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ABSTRACT

Growing concerns surrounding AI safety and data privacy have driven the devel-
opment of Machine Unlearning as a potential solution. However, current machine
unlearning algorithms are designed to complement the offline training paradigm.
The emergence of the Continual Learning (CL) paradigm promises incremental
model updates, enabling models to learn new tasks sequentially. Naturally, some
of those tasks may need to be unlearned to address safety or privacy concerns that
might arise. We find that applying conventional unlearning algorithms in continual
learning environments creates two critical problems: performance degradation on
retained tasks and task relapse, where previously unlearned tasks resurface during
subsequent learning. Furthermore, most unlearning algorithms require data to op-
erate, which conflicts with CL’s philosophy of discarding past data. A clear need
arises for unlearning algorithms that are data-free and mindful of future learning.
To that end, we propose UnCLe, an Unlearning framework for Continual Learn-
ing. UnCLe employs a hypernetwork that learns to generate task-specific network
parameters, using task embeddings. Tasks are unlearned by aligning the corre-
sponding generated network parameters with noise, without requiring any data.
Empirical evaluations on several vision data sets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal
disruption to previously acquired knowledge.

1 INTRODUCTION

Accelerating growth in AI adoption has brought with it safety and privacy concerns, leading to in-
creasing regulatory scrutiny European Parliament & Council of the European Union (2023). This has
led to the development of Machine Unlearning so that data found in violation of safety and privacy
can be selectively removed from a model with minimal effects on the rest of the model’s learned
knowledge. Algorithmic advances in unlearning have enabled the effective removal of unwanted
information whilst safely preserving the rest Nguyen et al. (2022). However, the vast majority of
contemporary unlearning algorithms are designed to complement offline-trained models. Offline
training, which involves training a model on a large, monolithic dataset once and deploying it, is the
dominant paradigm of the day. However, the rigid nature of the paradigm, where a trained model
cannot be updated to reflect new data, is subject to rising criticism. Naively re-training an already
trained model can lead to the model forgetting what it already knows, due to differences in data
distributions. This phenomenon is known as catastrophic forgetting, and its mitigation has led to
the rise of an alternate training paradigm aptly dubbed Continual Learning (CL). CL allows the pro-
gressive update of models as new data arises, while ensuring that previously learned information is
preserved. Naturally, unlearning some of those incremental updates, termed tasks in the CL litera-
ture, is as important as learning them. The newfound flexibility to learn new tasks with time should
be complemented by effective unlearning strategies so that any privacy or safety concerns that may
arise with a newly learned task are promptly addressed. As depicted in Figure 1, a unified treatment
of CL and unlearning would empower models to learn new tasks and unlearn obsolete ones with
minimal interference to the rest. Yet, there is a lack of frameworks that simultaneously address both
challenges.

Integrating unlearning in a CL framework is not straightforward. One of the CL’s core principles is
to discard data from past tasks as new tasks are encountered. This is problematic as most unlearning
algorithms require either the data that needs to be unlearned (forget-set) or the entirety of the data
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Figure 1: A visualization of the model’s state
with time. With each learning operation Lx,
the model gains expertise on a particular task x,
as represented by the colored tile added to the
model state. Conversely, an unlearning operation
Ux, erases the model’s expertise of task x.

(A) (B)Trainable

Figure 2: Architecture schematic. A: Learning
and B: Unlearning. L: Learning Objective and
U : Unlearning Objective.

that the model was trained on (forget-set + retain-set). Even if we resolve the data requirement
deadlock through the use of replay buffers that contain representative subsets of data from past tasks,
we find that unlearning operations in a CL environment have harmful spillover effects, degrading
the model’s performance on other tasks. In addition, we find that, with conventional unlearning
methods, unlearned tasks relapse and recover lost performance as the model subsequently learns
new tasks. In other words, unlearning algorithms that have proven effective in offline settings do
not translate well when applied in a CL environment. This is because conventional methods were
simply not designed to operate on incrementally gathered knowledge or anticipate future learning
operations past the unlearning operation. This suggests the need for an unlearning solution that is
purpose-built to operate in a CL setting.

Furthermore, in compliance with CL desiderata, a unified solution should be able to perform both
learning and unlearning operations in the absence of historical data. In light of such requirements,
we propose UnCLe: an Unlearning Framework for Continual Learning. UnCLe employs a hyper-
network that learns to generate task-specific network parameters, conditioned on corresponding task
embeddings. Tasks are unlearned by aligning generated network parameters with noise, without
requiring any data. Empirical evaluations on several vision datasets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal disruption to previ-
ously acquired knowledge.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

CL methods largely fall into one of the three schools of thought. (1) Regularization-based methods
mitigate forgetting through an additional regularization term in the learning objective that constrains
model changes to minimize interference to previous tasks. This can take the form of a direct penalty
on changes to model parameters weighted by some importance metric, as in EWC Kirkpatrick et al.
(2017). Alternatively, the penalty could functionally regularize model updates such that behavior on
previous tasks is preserved. This usually takes the form of a distillation objective between old and
new model states Li & Hoiem (2017). Hypernetworks Ha et al. (2017); von Oswald et al. (2020)
present a new spin on this by sequentially learning to generate task-specific networks, conditioned
on corresponding task embeddings. Forgetting is mitigated via distillation by ensuring the new
hypernetwork generates similar parameters as the old hypernetwork for previous task embeddings.
(2) Architecture-based methods involve the use of non-overlapping sets of parameters for each task.
This is either done through the use of separate networks or partitioning a single network to create
task-specific sub-networks Mallya & Lazebnik (2018) or expanding the network progressively by
adding neurons to accommodate new tasks Yoon et al. (2018). Such methods nullify catastrophic
forgetting but come at the cost of parameter growth and inter-task knowledge transfer. (3) Replay-
based methods relax the data restriction and allow a small subset of historical data to be stored
in a buffer and replayed when training new tasks Rolnick et al. (2019); Riemer et al. (2019). The
idea is that the buffer should serve as a good approximation of past task distributions, and replaying
them whenever a new task is learned should therefore mitigate forgetting. Replay-based methods
mostly differ in their buffer sample selection strategy. Some methods replace the replay buffer with
a generative model that is continually trained to generate historical data Shin et al. (2017).
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Figure 3: Plot tracking Task 0’s accuracy through a sequence of learning and unlearning operations
on the TinyImageNet dataset. We present more such plots in Appendix H. UniCLUN is ignored as
it is effectively equivalent to our adaptation of BadTeacher.

2.2 MACHINE UNLEARNING

Most unlearning methods are designed to operate on offline-trained models. We review some of the
latest unlearning methods in the literature and adopt them as baselines. BadTeacher Chundawat
et al. (2023a) uses a random teacher network for the forget set and KL-divergence to match distri-
butions, while retaining set training minimizes cross-entropy. SalUn Fan et al. (2024) generates a
gradient-based weight saliency map and modifies only the salient model weights impacted by the
forget set, rather than the entire model. SCRUB Kurmanji et al. (2023) employs a student-teacher
model where the student deviates from the teacher on the forget set while retaining performance on
the rest. SSD Foster et al. (2024b) is a post hoc method that avoids retraining. It first selects pa-
rameters using the Fisher information matrix, then dampens their effects to ensure unlearning while
preserving model performance. GKT Chundawat et al. (2023b) uses a generator to synthesize sam-
ples for unlearning. JiT Foster et al. (2024a) leverages Lipschitz continuity for zero-shot unlearning
by smoothing model outputs relative to input perturbations.

