2020) that blends
functional regularization with replay. DER++ stores the previous model’s output logits along with
the inputs and labels in the replay buffer. When learning a new task, in addition to minimizing the
classification loss, the error between the current and the stored logits is minimized as well. Formally,
the learning objective is as follows:

arg Iglgl E ()0, LcEW, fo(he(2))) + - Ew yyrLoey', folhe(2")))

(1)
+ B B omarllz” = folhe(z"))Il3

where the first term is the current task ¢’s classification loss between the ground truth labels and the
model fy(hg(.)) outputs, the second term is the replay buffer R’s classification loss and the last term
is the Euclidean distance between the feature extractor h(.) logit outputs and the stored logits z.
and /3 are hyperparameters to balance the current task and replay. The unlearning objective varies
with each unlearning algorithm. In addition, the replay buffer would no longer contain samples from
the task that is being unlearned.

We apply our CL-adapted unlearning baselines to a random sequence of learning and unlearning
operations as denoted in Figure [3['s X axis. We choose the TinyImageNet dataset and split the 200-
class dataset 20 ways, resulting in 20 tasks of 10 classes each. For brevity, we track the accuracy of
a single task (Task 0) through the entire sequence of operations to study its behavior in response to
each operation.

In the first operation L3, we see that Task O’s accuracy is zero as it has not been learned yet. The
second operation, L, results in a sharp increase in accuracy as Task 0 is learned. The third operation
Us is an unlearning operation that is supposed to only impact Task 3. However, we see that all the
baselines witness sharp drops in Task 0’s accuracy of varying magnitudes. This hints at the current
methods’ incapacity to handle CL environments. The next operation Lg is a learning operation that
results in Task 0’s accuracy partially recovering among all baselines. This is due to the presence of
data from Task O in the replay buffer that enables the model to partially relearn what it has previously
unlearned. The subsequent learning operations from L5 to L9 show more or less stable accuracies
across the board until U;7, which once again plunges Task 0’s accuracy. Accuracy degrades further
with another consecutive unlearning operation U;. This pattern of accuracy degradation and recov-
ery repeats until Task O is finally unlearned. At Uy, we witness baselines differ in their behavior.
SSD, GKT, and SCRUB’s accuracies stay largely the same at 10 (equivalent to a random guess,
given 10 classes a task), having already degraded in the prior unlearning operations. BadTeacher’s
Task 0 accuracy dips, but not fully, until only after the next unlearning operation. SalUn and JiT
show a negligible impact. Note that as a task is unlearned, its corresponding dataset is removed from
the replay buffer. In this case, after Uy, samples from Task O are removed from the buffer. Mov-
ing further, the subsequent sequence of unlearning operations till U;s sees the accuracies largely
unchanged. The tail end of the sequence sees a line of learning operations. Surprisingly, Task 0’s
accuracy again recovers across all baselines (excluding SCRUB, which seems to have completely
collapsed midway through the sequence). Despite the removal of replay data, accuracy improves due
to backward transfer of knowledge from learning subsequent tasks that are similar to the unlearned
task. Standard unlearning algorithms do not take into account the possibility of future learning and
therefore do not offer any safeguards against such performance recovery.

In summary, we identify two phenomena that are unique to continual settings where traditional
unlearning algorithms falter:

1. Unlearning operations spill into tasks other than the targeted task, resulting in performance
degradation across all learned tasks.

2. Subsequent learning operations lead to unlearned tasks relapsing and partially recovering
lost performance.

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning (L) and Unlearning (R) in UnCLe
Input: Task Data D,, regularization constant 5, Input: Forget Task f, Unlearning regularization

learning epochs E; constant ~, Burn-In F,,, Number of noise sam-
1: e; = random_init() ples n .
2: for j =0to Er do 1: for j =1to E, do
3: for each batch (X}, Y}) in D; do 20 Ly =0
4: 0; = Hes; d) 3: fork=1tondo
S, vt F(X0,) 4: Sample noise z ~ N(0,1,)
: v U 5: Update Lygr Lygr + || H(eg; ¢) —
6: Elr?} : »Ctask(y;ta Y;) + 5 : »C'r‘eg ZH%
7: Optimize {¢, e:} w.rt Ly 6. end for
8: end for 7o Lu=7Ligt+ Lreg
9: el:d for 8: Optimize ¢ with respect to L,
10: 9" = ¢ 9: end for

Our empirical observations thus demonstrate that current unlearning algorithms are ill-equipped
to deal with continual settings and that bespoke frameworks to tackle both continual learning and
unlearning are required.

5 METHODOLOGY

The goal is to build a unified framework that is capable of both continual learning and unlearning.
As a result, the framework should simultaneously satisfy both continual learning and unlearning re-
quirements. CL frameworks endeavor to minimize catastrophic forgetting while maximizing knowl-
edge transfer between tasks. On the other hand, unlearning frameworks strive for completeness,
specificity, and permanence. Moreover, unlearning has to be now data-free as the continual setting
relinquishes past tasks’ data. This marks a stark departure from conventional unlearning settings.

A trivial way to address all the aforementioned challenges in tandem is through parameter isolation.
Consider a setting wherein a separate model is learned for each task. Such a scenario avoids catas-
trophic forgetting altogether, as no interference can occur between tasks since they occupy disjoint
parameter sets. A task unlearning operation would simply mean discarding the appropriate model.
The modularity of the framework ensures the exact unlearning Nguyen et al.| (2022) of a task: guar-
anteeing completeness, specificity, and permanence. It is complete since no other network contains
an unlearned task’s information other than the discarded network. It is specific as discarding a partic-
ular network has no ill bearing on other tasks’ networks, and finally, its effects are permanent since
there is no way to recover lost information through the remaining networks. The obvious down-
side to this ideal framework is the substantial increase in parameters with every new task, violating
the limited memory assumptions in CL settings. Furthermore, parameter isolation also skimps on
knowledge transfer between tasks, which has proven massively beneficial in continual learning.

5.1 AN UNLEARNING FRAMEWORK FOR CONTINUAL LEARNING

We propose an Unlearning Framework for Continual Learning (UnCLe) that achieves parameter
efficiency and knowledge transfer while ensuring desired continual learning and unlearning proper-
ties. The proposed approach forgoes maintaining task-specific networks and generates them instead
through a hypernetwork Ha et al.[(2017). A hypernetwork #(.; ¢) is a neural network that generates
parameters of another neural network termed the main network. The hypernetwork can parameter-
ize different main networks when conditioned on different learnable embeddings. UnCLe employs
hypernetworks to generate unique main network parameters 6; for each task ¢, when conditioned on
corresponding task embeddings e;.

