

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AN UNLEARNING FRAMEWORK FOR CONTINUAL LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Growing concerns surrounding AI safety and data privacy have driven the development of Machine Unlearning as a potential solution. However, current machine unlearning algorithms are designed to complement the offline training paradigm. The emergence of the Continual Learning (CL) paradigm promises incremental model updates, enabling models to learn new tasks sequentially. Naturally, some of those tasks may need to be unlearned to address safety or privacy concerns that might arise. We find that applying conventional unlearning algorithms in continual learning environments creates two critical problems: performance degradation on retained tasks and task relapse, where previously unlearned tasks resurface during subsequent learning. Furthermore, most unlearning algorithms require data to operate, which conflicts with CL’s philosophy of discarding past data. A clear need arises for unlearning algorithms that are data-free and mindful of future learning. To that end, we propose UnCLE, an Unlearning framework for Continual Learning. UnCLE employs a hypernetwork that learns to generate task-specific network parameters, using task embeddings. Tasks are unlearned by aligning the corresponding generated network parameters with noise, without requiring any data. Empirical evaluations on several vision data sets demonstrate UnCLE’s ability to sequentially perform multiple learning and unlearning operations with minimal disruption to previously acquired knowledge.

1 INTRODUCTION

Accelerating growth in AI adoption has brought with it safety and privacy concerns, leading to increasing regulatory scrutiny European Parliament & Council of the European Union (2023). This has led to the development of Machine Unlearning so that data found in violation of safety and privacy can be selectively removed from a model with minimal effects on the rest of the model’s learned knowledge. Algorithmic advances in unlearning have enabled the effective removal of unwanted information whilst safely preserving the rest Nguyen et al. (2022). However, the vast majority of contemporary unlearning algorithms are designed to complement offline-trained models. Offline training, which involves training a model on a large, monolithic dataset once and deploying it, is the dominant paradigm of the day. However, the rigid nature of the paradigm, where a trained model cannot be updated to reflect new data, is subject to rising criticism. Naively re-training an already trained model can lead to the model forgetting what it already knows, due to differences in data distributions. This phenomenon is known as catastrophic forgetting, and its mitigation has led to the rise of an alternate training paradigm aptly dubbed Continual Learning (CL). CL allows the progressive update of models as new data arises, while ensuring that previously learned information is preserved. Naturally, unlearning some of those incremental updates, termed tasks in the CL literature, is as important as learning them. The newfound flexibility to learn new tasks with time should be complemented by effective unlearning strategies so that any privacy or safety concerns that may arise with a newly learned task are promptly addressed. As depicted in Figure 1, a unified treatment of CL and unlearning would empower models to learn new tasks and unlearn obsolete ones with minimal interference to the rest. Yet, there is a lack of frameworks that simultaneously address both challenges.

Integrating unlearning in a CL framework is not straightforward. One of the CL’s core principles is to discard data from past tasks as new tasks are encountered. This is problematic as most unlearning algorithms require either the data that needs to be unlearned (forget-set) or the entirety of the data

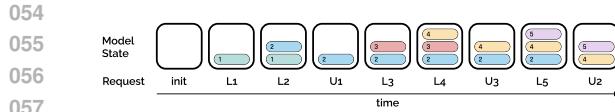


Figure 1: A visualization of the model’s state with time. With each learning operation L_x , the model gains expertise on a particular task x , as represented by the colored tile added to the model state. Conversely, an unlearning operation U_x , erases the model’s expertise of task x .

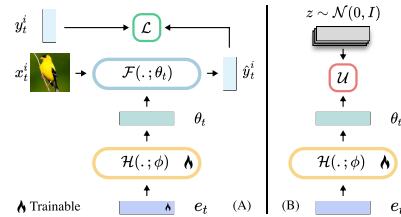


Figure 2: Architecture schematic. A: Learning and B: Unlearning. \mathcal{L} : Learning Objective and \mathcal{U} : Unlearning Objective.

that the model was trained on (forget-set + retain-set). Even if we resolve the data requirement deadlock through the use of replay buffers that contain representative subsets of data from past tasks, we find that unlearning operations in a CL environment have harmful spillover effects, degrading the model’s performance on other tasks. In addition, we find that, with conventional unlearning methods, unlearned tasks relapse and recover lost performance as the model subsequently learns new tasks. In other words, unlearning algorithms that have proven effective in offline settings do not translate well when applied in a CL environment. This is because conventional methods were simply not designed to operate on incrementally gathered knowledge or anticipate future learning operations past the unlearning operation. This suggests the need for an unlearning solution that is purpose-built to operate in a CL setting.

Furthermore, in compliance with CL desiderata, a unified solution should be able to perform both learning and unlearning operations in the absence of historical data. In light of such requirements, we propose **UnCLE**: an Unlearning Framework for Continual Learning. UnCLE employs a hyper-network that learns to generate task-specific network parameters, conditioned on corresponding task embeddings. Tasks are unlearned by aligning generated network parameters with noise, without requiring any data. Empirical evaluations on several vision datasets demonstrate UnCLE’s ability to sequentially perform multiple learning and unlearning operations with minimal disruption to previously acquired knowledge.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

CL methods largely fall into one of the three schools of thought. **(1) Regularization-based** methods mitigate forgetting through an additional regularization term in the learning objective that constrains model changes to minimize interference to previous tasks. This can take the form of a direct penalty on changes to model parameters weighted by some importance metric, as in EWC Kirkpatrick et al. (2017). Alternatively, the penalty could functionally regularize model updates such that behavior on previous tasks is preserved. This usually takes the form of a distillation objective between old and new model states Li & Hoiem (2017). Hypernetworks Ha et al. (2017); von Oswald et al. (2020) present a new spin on this by sequentially learning to generate task-specific networks, conditioned on corresponding task embeddings. Forgetting is mitigated via distillation by ensuring the new hypernetwork generates similar parameters as the old hypernetwork for previous task embeddings. **(2) Architecture-based** methods involve the use of non-overlapping sets of parameters for each task. This is either done through the use of separate networks or partitioning a single network to create task-specific sub-networks Mallya & Lazebnik (2018) or expanding the network progressively by adding neurons to accommodate new tasks Yoon et al. (2018). Such methods nullify catastrophic forgetting but come at the cost of parameter growth and inter-task knowledge transfer. **(3) Replay-based** methods relax the data restriction and allow a small subset of historical data to be stored in a buffer and replayed when training new tasks Rolnick et al. (2019); Riemer et al. (2019). The idea is that the buffer should serve as a good approximation of past task distributions, and replaying them whenever a new task is learned should therefore mitigate forgetting. Replay-based methods mostly differ in their buffer sample selection strategy. Some methods replace the replay buffer with a generative model that is continually trained to generate historical data Shin et al. (2017).

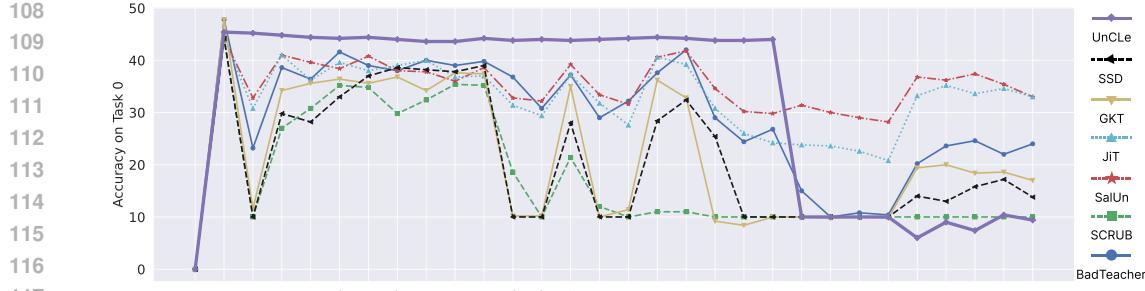


Figure 3: Plot tracking Task 0’s accuracy through a sequence of learning and unlearning operations on the TinyImageNet dataset. We present more such plots in Appendix H. UniCLUN is ignored as it is effectively equivalent to our adaptation of BadTeacher.

2.2 MACHINE UNLEARNING

Most unlearning methods are designed to operate on offline-trained models. We review some of the latest unlearning methods in the literature and adopt them as baselines. **BadTeacher** Chundawat et al. (2023a) uses a random teacher network for the forget set and KL-divergence to match distributions, while retaining set training minimizes cross-entropy. **SalUn** Fan et al. (2024) generates a gradient-based weight saliency map and modifies only the salient model weights impacted by the forget set, rather than the entire model. **SCRUB** Kurmanji et al. (2023) employs a student-teacher model where the student deviates from the teacher on the forget set while retaining performance on the rest. **SSD** Foster et al. (2024b) is a post hoc method that avoids retraining. It first selects parameters using the Fisher information matrix, then dampens their effects to ensure unlearning while preserving model performance. **GKT** Chundawat et al. (2023b) uses a generator to synthesize samples for unlearning. **JIT** Foster et al. (2024a) leverages Lipschitz continuity for zero-shot unlearning by smoothing model outputs relative to input perturbations.

2.3 UNIFIED SOLUTIONS

The following are unlearning methods that are designed to operate in a continual setting. **CLPU** Liu et al. (2022) involves learning independent networks for each task and discarding them upon request, thereby achieving unlearning. Although CLPU achieves exact unlearning, it comes at the cost of rampant parameter growth, making it unsustainable for long task sequences. **UniCLUN** Chatterjee et al. (2024) adapts BadTeacher Chundawat et al. (2023a) to a continual setting with a replay buffer. Distilling from a random teacher network enables forgetting, and distillation from the previous task’s network helps mitigate forgetting when learning new tasks.

Unlearning methods vary in their data requirements. BadTeacher, SCRUB, SalUN, SSD, and UniCLUN require both the forget and retain sets. JIT requires only the Forget set. GKT and the proposed method, UnCLE, are data-free unlearning methods.