2.3 UNIFIED SOLUTIONS

The following are unlearning methods that are designed to operate in a continual setting. CLPU
Liu et al. (2022) involves learning independent networks for each task and discarding them upon
request, thereby achieving unlearning. Although CLPU achieves exact unlearning, it comes at the
cost of rampant parameter growth, making it unsustainable for long task sequences. UniCLUN
Chatterjee et al. (2024) adapts BadTeacher Chundawat et al. (2023a) to a continual setting with a
replay buffer. Distilling from a random teacher network enables forgetting, and distillation from the
previous task’s network helps mitigate forgetting when learning new tasks.

Unlearning methods vary in their data requirements. BadTeacher, SCRUB, SalUN, SSD, and Uni-
CLUN require both the forget and retain sets. JiT requires only the Forget set. GKT and the proposed
method, UnCLe, are data-free unlearning methods.

3 PROBLEM FORMULATION

The goal is to continually learn and unlearn tasks. The setting involves a model encountering a
sequence of requests R = {Ri}|R|

i=1 where each request Ri = (Ii, Ti, Di) is a triplet comprising the
instruction Ii, the task identifier Ti and the dataset Di. Given an instruction to learn, i.e., Ii = L,
the model is to learn task Ti = t through its corresponding dataset Di = Dt. Note that the CL
setup does not allow us to store the task-specific data from past requests. This work considers a
supervised setting with each task’s dataset Dt = {xt

j , y
t
j}

|Dt|
j=1 containing |Dt| input-output pairs.

For an unlearn instruction Ii = U , the model is required to unlearn a task Ti = t in the absence of
the task data Di = {}. This data-free unlearning requirement is a key characteristic of the continual
setting, which assumes that once a task is learned, the corresponding data is foregone.
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4 ANALYSIS OF CONTEMPORARY UNLEARNING

In this section, we analyze how current unlearning algorithms fare in a continual setting. Given the
data requirements of most current unlearning algorithms, we adopt a replay-based CL strategy to
adapt them to a continual setting. The replay buffer enables both unlearning and forgetting mitiga-
tion. For our replay strategy, we choose the ubiquitous DER++ Buzzega et al. (2020) that blends
functional regularization with replay. DER++ stores the previous model’s output logits along with
the inputs and labels in the replay buffer. When learning a new task, in addition to minimizing the
classification loss, the error between the current and the stored logits is minimized as well. Formally,
the learning objective is as follows:

argmin
θ,ϕ

E(x,y)∼Dt
LCE(y, fθ(hϕ(x))) + α ·E(x′,y′)∼RLCE(y

′, fθ(hϕ(x
′)))

+ β ·E(x′′,z′′)∼R||z′′ − fθ(hϕ(x
′′))||22

(1)

where the first term is the current task t’s classification loss between the ground truth labels and the
model fθ(hϕ(.)) outputs, the second term is the replay bufferR’s classification loss and the last term
is the Euclidean distance between the feature extractor hϕ(.) logit outputs and the stored logits z. α
and β are hyperparameters to balance the current task and replay. The unlearning objective varies
with each unlearning algorithm. In addition, the replay buffer would no longer contain samples from
the task that is being unlearned.

We apply our CL-adapted unlearning baselines to a random sequence of learning and unlearning
operations as denoted in Figure 3’s X axis. We choose the TinyImageNet dataset and split the 200-
class dataset 20 ways, resulting in 20 tasks of 10 classes each. For brevity, we track the accuracy of
a single task (Task 0) through the entire sequence of operations to study its behavior in response to
each operation.

In the first operation L3, we see that Task 0’s accuracy is zero as it has not been learned yet. The
second operation, L0, results in a sharp increase in accuracy as Task 0 is learned. The third operation
U3 is an unlearning operation that is supposed to only impact Task 3. However, we see that all the
baselines witness sharp drops in Task 0’s accuracy of varying magnitudes. This hints at the current
methods’ incapacity to handle CL environments. The next operation L9 is a learning operation that
results in Task 0’s accuracy partially recovering among all baselines. This is due to the presence of
data from Task 0 in the replay buffer that enables the model to partially relearn what it has previously
unlearned. The subsequent learning operations from L5 to L19 show more or less stable accuracies
across the board until U17, which once again plunges Task 0’s accuracy. Accuracy degrades further
with another consecutive unlearning operation U7. This pattern of accuracy degradation and recov-
ery repeats until Task 0 is finally unlearned. At U0, we witness baselines differ in their behavior.
SSD, GKT, and SCRUB’s accuracies stay largely the same at 10 (equivalent to a random guess,
given 10 classes a task), having already degraded in the prior unlearning operations. BadTeacher’s
Task 0 accuracy dips, but not fully, until only after the next unlearning operation. SalUn and JiT
show a negligible impact. Note that as a task is unlearned, its corresponding dataset is removed from
the replay buffer. In this case, after U0, samples from Task 0 are removed from the buffer. Mov-
ing further, the subsequent sequence of unlearning operations till U12 sees the accuracies largely
unchanged. The tail end of the sequence sees a line of learning operations. Surprisingly, Task 0’s
accuracy again recovers across all baselines (excluding SCRUB, which seems to have completely
collapsed midway through the sequence). Despite the removal of replay data, accuracy improves due
to backward transfer of knowledge from learning subsequent tasks that are similar to the unlearned
task. Standard unlearning algorithms do not take into account the possibility of future learning and
therefore do not offer any safeguards against such performance recovery.

In summary, we identify two phenomena that are unique to continual settings where traditional
unlearning algorithms falter:

1. Unlearning operations spill into tasks other than the targeted task, resulting in performance
degradation across all learned tasks.

2. Subsequent learning operations lead to unlearned tasks relapsing and partially recovering
lost performance.
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Algorithm 1 Learning (L) and Unlearning (R) in UnCLe

Input: Task Data Dt, regularization constant β,
learning epochs El

1: et = random init()
2: for j = 0 to EL do
3: for each batch (Xt

i , Y
t
i ) in Dt do

4: θt = H(et;ϕ)
5: Ŷi

t
= F(Xt; θt)

6: Llrn = Ltask(Y
t
i , Ŷi

t
) + β · Lreg

7: Optimize {ϕ, et} w.r.t Llrn

8: end for
9: end for

10: ϕ∗ = ϕ

Input: Forget Task f , Unlearning regularization
constant γ, Burn-In Eu, Number of noise sam-
ples n

1: for j = 1 to Eu do
2: Lfgt = 0
3: for k = 1 to n do
4: Sample noise z ∼ N (0, Id)
5: Update Lfgt ← Lfgt +

1
n∥H(ef ;ϕ) −

z∥22
6: end for
7: Lul = γ · Lfgt + Lreg

8: Optimize ϕ with respect to Lul

9: end for

Our empirical observations thus demonstrate that current unlearning algorithms are ill-equipped
to deal with continual settings and that bespoke frameworks to tackle both continual learning and
unlearning are required.

5 METHODOLOGY

The goal is to build a unified framework that is capable of both continual learning and unlearning.
As a result, the framework should simultaneously satisfy both continual learning and unlearning re-
quirements. CL frameworks endeavor to minimize catastrophic forgetting while maximizing knowl-
edge transfer between tasks. On the other hand, unlearning frameworks strive for completeness,
specificity, and permanence. Moreover, unlearning has to be now data-free as the continual setting
relinquishes past tasks’ data. This marks a stark departure from conventional unlearning settings.