5.1.1 LEARNING

In a CL setting, the hypernetwork encounters tasks sequentially [von Oswald et al.| (2020). As a
result, learning to generate new task-specific parameters will inevitably lead to the catastrophic for-
getting of the previous tasks. The hypernetwork is hence regularized to ensure consistent generation

Under review as a conference paper at ICLR 2026

of previous task-specific parameters. This is achieved through a knowledge distillation-inspired ob-
jective that minimizes the difference in the generated output between the current hypernetwork and
a hypernetwork frozen prior to learning the current task. The objective for learning a new task ¢ is
thus formulated:

arg glien £task<Dt7 H<et; (b)) + ﬁ : ‘CTEga where

Lreg = 7 tzl [H(ew; ¢*) — Hlew; o)l5 @)
Liqsk 18 the task-specific loss (cross-entropy for the classification tasks) computed for the data set
D, associated with task ¢, £ is a hyperparameter controlling the strength of regularization, and
Lyeq is the distillation-inspired regularization term. The hypernetwork parameters are initialized
via the Hyperfan initialization |Chang et al.| (2023, which ensures that the hypernetwork generates
main network parameters that are, in turn, Kaiming He initialized [He et al.|(2015). The parameter
efficiency problem is therefore addressed through the hypernetwork framework, as we only need to
store the hypernetwork parameters and the low-dimensional task embeddings. The addition of new
embeddings with each new task accounts for a negligible growth in parameters. This framework also
allows for inter-task knowledge transfer through the shared hypernetwork parameters. The learning
methodology is summarized in Algorithm I}

5.1.2 UNLEARNING

A model that has unlearned a task is required to behave in a way that is similar to a model that
has never been trained on that particular task. UnCLe realizes this goal by reverting the forget-
task parameters generated by the hypernetwork back to a standard normal initialization. During the
learning phase, given a task ¢ and its associated embedding e;, the hypernetwork learns to generate
parameters 6; that minimize the empirical risk on the dataset D, corresponding to task ¢. Similarly,
when instructed to unlearn ¢, we enforce the hypernetwork to learn to map the embedding e; back to
zero-centered Gaussian noise. This is attained through minimizing the error between the generated
parameters ¢, and a Gaussian noise sample z. This has the desired effect of unlearning the task
t as the hypernetwork conditioned on e; no longer generates meaningful parameters 6; but rather
noise that is akin to a randomly initialized network. As with learning a new task, unlearning too
can cause catastrophic forgetting of the retain-tasks. To confine unlearning to the forget-task and to
safeguard retain-tasks, we adopt a similar regularization term in the objective that enforces consistent
parameter generation for the retain-tasks. Overall, the unlearning objective for a forget-task f is
formulated as:

argmm - < Z |H(es;) — Zv|§> + Lreg 3)

where z; are samples from a zero-centered Gauss1an. The hyperparameter v controls the strength of
regularization. We average the MSE over a batch of n different noise samples to prevent the hyper-
network from memorizing any particular noise sample, which can impact generalization. Given an
unlearning request, the hypernetwork is optimized with the aforementioned objective over a number
of iterations that we term burn-in. The unlearning procedure is summarized in Algorithm 1}

6 EXPERIMENTS & RESULTS

We generate a random sequence of learning and unlearning requests and train the model continually
on the corresponding task datasets. Descriptions of various sequences and seeds used are found in
Appendix C.

6.0.1 IMPLEMENTATION

We use a fully connected Hypernetwork with 3 hidden layers of dimensions 128, 256, and 512.
The hypernetwork generates ResNet18 parameters in the case of Permuted MNIST experiments and
ResNet50 elsewhere to demonstrate scalability. We also include ResNet18 results on other datasets
in Appendix H. To improve efficiency, the parameters are generated in chunks. We defer details on
the chunking mechanism to Appendix B. We use the Adam optimizer Kingma & Ba|(2017) for both

Under review as a conference paper at ICLR 2026

ccccc

Uz
Us
{6

Te t set ACC BCY
F———
.
|
e
[
 —
——""
—
|
e
|
"
—
e —
e
[
———"

L

04
3

o POe OV PP PRIEPOP T LTSS FFL R P
Request Sequence

N
-

”
~

$
- -

UnCle SSD GKT JiT Salun SCRUB BadTeacher
Figure 4: Plot tracking Task 0’s accuracy through Figure 5: Comparing individual task accuracies

a sequence of learning and unlearning operations of UnCLe and a trivial baseline that only per-
on the CIFAR 100 dataset. forms learning on the TinyImageNet dataset.

| Permuted MNIST | CIFAR-100 | TinyImageNet | 5-Tasks
| RA FA | RA FA | RA FA | RA FA

BadTeacher 92.17 10.20 61.75 14.57 | 52.79 15.73 | 54.38 8.550
SCRUB 9.970 9.840 2945 10.06 | 19.48 10.00 | 9.160 12.97

Framework

SalUn 92.39 59.24 66.56 44.89 | 5844 36.02 | 7475 25.02
JiT 86.93 29.90 65.94 4393 | 57.86 3270 | 19.10 17.20
GKT 89.77 12.13 57.05 10.70 | 52.44 11.35 | 10.27 13.67
SSD 86.32 9.930 43.27 10.00 | 39.78 10.37 | 8.850 10.36
CLPU 91.73 - 63.10 - 54.90 - 85.00

UnCLe (Ours) | 96.87 10.00 62.65 10.00 | 55.24 10.00 | 94.12 10.04

Table 1: A comparison of Retain-task (Higher, the better) and Forget-task accuracies (Closer to
random (10%), the better). Presented results are from Request Sequence 1 averaged over 3 runs
with different seeds (Appendix C).

learning and unlearning, with a learning rate of 0.001 and a scheduler. Details regarding learning
rate schedule, batch size, and training epochs are deferred to Appendix C. All training was done on
a single V100 GPU.

6.0.2 DATASETS

We conduct experiments with four datasets, namely, Permuted-MNIST Goodfellow et al.|(2015), 5-
Tasks|Clanuwat et al.| (2018)); Xiao et al.|(2017); Deng| (2012); Bulatov| (2011)); Netzer et al.[(2011)),
CIFAR-100 Krizhevsky| (2009), and Tiny ImageNet [Moustafal (2017). Apart from 5 Tasks, which
comprise 5 classification tasks of 10 classes each, all the other datasets entail 10 tasks, each with 10
classes. Details are deferred to Appendix C.

6.0.3 HYPERPARAMETERS

When learning, tuning 3 plays a crucial role in balancing stability and plasticity. The values for 8
were obtained through a search detailed in Appendix C. Conversely, the intensity of unlearning is
controlled by two variables: the regularization hyperparameter v and the burn-in period E,,. As with
[in learning, v balances the remembrance and the forgetting terms of the unlearning objective. The
burn-in, E,,, controls the number of iterations the hypernetwork is optimized over the unlearning
objective. A range of values for v and F,, was explored as detailed in Appendix C.

6.1 DISCUSSION

In our prior analysis, we discussed how current unlearning methods are deficient in a continual set-
ting. Figure [3] details the particular instances where they fail. Figure [3] also describes UnCLe’s
accuracy trajectory through the sequence of learning and unlearning operations. We find that Task
0’s accuracy spikes after its learning operation. Unlike other baselines, where Task 0’s accuracy fell
due to other unlearning operations, UnCLe maintains Task 0’s accuracy stably until it is unlearned.

Under review as a conference paper at ICLR 2026

The unlearning operation swiftly reduces Task 0’s accuracy to 10% (equivalent to a random guess,
given 10-way classification), and the accuracy stays at 10% or below even in the face of subse-
quent learning operations. UnCLe resists unlearning operations spilling over to other tasks and also
prevents unlearned tasks from relapsing due to future learning operations. Figure] shows similar
patterns in the CIFAR 100 dataset, where UnCLe stably learns and unlearns at specified operations
without deviating much during other intermediate and future operations. The same cannot be said
for the other baselines, which show the same unpredictable behavior as before.