3 PROBLEM FORMULATION

The goal is to continually learn and unlearn tasks. The setting involves a model encountering a sequence of requests $\mathbf{R} = \{R_i\}_{i=1}^{|\mathbf{R}|}$ where each request $R_i = (I_i, T_i, D_i)$ is a triplet comprising the instruction I_i , the task identifier T_i and the dataset D_i . Given an instruction to learn, i.e., $I_i = L$, the model is to learn task $T_i = t$ through its corresponding dataset $D_i = D_t$. Note that the CL setup does not allow us to store the task-specific data from past requests. This work considers a supervised setting with each task’s dataset $D_t = \{x_j^t, y_j^t\}_{j=1}^{|D_t|}$ containing $|D_t|$ input-output pairs. For an unlearn instruction $I_i = U$, the model is required to unlearn a task $T_i = t$ in the absence of the task data $D_i = \{\}$. This data-free unlearning requirement is a key characteristic of the continual setting, which assumes that once a task is learned, the corresponding data is foregone.

162 4 ANALYSIS OF CONTEMPORARY UNLEARNING
163

164 In this section, we analyze how current unlearning algorithms fare in a continual setting. Given the
165 data requirements of most current unlearning algorithms, we adopt a replay-based CL strategy to
166 adapt them to a continual setting. The replay buffer enables both unlearning and forgetting mitigation.
167 For our replay strategy, we choose the ubiquitous DER++ Buzzega et al. (2020) that blends
168 functional regularization with replay. DER++ stores the previous model’s output logits along with
169 the inputs and labels in the replay buffer. When learning a new task, in addition to minimizing the
170 classification loss, the error between the current and the stored logits is minimized as well. Formally,
171 the learning objective is as follows:

$$173 \quad \arg \min_{\theta, \phi} \mathbf{E}_{(x, y) \sim \mathcal{D}_t} \mathcal{L}_{CE}(y, f_{\theta}(h_{\phi}(x))) + \alpha \cdot \mathbf{E}_{(x', y') \sim \mathcal{R}} \mathcal{L}_{CE}(y', f_{\theta}(h_{\phi}(x'))) \\ 174 \quad + \beta \cdot \mathbf{E}_{(x'', z'') \sim \mathcal{R}} \|z'' - f_{\theta}(h_{\phi}(x''))\|_2^2 \quad (1)$$

175 where the first term is the current task t ’s classification loss between the ground truth labels and the
176 model $f_{\theta}(h_{\phi}(\cdot))$ outputs, the second term is the replay buffer \mathcal{R} ’s classification loss and the last term
177 is the Euclidean distance between the feature extractor $h_{\phi}(\cdot)$ logit outputs and the stored logits z . α
178 and β are hyperparameters to balance the current task and replay. The unlearning objective varies
179 with each unlearning algorithm. In addition, the replay buffer would no longer contain samples from
180 the task that is being unlearned.

181 We apply our CL-adapted unlearning baselines to a random sequence of learning and unlearning
182 operations as denoted in Figure 3’s X axis. We choose the TinyImageNet dataset and split the 200-
183 class dataset 20 ways, resulting in 20 tasks of 10 classes each. For brevity, we track the accuracy of
184 a single task (Task 0) through the entire sequence of operations to study its behavior in response to
185 each operation.

186 In the first operation L_3 , we see that Task 0’s accuracy is zero as it has not been learned yet. The
187 second operation, L_0 , results in a sharp increase in accuracy as Task 0 is learned. The third operation
188 U_3 is an unlearning operation that is supposed to only impact Task 3. However, we see that all the
189 baselines witness sharp drops in Task 0’s accuracy of varying magnitudes. This hints at the current
190 methods’ incapacity to handle CL environments. The next operation L_9 is a learning operation that
191 results in Task 0’s accuracy partially recovering among all baselines. This is due to the presence of
192 data from Task 0 in the replay buffer that enables the model to partially relearn what it has previously
193 unlearned. The subsequent learning operations from L_5 to L_{19} show more or less stable accuracies
194 across the board until U_{17} , which once again plunges Task 0’s accuracy. Accuracy degrades further
195 with another consecutive unlearning operation U_7 . This pattern of accuracy degradation and recov-
196 ery repeats until Task 0 is finally unlearned. At U_0 , we witness baselines differ in their behavior.
197 SSD, GKT, and SCRUB’s accuracies stay largely the same at 10 (equivalent to a random guess,
198 given 10 classes a task), having already degraded in the prior unlearning operations. BadTeacher’s
199 Task 0 accuracy dips, but not fully, until only after the next unlearning operation. SalUn and JiT
200 show a negligible impact. Note that as a task is unlearned, its corresponding dataset is removed from
201 the replay buffer. In this case, after U_0 , samples from Task 0 are removed from the buffer. Moving
202 further, the subsequent sequence of unlearning operations till U_{12} sees the accuracies largely
203 unchanged. The tail end of the sequence sees a line of learning operations. Surprisingly, Task 0’s
204 accuracy again recovers across all baselines (excluding SCRUB, which seems to have completely
205 collapsed midway through the sequence). Despite the removal of replay data, accuracy improves due
206 to backward transfer of knowledge from learning subsequent tasks that are similar to the unlearned
207 task. Standard unlearning algorithms do not take into account the possibility of future learning and
208 therefore do not offer any safeguards against such performance recovery.

209 In summary, we identify two phenomena that are unique to continual settings where traditional
210 unlearning algorithms falter:

- 211 1. Unlearning operations spill into tasks other than the targeted task, resulting in performance
212 degradation across all learned tasks.
- 213 2. Subsequent learning operations lead to unlearned tasks relapsing and partially recovering
214 lost performance.

216	Algorithm 1 Learning (L) and Unlearning (R) in UnCLE
217	
218	Input: Task Data D_t , regularization constant β , learning epochs E_l
219	1: $e_t = \text{random_init}()$
220	2: for $j = 0$ to E_L do
221	3: for each batch (X_i^t, Y_i^t) in D_t do
222	4: $\theta_t = \mathcal{H}(e_t; \phi)$
223	5: $\hat{Y}_i^t = \mathcal{F}(X_i^t; \theta_t)$
224	6: $\mathcal{L}_{lrn} = \mathcal{L}_{task}(Y_i^t, \hat{Y}_i^t) + \beta \cdot \mathcal{L}_{reg}$
225	7: Optimize $\{\phi, e_t\}$ w.r.t \mathcal{L}_{lrn}
226	8: end for
227	9: end for
228	10: $\phi^* = \phi$
229	
230	
231	Our empirical observations thus demonstrate that current unlearning algorithms are ill-equipped to deal with continual settings and that bespoke frameworks to tackle both continual learning and unlearning are required.
232	
233	
234	
235	
236	5 METHODOLOGY
237	
238	The goal is to build a unified framework that is capable of both continual learning and unlearning.
239	As a result, the framework should simultaneously satisfy both continual learning and unlearning requirements.
240	CL frameworks endeavor to minimize catastrophic forgetting while maximizing knowledge transfer between tasks.
241	On the other hand, unlearning frameworks strive for completeness, specificity, and permanence.
242	Moreover, unlearning has to be now data-free as the continual setting relinquishes past tasks' data.
243	This marks a stark departure from conventional unlearning settings.
244	A trivial way to address all the aforementioned challenges in tandem is through parameter isolation.
245	Consider a setting wherein a separate model is learned for each task.
246	Such a scenario avoids catastrophic forgetting altogether, as no interference can occur between tasks since they occupy disjoint parameter sets.
247	A task unlearning operation would simply mean discarding the appropriate model.
248	The modularity of the framework ensures the exact unlearning Nguyen et al. (2022) of a task: guaranteeing completeness, specificity, and permanence.
249	It is complete since no other network contains an unlearned task's information other than the discarded network.
250	It is specific as discarding a particular network has no ill bearing on other tasks' networks, and finally, its effects are permanent since there is no way to recover lost information through the remaining networks.
251	The obvious downside to this ideal framework is the substantial increase in parameters with every new task, violating the limited memory assumptions in CL settings.
252	Furthermore, parameter isolation also skimps on knowledge transfer between tasks, which has proven massively beneficial in continual learning.
253	
254	
255	
256	5.1 AN UNLEARNING FRAMEWORK FOR CONTINUAL LEARNING
257	
258	We propose an Unlearning Framework for Continual Learning (UnCLE) that achieves parameter efficiency and knowledge transfer while ensuring desired continual learning and unlearning properties.
259	The proposed approach forgoes maintaining task-specific networks and generates them instead
260	through a hypernetwork Ha et al. (2017).
261	A hypernetwork $\mathcal{H}(\cdot; \phi)$ is a neural network that generates
262	parameters of another neural network termed the main network.
263	The hypernetwork can parameterize different main networks when conditioned on different learnable embeddings.
264	UnCLE employs hypernetworks to generate unique main network parameters θ_t for each task t , when conditioned on corresponding task embeddings e_t .
265	
266	5.1.1 LEARNING
267	
268	In a CL setting, the hypernetwork encounters tasks sequentially von Oswald et al. (2020).
269	As a result, learning to generate new task-specific parameters will inevitably lead to the catastrophic forgetting of the previous tasks.
	The hypernetwork is hence regularized to ensure consistent generation

270 of previous task-specific parameters. This is achieved through a knowledge distillation-inspired ob-
 271 jective that minimizes the difference in the generated output between the current hypernetwork and
 272 a hypernetwork frozen prior to learning the current task. The objective for learning a new task t is
 273 thus formulated:

$$\begin{aligned} 274 \quad & \arg \min_{\phi, e_t} \mathcal{L}_{task}(D_t, \mathcal{H}(e_t; \phi)) + \beta \cdot \mathcal{L}_{reg}, \text{ where} \\ 275 \\ 276 \quad & \mathcal{L}_{reg} = \frac{1}{t-1} \sum_{t'=1}^{t-1} \|\mathcal{H}(e_{t'}; \phi^*) - \mathcal{H}(e_{t'}; \phi)\|_2^2 \end{aligned} \quad (2)$$

279 \mathcal{L}_{task} is the task-specific loss (cross-entropy for the classification tasks) computed for the data set
 280 D_t associated with task t , β is a hyperparameter controlling the strength of regularization, and
 281 \mathcal{L}_{reg} is the distillation-inspired regularization term. The hypernetwork parameters are initialized
 282 via the Hyperfan initialization Chang et al. (2023), which ensures that the hypernetwork generates
 283 main network parameters that are, in turn, Kaiming He initialized He et al. (2015). The parameter
 284 efficiency problem is therefore addressed through the hypernetwork framework, as we only need to
 285 store the hypernetwork parameters and the low-dimensional task embeddings. The addition of new
 286 embeddings with each new task accounts for a negligible growth in parameters. This framework also
 287 allows for inter-task knowledge transfer through the shared hypernetwork parameters. The learning
 288 methodology is summarized in Algorithm 1.