A trivial way to address all the aforementioned challenges in tandem is through parameter isolation.
Consider a setting wherein a separate model is learned for each task. Such a scenario avoids catas-
trophic forgetting altogether, as no interference can occur between tasks since they occupy disjoint
parameter sets. A task unlearning operation would simply mean discarding the appropriate model.
The modularity of the framework ensures the exact unlearning Nguyen et al. (2022) of a task: guar-
anteeing completeness, specificity, and permanence. It is complete since no other network contains
an unlearned task’s information other than the discarded network. It is specific as discarding a partic-
ular network has no ill bearing on other tasks’ networks, and finally, its effects are permanent since
there is no way to recover lost information through the remaining networks. The obvious down-
side to this ideal framework is the substantial increase in parameters with every new task, violating
the limited memory assumptions in CL settings. Furthermore, parameter isolation also skimps on
knowledge transfer between tasks, which has proven massively beneficial in continual learning.

5.1 AN UNLEARNING FRAMEWORK FOR CONTINUAL LEARNING

We propose an Unlearning Framework for Continual Learning (UnCLe) that achieves parameter
efficiency and knowledge transfer while ensuring desired continual learning and unlearning proper-
ties. The proposed approach forgoes maintaining task-specific networks and generates them instead
through a hypernetwork Ha et al. (2017). A hypernetworkH(.;ϕ) is a neural network that generates
parameters of another neural network termed the main network. The hypernetwork can parameter-
ize different main networks when conditioned on different learnable embeddings. UnCLe employs
hypernetworks to generate unique main network parameters θt for each task t, when conditioned on
corresponding task embeddings et.

5.1.1 LEARNING

In a CL setting, the hypernetwork encounters tasks sequentially von Oswald et al. (2020). As a
result, learning to generate new task-specific parameters will inevitably lead to the catastrophic for-
getting of the previous tasks. The hypernetwork is hence regularized to ensure consistent generation

5
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of previous task-specific parameters. This is achieved through a knowledge distillation-inspired ob-
jective that minimizes the difference in the generated output between the current hypernetwork and
a hypernetwork frozen prior to learning the current task. The objective for learning a new task t is
thus formulated:

argmin
ϕ,et

Ltask(Dt,H(et;ϕ)) + β · Lreg, where

Lreg =
1

t− 1

t−1∑
t′=1

∥H(et′ ;ϕ∗)−H(et′ ;ϕ)∥22 (2)

Ltask is the task-specific loss (cross-entropy for the classification tasks) computed for the data set
Dt associated with task t, β is a hyperparameter controlling the strength of regularization, and
Lreg is the distillation-inspired regularization term. The hypernetwork parameters are initialized
via the Hyperfan initialization Chang et al. (2023), which ensures that the hypernetwork generates
main network parameters that are, in turn, Kaiming He initialized He et al. (2015). The parameter
efficiency problem is therefore addressed through the hypernetwork framework, as we only need to
store the hypernetwork parameters and the low-dimensional task embeddings. The addition of new
embeddings with each new task accounts for a negligible growth in parameters. This framework also
allows for inter-task knowledge transfer through the shared hypernetwork parameters. The learning
methodology is summarized in Algorithm 1.

5.1.2 UNLEARNING

A model that has unlearned a task is required to behave in a way that is similar to a model that
has never been trained on that particular task. UnCLe realizes this goal by reverting the forget-
task parameters generated by the hypernetwork back to a standard normal initialization. During the
learning phase, given a task t and its associated embedding et, the hypernetwork learns to generate
parameters θt that minimize the empirical risk on the dataset Dt corresponding to task t. Similarly,
when instructed to unlearn t, we enforce the hypernetwork to learn to map the embedding et back to
zero-centered Gaussian noise. This is attained through minimizing the error between the generated
parameters θt and a Gaussian noise sample z. This has the desired effect of unlearning the task
t as the hypernetwork conditioned on et no longer generates meaningful parameters θt but rather
noise that is akin to a randomly initialized network. As with learning a new task, unlearning too
can cause catastrophic forgetting of the retain-tasks. To confine unlearning to the forget-task and to
safeguard retain-tasks, we adopt a similar regularization term in the objective that enforces consistent
parameter generation for the retain-tasks. Overall, the unlearning objective for a forget-task f is
formulated as:

argmin
ϕ

γ ·

(
1

n

n∑
i=1

∥H(ef ;ϕ)− zi∥22

)
+ Lreg (3)

where zi are samples from a zero-centered Gaussian. The hyperparameter γ controls the strength of
regularization. We average the MSE over a batch of n different noise samples to prevent the hyper-
network from memorizing any particular noise sample, which can impact generalization. Given an
unlearning request, the hypernetwork is optimized with the aforementioned objective over a number
of iterations that we term burn-in. The unlearning procedure is summarized in Algorithm 1.

6 EXPERIMENTS & RESULTS

We generate a random sequence of learning and unlearning requests and train the model continually
on the corresponding task datasets. Descriptions of various sequences and seeds used are found in
Appendix C.

6.0.1 IMPLEMENTATION

We use a fully connected Hypernetwork with 3 hidden layers of dimensions 128, 256, and 512.
The hypernetwork generates ResNet18 parameters in the case of Permuted MNIST experiments and
ResNet50 elsewhere to demonstrate scalability. We also include ResNet18 results on other datasets
in Appendix H. To improve efficiency, the parameters are generated in chunks. We defer details on
the chunking mechanism to Appendix B. We use the Adam optimizer Kingma & Ba (2017) for both
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UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 4: Plot tracking Task 0’s accuracy through
a sequence of learning and unlearning operations
on the CIFAR 100 dataset.
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Figure 5: Comparing individual task accuracies
of UnCLe and a trivial baseline that only per-
forms learning on the TinyImageNet dataset.

Framework Permuted MNIST CIFAR-100 TinyImageNet 5-Tasks
RA FA RA FA RA FA RA FA

BadTeacher 92.17 10.20 61.75 14.57 52.79 15.73 54.38 8.550
SCRUB 9.970 9.840 29.45 10.06 19.48 10.00 9.160 12.97
SalUn 92.39 59.24 66.56 44.89 58.44 36.02 74.75 25.02

JiT 86.93 29.90 65.94 43.93 57.86 32.70 19.10 17.20
GKT 89.77 12.13 57.05 10.70 52.44 11.35 10.27 13.67
SSD 86.32 9.930 43.27 10.00 39.78 10.37 8.850 10.36

CLPU 91.73 - 63.10 - 54.90 - 85.00 -
UnCLe (Ours) 96.87 10.00 62.65 10.00 55.24 10.00 94.12 10.04

Table 1: A comparison of Retain-task (Higher, the better) and Forget-task accuracies (Closer to
random (10%), the better). Presented results are from Request Sequence 1 averaged over 3 runs
with different seeds (Appendix C).

learning and unlearning, with a learning rate of 0.001 and a scheduler. Details regarding learning
rate schedule, batch size, and training epochs are deferred to Appendix C. All training was done on
a single V100 GPU.

6.0.2 DATASETS

We conduct experiments with four datasets, namely, Permuted-MNIST Goodfellow et al. (2015), 5-
Tasks Clanuwat et al. (2018); Xiao et al. (2017); Deng (2012); Bulatov (2011); Netzer et al. (2011),
CIFAR-100 Krizhevsky (2009), and Tiny ImageNet Moustafa (2017). Apart from 5 Tasks, which
comprise 5 classification tasks of 10 classes each, all the other datasets entail 10 tasks, each with 10
classes. Details are deferred to Appendix C.

6.0.3 HYPERPARAMETERS

When learning, tuning β plays a crucial role in balancing stability and plasticity. The values for β
were obtained through a search detailed in Appendix C. Conversely, the intensity of unlearning is
controlled by two variables: the regularization hyperparameter γ and the burn-in period Eu. As with
β in learning, γ balances the remembrance and the forgetting terms of the unlearning objective. The
burn-in, Eu, controls the number of iterations the hypernetwork is optimized over the unlearning
objective. A range of values for γ and Eu was explored as detailed in Appendix C.