Summarily, we compare UnCLe and the baselines across datasets in Table[I} We use Retain-task
Accuracy RA) and Forget-task Accuracy (FA) as metrics, measuring the average accuracy of
the retained and the forgotten tasks, respectively, at the end of the experimental sequence. These are
analogous to Retain-set and Forget-set accuracy, which are the standard metrics in offline unlearning
settings. Across baselines, we find that UnCLe achieves an FA equivalent or close to random,
indicating complete forgetting of unlearned tasks. CLPU’s FA cannot be measured as unlearning
in CLPU implies discarding the corresponding task network. Other baselines show high FA due
to accuracy relapsing on account of future learning operations. In terms of RA, UnCLe performs
competitively with the baselines.

As Figures B&/4] have shown, RA and FA alone are ill-poised to paint a full picture of the complex-
ities of continually learning and unlearning. An unlearning operation at the end of the sequence
would plummet the RA of most of, if not all, the baselines. Similarly, a steady sequence of learning
operations at the end would further increase the FA. We therefore need a better summary statistic
beyond accuracy to paint a more holistic picture. To that end, we propose two new metrics: Spill and
Relapse, each measuring a different aspect of the effects of unlearning in continual settings. Spill
measures unlearning specificity and is calculated after each unlearning operation. Spill measures
the effect of an unlearning operation on all other tasks other than the targeted task. If u is the index
of the unlearning operation on a task ¢ ¢, its spill is defined as:

Su=Y_lal,_, —al] €
t#ty

Relapse measures unlearning permanence. It measures the magnitude of difference between a task’s
accuracy right after it is unlearned and at the end of the experimental sequence. Formally, we define
relapse for each forget-task ¢ as:

P, = |a}, —d!| 5)
where u denotes where the task is unlearned and e denotes the end of the sequence. In Table[2] we
report the average spill and relapse across baselines and datasets.

From Table |2} we see that UnCLe demonstrates the lowest spill by a large margin. GKT and SSD
show the highest spill, consistent with their unstable trajectories seen in Figures 3|&4] The other
baselines fare in between. With regards to relapse, UnCLe scores the lowest in CIFAR 100 and
the second lowest in 5-Tasks. SCRUB demonstrates the lowest relapse in most datasets, but demon-
strates poor RA, FA, and Spill. Although BadTeacher ranks well in RA and FA, it falls short on Spill
and Relapse. This shows that no single metric can fully capture unlearning performance in continual
settings, and we need all four metrics to properly quantify the performance of each framework. We
also see that UnCLe ranks best or near best in most datasets measured by each of the four metrics.
All of this confirms the need for tailored unlearning frameworks to suit the continual setting, as
conventional unlearning methods are simply not designed to anticipate such repeated learning and
unlearning operations.

We include further results on more experimental sequences with mean and variance obtained over
multiple seed runs in Appendix H.

Membership Inference Attack A Membership Inference Attack (MIA) on UnCLe results in a
score of 50%. A 50% MIA value indicates the attack is no better than random guessing, meaning
the model has effectively mitigated membership inference risks. We include a detailed description
of MIA and further results in Appendix G.

Hypernetwork-based Baselines In addition to using DER++ to adapt our unlearning baselines to
a CL setting, we also pair them with a hypernetwork to understand how unlearning performance
differs when paired with a different CL strategy. We delegate the results of this study, alongside
other trivial baselines, to Appendix F.

Under review as a conference paper at ICLR 2026

Permuted MNIST | CIFAR-100 | TinyImageNet | 5-Tasks
| Spill Relapse | Spill Relapse | Spill Relapse | Spill Relapse

Framework

BadTeacher 33.05 30.51 14.61 23.57 | 9317 8706 | 54.62 1.566
SCRUB 17.50 0.149 28.02 0.513 | 9450 0.739 | 44.67 0.00
SalUn 17.82 14.82 7.547 9.233 | 5.128 7.200 1586 0.788

JiT 35.83 23.73 12.16 10.73 | 7.617 9344 | 63.94 0.342
GKT 51.86 5431 32.96 16.55 16.36 9.594 | 83.08 1.512
SSD 51.18 2.586 30.02 5.80 14.21 5.828 | 79.15 0.661
UnCLe (Ours) | 0.044 8.703 0.640 0.507 | 0.722 2233 | 0.023 0.539

Table 2: A comparison of Spill and Relapse (Lower, the better). Presented results are from Request
Sequence 1 averaged over 3 runs with different seeds (Appendix C).

Alternative Noising Strategies In UnCLe, the way the hypernetwork’s parameter output for the
forget-task is aligned with noise is central to the unlearning procedure. In addition to the noising
strategy discussed in the methodology, we explore alternative noising strategies for our unlearning
mechanism, such as Fixed-noise Alignment and L?-Norm Reduction, and study their impact on the
unlearning process. We find that UnCLe’s sampling average-based noise alignment fares better in
comparison. We explore alternative noising strategies in detail and present comparative results in
Appendix E.

Saturation Alleviation In a continual setting, as the model is exposed to an increasing number of
tasks, it gets saturated to a point where it loses all plasticity, rendering it unable to learn new tasks.
As stated, UnCLe’s unlearning objective restores the learned task-specific classifier parameters to
a randomly initialized state, akin to a Kaiming He initialization. This restores the hypernetwork’s
plasticity, allowing it to learn new tasks again. We test this hypothesis through a comparison between
a hypernetwork that only learns tasks and UnCLe, which both learns and unlearns. The results in
Table [3] demonstrate that relinquishing unnecessary tasks improves the learnability of newer tasks,
particularly in more complex datasets and longer sequences. The simple settings of Permuted-
MNIST and 5-Tasks do not show drastic improvement as they have not attained saturation yet.
This highlights how unlearning not only serves as a privacy tool but also extends the longevity and
maintainability of CL models by actively removing obsolete information. Figure 5 compares how
unlearning obsolete tasks enables higher accuracies in later tasks when compared to a baseline that
doesn’t unlearn. We defer further details on saturation alleviation to Appendix D.

Methods | Permuted-MNIST CIFAR-100 Tiny-ImageNet 5-Tasks

Only Learning 96.84 60.51 50.47 94.12
UnCLe 96.87 62.65 55.24 94.12

Table 3: A comparison of average accuracy across the retained tasks from UnCLe versus a sequence
with just learning tasks, demonstrating that unlearning old tasks helps learn new tasks better.

Limitations Although UnCLe is capable of learning and unlearning tasks continually in any arbi-
trary manner, it currently lacks the flexibility to individually learn and unlearn classes within each
task. We opine that future works should address a class-incremental learning and unlearning setting.

7 CONCLUSION

Our study of existing unlearning algorithms in continual settings reveals concerning performance
degradation among retained tasks. Furthermore, we find that unlearned tasks are prone to relapse
when the model subsequently learns similar tasks. Recognizing such shortcomings, we propose a
tailored solution to continual learning and unlearning with UnCLe. Our experiments showcase Un-
CLe’s effectiveness in addressing current limitations, such as unlearning spill and relapse. Further-
more, we demonstrate that unlearning obsolete tasks helps in alleviating model saturation, paving
the way for more flexible CL frameworks.