289 5.1.2 UNLEARNING

290 A model that has unlearned a task is required to behave in a way that is similar to a model that
 291 has never been trained on that particular task. UnCLE realizes this goal by reverting the forget-
 292 task parameters generated by the hypernetwork back to a standard normal initialization. During the
 293 learning phase, given a task t and its associated embedding e_t , the hypernetwork learns to generate
 294 parameters θ_t that minimize the empirical risk on the dataset D_t corresponding to task t . Similarly,
 295 when instructed to unlearn t , we enforce the hypernetwork to learn to map the embedding e_t back to
 296 zero-centered Gaussian noise. This is attained through minimizing the error between the generated
 297 parameters θ_t and a Gaussian noise sample z . This has the desired effect of unlearning the task
 298 t as the hypernetwork conditioned on e_t no longer generates meaningful parameters θ_t but rather
 299 noise that is akin to a randomly initialized network. As with learning a new task, unlearning too
 300 can cause catastrophic forgetting of the retain-tasks. To confine unlearning to the forget-task and to
 301 safeguard retain-tasks, we adopt a similar regularization term in the objective that enforces consistent
 302 parameter generation for the retain-tasks. Overall, the unlearning objective for a forget-task f is
 303 formulated as:

$$304 \quad \arg \min_{\phi} \gamma \cdot \left(\frac{1}{n} \sum_{i=1}^n \|\mathcal{H}(e_f; \phi) - z_i\|_2^2 \right) + \mathcal{L}_{reg} \quad (3)$$

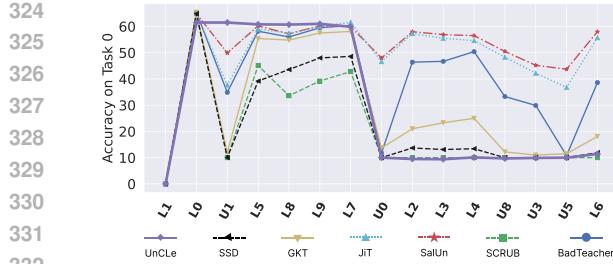
306 where z_i are samples from a zero-centered Gaussian. The hyperparameter γ controls the strength of
 307 regularization. We average the MSE over a batch of n different noise samples to prevent the hyper-
 308 network from memorizing any particular noise sample, which can impact generalization. Given an
 309 unlearning request, the hypernetwork is optimized with the aforementioned objective over a number
 310 of iterations that we term burn-in. The unlearning procedure is summarized in Algorithm 1.

312 6 EXPERIMENTS & RESULTS

314 We generate a random sequence of learning and unlearning requests and train the model continually
 315 on the corresponding task datasets. Descriptions of various sequences and seeds used are found in
 316 Appendix C.

318 6.0.1 IMPLEMENTATION

320 We use a fully connected Hypernetwork with 3 hidden layers of dimensions 128, 256, and 512.
 321 The hypernetwork generates ResNet18 parameters in the case of Permuted MNIST experiments and
 322 ResNet50 elsewhere to demonstrate scalability. We also include ResNet18 results on other datasets
 323 in Appendix H. To improve efficiency, the parameters are generated in chunks. We defer details on
 the chunking mechanism to Appendix B. We use the Adam optimizer Kingma & Ba (2017) for both



324
325
326
327
328
329
330
331
332
333 Figure 4: Plot tracking Task 0’s accuracy through
334 a sequence of learning and unlearning operations
335 on the CIFAR 100 dataset.

333 Figure 5: Comparing individual task accuracies
334 of UnCLE and a trivial baseline that only per-
335 forms learning on the TinyImageNet dataset.

Framework	Permuted MNIST		CIFAR-100		TinyImageNet		5-Tasks	
	RA	FA	RA	FA	RA	FA	RA	FA
BadTeacher	92.17	10.20	61.75	14.57	52.79	15.73	54.38	8.550
SCRUB	9.970	9.840	29.45	10.06	19.48	10.00	9.160	12.97
SalUn	92.39	59.24	66.56	44.89	58.44	36.02	74.75	25.02
JiT	86.93	29.90	65.94	43.93	57.86	32.70	19.10	17.20
GKT	89.77	12.13	57.05	10.70	52.44	11.35	10.27	13.67
SSD	86.32	9.930	43.27	10.00	39.78	10.37	8.850	10.36
CLPU	91.73	-	63.10	-	54.90	-	85.00	-
UnCLE (Ours)	96.87	10.00	62.65	10.00	55.24	10.00	94.12	10.04

348 Table 1: A comparison of Retain-task (Higher, the better) and Forget-task accuracies (Closer to
349 random (10%), the better). Presented results are from Request Sequence 1 averaged over 3 runs
350 with different seeds (Appendix C).

353 learning and unlearning, with a learning rate of 0.001 and a scheduler. Details regarding learning
354 rate schedule, batch size, and training epochs are deferred to Appendix C. All training was done on
355 a single V100 GPU.

356 6.0.2 DATASETS

358 We conduct experiments with four datasets, namely, **Permuted-MNIST** Goodfellow et al. (2015), **5-
359 Tasks** Klanuwat et al. (2018); Xiao et al. (2017); Deng (2012); Bulatov (2011); Netzer et al. (2011),
360 **CIFAR-100** Krizhevsky (2009), and **Tiny ImageNet** Moustafa (2017). Apart from 5 Tasks, which
361 comprise 5 classification tasks of 10 classes each, all the other datasets entail 10 tasks, each with 10
362 classes. Details are deferred to Appendix C.

364 6.0.3 HYPERPARAMETERS

366 When learning, tuning β plays a crucial role in balancing stability and plasticity. The values for β
367 were obtained through a search detailed in Appendix C. Conversely, the intensity of unlearning is
368 controlled by two variables: the regularization hyperparameter γ and the burn-in period E_u . As with
369 β in learning, γ balances the remembrance and the forgetting terms of the unlearning objective. The
370 burn-in, E_u , controls the number of iterations the hypernetwork is optimized over the unlearning
371 objective. A range of values for γ and E_u was explored as detailed in Appendix C.

372 6.1 DISCUSSION

374 In our prior analysis, we discussed how current unlearning methods are deficient in a continual setting.
375 Figure 3 details the particular instances where they fail. Figure 3 also describes UnCLE’s
376 accuracy trajectory through the sequence of learning and unlearning operations. We find that Task
377 0’s accuracy spikes after its learning operation. Unlike other baselines, where Task 0’s accuracy fell
due to other unlearning operations, UnCLE maintains Task 0’s accuracy stably until it is unlearned.

378 The unlearning operation swiftly reduces Task 0’s accuracy to 10% (equivalent to a random guess,
 379 given 10-way classification), and the accuracy stays at 10% or below even in the face of subse-
 380 quent learning operations. UnCLE resists unlearning operations spilling over to other tasks and also
 381 prevents unlearned tasks from relapsing due to future learning operations. Figure 4 shows similar
 382 patterns in the CIFAR 100 dataset, where UnCLE stably learns and unlearns at specified operations
 383 without deviating much during other intermediate and future operations. The same cannot be said
 384 for the other baselines, which show the same unpredictable behavior as before.

385 Summarily, we compare UnCLE and the baselines across datasets in Table 1. We use **Retain-task**
 386 **Accuracy (RA)** and **Forget-task Accuracy (FA)** as metrics, measuring the average accuracy of
 387 the retained and the forgotten tasks, respectively, at the end of the experimental sequence. These are
 388 analogous to Retain-set and Forget-set accuracy, which are the standard metrics in offline unlearning
 389 settings. Across baselines, we find that UnCLE achieves an FA equivalent or close to random,
 390 indicating complete forgetting of unlearned tasks. CLPU’s FA cannot be measured as unlearning
 391 in CLPU implies discarding the corresponding task network. Other baselines show high FA due
 392 to accuracy relapsing on account of future learning operations. In terms of RA, UnCLE performs
 393 competitively with the baselines.

394 As Figures 3&4 have shown, RA and FA alone are ill-poised to paint a full picture of the complex-
 395 ities of continually learning and unlearning. An unlearning operation at the end of the sequence
 396 would plummet the RA of most of, if not all, the baselines. Similarly, a steady sequence of learning
 397 operations at the end would further increase the FA. We therefore need a better summary statistic
 398 beyond accuracy to paint a more holistic picture. To that end, we propose two new metrics: Spill and
 399 Relapse, each measuring a different aspect of the effects of unlearning in continual settings. **Spill**
 400 measures unlearning specificity and is calculated after each unlearning operation. Spill measures
 401 the effect of an unlearning operation on all other tasks other than the targeted task. If u is the index
 402 of the unlearning operation on a task t_f , its spill is defined as:

$$S_u = \sum_{t \neq t_f} |a_{u-1}^t - a_u^t| \quad (4)$$

405 **Relapse** measures unlearning permanence. It measures the magnitude of difference between a task’s
 406 accuracy right after it is unlearned and at the end of the experimental sequence. Formally, we define
 407 relapse for each forget-task t as:

$$P_t = |a_u^t - a_e^t| \quad (5)$$

409 where u denotes where the task is unlearned and e denotes the end of the sequence. In Table 2, we
 410 report the average spill and relapse across baselines and datasets.

412 From Table 2, we see that UnCLE demonstrates the lowest spill by a large margin. GKT and SSD
 413 show the highest spill, consistent with their unstable trajectories seen in Figures 3&4. The other
 414 baselines fare in between. With regards to relapse, UnCLE scores the lowest in CIFAR 100 and
 415 the second lowest in 5-Tasks. SCRUB demonstrates the lowest relapse in most datasets, but demon-
 416 strates poor RA, FA, and Spill. Although BadTeacher ranks well in RA and FA, it falls short on Spill
 417 and Relapse. This shows that no single metric can fully capture unlearning performance in continual
 418 settings, and we need all four metrics to properly quantify the performance of each framework. We
 419 also see that UnCLE ranks best or near best in most datasets measured by each of the four metrics.
 420 All of this confirms the need for tailored unlearning frameworks to suit the continual setting, as
 421 conventional unlearning methods are simply not designed to anticipate such repeated learning and
 422 unlearning operations.