6.1 DISCUSSION

In our prior analysis, we discussed how current unlearning methods are deficient in a continual set-
ting. Figure 3 details the particular instances where they fail. Figure 3 also describes UnCLe’s
accuracy trajectory through the sequence of learning and unlearning operations. We find that Task
0’s accuracy spikes after its learning operation. Unlike other baselines, where Task 0’s accuracy fell
due to other unlearning operations, UnCLe maintains Task 0’s accuracy stably until it is unlearned.
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The unlearning operation swiftly reduces Task 0’s accuracy to 10% (equivalent to a random guess,
given 10-way classification), and the accuracy stays at 10% or below even in the face of subse-
quent learning operations. UnCLe resists unlearning operations spilling over to other tasks and also
prevents unlearned tasks from relapsing due to future learning operations. Figure 4 shows similar
patterns in the CIFAR 100 dataset, where UnCLe stably learns and unlearns at specified operations
without deviating much during other intermediate and future operations. The same cannot be said
for the other baselines, which show the same unpredictable behavior as before.

Summarily, we compare UnCLe and the baselines across datasets in Table 1. We use Retain-task
Accuracy RA) and Forget-task Accuracy (FA) as metrics, measuring the average accuracy of
the retained and the forgotten tasks, respectively, at the end of the experimental sequence. These are
analogous to Retain-set and Forget-set accuracy, which are the standard metrics in offline unlearning
settings. Across baselines, we find that UnCLe achieves an FA equivalent or close to random,
indicating complete forgetting of unlearned tasks. CLPU’s FA cannot be measured as unlearning
in CLPU implies discarding the corresponding task network. Other baselines show high FA due
to accuracy relapsing on account of future learning operations. In terms of RA, UnCLe performs
competitively with the baselines.

As Figures 3&4 have shown, RA and FA alone are ill-poised to paint a full picture of the complex-
ities of continually learning and unlearning. An unlearning operation at the end of the sequence
would plummet the RA of most of, if not all, the baselines. Similarly, a steady sequence of learning
operations at the end would further increase the FA. We therefore need a better summary statistic
beyond accuracy to paint a more holistic picture. To that end, we propose two new metrics: Spill and
Relapse, each measuring a different aspect of the effects of unlearning in continual settings. Spill
measures unlearning specificity and is calculated after each unlearning operation. Spill measures
the effect of an unlearning operation on all other tasks other than the targeted task. If u is the index
of the unlearning operation on a task tf , its spill is defined as:

Su =
∑
t̸=tf

|atu−1 − atu| (4)

Relapse measures unlearning permanence. It measures the magnitude of difference between a task’s
accuracy right after it is unlearned and at the end of the experimental sequence. Formally, we define
relapse for each forget-task t as:

Pt = |atu − ate| (5)
where u denotes where the task is unlearned and e denotes the end of the sequence. In Table 2, we
report the average spill and relapse across baselines and datasets.

From Table 2, we see that UnCLe demonstrates the lowest spill by a large margin. GKT and SSD
show the highest spill, consistent with their unstable trajectories seen in Figures 3&4. The other
baselines fare in between. With regards to relapse, UnCLe scores the lowest in CIFAR 100 and
the second lowest in 5-Tasks. SCRUB demonstrates the lowest relapse in most datasets, but demon-
strates poor RA, FA, and Spill. Although BadTeacher ranks well in RA and FA, it falls short on Spill
and Relapse. This shows that no single metric can fully capture unlearning performance in continual
settings, and we need all four metrics to properly quantify the performance of each framework. We
also see that UnCLe ranks best or near best in most datasets measured by each of the four metrics.
All of this confirms the need for tailored unlearning frameworks to suit the continual setting, as
conventional unlearning methods are simply not designed to anticipate such repeated learning and
unlearning operations.

We include further results on more experimental sequences with mean and variance obtained over
multiple seed runs in Appendix H.

Membership Inference Attack A Membership Inference Attack (MIA) on UnCLe results in a
score of 50%. A 50% MIA value indicates the attack is no better than random guessing, meaning
the model has effectively mitigated membership inference risks. We include a detailed description
of MIA and further results in Appendix G.

Hypernetwork-based Baselines In addition to using DER++ to adapt our unlearning baselines to
a CL setting, we also pair them with a hypernetwork to understand how unlearning performance
differs when paired with a different CL strategy. We delegate the results of this study, alongside
other trivial baselines, to Appendix F.
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Framework Permuted MNIST CIFAR-100 TinyImageNet 5-Tasks
Spill Relapse Spill Relapse Spill Relapse Spill Relapse

BadTeacher 33.05 30.51 14.61 23.57 9.317 8.706 54.62 1.566
SCRUB 17.50 0.149 28.02 0.513 9.450 0.739 44.67 0.00
SalUn 17.82 14.82 7.547 9.233 5.128 7.200 15.86 0.788

JiT 35.83 23.73 12.16 10.73 7.617 9.344 63.94 0.342
GKT 51.86 5.431 32.96 16.55 16.36 9.594 83.08 1.512
SSD 51.18 2.586 30.02 5.80 14.21 5.828 79.15 0.661

UnCLe (Ours) 0.044 8.703 0.640 0.507 0.722 2.233 0.023 0.539

Table 2: A comparison of Spill and Relapse (Lower, the better). Presented results are from Request
Sequence 1 averaged over 3 runs with different seeds (Appendix C).

Alternative Noising Strategies In UnCLe, the way the hypernetwork’s parameter output for the
forget-task is aligned with noise is central to the unlearning procedure. In addition to the noising
strategy discussed in the methodology, we explore alternative noising strategies for our unlearning
mechanism, such as Fixed-noise Alignment and L2-Norm Reduction, and study their impact on the
unlearning process. We find that UnCLe’s sampling average-based noise alignment fares better in
comparison. We explore alternative noising strategies in detail and present comparative results in
Appendix E.

Saturation Alleviation In a continual setting, as the model is exposed to an increasing number of
tasks, it gets saturated to a point where it loses all plasticity, rendering it unable to learn new tasks.
As stated, UnCLe’s unlearning objective restores the learned task-specific classifier parameters to
a randomly initialized state, akin to a Kaiming He initialization. This restores the hypernetwork’s
plasticity, allowing it to learn new tasks again. We test this hypothesis through a comparison between
a hypernetwork that only learns tasks and UnCLe, which both learns and unlearns. The results in
Table 3 demonstrate that relinquishing unnecessary tasks improves the learnability of newer tasks,
particularly in more complex datasets and longer sequences. The simple settings of Permuted-
MNIST and 5-Tasks do not show drastic improvement as they have not attained saturation yet.
This highlights how unlearning not only serves as a privacy tool but also extends the longevity and
maintainability of CL models by actively removing obsolete information. Figure 5 compares how
unlearning obsolete tasks enables higher accuracies in later tasks when compared to a baseline that
doesn’t unlearn. We defer further details on saturation alleviation to Appendix D.

Methods Permuted-MNIST CIFAR-100 Tiny-ImageNet 5-Tasks
Only Learning 96.84 60.51 50.47 94.12

UnCLe 96.87 62.65 55.24 94.12

Table 3: A comparison of average accuracy across the retained tasks from UnCLe versus a sequence
with just learning tasks, demonstrating that unlearning old tasks helps learn new tasks better.

Limitations Although UnCLe is capable of learning and unlearning tasks continually in any arbi-
trary manner, it currently lacks the flexibility to individually learn and unlearn classes within each
task. We opine that future works should address a class-incremental learning and unlearning setting.