Under review as a conference paper at ICLR 2026

REFERENCES

Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920-15930, 2020.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks,
2023. URL https://arxiv.org/abs/2312.083909.

Romit Chatterjee, Vikram Chundawat, Ayush Tarun, Ankur Mali, and Murari Mandal. A unified
framework for continual learning and unlearning, 2024. URL https://arxiv.org/abs/
2408.11374l

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210-7217, 2023a.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot ma-
chine unlearning. [EEE Transactions on Information Forensics and Security, 18:2345-2354,
2023b. ISSN 1556-6021. doi: 10.1109/tifs.2023.3265506. URL http://dx.doi.orqg/
10.1109/TIFS.2023.3265506.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141-142, 2012.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council, 2023. URL https://data.europa.eu/eli/reg/
2016/679/07.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gn0mIhQGNM.

Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Oztireli, and Alexandra Brintrup. An information
theoretic approach to machine unlearning, 2024a. URL https://arxiv.org/abs/2402.
01401.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retrain-
ing through selective synaptic dampening. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 38(11):12043-12051, Mar. 2024b. doi: 10.1609/aaai.v38i11.29092. URL
https://ojs.aaai.org/index.php/AAATI/article/view/29092.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2015. URL https:
//arxiv.org/abs/1312.6211.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACellxl

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, 2015. URL https://arxiv.org/
abs/1502.01852.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

10

https://arxiv.org/abs/2312.08399
https://arxiv.org/abs/2408.11374
https://arxiv.org/abs/2408.11374
http://dx.doi.org/10.1109/TIFS.2023.3265506
http://dx.doi.org/10.1109/TIFS.2023.3265506
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://openreview.net/forum?id=gn0mIhQGNM
https://arxiv.org/abs/2402.01401
https://arxiv.org/abs/2402.01401
https://ojs.aaai.org/index.php/AAAI/article/view/29092
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://openreview.net/forum?id=rkpACe1lx
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2026

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521-3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. To-
wards unbounded machine unlearning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 1957-1987. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
062d711fb777322e2152435459e60e9d9-Paper-Conference.pdf.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022. URL https:
//arxiv.org/abs/2203.12817.

M. Loeve. Probability Theory. Number v. 1-2 in Graduate texts in mathematics. Springer-
Verlag, 1977. ISBN 9783540902102. URL https://books.google.co.in/books?
1d=f8xFAQAATAAJ.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning, 2018.

Mohammed Ali Moustafa. Tiny imagenet, 2017. URL https://kaggle.com/
competitions/tiny—-imagenet.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. Advances in Neural Information
Processing Systems (NIPS), 2011.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning, 2022. URL https://arxiv.
org/abs/2209.022909.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim. Continual learning with deep generative
replay, 2017.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models, 2017. URL https://arxiv.org/abs/1610.
05820.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and Jodo Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?1d=SJgwNerKvB.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks, 2018.

11

http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://arxiv.org/abs/2203.12817
https://arxiv.org/abs/2203.12817
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://arxiv.org/abs/2209.02299
https://arxiv.org/abs/2209.02299
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820
https://openreview.net/forum?id=SJgwNerKvB
https://arxiv.org/abs/1708.07747

Under review as a conference paper at ICLR 2026

APPENDIX

A BROADER IMPACT

This work on continual learning and unlearning (UnCLe) has significant implications for respon-
sible Al deployment and governance. Our approach enables more privacy-preserving Al systems
by allowing models to selectively forget sensitive or personal information while maintaining their
overall capabilities. This addresses growing regulatory requirements like the right to be forgotten”
and helps organizations comply with data protection laws. The ability to unlearn obsolete or harm-
ful content also supports efforts to mitigate bias and remove problematic behaviors from deployed
models without requiring complete retraining.

The demonstrated reduction in model saturation through strategic unlearning could lead to more
efficient and adaptable Al systems. Nevertheless, the capacity for models to “relapse” and recover
supposedly forgotten information highlights the need for robust verification mechanisms and un-
learning algorithms.

B HYPERNETWORKS

i
Yi

€t |:| 4
e e d

i
Ty

Figure 6: Schematic of the architecture showcasing the task ez, and chunk embeddings c, the hyper-
network and its various heads H, the generated parameters 0, the ResNet classifier F and, the input
image x} and the predicted output ;.

The large size of ResNet parameters causes the hypernetwork’s last layer to become excessively
large. To mitigate this, we partition the main network parameters into smaller chunks and generate
them separately, significantly reducing the hypernetwork’s size. The schematic of this chunked
hypernetwork architecture is shown in Figure [6]

The hypernetwork generates large networks in chunks by conditioning on unique chunk embeddings,
similar to how it generates task-specific networks using task embeddings. These chunk embeddings,
concatenated with task embeddings, form unique task-chunk pairs that generate corresponding pa-
rameter chunks. Learned via backpropagation, chunk embeddings are frozen after the first task to
prevent catastrophic forgetting. We set both chunk and task embedding dimensions to 32 and found
that dividing each task-specific network into 200 chunks balances efficiency and performance.

To further optimize parameter generation, the hypernetwork’s final layer is divided into specialized
heads, each responsible for a specific parameter type: network weights, batch normalization param-
eters, or residual connection parameters. This separation prevents redundancy and reduces computa-
tional overhead. The chunk-based generation seamlessly integrates with these heads, ensuring each
chunk receives only the necessary parameters.

This design enhances parameter efficiency, maintaining a manageable hypernetwork size even for
large architectures like ResNet18 and ResNet50. It balances scalability, modularity, and efficiency,
making it well-suited for generating complex networks.

12

Under review as a conference paper at ICLR 2026

Datasets | Seq Nos | Sequences
L0O—-Ll -U0—L2—=L3—=14—Ul
5-Tasks

| |
(7 requests) | 2 | L3 »L4 —-1L2—L0—Ll—U3—U0
| | LO— L2 — U0 —L4— L3 —U2— U4

L1I-10—-Ul—-1L5—-18—19—-L7—-U0—L1L2—1L3
Permuted-MNIST 1
& CIFAR-100 —14—-U8 — U3 —U5—L6

(15 requests) L6 —-L7—-12—L1 —->1L0—-Ul—-L1L9—U7—U2—U0
—14—-U4—->1L8—U6—L5

L7—-L1 -12—-1L8—>1L0—-Ul—-L3—>L6—U3— U2

3 L1415 US— 19— U7
I3-10—-0U3—-19—1L5—-L17—L1—-L7—L14—LI5
1 —-LI9—-U17—-U7—-L6—-UI5—U9—LI12—14— U5

Tiny-ImageNet —U4—-U06—-U0—Ul -U14—-Ul2—-LI13—-L18 = L2
(30 requests) —L11 - L8

L12—-L13—->1L5—1L8—12—-U8 —L14—Ul3—U5— U2
—-1L3—-U3—-L16 -Ul2—-LIl -Ul6 —-L7—LI5—LI10

2 —L19—>19—-U14—-U7—LI18—L6—~L1 —>L0—14
— U6 — L17
L2—-L7—-U0U2—L18—-L12—U7 —-Ul8 —-L16 —-L0— Ul6
3 —-U0—-LI3—-14—-Ul2—-UI3—-1L9—L19—U19— U4

—L10—+L14—-1L5—-U5—-U10—-L11 -L1 —-Ul—L17
—L6—13

Table 4: This table provides three different sequences that are used to understand the generalizabil-
ity of our approach. Here, L#n implies ‘learn task n’ and U#n implies ‘unlearn task n’. Also
for different task we have different sequence length showing that our method can scale to longer
sequences.