422 We include further results on more experimental sequences with mean and variance obtained over
 423 multiple seed runs in Appendix H.

425 **Membership Inference Attack** A Membership Inference Attack (MIA) on UnCLE results in a
 426 score of 50%. A 50% MIA value indicates the attack is no better than random guessing, meaning
 427 the model has effectively mitigated membership inference risks. We include a detailed description
 428 of MIA and further results in Appendix G.

429 **Hypernetwork-based Baselines** In addition to using DER++ to adapt our unlearning baselines to
 430 a CL setting, we also pair them with a hypernetwork to understand how unlearning performance
 431 differs when paired with a different CL strategy. We delegate the results of this study, alongside
 other trivial baselines, to Appendix F.

Framework	Permuted MNIST		CIFAR-100		TinyImageNet		5-Tasks	
	Spill	Relapse	Spill	Relapse	Spill	Relapse	Spill	Relapse
BadTeacher	33.05	30.51	14.61	23.57	9.317	8.706	54.62	1.566
SCRUB	17.50	0.149	28.02	0.513	9.450	0.739	44.67	0.00
SalUn	17.82	14.82	7.547	9.233	5.128	7.200	15.86	0.788
JiT	35.83	23.73	12.16	10.73	7.617	9.344	63.94	0.342
GKT	51.86	5.431	32.96	16.55	16.36	9.594	83.08	1.512
SSD	51.18	2.586	30.02	5.80	14.21	5.828	79.15	0.661
UnCLE (Ours)	0.044	8.703	0.640	0.507	0.722	2.233	0.023	0.539

Table 2: A comparison of Spill and Relapse (Lower, the better). Presented results are from Request Sequence 1 averaged over 3 runs with different seeds (Appendix C).

Alternative Noising Strategies In UnCLE, the way the hypernetwork’s parameter output for the forget-task is aligned with noise is central to the unlearning procedure. In addition to the noising strategy discussed in the methodology, we explore alternative noising strategies for our unlearning mechanism, such as Fixed-noise Alignment and L^2 -Norm Reduction, and study their impact on the unlearning process. We find that UnCLE’s sampling average-based noise alignment fares better in comparison. We explore alternative noising strategies in detail and present comparative results in Appendix E.

Saturation Alleviation In a continual setting, as the model is exposed to an increasing number of tasks, it gets saturated to a point where it loses all plasticity, rendering it unable to learn new tasks. As stated, UnCLE’s unlearning objective restores the learned task-specific classifier parameters to a randomly initialized state, akin to a Kaiming He initialization. This restores the hypernetwork’s plasticity, allowing it to learn new tasks again. We test this hypothesis through a comparison between a hypernetwork that only learns tasks and UnCLE, which both learns and unlearns. The results in Table 3 demonstrate that relinquishing unnecessary tasks improves the learnability of newer tasks, particularly in more complex datasets and longer sequences. The simple settings of Permuted-MNIST and 5-Tasks do not show drastic improvement as they have not attained saturation yet. This highlights how unlearning not only serves as a privacy tool but also extends the longevity and maintainability of CL models by actively removing obsolete information. Figure 5 compares how unlearning obsolete tasks enables higher accuracies in later tasks when compared to a baseline that doesn’t unlearn. We defer further details on saturation alleviation to Appendix D.

Methods	Permuted-MNIST	CIFAR-100	Tiny-ImageNet	5-Tasks
Only Learning	96.84	60.51	50.47	94.12
UnCLE	96.87	62.65	55.24	94.12

Table 3: A comparison of average accuracy across the retained tasks from UnCLE versus a sequence with just learning tasks, demonstrating that unlearning old tasks helps learn new tasks better.

Limitations Although UnCLE is capable of learning and unlearning tasks continually in any arbitrary manner, it currently lacks the flexibility to individually learn and unlearn classes within each task. We opine that future works should address a class-incremental learning and unlearning setting.

7 CONCLUSION

Our study of existing unlearning algorithms in continual settings reveals concerning performance degradation among retained tasks. Furthermore, we find that unlearned tasks are prone to relapse when the model subsequently learns similar tasks. Recognizing such shortcomings, we propose a tailored solution to continual learning and unlearning with UnCLE. Our experiments showcase UnCLE’s effectiveness in addressing current limitations, such as unlearning spill and relapse. Furthermore, we demonstrate that unlearning obsolete tasks helps in alleviating model saturation, paving the way for more flexible CL frameworks.

486 REFERENCES
487

488 Yaroslav Bulatov. Notmnist dataset. *Google (Books/OCR), Tech. Rep.[Online]. Available:*
489 <http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html>, 2, 2011.

490 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
491 perience for general continual learning: a strong, simple baseline. *Advances in neural information*
492 *processing systems*, 33:15920–15930, 2020.

493 Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks,
494 2023. URL <https://arxiv.org/abs/2312.08399>.

495 Romit Chatterjee, Vikram Chundawat, Ayush Tarun, Ankur Mali, and Murari Mandal. A unified
496 framework for continual learning and unlearning, 2024. URL <https://arxiv.org/abs/2408.11374>.

497 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
498 induce forgetting? unlearning in deep networks using an incompetent teacher. In *Proceedings of*
499 *the AAAI Conference on Artificial Intelligence*, volume 37, pp. 7210–7217, 2023a.

500 Vikram S Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot ma-
501 chine unlearning. *IEEE Transactions on Information Forensics and Security*, 18:2345–2354,
502 2023b. ISSN 1556-6021. doi: 10.1109/tifs.2023.3265506. URL <http://dx.doi.org/10.1109/TIFS.2023.3265506>.

503 Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
504 Ha. Deep learning for classical Japanese literature, 2018.

505 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE*
506 *Signal Processing Magazine*, 29(6):141–142, 2012.

507 European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the Euro-
508 pean Parliament and of the Council, 2023. URL <https://data.europa.eu/eli/reg/2016/679/oj>.

509 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
510 powering machine unlearning via gradient-based weight saliency in both image classification and
511 generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL
512 <https://openreview.net/forum?id=gn0mIhQGNM>.

513 Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Özti̇reli, and Alexandra Brintrup. An information
514 theoretic approach to machine unlearning, 2024a. URL <https://arxiv.org/abs/2402.01401>.

515 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retrain-
516 ing through selective synaptic dampening. *Proceedings of the AAAI Conference on Artifi-*
517 *cial Intelligence*, 38(1):12043–12051, Mar. 2024b. doi: 10.1609/aaai.v38i11.29092. URL
518 <https://ojs.aaai.org/index.php/AAAI/article/view/29092>.

519 Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
520 investigation of catastrophic forgetting in gradient-based neural networks, 2015. URL <https://arxiv.org/abs/1312.6211>.

521 David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In *International Conference on Learn-*
522 *ing Representations*, 2017. URL <https://openreview.net/forum?id=rkpACellx>.

523 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
524 ing human-level performance on imagenet classification, 2015. URL <https://arxiv.org/abs/1502.01852>.

525 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
526 <https://arxiv.org/abs/1412.6980>.

540 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
 541 drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
 542 Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
 543 forgetting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):
 544 3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL <http://dx.doi.org/10.1073/pnas.1611835114>.

545

546 Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

547

548 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. To-
 549 wards unbounded machine unlearning. In A. Oh, T. Naumann, A. Globerson,
 550 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 551 cessing Systems*, volume 36, pp. 1957–1987. Curran Associates, Inc., 2023. URL
 552 https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf.

553

554 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis
 555 and machine intelligence*, 40(12):2935–2947, 2017.

556

557 Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022. URL <https://arxiv.org/abs/2203.12817>.

558

559 M. Loève. *Probability Theory*. Number v. 1-2 in Graduate texts in mathematics. Springer-
 560 Verlag, 1977. ISBN 9783540902102. URL <https://books.google.co.in/books?id=f8xFAQAAIAAJ>.

561

562 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 563 pruning, 2018.

564

565 Mohammed Ali Moustafa. Tiny imagenet, 2017. URL <https://kaggle.com/competitions/tiny-imagenet>.

566

567 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
 568 digits in natural images with unsupervised feature learning. *Advances in Neural Information
 569 Processing Systems (NIPS)*, 2011.

570

571 Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
 572 and Quoc Viet Hung Nguyen. A survey of machine unlearning, 2022. URL <https://arxiv.org/abs/2209.02299>.

573

574 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
 575 Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
 576 ence, 2019.

577

578 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 579 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

580

581 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
 582 replay, 2017.

583

584 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
 585 attacks against machine learning models, 2017. URL <https://arxiv.org/abs/1610.05820>.

586

587 Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual
 588 learning with hypernetworks. In *International Conference on Learning Representations*, 2020.
 589 URL <https://openreview.net/forum?id=SJgwNerKvB>.

590

591 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 592 ing machine learning algorithms, 2017. URL <https://arxiv.org/abs/1708.07747>.

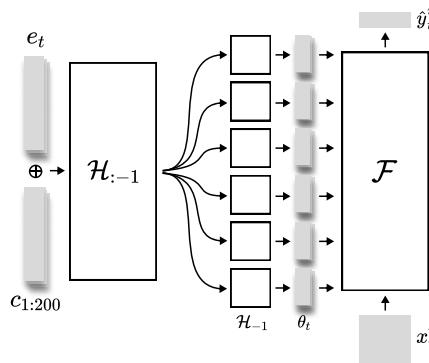
593

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
 expandable networks, 2018.

594 APPENDIX
595596
597 A BROADER IMPACT
598

599 This work on continual learning and unlearning (UnCLE) has significant implications for responsible
600 AI deployment and governance. Our approach enables more privacy-preserving AI systems
601 by allowing models to selectively forget sensitive or personal information while maintaining their
602 overall capabilities. This addresses growing regulatory requirements like the "right to be forgotten"
603 and helps organizations comply with data protection laws. The ability to unlearn obsolete or harmful
604 content also supports efforts to mitigate bias and remove problematic behaviors from deployed
605 models without requiring complete retraining.

606 The demonstrated reduction in model saturation through strategic unlearning could lead to more
607 efficient and adaptable AI systems. Nevertheless, the capacity for models to "relapse" and recover
608 supposedly forgotten information highlights the need for robust verification mechanisms and un-
609 learning algorithms.