7 CONCLUSION

Our study of existing unlearning algorithms in continual settings reveals concerning performance
degradation among retained tasks. Furthermore, we find that unlearned tasks are prone to relapse
when the model subsequently learns similar tasks. Recognizing such shortcomings, we propose a
tailored solution to continual learning and unlearning with UnCLe. Our experiments showcase Un-
CLe’s effectiveness in addressing current limitations, such as unlearning spill and relapse. Further-
more, we demonstrate that unlearning obsolete tasks helps in alleviating model saturation, paving
the way for more flexible CL frameworks.

9
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APPENDIX

A BROADER IMPACT

This work on continual learning and unlearning (UnCLe) has significant implications for respon-
sible AI deployment and governance. Our approach enables more privacy-preserving AI systems
by allowing models to selectively forget sensitive or personal information while maintaining their
overall capabilities. This addresses growing regulatory requirements like the ”right to be forgotten”
and helps organizations comply with data protection laws. The ability to unlearn obsolete or harm-
ful content also supports efforts to mitigate bias and remove problematic behaviors from deployed
models without requiring complete retraining.

The demonstrated reduction in model saturation through strategic unlearning could lead to more
efficient and adaptable AI systems. Nevertheless, the capacity for models to ”relapse” and recover
supposedly forgotten information highlights the need for robust verification mechanisms and un-
learning algorithms.

B HYPERNETWORKS

Figure 6: Schematic of the architecture showcasing the task eTt
and chunk embeddings c, the hyper-

network and its various headsH, the generated parameters θ, the ResNet classifier F and, the input
image xi

t and the predicted output ŷit.

The large size of ResNet parameters causes the hypernetwork’s last layer to become excessively
large. To mitigate this, we partition the main network parameters into smaller chunks and generate
them separately, significantly reducing the hypernetwork’s size. The schematic of this chunked
hypernetwork architecture is shown in Figure 6.

The hypernetwork generates large networks in chunks by conditioning on unique chunk embeddings,
similar to how it generates task-specific networks using task embeddings. These chunk embeddings,
concatenated with task embeddings, form unique task-chunk pairs that generate corresponding pa-
rameter chunks. Learned via backpropagation, chunk embeddings are frozen after the first task to
prevent catastrophic forgetting. We set both chunk and task embedding dimensions to 32 and found
that dividing each task-specific network into 200 chunks balances efficiency and performance.

To further optimize parameter generation, the hypernetwork’s final layer is divided into specialized
heads, each responsible for a specific parameter type: network weights, batch normalization param-
eters, or residual connection parameters. This separation prevents redundancy and reduces computa-
tional overhead. The chunk-based generation seamlessly integrates with these heads, ensuring each
chunk receives only the necessary parameters.

This design enhances parameter efficiency, maintaining a manageable hypernetwork size even for
large architectures like ResNet18 and ResNet50. It balances scalability, modularity, and efficiency,
making it well-suited for generating complex networks.
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Datasets Seq Nos Sequences

5-Tasks
(7 requests)

1 L0 → L1 → U0 → L2 → L3 → L4 → U1

2 L3 → L4 → L2 → L0 → L1 → U3 → U0

3 L0 → L2 → U0 → L4 → L3 → U2 → U4

Permuted-MNIST
& CIFAR-100
(15 requests)

1 L1 → L0 → U1 → L5 → L8 → L9 → L7 → U0 → L2 → L3
→ L4 → U8 → U3 → U5 → L6

2 L6 → L7 → L2 → L1 → L0 → U1 → L9 → U7 → U2 → U0
→ L4 → U4 → L8 → U6 → L5

3 L7 → L1 → L2 → L8 → L0 → U1 → L3 → L6 → U3 → U2
→ L4 → L5 → U8 → L9 → U7

Tiny-ImageNet
(30 requests)

1

L3 → L0 → U3 → L9 → L5 → L17 → L1 → L7 → L14 → L15
→ L19 → U17 → U7 → L6 → U15 → U9 → L12 → L4 → U5
→ U4 → U6 → U0 → U1 → U14 → U12 → L13 → L18 → L2
→ L11 → L8

2

L12 → L13 → L5 → L8 → L2 → U8 → L14 → U13 → U5 → U2
→ L3 → U3 → L16 → U12 → L11 → U16 → L7 → L15 → L10
→ L19 → L9 → U14 → U7 → L18 → L6 → L1 → L0 → L4
→ U6 → L17

3

L2 → L7 → U2 → L18 → L12 → U7 → U18 → L16 → L0 → U16
→ U0 → L13 → L4 → U12 → U13 → L9 → L19 → U19 → U4
→ L10 → L14 → L5 → U5 → U10 → L11 → L1 → U1 → L17
→ L6 → L3

Table 4: This table provides three different sequences that are used to understand the generalizabil-
ity of our approach. Here, L#n implies ‘learn task n’ and U#n implies ‘unlearn task n’. Also
for different task we have different sequence length showing that our method can scale to longer
sequences.

C EXPERIMENTS

C.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning
requests generated through random seeds. Experiments on the Five Datasets benchmark are per-
formed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize
sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request
sequences. The sequences used are presented in Table 4.

C.2 HYPERPARAMETERS

C.2.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for β. We perform experiments
with β values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The
results of the hyperparameter search are presented in 5:

Dataset 1 0.1 0.01 0.001

Permuted MNIST 96.24 96.68 96.64 96.52
5-Tasks 94.46 94.42 94.13 94.54
CIFAR-100 48.58 72.16 52.62 15.72
TinyImageNet 34.33 35.74 53.7 48.49

Table 5: Results of tuning hyperparameter β. The highest average accuracy values are highlighted
in bold.
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As is apparent, the chosen values for β are as follows: 1e-2 for TinyImageNet, 1e-3 for Five Datasets
and 1e-1 for both Permuted MNIST and CIFAR-100.

C.2.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN

We perform a hyperparameter search to determine the ideal value for γ. Our search range comprises
the γ values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
attain an FA of less than chance ( 1c where c is the number of classes, in this case 10%). We first
select all the γ values that result in an FA≤ 10. We then pick the γ that maximizes RA among those
selected values. The results of the hyperparameter search are presented in Table 6. We find that the
burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.

Dataset 0.1 0.01 0.001
Permuted-MNIST

FA 10.412 10.417 17.907
RA 96.524 96.544 96.602

CIFAR-100
FA 8.000 10.830 17.190
RA 70.950 71.817 72.173

5-Tasks
FA 8.278 8.070 9.783
RA 92.868 92.779 92.847

Tiny-ImageNet
FA 10.000 10.000 10.000
RA 45.590 48.625 48.623

Table 6: FA and RA for various γ values across datasets, with RA shown directly below FA for each
dataset.

The chosen γ values are 1e-1 for 5-Tasks and 1e-2 elsewhere.

Methods FA UT FA UT

CIFAR-100 Tiny-ImageNet

without Annealing 10.00 43.98 10.00 45.12
with Annealing 10.00 41.70 10.00 29.63

Table 7: A comparison of UnCLe with and without burn-in annealing.

We leverage the forward transfer observed in unlearning to enhance UnCLe’s efficiency by introduc-
ing an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate is
reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduction cap-
italizes on the model’s improved adaptability over time, significantly decreasing Unlearning Time
(UT) without compromising performance. As shown in ??, the Forget-Task Accuracy (FA) and
Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy maintains
the quality of unlearning while optimizing computational efficiency.

We use a burn-in of 100 iterations, annealed by 10% with each task, and a lower limit of 20 burn-in
iterations.