C EXPERIMENTS

C.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning
requests generated through random seeds. Experiments on the Five Datasets benchmark are per-
formed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize
sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request
sequences. The sequences used are presented in Table 4]

C.2 HYPERPARAMETERS
C.2.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for 5. We perform experiments
with 8 values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The
results of the hyperparameter search are presented in [5}

Dataset 1 0.1 0.01 0.001
Permuted MNIST 96.24 96.68 96.64 96.52
5-Tasks 9446 9442 9413 94.54
CIFAR-100 48.58 72.16 52.62 15.72

TinyImageNet 3433 3574 537 4849

Table 5: Results of tuning hyperparameter /3. The highest average accuracy values are highlighted
in bold.

13

Under review as a conference paper at ICLR 2026

As is apparent, the chosen values for (3 are as follows: 1e-2 for TinyImageNet, 1e-3 for Five Datasets
and le-1 for both Permuted MNIST and CIFAR-100.

C.2.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN

We perform a hyperparameter search to determine the ideal value for . Our search range comprises
the v values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
attain an FA of less than chance (% where ¢ is the number of classes, in this case 10%). We first
select all the ~y values that result in an FA < 10. We then pick the v that maximizes RA among those
selected values. The results of the hyperparameter search are presented in Table[6] We find that the
burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.

Dataset | 0.1 0.01 0.001

Permuted-MNIST
FA 10.412 10.417 17.907
RA 96.524 96.544 96.602

CIFAR-100
FA 8.000 10.830 17.190
RA 70.950 71.817 72173

5-Tasks
FA 8.278 8.070 9.783
RA 92.868 92.779 92.847

Tiny-ImageNet
FA 10.000 10.000 10.000
RA 45.590 48.625 48.623

Table 6: FA and RA for various y values across datasets, with RA shown directly below FA for each
dataset.

The chosen v values are le-1 for 5-Tasks and 1e-2 elsewhere.

Methods | FA UT | FA UT
| CIFAR-100 | Tiny-ImageNet

without Annealing | 10.00 43.98 | 10.00 45.12
with Annealing 10.00 41.70 | 10.00 29.63

Table 7: A comparison of UnCLe with and without burn-in annealing.

We leverage the forward transfer observed in unlearning to enhance UnCLe’s efficiency by introduc-
ing an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate is
reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduction cap-
italizes on the model’s improved adaptability over time, significantly decreasing Unlearning Time
(UT) without compromising performance. As shown in ??, the Forget-Task Accuracy (FA) and
Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy maintains
the quality of unlearning while optimizing computational efficiency.

We use a burn-in of 100 iterations, annealed by 10% with each task, and a lower limit of 20 burn-in
iterations.

D SATURATION ALLEVIATION

We present additional saturation alleviation results on the TinylmageNet dataset in Figure [7| where
we measure the final accuracies of the tasks that are retained at the end of the sequence of operations.
We compare UnCLe with a trivial baseline that only performs learning operations. We find that

14

Under review as a conference paper at ICLR 2026

UnCLe consistently outperforms the baseline that only performs learning operations, demonstrating
that unlearning old tasks help learn new tasks better.

60 mmm Only Learning
UnClLe

T19 Ti3 TL T2 T11 T8

8
Tasks

Test Accuracy
N w IS v
S} S) S}

=
1=}

Figure 7: A comparison between the final accuracies of the tasks that remain.

E ALTERNATIVE NOISING STRATEGIES

5-Tasks
Methods \RA FA UNI MIA UT

Fixed Noise | 83.04 1094 —oco 50.07 18.74
Norm Reduce | 94.31 26.11 5244 51.19 18.3
Discard ey |94.52 8091 —214.0 50.25 0.00
UnCLe 94.12 10.04 100.0 50.01 33.28

CIFAR-100
Methods | RA FA UNI MIA UT

Fixed Noise |21.79 1036 —oo 4997 25.76
Norm Reduce | 62.75 34.42 4127 44.13 25.39
Discard ey |60.21 20.70 11.21 46.88 0.00

UnCLe 62.65 10.00 100.0 50.00 41.70

Permuted-MNIST
Methods \RA FA UNI MIA UT

Fixed Noise |84.55 9.870 —oo 49.99 10.48
Norm Reduce | 96.70 94.99 —49.56 49.10 10.34
Discard ey |96.87 61.79 —64.54 49.11 0.00

UnCLe 96.87 10.00 100.0 50.00 13.16

Tiny-ImageNet
Methods | RA FA UNI MIA UT

Fixed Noise |34.68 9440 —oo 50.11 22.62
Norm Reduce | 55.11 36.61 0.80 42.65 22.42
Discard ey |56.50 1554 6.88 4844 0.00

UnCLe 55.24 10.00 100.0 50.00 29.63

Table 8: Performance of different noising strategies on four datasets (Request Sequence 1). All other
unlearning hyperparameters (y, F,,) are held constant.

We experiment with a variety of noising strategies and compare our approach to norm reduction and
fixed noise perturbation. Norm reduction uses the unlearning objective from[6]

arg min 7y - [H(ef; 9|3 + Loeg- (6)

15

Under review as a conference paper at ICLR 2026

-
g
=}

,_.
o
o
4
?

o
e
N

Methods
— L2-Norm
—— UnCle (1 sample)
— UnCLe (10 samples)

Norm of the parameters (x 100)

©
)
%

A A \J 4 a4 > 4
AR S R L
Unlearning Sequence after Learning 10 tasks

Figure 8: Effect of varying the number of noise samples () in the unlearning objective

Fixed noise perturbation uses the objective ||H(es; ¢) — z||3 + 7 - L, Where the noise z is fixed
throughout all tasks. Discard ey is the baseline in which to perform unlearning, the forget-task’s
embedding ey is simply discarded and replaced with a random embedding. From [8} we observe
that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task
accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas
UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good
RA but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it
compromises the model’s stability and impacts RA, as noted in the methodology. We also observe
that UnCLe, compared to all the other baselines, has the closest MIA value to 50, demonstrating its
superiority in data privacy.

We also study the effects of the various unlearning strategies considered on the hypernetwork pa-
rameters, particularly the effect of varying n, the number of noise samples over which the average
MSE is computed in the unlearning objective. We compare three cases namely n = 1 (Fixed Noise),
n = 10 (UnCLe), and n = oo, which is equivalent to a reduction of the L2-norm. The results are the
comparison are presented in [8| wherein we see that as n increases, the magnitude of the hypernet-
work parameters falls with each unlearning operation. When n = 1, MSE with a fixed noise value
can lead to the hypernetwork memorizing the particular noise value, which impacts generalization.
In contrast, as n = oo, with regularization of the L2-norm of the parameters, the hypernetwork
parameters are themselves driven to zero, which can eventually destabilize the hypernetwork. With
UnCLe, we adopt n = 10 to strike a balance between the two extremes.