610
611 B HYPERNETWORKS
612

626 Figure 6: Schematic of the architecture showcasing the task e_{T_t} and chunk embeddings c , the hyper-
627 network and its various heads \mathcal{H} , the generated parameters θ , the ResNet classifier \mathcal{F} and, the input
628 image x_t^i and the predicted output \hat{y}_t^i .
629

630 The large size of ResNet parameters causes the hypernetwork's last layer to become excessively
631 large. To mitigate this, we partition the main network parameters into smaller chunks and generate
632 them separately, significantly reducing the hypernetwork's size. The schematic of this chunked
633 hypernetwork architecture is shown in Figure 6.
634

635 The hypernetwork generates large networks in chunks by conditioning on unique chunk embeddings,
636 similar to how it generates task-specific networks using task embeddings. These chunk embeddings,
637 concatenated with task embeddings, form unique task-chunk pairs that generate corresponding pa-
638 rameter chunks. Learned via backpropagation, chunk embeddings are frozen after the first task to
639 prevent catastrophic forgetting. We set both chunk and task embedding dimensions to 32 and found
640 that dividing each task-specific network into 200 chunks balances efficiency and performance.

641 To further optimize parameter generation, the hypernetwork's final layer is divided into specialized
642 heads, each responsible for a specific parameter type: network weights, batch normalization pa-
643 rameters, or residual connection parameters. This separation prevents redundancy and reduces computa-
644 tional overhead. The chunk-based generation seamlessly integrates with these heads, ensuring each
645 chunk receives only the necessary parameters.

646 This design enhances parameter efficiency, maintaining a manageable hypernetwork size even for
647 large architectures like ResNet18 and ResNet50. It balances scalability, modularity, and efficiency,
making it well-suited for generating complex networks.

Datasets	Seq Nos	Sequences
5-Tasks (7 requests)	1	$L_0 \rightarrow L_1 \rightarrow U_0 \rightarrow L_2 \rightarrow L_3 \rightarrow L_4 \rightarrow U_1$
	2	$L_3 \rightarrow L_4 \rightarrow L_2 \rightarrow L_0 \rightarrow L_1 \rightarrow U_3 \rightarrow U_0$
	3	$L_0 \rightarrow L_2 \rightarrow U_0 \rightarrow L_4 \rightarrow L_3 \rightarrow U_2 \rightarrow U_4$
Permuted-MNIST & CIFAR-100 (15 requests)	1	$L_1 \rightarrow L_0 \rightarrow U_1 \rightarrow L_5 \rightarrow L_8 \rightarrow L_9 \rightarrow L_7 \rightarrow U_0 \rightarrow L_2 \rightarrow L_3 \rightarrow L_4 \rightarrow U_8 \rightarrow U_3 \rightarrow U_5 \rightarrow L_6$
	2	$L_6 \rightarrow L_7 \rightarrow L_2 \rightarrow L_1 \rightarrow L_0 \rightarrow U_1 \rightarrow L_9 \rightarrow U_7 \rightarrow U_2 \rightarrow U_0 \rightarrow L_4 \rightarrow U_4 \rightarrow L_8 \rightarrow U_6 \rightarrow L_5$
	3	$L_7 \rightarrow L_1 \rightarrow L_2 \rightarrow L_8 \rightarrow L_0 \rightarrow U_1 \rightarrow L_3 \rightarrow L_6 \rightarrow U_3 \rightarrow U_2 \rightarrow L_4 \rightarrow L_5 \rightarrow U_8 \rightarrow L_9 \rightarrow U_7$
Tiny-ImageNet (30 requests)	1	$L_3 \rightarrow L_0 \rightarrow U_3 \rightarrow L_9 \rightarrow L_5 \rightarrow L_{17} \rightarrow L_1 \rightarrow L_7 \rightarrow L_{14} \rightarrow L_{15} \rightarrow L_{19} \rightarrow U_{17} \rightarrow U_7 \rightarrow L_6 \rightarrow U_{15} \rightarrow U_9 \rightarrow L_{12} \rightarrow L_4 \rightarrow U_5 \rightarrow U_4 \rightarrow U_6 \rightarrow U_0 \rightarrow U_1 \rightarrow U_{14} \rightarrow U_{12} \rightarrow L_{13} \rightarrow L_{18} \rightarrow L_2 \rightarrow L_{11} \rightarrow L_8$
	2	$L_{12} \rightarrow L_{13} \rightarrow L_5 \rightarrow L_8 \rightarrow L_2 \rightarrow U_8 \rightarrow L_{14} \rightarrow U_{13} \rightarrow U_5 \rightarrow U_2 \rightarrow L_3 \rightarrow U_3 \rightarrow L_{16} \rightarrow U_{12} \rightarrow L_{11} \rightarrow U_{16} \rightarrow L_7 \rightarrow L_{15} \rightarrow L_{10} \rightarrow L_{19} \rightarrow L_9 \rightarrow U_{14} \rightarrow U_7 \rightarrow L_{18} \rightarrow L_6 \rightarrow L_1 \rightarrow L_0 \rightarrow L_4 \rightarrow U_6 \rightarrow L_{17}$
	3	$L_2 \rightarrow L_7 \rightarrow U_2 \rightarrow L_{18} \rightarrow L_{12} \rightarrow U_7 \rightarrow U_{18} \rightarrow L_{16} \rightarrow L_0 \rightarrow U_{16} \rightarrow U_0 \rightarrow L_{13} \rightarrow L_4 \rightarrow U_{12} \rightarrow U_{13} \rightarrow L_9 \rightarrow L_{19} \rightarrow U_{19} \rightarrow U_4 \rightarrow L_{10} \rightarrow L_{14} \rightarrow L_5 \rightarrow U_5 \rightarrow U_{10} \rightarrow L_{11} \rightarrow L_1 \rightarrow U_1 \rightarrow L_{17} \rightarrow L_6 \rightarrow L_3$

Table 4: This table provides three different sequences that are used to understand the generalizability of our approach. Here, $L\#n$ implies ‘learn task n ’ and $U\#n$ implies ‘unlearn task n ’. Also for different task we have different sequence length showing that our method can scale to longer sequences.

C EXPERIMENTS

C.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning requests generated through random seeds. Experiments on the Five Datasets benchmark are performed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request sequences. The sequences used are presented in Table 4.

C.2 HYPERPARAMETERS

C.2.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for β . We perform experiments with β values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The results of the hyperparameter search are presented in 5:

Dataset	1	0.1	0.01	0.001
Permuted MNIST	96.24	96.68	96.64	96.52
5-Tasks	94.46	94.42	94.13	94.54
CIFAR-100	48.58	72.16	52.62	15.72
TinyImageNet	34.33	35.74	53.7	48.49

Table 5: Results of tuning hyperparameter β . The highest average accuracy values are highlighted in bold.

702 As is apparent, the chosen values for β are as follows: 1e-2 for TinyImageNet, 1e-3 for Five Datasets
 703 and 1e-1 for both Permuted MNIST and CIFAR-100.
 704

705 C.2.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN 706

707 We perform a hyperparameter search to determine the ideal value for γ . Our search range comprises
 708 the γ values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
 709 Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
 710 attain an FA of less than chance ($\frac{1}{c}$ where c is the number of classes, in this case 10%). We first
 711 select all the γ values that result in an FA ≤ 10 . We then pick the γ that maximizes RA among those
 712 selected values. The results of the hyperparameter search are presented in Table 6. We find that the
 713 burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.
 714

Dataset	0.1	0.01	0.001
Permuted-MNIST			
FA	10.412	10.417	17.907
RA	96.524	96.544	96.602
CIFAR-100			
FA	8.000	10.830	17.190
RA	70.950	71.817	72.173
5-Tasks			
FA	8.278	8.070	9.783
RA	92.868	92.779	92.847
Tiny-ImageNet			
FA	10.000	10.000	10.000
RA	45.590	48.625	48.623

729 Table 6: FA and RA for various γ values across datasets, with RA shown directly below FA for each
 730 dataset.
 731

732 The chosen γ values are 1e-1 for 5-Tasks and 1e-2 elsewhere.
 733

Methods	FA	UT	FA	UT
	CIFAR-100	Tiny-ImageNet		
without Annealing	10.00	43.98	10.00	45.12
with Annealing	10.00	41.70	10.00	29.63

739 Table 7: A comparison of UnCLE with and without burn-in annealing.
 740

741 We leverage the forward transfer observed in unlearning to enhance UnCLE’s efficiency by introducing
 742 an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate is
 743 reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduction capitalizes
 744 on the model’s improved adaptability over time, significantly decreasing Unlearning Time
 745 (UT) without compromising performance. As shown in ??, the Forget-Task Accuracy (FA) and
 746 Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy maintains
 747 the quality of unlearning while optimizing computational efficiency.
 748

749 We use a burn-in of 100 iterations, annealed by 10% with each task, and a lower limit of 20 burn-in
 750 iterations.
 751

752 D SATURATION ALLEVIATION 753

754 We present additional saturation alleviation results on the TinyImageNet dataset in Figure 7 where
 755 we measure the final accuracies of the tasks that are retained at the end of the sequence of operations.
 We compare UnCLE with a trivial baseline that only performs learning operations. We find that

UnCLE consistently outperforms the baseline that only performs learning operations, demonstrating that unlearning old tasks help learn new tasks better.

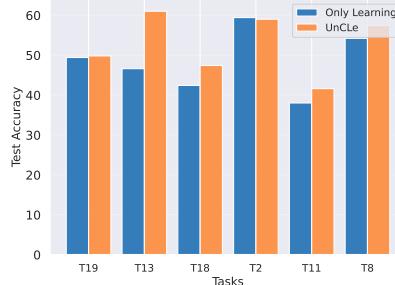


Figure 7: A comparison between the final accuracies of the tasks that remain.