D SATURATION ALLEVIATION

We present additional saturation alleviation results on the TinyImageNet dataset in Figure 7 where
we measure the final accuracies of the tasks that are retained at the end of the sequence of operations.
We compare UnCLe with a trivial baseline that only performs learning operations. We find that
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UnCLe consistently outperforms the baseline that only performs learning operations, demonstrating
that unlearning old tasks help learn new tasks better.
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Figure 7: A comparison between the final accuracies of the tasks that remain.

E ALTERNATIVE NOISING STRATEGIES

5-Tasks

Methods RA FA UNI MIA UT

Fixed Noise 83.04 10.94 −∞ 50.07 18.74
Norm Reduce 94.31 26.11 52.44 51.19 18.3

Discard ef 94.52 80.91 −214.0 50.25 0.00
UnCLe 94.12 10.04 100.0 50.01 33.28

CIFAR-100

Methods RA FA UNI MIA UT

Fixed Noise 21.79 10.36 −∞ 49.97 25.76
Norm Reduce 62.75 34.42 41.27 44.13 25.39

Discard ef 60.21 20.70 11.21 46.88 0.00
UnCLe 62.65 10.00 100.0 50.00 41.70

Permuted-MNIST

Methods RA FA UNI MIA UT

Fixed Noise 84.55 9.870 −∞ 49.99 10.48
Norm Reduce 96.70 94.99 −49.56 49.10 10.34

Discard ef 96.87 61.79 −64.54 49.11 0.00
UnCLe 96.87 10.00 100.0 50.00 13.16

Tiny-ImageNet

Methods RA FA UNI MIA UT

Fixed Noise 34.68 9.440 −∞ 50.11 22.62
Norm Reduce 55.11 36.61 0.80 42.65 22.42

Discard ef 56.50 15.54 6.88 48.44 0.00
UnCLe 55.24 10.00 100.0 50.00 29.63

Table 8: Performance of different noising strategies on four datasets (Request Sequence 1). All other
unlearning hyperparameters (γ, Eu) are held constant.

We experiment with a variety of noising strategies and compare our approach to norm reduction and
fixed noise perturbation. Norm reduction uses the unlearning objective from 6.

argmin
ϕ

γ · ∥H(ef ;ϕ)∥22 + Lreg. (6)
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Figure 8: Effect of varying the number of noise samples (n) in the unlearning objective

Fixed noise perturbation uses the objective ∥H(ef ;ϕ)− z∥22 + γ · Lreg where the noise z is fixed
throughout all tasks. Discard ef is the baseline in which to perform unlearning, the forget-task’s
embedding ef is simply discarded and replaced with a random embedding. From 8, we observe
that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task
accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas
UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good
RA but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it
compromises the model’s stability and impacts RA, as noted in the methodology. We also observe
that UnCLe, compared to all the other baselines, has the closest MIA value to 50, demonstrating its
superiority in data privacy.

We also study the effects of the various unlearning strategies considered on the hypernetwork pa-
rameters, particularly the effect of varying n, the number of noise samples over which the average
MSE is computed in the unlearning objective. We compare three cases namely n = 1 (Fixed Noise),
n = 10 (UnCLe), and n =∞, which is equivalent to a reduction of the L2-norm. The results are the
comparison are presented in 8 wherein we see that as n increases, the magnitude of the hypernet-
work parameters falls with each unlearning operation. When n = 1, MSE with a fixed noise value
can lead to the hypernetwork memorizing the particular noise value, which impacts generalization.
In contrast, as n = ∞, with regularization of the L2-norm of the parameters, the hypernetwork
parameters are themselves driven to zero, which can eventually destabilize the hypernetwork. With
UnCLe, we adopt n = 10 to strike a balance between the two extremes.

E.1 CONNECTING MSE AND L2

Minimizing the MSE term in the unlearning objective minimizes the L2-norm over the generated
main network parameters, and consequently drives them toward zero. As a result, the model’s logits
for the unlearned task become zero across all output nodes, leading to a uniform distribution over
classes. This corresponds to maximum entropy, indicating that the model is maximally uncertain
about the forgotten task, precisely the desired effect of unlearning.

However, direct application of the L2-norm loss in the unlearning objective runs the risk of driving
the hypernetwork’s parameters toward zero. We observe this empirically by tracking the magnitude
of the hypernetwork parameters through multiple unlearning operations (Figure 8). Consequently,
this degrades the performance on the retain-tasks and undermines the hypernetwork’s ability to
learn new tasks. In contrast, our empirical findings show that the proposed MSE-based unlearning
objective still yields uniformly distributed (high-entropy) outputs without compromising the hyper-
network’s stability.

Consider the parameters of a model to be θ ∈ Rd. The average mean squared error 1
n

∑n
i=1 ∥θ−zi∥22,

where zi ∼ N (0, Id), represents a noisy approximation to the L2-norm over the parameters θ.
Formally,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d (7)

Consider Yi = ∥θ − zi∥22 to be a random variable. Consider E[.] as the function calculating the
expectation of a random variable. As zi are i.i.d. samples of standard normal and θ is a constant, Yi
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are also i.i.d. samples. Using Strong Law of Large Numbers Loève (1977), we can say that:

Pr

[
lim
n→∞

1

n

n∑
i=1

Yi = E[Yi]

]
= 1 (8)

Now we would show that E[Yi] = ∥θ∥22 + d, where d is the dimension of the parameter θ.

E[Yi] = E
[
∥θ − zi∥22

]
= E

[
θT θ − zTi θ − θT zi + zTi zi

]
= E

[
θT θ

]
− 2E

[
zTi θ

]
+ E

[
zTi zi

]
(9)

= θT θ − 2
∑
j

θjE[zij ] +
∑
j

E[z2ij ]

= ∥θ∥22 +
∑
j

1 (10)

= ∥θ∥22 + d (11)

Here, Eq 9 is using linearity property of expectation and Eq 10 uses the fact that E[zij ] = 0 and
E[z2ij ] is nothing but variance of that variable zij , which is equal to 1.

Based Eq 8 and Eq 11, we can say that,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d (12)

F OTHER BASELINES

F.1 HYPERNETWORK BASELINES

As an ablation, we consider JiT-Hnet and GKT-Hnet, which utilize a hypernetwork for CL in
DER++’s place. There is also Hnet that relies on natural catastrophic forgetting as an unlearning
mechanism (unlearning realized only after new learning). The results are presented in Appendix H:
More Results.

F.2 TRIVIAL BASELINES

We also compare with standard baselines like fine-tuning (FT) and retraining (RT & RT-Hnet). FT
and the two RT variants assume the availability of the complete retain-task data during unlearning.
FT fine-tunes the model on the retain set upon unlearning. RT Retrains from scratch on the retain
set. RT-Hnet trains a new hypernetwork sequentially on the retain set upon unlearning. The results
are presented in Appendix H: More Results.

G MEMBERSHIP INFERENCE ATTACK

The Membership Inference Attack (MIA) metric Shokri et al. (2017) assesses the effectiveness of
machine unlearning by measuring a model’s ability to ”forget” training data. MIAs exploit model
behavior to infer whether a data point was in the training set, posing privacy concerns. In unlearning,
the goal is for the model to treat forgotten data like unseen data. Adversarial attacks test this by
attempting to determine data membership. A 50% MIA value indicates the attack is no better than
random guessing, meaning the model has effectively mitigated membership inference risks.

Table 9 presents MIA values, including mean and standard deviation, across various methods and
datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The results, consistently around
50%, indicate that models generally exhibit strong resistance to MIA, making it difficult for attackers
to distinguish between training and non-training data points.