E.1 CONNECTING MSE AND L2

Minimizing the MSE term in the unlearning objective minimizes the L?-norm over the generated
main network parameters, and consequently drives them toward zero. As a result, the model’s logits
for the unlearned task become zero across all output nodes, leading to a uniform distribution over
classes. This corresponds to maximum entropy, indicating that the model is maximally uncertain
about the forgotten task, precisely the desired effect of unlearning.

However, direct application of the L2-norm loss in the unlearning objective runs the risk of driving
the hypernetwork’s parameters toward zero. We observe this empirically by tracking the magnitude
of the hypernetwork parameters through multiple unlearning operations (Figure [8). Consequently,
this degrades the performance on the retain-tasks and undermines the hypernetwork’s ability to
learn new tasks. In contrast, our empirical findings show that the proposed MSE-based unlearning
objective still yields uniformly distributed (high-entropy) outputs without compromising the hyper-
network’s stability.

; d 15 2
Consider the parameters of a model to be § € R®. The average mean squared error =~ > ", [|0—2;]|3,

where z; ~ N(0,1;), represents a noisy approximation to the L?-norm over the parameters 6.
Formally,

n

1 2 _ g2
Jim 301013 = 101G+ ™
Consider Y; = [|§ — 2|3 to be a random variable. Consider E[.] as the function calculating the

expectation of a random variable. As z; are i.i.d. samples of standard normal and 6 is a constant, Y;

16

Under review as a conference paper at ICLR 2026

are also i.i.d. samples. Using Strong Law of Large Numbers Loeve| (1977)), we can say that:

RN
Pr | lim — ;Y =E[Yj]| =1 (8)
Now we would show that E[Y;] = 6|3 + d, where d is the dimension of the parameter 6.

B[Yi] = B[]0 — 2l|3]
=E [9T6‘ — 210 — 0"z + ZZTZZ]

=E[070] — 2E [2] 0] + E [2] z] 9)
=079 —2 Z HJE[Z”} + Z E[ZZQJ]
J J
=613 +> 1 (10)
J
= (6] + 4 (11)

Here, Eq E] is using linearity property of expectation and Eq [10| uses the fact that E[z;;] = 0 and

E[z7;] is nothing but variance of that variable z;;, which is equal to 1.

Based Eq[8]and Eq[T1] we can say that,

. 1 - 2 2
J 3210~ a8 = 1015 +a (12)

F OTHER BASELINES

F.1 HYPERNETWORK BASELINES

As an ablation, we consider JiT-Hnet and GKT-Hnet, which utilize a hypernetwork for CL in
DER++’s place. There is also Hnet that relies on natural catastrophic forgetting as an unlearning
mechanism (unlearning realized only after new learning). The results are presented in Appendix H:
More Results.

F.2 TRIVIAL BASELINES

We also compare with standard baselines like fine-tuning (FT) and retraining (RT & RT-Hnet). FT
and the two RT variants assume the availability of the complete retain-task data during unlearning.
FT fine-tunes the model on the retain set upon unlearning. RT Retrains from scratch on the retain
set. RT-Hnet trains a new hypernetwork sequentially on the retain set upon unlearning. The results
are presented in Appendix H: More Results.

G MEMBERSHIP INFERENCE ATTACK

The Membership Inference Attack (MIA) metric [Shokri et al.[(2017) assesses the effectiveness of
machine unlearning by measuring a model’s ability to forget” training data. MIAs exploit model
behavior to infer whether a data point was in the training set, posing privacy concerns. In unlearning,
the goal is for the model to treat forgotten data like unseen data. Adversarial attacks test this by
attempting to determine data membership. A 50% MIA value indicates the attack is no better than
random guessing, meaning the model has effectively mitigated membership inference risks.

Table O] presents MIA values, including mean and standard deviation, across various methods and
datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The results, consistently around
50%, indicate that models generally exhibit strong resistance to MIA, making it difficult for attackers
to distinguish between training and non-training data points.

In the task unlearning setup with task-incremental continual learning, different heads are used for
different tasks. When a task is forgotten, the corresponding head undergoes severe randomization,

17

Under review as a conference paper at ICLR 2026

Permuted-MNIST & 5-Tasks

Methods 5-Tasks Permuted-MNIST
Mean Std | Mean Std

FT* 49.56 0.22 | 49.63 0.07
RT* 49.95 0.37 | 49.98 0.07
BadTeacher | 50.03 0.16 | 50.04 0.11
SCRUB 50.25 0.21 | 49.99 0.01
SalUn 50.25 0.29 | 49.85 0.13
JiT 49.99 0.17 | 49.95 0.08
GKT 50.05 0.08 | 49.99 0.01
RT-Hnet* | 49.75 0.06 | 49.90 0.04
Jit-Hnet | 50.10 0.06 | 50.02 0.08
GKT-Hnet | 49.99 0.19 | 49.98 0.22

UnCLe | 50.01 0.09 | 50.00 0.02

CIFAR100 & Tiny-ImageNet

Methods | CIFAR100 Tiny-ImageNet
Mean Std | Mean Std

FT* 45.00 0.66 | 45.26 0.73
RT* 49.82 0.50 | 49.72 0.23
BadTeacher | 53.06 0.82 | 52.54 0.33
SCRUB | 50.00 0.00 | 50.00 0.00
SalUn 46.26 0.42 | 47.47 0.73
JiT 45.80 0.73 | 47.28 0.15
GKT 49.88 0.20 | 49.93 0.06
RT-Hnet* | 50.28 0.39 | 50.05 0.22
Jit-Hnet | 48.74 1.11 | 49.39 0.24
GKT-Hnet | 50.12 0.11 | 50.10 0.05

UnCLe | 50.00 0.00 | 50.00 0.00

Table 9: MIA performance of baseline approaches versus UNCLE on four datasets (sequence 1,
averaged over three seeds).

rendering its representations indistinguishable. As a result, MIA performance remains equivalent
across all methods, as the forget head produces inherently random representations.

Notably, our approach, UnCLe, demonstrates near-perfect resistance to MIA, maintaining a mean
MIA value of 50.00% across all datasets. This suggests that the attacker’s ability to infer data
membership is no better than random guessing, ensuring robust privacy protection.

H MORE RESULTS

H.1 UNLEARNING TIME

Unlearning time refers to the time (in sec.) required to unlearn a particular task. In our approach the
unlearning time is controlled by burn-in epochs. [T0| provides unlearning time values for different
unlearning methods. The value provided in the table is an average across all the unlearning time
required for each unlearning operation in a request sequence for CLU setting.

H.2 RESNET18 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these
experiments is performed on Sequence 1 (Table f). The results are averaged over three runs with
different seeds. We can observe from Table [T1} Table[12} Table[13] Table [14] Table ?? and Table ??
that UnCLe performs better than all the other baselines on at least 3 out of 5 metrics. On the metric
in which UnCLe is not the best, it performs equally well compared to the best one. These tables
show UnCLe’s superiority over other unlearning baselines.