E ALTERNATIVE NOISING STRATEGIES

5-Tasks					
Methods	RA	FA	UNI	MIA	UT
Fixed Noise	83.04	10.94	$-\infty$	50.07	18.74
Norm Reduce	94.31	26.11	52.44	51.19	18.3
Discard e_f	94.52	80.91	-214.0	50.25	0.00
UnCLE	94.12	10.04	100.0	50.01	33.28

CIFAR-100					
Methods	RA	FA	UNI	MIA	UT
Fixed Noise	21.79	10.36	$-\infty$	49.97	25.76
Norm Reduce	62.75	34.42	41.27	44.13	25.39
Discard e_f	60.21	20.70	11.21	46.88	0.00
UnCLE	62.65	10.00	100.0	50.00	41.70

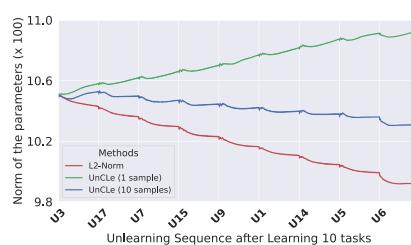
Permuted-MNIST					
Methods	RA	FA	UNI	MIA	UT
Fixed Noise	84.55	9.870	$-\infty$	49.99	10.48
Norm Reduce	96.70	94.99	-49.56	49.10	10.34
Discard e_f	96.87	61.79	-64.54	49.11	0.00
UnCLE	96.87	10.00	100.0	50.00	13.16

Tiny-ImageNet					
Methods	RA	FA	UNI	MIA	UT
Fixed Noise	34.68	9.440	$-\infty$	50.11	22.62
Norm Reduce	55.11	36.61	0.80	42.65	22.42
Discard e_f	56.50	15.54	6.88	48.44	0.00
UnCLE	55.24	10.00	100.0	50.00	29.63

Table 8: Performance of different noising strategies on four datasets (Request Sequence 1). All other unlearning hyperparameters (γ , E_γ) are held constant.

We experiment with a variety of noising strategies and compare our approach to norm reduction and fixed noise perturbation. **Norm reduction** uses the unlearning objective from 6.

$$\arg \min_{\phi} \gamma \cdot \|\mathcal{H}(e_f; \phi)\|_2^2 + \mathcal{L}_{reg}. \quad (6)$$

Figure 8: Effect of varying the number of noise samples (n) in the unlearning objective

Fixed noise perturbation uses the objective $\|\mathcal{H}(e_f; \phi) - z\|_2^2 + \gamma \cdot \mathcal{L}_{reg}$ where the noise z is fixed throughout all tasks. **Discard** e_f is the baseline in which to perform unlearning, the forget-task’s embedding e_f is simply discarded and replaced with a random embedding. From 8, we observe that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good RA but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it compromises the model’s stability and impacts RA, as noted in the methodology. We also observe that UnCLe, compared to all the other baselines, has the closest MIA value to 50, demonstrating its superiority in data privacy.

We also study the effects of the various unlearning strategies considered on the hypernetwork parameters, particularly the effect of varying n , the number of noise samples over which the average MSE is computed in the unlearning objective. We compare three cases namely $n = 1$ (Fixed Noise), $n = 10$ (UnCLe), and $n = \infty$, which is equivalent to a reduction of the L^2 -norm. The results are the comparison are presented in 8 wherein we see that as n increases, the magnitude of the hypernetwork parameters falls with each unlearning operation. When $n = 1$, MSE with a fixed noise value can lead to the hypernetwork memorizing the particular noise value, which impacts generalization. In contrast, as $n = \infty$, with regularization of the L^2 -norm of the parameters, the hypernetwork parameters are themselves driven to zero, which can eventually destabilize the hypernetwork. With UnCLe, we adopt $n = 10$ to strike a balance between the two extremes.

E.1 CONNECTING MSE AND L2

Minimizing the MSE term in the unlearning objective minimizes the L^2 -norm over the generated main network parameters, and consequently drives them toward zero. As a result, the model’s logits for the unlearned task become zero across all output nodes, leading to a uniform distribution over classes. This corresponds to maximum entropy, indicating that the model is maximally uncertain about the forgotten task, precisely the desired effect of unlearning.

However, direct application of the L^2 -norm loss in the unlearning objective runs the risk of driving the hypernetwork’s parameters toward zero. We observe this empirically by tracking the magnitude of the hypernetwork parameters through multiple unlearning operations (Figure 8). Consequently, this degrades the performance on the retain-tasks and undermines the hypernetwork’s ability to learn new tasks. In contrast, our empirical findings show that the proposed MSE-based unlearning objective still yields uniformly distributed (high-entropy) outputs without compromising the hypernetwork’s stability.

Consider the parameters of a model to be $\theta \in \mathbb{R}^d$. The average mean squared error $\frac{1}{n} \sum_{i=1}^n \|\theta - z_i\|_2^2$, where $z_i \sim \mathcal{N}(0, \mathbb{I}_d)$, represents a noisy approximation to the L^2 -norm over the parameters θ . Formally,

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n \|\theta - z_i\|_2^2 = \|\theta\|_2^2 + d \quad (7)$$

Consider $Y_i = \|\theta - z_i\|_2^2$ to be a random variable. Consider $E[\cdot]$ as the function calculating the expectation of a random variable. As z_i are i.i.d. samples of standard normal and θ is a constant, Y_i

864 are also i.i.d. samples. Using Strong Law of Large Numbers Loève (1977), we can say that:
 865

$$866 \quad 867 \quad 868 \quad \Pr \left[\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n Y_i = \mathbb{E}[Y_i] \right] = 1 \quad (8)$$

869 Now we would show that $\mathbb{E}[Y_i] = \|\theta\|_2^2 + d$, where d is the dimension of the parameter θ .
 870

$$871 \quad \mathbb{E}[Y_i] = \mathbb{E} [\|\theta - z_i\|_2^2] \\ 872 \quad = \mathbb{E} [\theta^T \theta - z_i^T \theta - \theta^T z_i + z_i^T z_i] \\ 873 \quad = \mathbb{E} [\theta^T \theta] - 2\mathbb{E} [z_i^T \theta] + \mathbb{E} [z_i^T z_i] \quad (9) \\ 874 \quad = \theta^T \theta - 2 \sum_j \theta_j \mathbb{E}[z_{ij}] + \sum_j \mathbb{E}[z_{ij}^2]$$

$$875 \quad = \|\theta\|_2^2 + \sum_j 1 \quad (10) \\ 876 \quad = \|\theta\|_2^2 + d$$

877 Here, Eq 9 is using linearity property of expectation and Eq 10 uses the fact that $\mathbb{E}[z_{ij}] = 0$ and
 878 $\mathbb{E}[z_{ij}^2]$ is nothing but variance of that variable z_{ij} , which is equal to 1.
 879

880 Based Eq 8 and Eq 11, we can say that,
 881

$$882 \quad \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n \|\theta - z_i\|_2^2 = \|\theta\|_2^2 + d \quad (12)$$

883 F OTHER BASELINES

884 F.1 HYPERNETWORK BASELINES

885 As an ablation, we consider **JiT-Hnet** and **GKT-Hnet**, which utilize a hypernetwork for CL in
 886 DER++’s place. There is also **Hnet** that relies on natural catastrophic forgetting as an unlearning
 887 mechanism (unlearning realized only after new learning). The results are presented in Appendix H:
 888 More Results.

889 F.2 TRIVIAL BASELINES

890 We also compare with standard baselines like fine-tuning (**FT**) and retraining (**RT & RT-Hnet**). FT
 891 and the two RT variants assume the availability of the complete retain-task data during unlearning.
 892 FT fine-tunes the model on the retain set upon unlearning. RT Retrains from scratch on the retain
 893 set. RT-Hnet trains a new hypernetwork sequentially on the retain set upon unlearning. The results
 894 are presented in Appendix H: More Results.

900 G MEMBERSHIP INFERENCE ATTACK

901 The Membership Inference Attack (MIA) metric Shokri et al. (2017) assesses the effectiveness of
 902 machine unlearning by measuring a model’s ability to ”forget” training data. MIAs exploit model
 903 behavior to infer whether a data point was in the training set, posing privacy concerns. In unlearning,
 904 the goal is for the model to treat forgotten data like unseen data. Adversarial attacks test this by
 905 attempting to determine data membership. A 50% MIA value indicates the attack is no better than
 906 random guessing, meaning the model has effectively mitigated membership inference risks.

907 Table 9 presents MIA values, including mean and standard deviation, across various methods and
 908 datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The results, consistently around
 909 50%, indicate that models generally exhibit strong resistance to MIA, making it difficult for attackers
 910 to distinguish between training and non-training data points.
 911

912 In the task unlearning setup with task-incremental continual learning, different heads are used for
 913 different tasks. When a task is forgotten, the corresponding head undergoes severe randomization,
 914

Permuted-MNIST & 5-Tasks				
Methods	5-Tasks		Permuted-MNIST	
	Mean	Std	Mean	Std
FT*	49.56	0.22	49.63	0.07
RT*	49.95	0.37	49.98	0.07
BadTeacher	50.03	0.16	50.04	0.11
SCRUB	50.25	0.21	49.99	0.01
SalUn	50.25	0.29	49.85	0.13
JiT	49.99	0.17	49.95	0.08
GKT	50.05	0.08	49.99	0.01
RT-Hnet*	49.75	0.06	49.90	0.04
Jit-Hnet	50.10	0.06	50.02	0.08
GKT-Hnet	49.99	0.19	49.98	0.22
UnCLE	50.01	0.09	50.00	0.02

CIFAR100 & Tiny-ImageNet				
Methods	CIFAR100		Tiny-ImageNet	
	Mean	Std	Mean	Std
FT*	45.00	0.66	45.26	0.73
RT*	49.82	0.50	49.72	0.23
BadTeacher	53.06	0.82	52.54	0.33
SCRUB	50.00	0.00	50.00	0.00
SalUn	46.26	0.42	47.47	0.73
JiT	45.80	0.73	47.28	0.15
GKT	49.88	0.20	49.93	0.06
RT-Hnet*	50.28	0.39	50.05	0.22
Jit-Hnet	48.74	1.11	49.39	0.24
GKT-Hnet	50.12	0.11	50.10	0.05
UnCLE	50.00	0.00	50.00	0.00

Table 9: MIA performance of baseline approaches versus **UNCLE** on four datasets (sequence 1, averaged over three seeds).

rendering its representations indistinguishable. As a result, MIA performance remains equivalent across all methods, as the forget head produces inherently random representations.

Notably, our approach, **UNCLE**, demonstrates near-perfect resistance to MIA, maintaining a mean MIA value of 50.00% across all datasets. This suggests that the attacker’s ability to infer data membership is no better than random guessing, ensuring robust privacy protection.