In the task unlearning setup with task-incremental continual learning, different heads are used for
different tasks. When a task is forgotten, the corresponding head undergoes severe randomization,
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Permuted-MNIST & 5-Tasks

Methods 5-Tasks Permuted-MNIST
Mean Std Mean Std

FT* 49.56 0.22 49.63 0.07
RT* 49.95 0.37 49.98 0.07

BadTeacher 50.03 0.16 50.04 0.11
SCRUB 50.25 0.21 49.99 0.01
SalUn 50.25 0.29 49.85 0.13

JiT 49.99 0.17 49.95 0.08
GKT 50.05 0.08 49.99 0.01

RT-Hnet* 49.75 0.06 49.90 0.04
Jit-Hnet 50.10 0.06 50.02 0.08

GKT-Hnet 49.99 0.19 49.98 0.22

UnCLe 50.01 0.09 50.00 0.02

CIFAR100 & Tiny-ImageNet

Methods CIFAR100 Tiny-ImageNet
Mean Std Mean Std

FT* 45.00 0.66 45.26 0.73
RT* 49.82 0.50 49.72 0.23

BadTeacher 53.06 0.82 52.54 0.33
SCRUB 50.00 0.00 50.00 0.00
SalUn 46.26 0.42 47.47 0.73

JiT 45.80 0.73 47.28 0.15
GKT 49.88 0.20 49.93 0.06

RT-Hnet* 50.28 0.39 50.05 0.22
Jit-Hnet 48.74 1.11 49.39 0.24

GKT-Hnet 50.12 0.11 50.10 0.05

UnCLe 50.00 0.00 50.00 0.00

Table 9: MIA performance of baseline approaches versus UNCLE on four datasets (sequence 1,
averaged over three seeds).

rendering its representations indistinguishable. As a result, MIA performance remains equivalent
across all methods, as the forget head produces inherently random representations.

Notably, our approach, UnCLe, demonstrates near-perfect resistance to MIA, maintaining a mean
MIA value of 50.00% across all datasets. This suggests that the attacker’s ability to infer data
membership is no better than random guessing, ensuring robust privacy protection.

H MORE RESULTS

H.1 UNLEARNING TIME

Unlearning time refers to the time (in sec.) required to unlearn a particular task. In our approach the
unlearning time is controlled by burn-in epochs. 10 provides unlearning time values for different
unlearning methods. The value provided in the table is an average across all the unlearning time
required for each unlearning operation in a request sequence for CLU setting.

H.2 RESNET18 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these
experiments is performed on Sequence 1 (Table 4). The results are averaged over three runs with
different seeds. We can observe from Table 11, Table 12, Table 13, Table 14, Table ?? and Table ??
that UnCLe performs better than all the other baselines on at least 3 out of 5 metrics. On the metric
in which UnCLe is not the best, it performs equally well compared to the best one. These tables
show UnCLe’s superiority over other unlearning baselines.
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Methods Unlearning Time (in sec)
5T PMNIST C100 TI

BadTeacher 76.78 55.50 10.95 8.680
SCRUB 171.1 118.9 30.02 32.52
SalUn 491.9 358.3 51.47 65.20

JiT 242.1 213.7 24.01 17.71
GKT 57.67 36.08 68.61 147.5
SSD 47.12 35.16 5.730 5.810

Jit-Hnet 306.6 257.5 22.94 22.83
GKT-Hnet 83.30 43.77 83.46 75.75

UnCLe 33.28 13.16 41.70 29.63

Table 10: Table provides comparison on Unlearning Time between different baselines and our ap-
proach on the datasets 5-Tasks (5T), Permuted MNIST (PMNIST), CIFAR100 (C100) and TinyIm-
ageNet (TI)

Methods RA FA

mean std mean std

BadTeacher 62.87 8.07 9.650 0.65
SCRUB 10.90 2.44 9.340 0.58
SalUn 58.94 9.87 35.16 5.02

JiT 16.66 2.77 8.990 1.93
GKT 10.82 1.25 15.21 1.68
SSD 30.22 22.5 15.07 6.14

Jit-Hnet 14.74 4.69 13.15 4.49
GKT-Hnet 10.07 0.71 10.69 1.40

UnCLe 93.77 0.40 9.600 0.99

Table 11: Results on PenTask (Sequence 1) with ResNet-18 backbone.

H.3 RESNET50 RESULTS

The results from the primary results table are obtained from Sequence 1, averaged over three runs
with different seeds. This section hosts the results from all three sequences, reported with mean and
standard deviation obtained from averaging each experiment performed over three different seeds.
The section is organized as a list of tables, with one table for each dataset-sequence pair, in the order
of 5-Tasks, CIFAR-100, and Tiny-ImageNet.

H.4 UNLEARNING PERMANENCE

Our results in Figure 9 and Figure 10 indicate that tasks unlearned via conventional unlearning
methods are prone to relapse due to subsequent learning operations. Unlike existing approaches,
UnCLe prevents relapse of unlearned tasks when new tasks are subsequently introduced, making it
a more reliable framework for permanent unlearning.
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Methods RA FA

mean std mean std

BadTeacher 65.13 3.67 10.11 0.52
SCRUB 53.39 3.15 10.00 0.00
SalUn 69.29 2.42 46.24 0.99

JiT 68.96 1.93 40.74 0.41
GKT 61.53 3.49 11.01 0.57
SSD 47.31 5.45 10.00 0.00

Jit-Hnet 51.52 18.8 21.84 4.71
GKT-Hnet 40.87 5.85 13.89 1.11

UnCLe 66.97 3.59 10.00 0.00

Table 12: Results on CIFAR-100 (Sequence 1) with ResNet-18 backbone.

Methods RA FA

mean std mean std

BadTeacher 53.76 1.63 12.12 0.52
SCRUB 11.71 1.90 10.00 0.00
SalUn 59.47 0.80 39.27 1.64

JiT 59.88 0.65 38.60 0.77
GKT 54.31 0.31 13.01 0.90
SSD 53.37 2.60 10.26 0.36

Jit-Hnet 59.20 1.77 16.32 0.23
GKT-Hnet 48.34 1.15 10.92 0.43

UnCLe 59.22 2.14 10.00 0.00

Table 13: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone.

Methods RA FA

Mean Std Mean Std

FT* 94.47 0.12 67.70 2.11
RT* 93.35 0.19 10.38 1.53

BadTeacher 92.17 0.04 10.20 0.40
SCRUB 9.97 0.46 9.84 0.14
SalUn 92.39 0.26 59.24 2.74

JiT 86.93 6.09 29.90 4.96
GKT 89.77 0.31 12.13 0.95
SSD 86.32 0.40 9.93 0.13

CLPU 91.73 0.22 0.00 0.00
RT-Hnet* 70.78 1.71 14.08 0.54

Hnet 96.60 0.16 96.91 0.09
Jit-Hnet 76.81 14.1 10.27 0.94

GKT-Hnet 95.34 0.37 14.46 0.35

UnCLe 96.87 0.20 10.00 0.06

Table 14: Permuted-MNIST — Sequence 1 (ResNet-18).
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Methods RA FA

Mean Std Mean Std

FT* 95.12 0.68 70.51 1.29
RT* 95.19 0.41 10.22 0.68

BadTeacher 94.88 0.30 9.94 0.54
SCRUB 10.06 0.07 9.81 0.31
SalUn 95.30 0.11 56.92 0.87

JiT 36.59 47.23 19.70 3.11
GKT 92.35 0.25 10.70 0.82
SSD 89.75 0.74 9.84 0.16

CLPU 95.21 0.29 0.00 0.00
RT-Hnet* 82.94 14.33 14.02 0.55

Hnet 96.67 0.29 96.71 0.12
Jit-Hnet 94.15 2.19 10.55 0.54

GKT-Hnet 96.31 0.09 13.84 0.33

UnCLe 97.00 0.15 9.84 0.16

Table 15: Permuted-MNIST — Sequence 2 (ResNet-18).