18

Under review as a conference paper at ICLR 2026

Methods | Unlearning Time (in sec)

| 5T PMNIST C100 TI

BadTeacher | 76.78 55.50 10.95 8.680
SCRUB 171.1 118.9 30.02 32.52
SalUn 491.9 358.3 5147 65.20

JiT 242.1 213.7 2401 17.71
GKT 57.67 36.08 68.61 1475
SSD 47.12 35.16 5.730 5.810

Jit-Hnet 306.6 257.5 2294 2283
GKT-Hnet | 83.30 43.717 83.46 75.75

UnCLe | 33.28 13.16 41.70 29.63

Table 10: Table provides comparison on Unlearning Time between different baselines and our ap-
proach on the datasets 5-Tasks (5T), Permuted MNIST (PMNIST), CIFAR100 (C100) and TinyIm-
ageNet (TD)

Methods ‘ RA ‘ FA
| mean std | mean std

BadTeacher | 62.87 8.07 | 9.650 0.65
SCRUB 10,90 2.44 | 9340 0.58
SalUn 5894 9.87 | 35.16 5.02

JiT 16.66 2.77 | 8990 1.93
GKT 10.82 1.25 | 1521 1.68
SSD 3022 225 | 15.07 6.14

Jit-Hnet 1474 4.69 | 13.15 449
GKT-Hnet | 10.07 0.71 | 10.69 1.40

UnCLe | 93.77 040 | 9.600 0.99

Table 11: Results on PenTask (Sequence 1) with ResNet-18 backbone.

H.3 RESNET50 RESULTS

The results from the primary results table are obtained from Sequence 1, averaged over three runs
with different seeds. This section hosts the results from all three sequences, reported with mean and
standard deviation obtained from averaging each experiment performed over three different seeds.
The section is organized as a list of tables, with one table for each dataset-sequence pair, in the order
of 5-Tasks, CIFAR-100, and Tiny-ImageNet.

H.4 UNLEARNING PERMANENCE

Our results in Figure [9] and Figure indicate that tasks unlearned via conventional unlearning
methods are prone to relapse due to subsequent learning operations. Unlike existing approaches,
UnCLe prevents relapse of unlearned tasks when new tasks are subsequently introduced, making it
a more reliable framework for permanent unlearning.

19

Under review as a conference paper at ICLR 2026

Methods ‘ RA ‘ FA
| mean std | mean std

BadTeacher | 65.13 3.67 | 10.11 0.52
SCRUB 53.39 3.15 | 10.00 0.00
SalUn 69.29 242 | 46.24 0.99

JiT 68.96 193 | 40.74 041
GKT 61.53 349 | 11.01 0.57
SSD 4731 5.45 | 10.00 0.00

Jit-Hnet 5152 18.8 | 21.84 4.71
GKT-Hnet | 40.87 5.85 | 13.89 1.11

UnCLe | 66.97 3.59 | 10.00 0.00

Table 12: Results on CIFAR-100 (Sequence 1) with ResNet-18 backbone.

\ RA \ FA
| mean std | mean std

BadTeacher | 53.76 1.63 | 12.12 0.52
SCRUB 11.71 190 | 10.00 0.00
SalUn 5947 0.80 | 39.27 1.64

Methods

JiT 59.88 0.65 | 38.60 0.77
GKT 5431 031 | 13.01 0.90
SSD 53.37 260 | 1026 0.36

Jit-Hnet 59.20 1.77 | 1632 023
GKT-Hnet | 4834 1.15 | 1092 043

UnCLe | 5922 2.14 | 10.00 0.00

Table 13: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone.

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 9447 0.12 | 67.70 2.11
RT* 9335 0.19 | 10.38 1.53

BadTeacher | 92.17 0.04 | 10.20 0.40
SCRUB 997 046 | 984 0.14
SalUn 9239 026 | 59.24 274

JiT 8693 6.09 | 2990 4.96
GKT 89.77 031 | 1213 095
SSD 86.32 040 | 993 0.13

CLPU 91.73 022 | 0.00 0.00
RT-Hnet* 70.78 1.71 | 14.08 0.54
Hnet 96.60 0.16 | 9691 0.09
Jit-Hnet 76.81 14.1 | 10.27 094
GKT-Hnet | 9534 037 | 1446 0.35

UnCLe | 96.87 020 | 10.00 0.06

Table 14: Permuted-MNIST — Sequence 1 (ResNet-18).

20

Under review as a conference paper at ICLR 2026

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 95.12 0.68 70.51 1.29
RT* 95.19 0.41 10.22 0.68

BadTeacher | 94.88 0.30 9.94 054
SCRUB 10.06 0.07 9.81 0.31
SalUn 9530 0.11 | 5692 0.87

JiT 36.59 4723 | 1970 3.11
GKT 9235 025 10.70 0.82
SSD 89.75 0.74 9.84 0.16

CLPU 9521 0.29 0.00 0.00
RT-Hnet* 8294 1433 | 14.02 0.55
Hnet 96.67 029 | 96.71 0.12
Jit-Hnet 94.15 2.19 10.55 0.54
GKT-Hnet | 9631 0.09 13.84 0.33

UnCLe | 97.00 0.5 | 984 0.16

Table 15: Permuted-MNIST — Sequence 2 (ResNet-18).

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 9422 0.10 | 65.17 1.93
RT* 9349 0.06 | 10.62 1.01

BadTeacher | 79.56 4.29 | 10.28 0.81
SCRUB 997 008 | 998 0.25
SalUn 8240 0.89 | 64.78 231

JiT 3445 423 | 31.00 11.7
GKT 1280 235 | 1143 0.72
SSD 990 032 | 992 045

CLPU 91.72 0.16 | 0.00 0.00
RT-Hnet* 49.57 8.69 | 16.15 0.74
Hnet 96.80 0.08 | 96.72 0.11
Jit-Hnet 941 043 | 973 0.63
GKT-Hnet | 1396 253 | 17.25 2.26

UnCLe | 9698 023 | 993 0.19

Table 16: Permuted-MNIST — Sequence 3 (ResNet-18).

Methods ‘ RA ‘ FA
| mean std | mean std
FT* 88.66 045 | 6799 2.83
RT* 84.79 1.88 | 9.600 4.22

BadTeacher | 54.38 235 | 8.550 1.23
SCRUB 9.160 0.15 | 1297 0.08
SalUn 7475 156 | 25.02 122

JiT 19.10 13.8 | 17.20 3.55
GKT 1027 091 | 13.67 1.52
SSD 8.850 0.00 | 10.36 0.09

LWSF* 31.76 025 | 0.00 0.00
CLPU 85.00 0.43 | 0.00 0.00
RT-Hnet" 76.23 331 | 1844 0.78
Hnet ™" 9456 0.28 | 96.73 0.04
Jit-Hnet 10.19 1.18 | 11.29 4.37
GKT-Hnet | 10.53 0.61 | 14.48 1.00

UnCLe | 9412 043 | 10.04 1.14

Table 17: 5-Tasks (Sequence 1).