H MORE RESULTS

H.1 UNLEARNING TIME

Unlearning time refers to the time (in sec.) required to unlearn a particular task. In our approach the unlearning time is controlled by burn-in epochs. 10 provides unlearning time values for different unlearning methods. The value provided in the table is an average across all the unlearning time required for each unlearning operation in a request sequence for CLU setting.

H.2 RESNET18 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these experiments is performed on Sequence 1 (Table 4). The results are averaged over three runs with different seeds. We can observe from Table 11, Table 12, Table 13, Table 14, Table ?? and Table ?? that **UNCLE** performs better than all the other baselines on at least 3 out of 5 metrics. On the metric in which **UNCLE** is not the best, it performs equally well compared to the best one. These tables show **UNCLE**’s superiority over other unlearning baselines.

Methods	Unlearning Time (in sec)			
	5T	PMNIST	C100	TI
BadTeacher	76.78	55.50	10.95	8.680
SCRUB	171.1	118.9	30.02	32.52
SalUn	491.9	358.3	51.47	65.20
JiT	242.1	213.7	24.01	17.71
GKT	57.67	36.08	68.61	147.5
SSD	47.12	35.16	5.730	5.810
Jit-Hnet	306.6	257.5	22.94	22.83
GKT-Hnet	83.30	43.77	83.46	75.75
UnCLe	33.28	13.16	41.70	29.63

Table 10: Table provides comparison on Unlearning Time between different baselines and our approach on the datasets 5-Tasks (5T), Permuted MNIST (PMNIST), CIFAR100 (C100) and TinyImageNet (TI)

Methods	RA		FA	
	mean	std	mean	std
BadTeacher	62.87	8.07	9.650	0.65
SCRUB	10.90	2.44	9.340	0.58
SalUn	58.94	9.87	35.16	5.02
JiT	16.66	2.77	8.990	1.93
GKT	10.82	1.25	15.21	1.68
SSD	30.22	22.5	15.07	6.14
Jit-Hnet	14.74	4.69	13.15	4.49
GKT-Hnet	10.07	0.71	10.69	1.40
UnCLe	93.77	0.40	9.600	0.99

Table 11: Results on PenTask (Sequence 1) with ResNet-18 backbone.

H.3 RESNET50 RESULTS

The results from the primary results table are obtained from Sequence 1, averaged over three runs with different seeds. This section hosts the results from all three sequences, reported with mean and standard deviation obtained from averaging each experiment performed over three different seeds. The section is organized as a list of tables, with one table for each dataset-sequence pair, in the order of 5-Tasks, CIFAR-100, and Tiny-ImageNet.

H.4 UNLEARNING PERMANENCE

Our results in Figure 9 and Figure 10 indicate that tasks unlearned via conventional unlearning methods are prone to relapse due to subsequent learning operations. Unlike existing approaches, UnCLe prevents relapse of unlearned tasks when new tasks are subsequently introduced, making it a more reliable framework for permanent unlearning.

Methods	RA		FA	
	mean	std	mean	std
BadTeacher	65.13	3.67	10.11	0.52
SCRUB	53.39	3.15	10.00	0.00
SalUn	69.29	2.42	46.24	0.99
JiT	68.96	1.93	40.74	0.41
GKT	61.53	3.49	11.01	0.57
SSD	47.31	5.45	10.00	0.00
Jit-Hnet	51.52	18.8	21.84	4.71
GKT-Hnet	40.87	5.85	13.89	1.11
UnCLe	66.97	3.59	10.00	0.00

Table 12: Results on CIFAR-100 (Sequence 1) with ResNet-18 backbone.

Methods	RA		FA	
	mean	std	mean	std
BadTeacher	53.76	1.63	12.12	0.52
SCRUB	11.71	1.90	10.00	0.00
SalUn	59.47	0.80	39.27	1.64
JiT	59.88	0.65	38.60	0.77
GKT	54.31	0.31	13.01	0.90
SSD	53.37	2.60	10.26	0.36
Jit-Hnet	59.20	1.77	16.32	0.23
GKT-Hnet	48.34	1.15	10.92	0.43
UnCLe	59.22	2.14	10.00	0.00

Table 13: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone.

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	94.47	0.12	67.70	2.11
RT*	93.35	0.19	10.38	1.53
BadTeacher	92.17	0.04	10.20	0.40
SCRUB	9.97	0.46	9.84	0.14
SalUn	92.39	0.26	59.24	2.74
JiT	86.93	6.09	29.90	4.96
GKT	89.77	0.31	12.13	0.95
SSD	86.32	0.40	9.93	0.13
CLPU	91.73	0.22	0.00	0.00
RT-Hnet*	70.78	1.71	14.08	0.54
Hnet	96.60	0.16	96.91	0.09
Jit-Hnet	76.81	14.1	10.27	0.94
GKT-Hnet	95.34	0.37	14.46	0.35
UnCLe	96.87	0.20	10.00	0.06

Table 14: Permuted-MNIST — Sequence 1 (ResNet-18).

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	95.12	0.68	70.51	1.29
RT*	95.19	0.41	10.22	0.68
BadTeacher	94.88	0.30	9.94	0.54
SCRUB	10.06	0.07	9.81	0.31
SalUn	95.30	0.11	56.92	0.87
JiT	36.59	47.23	19.70	3.11
GKT	92.35	0.25	10.70	0.82
SSD	89.75	0.74	9.84	0.16
CLPU	95.21	0.29	0.00	0.00
RT-Hnet*	82.94	14.33	14.02	0.55
Hnet	96.67	0.29	96.71	0.12
Jit-Hnet	94.15	2.19	10.55	0.54
GKT-Hnet	96.31	0.09	13.84	0.33
UnCLe	97.00	0.15	9.84	0.16

Table 15: Permuted-MNIST — Sequence 2 (ResNet-18).

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	94.22	0.10	65.17	1.93
RT*	93.49	0.06	10.62	1.01
BadTeacher	79.56	4.29	10.28	0.81
SCRUB	9.97	0.08	9.98	0.25
SalUn	82.40	0.89	64.78	2.31
JiT	34.45	42.3	31.00	11.7
GKT	12.80	2.35	11.43	0.72
SSD	9.90	0.32	9.92	0.45
CLPU	91.72	0.16	0.00	0.00
RT-Hnet*	49.57	8.69	16.15	0.74
Hnet	96.80	0.08	96.72	0.11
Jit-Hnet	9.41	0.43	9.73	0.63
GKT-Hnet	13.96	2.53	17.25	2.26
UnCLe	96.98	0.23	9.93	0.19

Table 16: Permuted-MNIST — Sequence 3 (ResNet-18).

Methods	RA		FA	
	mean	std	mean	std
FT*	88.66	0.45	67.99	2.83
RT*	84.79	1.88	9.600	4.22
BadTeacher	54.38	23.5	8.550	1.23
SCRUB	9.160	0.15	12.97	0.08
SalUn	74.75	1.56	25.02	1.22
JiT	19.10	13.8	17.20	3.55
GKT	10.27	0.91	13.67	1.52
SSD	8.850	0.00	10.36	0.09
LWSF ⁺	31.76	0.25	0.00	0.00
CLPU	85.00	0.43	0.00	0.00
RT-Hnet*	76.23	3.31	18.44	0.78
Hnet ⁺	94.56	0.28	96.73	0.04
Jit-Hnet	10.19	1.18	11.29	4.37
GKT-Hnet	10.53	0.61	14.48	1.00
UnCLe	94.12	0.43	10.04	1.14

Table 17: 5-Tasks (Sequence 1).

Methods	RA		FA	
	mean	std	mean	std
FT*	88.54	0.53	58.07	2.40
RT*	86.14	3.72	9.410	0.59
BadTeacher	40.01	3.01	8.270	0.37
SCRUB	9.90	0.24	12.80	2.63
SalUn	56.29	7.81	29.40	2.71
JiT	11.66	3.51	22.31	6.30
GKT	10.52	0.22	14.44	0.88
SSD	10.10	0.01	14.59	4.66
CLPU	83.18	1.62	0.00	0.00
RT-Hnet*	62.78	6.57	10.55	1.01
Hnet ⁺	96.39	0.07	93.84	0.24
Jit-Hnet	9.770	0.23	17.18	8.80
GKT-Hnet	9.010	1.14	9.370	0.69
UnCLe	95.91	0.07	9.930	3.23

Table 18: 5-Tasks (Sequence 2).

Methods	RA		FA	
	mean	std	mean	std
FT*	91.21	0.45	58.63	0.59
RT*	91.87	0.66	7.86	1.81
BadTeacher	39.07	25.2	10.20	0.96
SCRUB	9.22	2.39	10.22	0.55
SalUn	37.55	6.75	21.99	1.96
JiT	12.56	7.53	11.77	1.43
GKT	8.35	0.88	13.03	1.25
SSD	12.42	7.55	10.22	0.55
CLPU	89.54	0.79	0.00	0.00
RT-Hnet*	94.05	0.13	9.350	0.48
Hnet ⁺	92.96	0.13	93.26	0.08
Jit-Hnet	7.12	0.66	11.40	2.95
GKT-Hnet	15.11	4.94	13.74	0.90
UnCLe	93.24	0.76	11.40	3.05

Table 19: 5-Tasks (Sequence 3).

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	72.43	3.46	55.44	4.16
RT*	62.91	3.62	9.69	1.17
BadTeacher	61.75	4.47	14.57	0.60
SCRUB	29.45	7.18	10.06	0.10
SalUn	66.56	3.58	44.89	2.14
JiT	65.94	3.58	43.93	2.48
GKT	57.05	3.15	10.70	0.44
SSD	43.27	4.25	10.00	0.00
CLPU	63.10	3.77	0.00	0.00
RT-Hnet*	23.81	0.89	9.71	1.37
Hnet ⁺	60.52	3.73	62.84	2.72
Jit-Hnet	60.79	4.45	16.97	3.49
GKT-Hnet	40.22	7.49	9.97	0.83
UnCLe	62.65	3.85	10.00	0.00

Table 20: CIFAR-100 (Sequence 1) — RA and FA only.