Methods RA FA

Mean Std Mean Std

FT* 94.22 0.10 65.17 1.93
RT* 93.49 0.06 10.62 1.01

BadTeacher 79.56 4.29 10.28 0.81
SCRUB 9.97 0.08 9.98 0.25
SalUn 82.40 0.89 64.78 2.31

JiT 34.45 42.3 31.00 11.7
GKT 12.80 2.35 11.43 0.72
SSD 9.90 0.32 9.92 0.45

CLPU 91.72 0.16 0.00 0.00
RT-Hnet* 49.57 8.69 16.15 0.74

Hnet 96.80 0.08 96.72 0.11
Jit-Hnet 9.41 0.43 9.73 0.63

GKT-Hnet 13.96 2.53 17.25 2.26

UnCLe 96.98 0.23 9.93 0.19

Table 16: Permuted-MNIST — Sequence 3 (ResNet-18).

Methods RA FA

mean std mean std

FT∗ 88.66 0.45 67.99 2.83
RT∗ 84.79 1.88 9.600 4.22

BadTeacher 54.38 23.5 8.550 1.23
SCRUB 9.160 0.15 12.97 0.08
SalUn 74.75 1.56 25.02 1.22

JiT 19.10 13.8 17.20 3.55
GKT 10.27 0.91 13.67 1.52
SSD 8.850 0.00 10.36 0.09

LWSF+ 31.76 0.25 0.00 0.00
CLPU 85.00 0.43 0.00 0.00

RT-Hnet∗ 76.23 3.31 18.44 0.78
Hnet+ 94.56 0.28 96.73 0.04

Jit-Hnet 10.19 1.18 11.29 4.37
GKT-Hnet 10.53 0.61 14.48 1.00

UnCLe 94.12 0.43 10.04 1.14

Table 17: 5-Tasks (Sequence 1).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Methods RA FA

mean std mean std

FT∗ 88.54 0.53 58.07 2.40
RT∗ 86.14 3.72 9.410 0.59

BadTeacher 40.01 3.01 8.270 0.37
SCRUB 9.90 0.24 12.80 2.63
SalUn 56.29 7.81 29.40 2.71

JiT 11.66 3.51 22.31 6.30
GKT 10.52 0.22 14.44 0.88
SSD 10.10 0.01 14.59 4.66

CLPU 83.18 1.62 0.00 0.00
RT-Hnet∗ 62.78 6.57 10.55 1.01

Hnet+ 96.39 0.07 93.84 0.24
Jit-Hnet 9.770 0.23 17.18 8.80

GKT-Hnet 9.010 1.14 9.370 0.69

UnCLe 95.91 0.07 9.930 3.23

Table 18: 5-Tasks (Sequence 2).

Methods RA FA

mean std mean std

FT∗ 91.21 0.45 58.63 0.59
RT∗ 91.87 0.66 7.86 1.81

BadTeacher 39.07 25.2 10.20 0.96
SCRUB 9.22 2.39 10.22 0.55
SalUn 37.55 6.75 21.99 1.96

JiT 12.56 7.53 11.77 1.43
GKT 8.35 0.88 13.03 1.25
SSD 12.42 7.55 10.22 0.55

CLPU 89.54 0.79 0.00 0.00
RT-Hnet∗ 94.05 0.13 9.350 0.48

Hnet+ 92.96 0.13 93.26 0.08
Jit-Hnet 7.12 0.66 11.40 2.95

GKT-Hnet 15.11 4.94 13.74 0.90

UnCLe 93.24 0.76 11.40 3.05

Table 19: 5-Tasks (Sequence 3).

Methods RA FA

Mean Std Mean Std

FT∗ 72.43 3.46 55.44 4.16
RT∗ 62.91 3.62 9.69 1.17

BadTeacher 61.75 4.47 14.57 0.60
SCRUB 29.45 7.18 10.06 0.10
SalUn 66.56 3.58 44.89 2.14

JiT 65.94 3.58 43.93 2.48
GKT 57.05 3.15 10.70 0.44
SSD 43.27 4.25 10.00 0.00

CLPU 63.10 3.77 0.00 0.00
RT-Hnet∗ 23.81 0.89 9.71 1.37

Hnet+ 60.52 3.73 62.84 2.72
Jit-Hnet 60.79 4.45 16.97 3.49

GKT-Hnet 40.22 7.49 9.97 0.83

UnCLe 62.65 3.85 10.00 0.00

Table 20: CIFAR-100 (Sequence 1) — RA and FA only.
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Methods RA FA

Mean Std Mean Std

FT∗ 73.45 3.47 57.81 1.24
RT∗ 67.42 2.41 9.84 1.60

BadTeacher 66.67 3.58 12.97 1.37
SCRUB 13.13 4.09 10.00 0.00
SalUn 72.33 3.00 44.16 2.21

JiT 71.80 3.38 45.98 0.26
GKT 61.00 2.27 11.82 0.85
SSD 46.45 1.43 10.00 0.00

CLPU 69.83 1.85 0.00 0.00
RT-Hnet∗ 44.32 6.60 10.06 1.06

Hnet+ 66.08 2.07 62.59 1.37
Jit-Hnet 66.97 2.81 20.24 2.34

GKT-Hnet 58.58 5.98 11.36 0.29

UnCLe 66.82 2.85 10.00 0.00

Table 21: CIFAR-100 (Sequence 2) — RA and FA only.

Methods RA FA

Mean Std Mean Std

FT∗ 72.01 2.19 58.79 3.25
RT∗ 62.47 2.65 9.79 1.34

BadTeacher 52.76 1.51 14.55 1.58
SCRUB 10.00 0.00 10.00 0.00
SalUn 57.92 2.15 48.07 1.99

JiT 55.19 5.52 46.77 2.28
GKT 11.91 1.38 12.67 1.30
SSD 10.00 0.00 10.36 0.62

CLPU 61.23 2.56 0.00 0.00
RT-Hnet∗ 15.42 1.75 9.60 0.45

Hnet+ 60.66 2.37 62.04 0.35
Jit-Hnet 28.17 7.95 17.87 0.69

GKT-Hnet 9.54 0.94 11.44 1.49

UnCLe 58.15 6.09 10.00 0.00

Table 22: CIFAR-100 (Sequence 3) — RA and FA only.

Methods RA FA

Mean Std Mean Std

FT* 60.08 0.30 52.56 2.38
RT* 51.86 0.16 10.47 0.59

BadTeacher 52.79 1.40 15.73 1.09
SCRUB 19.48 15.4 10.00 0.00
SalUn 58.44 1.57 36.02 1.23

JiT 57.86 2.13 32.70 0.48
GKT 52.44 1.53 11.35 0.77
SSD 39.78 3.43 10.37 0.62

CLPU 54.90 1.27 0.00 0.00
RT-Hnet* 53.54 2.76 9.74 0.86

Hnet 57.53 2.26 54.31 3.35
Jit-Hnet 54.10 2.39 13.05 0.35

GKT-Hnet 44.40 2.26 9.85 0.30

UnCLe 55.24 3.66 10.00 0.00

Table 23: Tiny-ImageNet (Sequence 1, ResNet-50).
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UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 9: Figure tracking task accuracies through the sequence of operations on the CIFAR 100
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.
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UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 10: Figure tracking task accuracies through the sequence of operations on the TinyImageNet
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.
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