21

Under review as a conference paper at ICLR 2026

Methods ‘ RA ‘ FA
| mean std | mean std
FT* 88.54 0.53 | 58.07 240
RT* 86.14 3.72 | 9410 0.59

BadTeacher | 40.01 3.01 | 8270 0.37
SCRUB 990 024 | 12.80 2.63
SalUn 5629 7.81 | 2940 2.71

JiT 11.66 3.51 | 2231 6.30
GKT 1052 0.22 | 1444 0.88
SSD 10.10 0.01 | 14.59 4.66

CLPU 83.18 1.62 | 0.00 0.00
RT-Hnet" 62.78 6.57 | 1055 1.01
Hnet ™" 96.39 0.07 | 93.84 0.24
Jit-Hnet 9.770 023 | 17.18 8.80
GKT-Hnet | 9.010 1.14 | 9.370 0.69

UnCLe | 9591 0.07 | 9.930 3.23

Table 18: 5-Tasks (Sequence 2).

Methods ‘ RA ‘ FA
| mean std | mean std
FT* 91.21 045 | 58.63 0.59
RT* 91.87 0.66 7.86 1.81

BadTeacher | 39.07 25.2 | 10.20 0.96
SCRUB 922 239 | 1022 0.55
SalUn 3755 675 | 21.99 196

JiT 12.56 7.53 | 11.77 143
GKT 835 088 | 13.03 125
SSD 1242 755 | 1022 0.55

CLPU 89.54 0.79 | 0.00 0.00
RT-Hnet" 94.05 0.13 | 9350 0.48
Hnet ™" 9296 0.13 | 93.26 0.08
Jit-Hnet 7.12 0.66 | 11.40 295
GKT-Hnet | 15.11 494 | 13.74 0.90

UnCLe | 9324 076 | 1140 3.05

Table 19: 5-Tasks (Sequence 3).

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 7243 346 | 5544 4.16
RT* 6291 3.62 9.69 1.17

BadTeacher | 61.75 4.47 | 1457 0.60
SCRUB 2945 7.18 | 10.06 0.10
SalUn 66.56 3.58 | 4489 2.14

JiT 65.94 358 | 4393 248
GKT 57.05 3.15 | 10.70 0.44
SSD 4327 425 | 10.00 0.00

CLPU 63.10 3.77 | 0.00 0.00
RT-Hnet* 23.81 089 | 9.71 1.37
Hnet™ 60.52 3.73 | 62.84 272
Jit-Hnet 60.79 445 | 1697 3.49
GKT-Hnet | 4022 749 | 997 0.83

UnCLe | 62.65 3.85 | 10.00 0.00

Table 20: CIFAR-100 (Sequence 1) — RA and FA only.

22

Under review as a conference paper at ICLR 2026

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 7345 347 | 57.81 1.24
RT* 67.42 241 9.84 1.60

BadTeacher | 66.67 3.58 | 12.97 1.37
SCRUB 13.13 4.09 | 10.00 0.00
SalUn 7233 3.00 | 44.16 221

JiT 71.80 3.38 | 4598 0.26
GKT 61.00 227 | 11.82 0.85
SSD 46.45 1.43 | 10.00 0.00

CLPU 69.83 1.85 | 0.00 0.00
RT-Hnet" 4432 6.60 | 10.06 1.06
Hnet™ 66.08 2.07 | 6259 137
Jit-Hnet 66.97 281 | 2024 234
GKT-Hnet | 5858 598 | 11.36 0.29

UnCLe | 66.82 285 | 10.00 0.00

Table 21: CIFAR-100 (Sequence 2) — RA and FA only.

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 7201 2.19 | 58.79 3.25
RT* 6247 2.65 9.79 1.34

BadTeacher | 52.76 1.51 | 14.55 1.58
SCRUB 10.00 0.00 | 10.00 0.00
SalUn 57.92 215 | 48.07 1.99

JiT 55.19 5.52 | 46.77 2.28
GKT 1191 138 | 12.67 130
SSD 10.00 0.00 | 10.36 0.62

CLPU 61.23 256 | 0.00 0.00
RT-Hnet* 1542 175 | 9.60 045
Hnet™ 60.66 2.37 | 62.04 035
Jit-Hnet 28.17 795 | 17.87 0.69
GKT-Hnet 954 094 | 1144 149

UnCLe ‘ 58.15 6.09‘ 10.00 0.00

Table 22: CIFAR-100 (Sequence 3) — RA and FA only.

Methods ‘ RA ‘ FA
| Mean Std | Mean Std
FT* 60.08 0.30 | 52.56 2.38
RT* 51.86 0.16 | 1047 0.59

BadTeacher | 52.79 140 | 15.73 1.09
SCRUB 19.48 154 | 10.00 0.00
SalUn 5844 157 | 36.02 1.23

JiT 57.86 2.13 | 32770 0.48
GKT 5244 153 | 1135 0.77
SSD 39.78 343 | 1037 0.62

CLPU 5490 127 | 0.00 0.00
RT-Hnet* 53.54 276 | 9.74 0.86
Hnet 57.53 226 | 5431 335
Jit-Hnet 54.10 239 | 13.05 0.35
GKT-Hnet | 4440 226 | 9.85 0.30

UnCLe | 5524 3.66 | 10.00 0.00

Table 23: Tiny-ImageNet (Sequence 1, ResNet-50).

23

Under review as a conference paper at ICLR 2026

50
- 40
>30
5 20
10

racy on Task O

Acc

o

ul
o O

o

Accuracy on Task 3
= N W H
o

o

o

~
o

(o)}
o O O

o

Accuracy on Task 5

= N W B~ U
o O o

—— amupm- [- - === ——
UnClLe SSD GKT JiT Salun SCRUB BadTeacher

Figure 9: Figure tracking task accuracies through the sequence of operations on the CIFAR 100
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

24

Under review as a conference paper at ICLR 2026

50

N
o

w
o

N
o

Accuracy on Task 0O

\
O~ i
ysa-—

oo \
e T

—
o

N w N u
o o o o

Accuracy on Task 1

—
o

4
Lo
U3
L9
{5
4L
O

ZN
4,
Qs
4
78

>

w N [=)
o o o o

Accuracy on Task 6
N
o

-
o

3
&

u
o

N
o

< -
N T S 1

=

i

W
IS

Accuracy on Task 9
N
o

.

-
o

et —e_

2?00 O L Ny AN
v vy S vV v v

3
N

A R
R A VAR

N
£ < wnnagipanes s e ——

UnCLe SSD GKT JiT Salun SCRUB BadTeacher

Figure 10: Figure tracking task accuracies through the sequence of operations on the TinyImageNet
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

25

	Introduction
	Related Works
	Continual Learning
	Machine Unlearning
	Unified Solutions

	Problem Formulation
	Analysis of Contemporary Unlearning
	Methodology
	An Unlearning Framework for Continual Learning
	Learning
	Unlearning

	Experiments & Results
	Implementation
	Datasets
	Hyperparameters

	Discussion

	Conclusion
	Broader Impact
	Hypernetworks
	Experiments
	Operation Sequences
	Hyperparameters
	Learning Hyperparameter: Beta
	Unlearning Hyperparameters: Gamma & Burn-in

	Saturation Alleviation
	Alternative Noising Strategies
	Connecting MSE and L2

	Other Baselines
	Hypernetwork Baselines
	Trivial Baselines

	Membership Inference Attack
	More Results
	Unlearning Time
	ResNet18 Results
	ResNet50 Results
	Unlearning Permanence