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	73.45	3.47	57.81	1.24
RT*	67.42	2.41	9.84	1.60
BadTeacher	66.67	3.58	12.97	1.37
SCRUB	13.13	4.09	10.00	0.00
SalUn	72.33	3.00	44.16	2.21
JiT	71.80	3.38	45.98	0.26
GKT	61.00	2.27	11.82	0.85
SSD	46.45	1.43	10.00	0.00
CLPU	69.83	1.85	0.00	0.00
RT-Hnet*	44.32	6.60	10.06	1.06
Hnet⁺	66.08	2.07	62.59	1.37
Jit-Hnet	66.97	2.81	20.24	2.34
GKT-Hnet	58.58	5.98	11.36	0.29
UnCLe	66.82	2.85	10.00	0.00

Table 21: CIFAR-100 (Sequence 2) — RA and FA only.

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	72.01	2.19	58.79	3.25
RT*	62.47	2.65	9.79	1.34
BadTeacher	52.76	1.51	14.55	1.58
SCRUB	10.00	0.00	10.00	0.00
SalUn	57.92	2.15	48.07	1.99
JiT	55.19	5.52	46.77	2.28
GKT	11.91	1.38	12.67	1.30
SSD	10.00	0.00	10.36	0.62
CLPU	61.23	2.56	0.00	0.00
RT-Hnet*	15.42	1.75	9.60	0.45
Hnet⁺	60.66	2.37	62.04	0.35
Jit-Hnet	28.17	7.95	17.87	0.69
GKT-Hnet	9.54	0.94	11.44	1.49
UnCLe	58.15	6.09	10.00	0.00

Table 22: CIFAR-100 (Sequence 3) — RA and FA only.

Methods	RA		FA	
	Mean	Std	Mean	Std
FT*	60.08	0.30	52.56	2.38
RT*	51.86	0.16	10.47	0.59
BadTeacher	52.79	1.40	15.73	1.09
SCRUB	19.48	15.4	10.00	0.00
SalUn	58.44	1.57	36.02	1.23
JiT	57.86	2.13	32.70	0.48
GKT	52.44	1.53	11.35	0.77
SSD	39.78	3.43	10.37	0.62
CLPU	54.90	1.27	0.00	0.00
RT-Hnet*	53.54	2.76	9.74	0.86
Hnet	57.53	2.26	54.31	3.35
Jit-Hnet	54.10	2.39	13.05	0.35
GKT-Hnet	44.40	2.26	9.85	0.30
UnCLe	55.24	3.66	10.00	0.00

Table 23: Tiny-ImageNet (Sequence 1, ResNet-50).

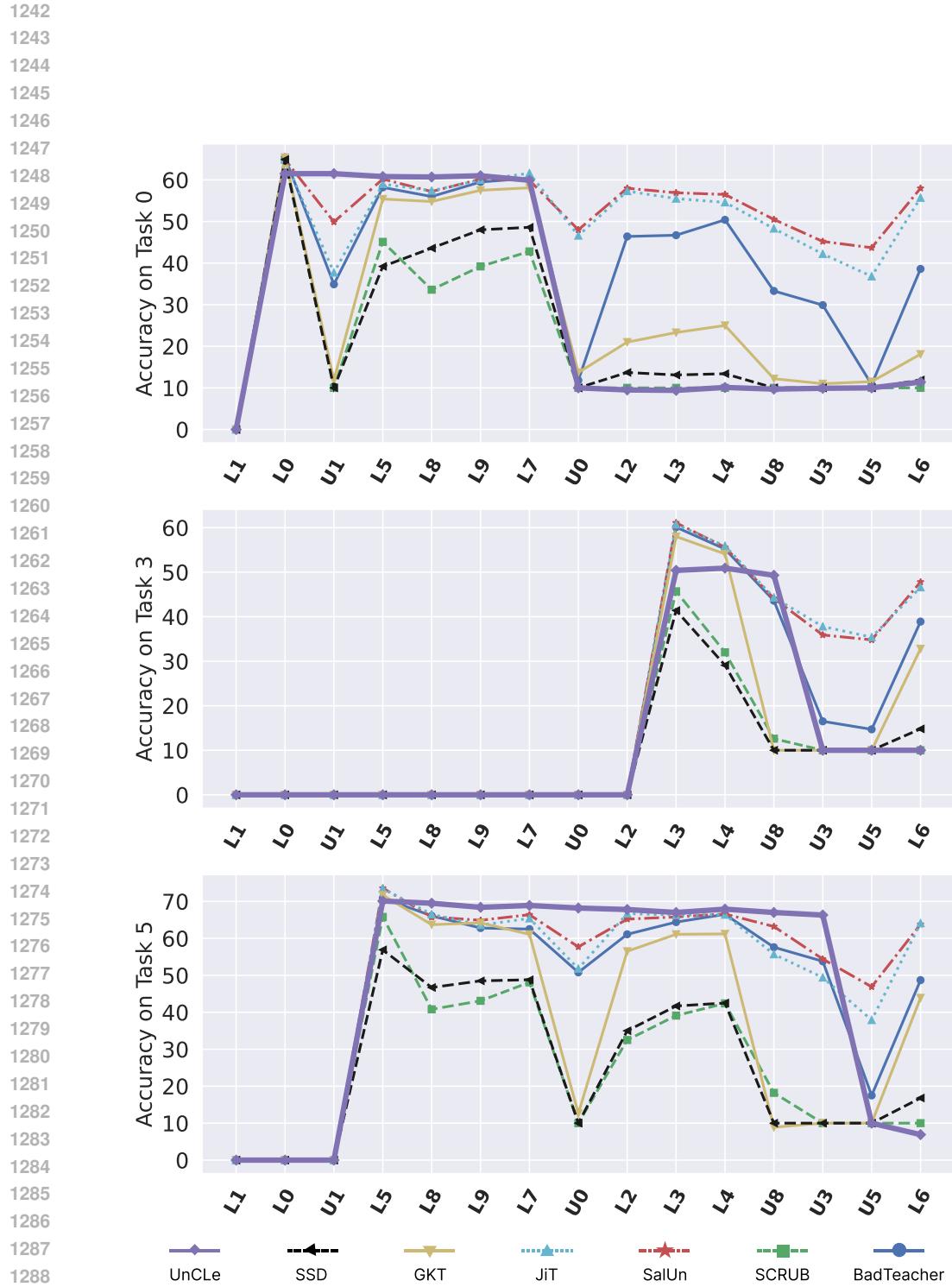


Figure 9: Figure tracking task accuracies through the sequence of operations on the CIFAR 100 dataset. Each chart tracks a single task's accuracy as mentioned on the left.

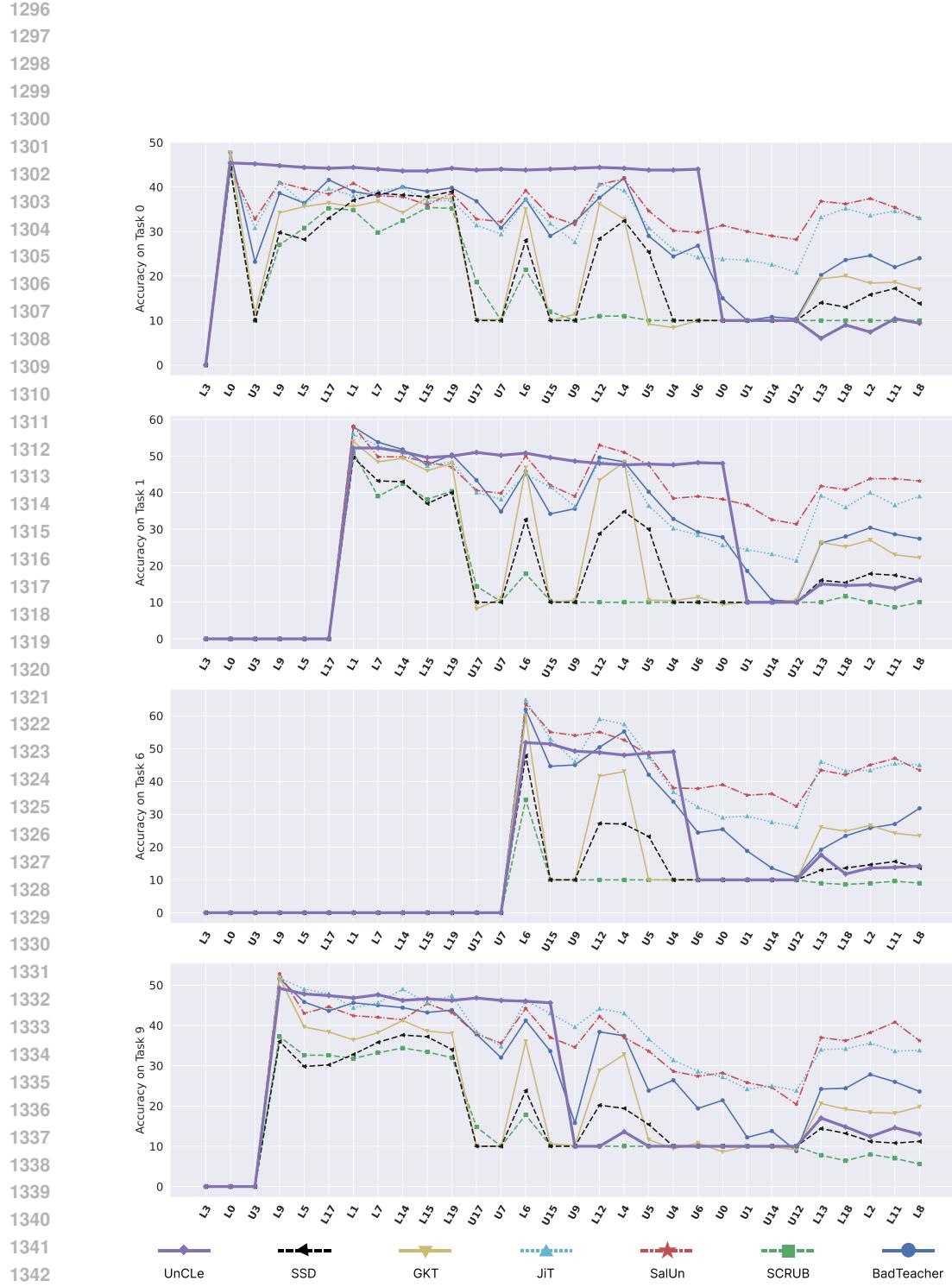


Figure 10: Figure tracking task accuracies through the sequence of operations on the TinyImageNet dataset. Each chart tracks a single task's accuracy as mentioned on the left.