
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN UNLEARNING FRAMEWORK FOR CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Growing concerns surrounding AI safety and data privacy have driven the devel-
opment of Machine Unlearning as a potential solution. However, current machine
unlearning algorithms are designed to complement the offline training paradigm.
The emergence of the Continual Learning (CL) paradigm promises incremental
model updates, enabling models to learn new tasks sequentially. Naturally, some
of those tasks may need to be unlearned to address safety or privacy concerns that
might arise. We find that applying conventional unlearning algorithms in continual
learning environments creates two critical problems: performance degradation on
retained tasks and task relapse, where previously unlearned tasks resurface during
subsequent learning. Furthermore, most unlearning algorithms require data to op-
erate, which conflicts with CL’s philosophy of discarding past data. A clear need
arises for unlearning algorithms that are data-free and mindful of future learning.
To that end, we propose UnCLe, an Unlearning framework for Continual Learn-
ing. UnCLe employs a hypernetwork that learns to generate task-specific network
parameters, using task embeddings. Tasks are unlearned by aligning the corre-
sponding generated network parameters with noise, without requiring any data.
Empirical evaluations on several vision data sets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal
disruption to previously acquired knowledge.

1 INTRODUCTION

Accelerating growth in AI adoption has brought with it safety and privacy concerns, leading to in-
creasing regulatory scrutiny European Parliament & Council of the European Union (2023). This has
led to the development of Machine Unlearning so that data found in violation of safety and privacy
can be selectively removed from a model with minimal effects on the rest of the model’s learned
knowledge. Algorithmic advances in unlearning have enabled the effective removal of unwanted
information whilst safely preserving the rest Nguyen et al. (2022). However, the vast majority of
contemporary unlearning algorithms are designed to complement offline-trained models. Offline
training, which involves training a model on a large, monolithic dataset once and deploying it, is the
dominant paradigm of the day. However, the rigid nature of the paradigm, where a trained model
cannot be updated to reflect new data, is subject to rising criticism. Naively re-training an already
trained model can lead to the model forgetting what it already knows, due to differences in data
distributions. This phenomenon is known as catastrophic forgetting, and its mitigation has led to
the rise of an alternate training paradigm aptly dubbed Continual Learning (CL). CL allows the pro-
gressive update of models as new data arises, while ensuring that previously learned information is
preserved. Naturally, unlearning some of those incremental updates, termed tasks in the CL litera-
ture, is as important as learning them. The newfound flexibility to learn new tasks with time should
be complemented by effective unlearning strategies so that any privacy or safety concerns that may
arise with a newly learned task are promptly addressed. As depicted in Figure 1, a unified treatment
of CL and unlearning would empower models to learn new tasks and unlearn obsolete ones with
minimal interference to the rest. Yet, there is a lack of frameworks that simultaneously address both
challenges.

Integrating unlearning in a CL framework is not straightforward. One of the CL’s core principles is
to discard data from past tasks as new tasks are encountered. This is problematic as most unlearning
algorithms require either the data that needs to be unlearned (forget-set) or the entirety of the data

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

L1 L2 U1 L3 L4 U3 L5 U2init

1 1

2

2 2 2

3 3

2 2

4

4 4

4

5

5

time

Model

State

Request

Figure 1: A visualization of the model’s state
with time. With each learning operation Lx,
the model gains expertise on a particular task x,
as represented by the colored tile added to the
model state. Conversely, an unlearning operation
Ux, erases the model’s expertise of task x.

(A) (B)Trainable

Figure 2: Architecture schematic. A: Learning
and B: Unlearning. L: Learning Objective and
U : Unlearning Objective.

that the model was trained on (forget-set + retain-set). Even if we resolve the data requirement
deadlock through the use of replay buffers that contain representative subsets of data from past tasks,
we find that unlearning operations in a CL environment have harmful spillover effects, degrading
the model’s performance on other tasks. In addition, we find that, with conventional unlearning
methods, unlearned tasks relapse and recover lost performance as the model subsequently learns
new tasks. In other words, unlearning algorithms that have proven effective in offline settings do
not translate well when applied in a CL environment. This is because conventional methods were
simply not designed to operate on incrementally gathered knowledge or anticipate future learning
operations past the unlearning operation. This suggests the need for an unlearning solution that is
purpose-built to operate in a CL setting.

Furthermore, in compliance with CL desiderata, a unified solution should be able to perform both
learning and unlearning operations in the absence of historical data. In light of such requirements,
we propose UnCLe: an Unlearning Framework for Continual Learning. UnCLe employs a hyper-
network that learns to generate task-specific network parameters, conditioned on corresponding task
embeddings. Tasks are unlearned by aligning generated network parameters with noise, without
requiring any data. Empirical evaluations on several vision datasets demonstrate UnCLe’s ability to
sequentially perform multiple learning and unlearning operations with minimal disruption to previ-
ously acquired knowledge.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

CL methods largely fall into one of the three schools of thought. (1) Regularization-based methods
mitigate forgetting through an additional regularization term in the learning objective that constrains
model changes to minimize interference to previous tasks. This can take the form of a direct penalty
on changes to model parameters weighted by some importance metric, as in EWC Kirkpatrick et al.
(2017). Alternatively, the penalty could functionally regularize model updates such that behavior on
previous tasks is preserved. This usually takes the form of a distillation objective between old and
new model states Li & Hoiem (2017). Hypernetworks Ha et al. (2017); von Oswald et al. (2020)
present a new spin on this by sequentially learning to generate task-specific networks, conditioned
on corresponding task embeddings. Forgetting is mitigated via distillation by ensuring the new
hypernetwork generates similar parameters as the old hypernetwork for previous task embeddings.
(2) Architecture-based methods involve the use of non-overlapping sets of parameters for each task.
This is either done through the use of separate networks or partitioning a single network to create
task-specific sub-networks Mallya & Lazebnik (2018) or expanding the network progressively by
adding neurons to accommodate new tasks Yoon et al. (2018). Such methods nullify catastrophic
forgetting but come at the cost of parameter growth and inter-task knowledge transfer. (3) Replay-
based methods relax the data restriction and allow a small subset of historical data to be stored
in a buffer and replayed when training new tasks Rolnick et al. (2019); Riemer et al. (2019). The
idea is that the buffer should serve as a good approximation of past task distributions, and replaying
them whenever a new task is learned should therefore mitigate forgetting. Replay-based methods
mostly differ in their buffer sample selection strategy. Some methods replace the replay buffer with
a generative model that is continually trained to generate historical data Shin et al. (2017).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

UnCLe

SSD

GKT

JiT

SalUn

SCRUB

BadTeacher

Figure 3: Plot tracking Task 0’s accuracy through a sequence of learning and unlearning operations
on the TinyImageNet dataset. We present more such plots in Appendix H. UniCLUN is ignored as
it is effectively equivalent to our adaptation of BadTeacher.

2.2 MACHINE UNLEARNING

Most unlearning methods are designed to operate on offline-trained models. We review some of the
latest unlearning methods in the literature and adopt them as baselines. BadTeacher Chundawat
et al. (2023a) uses a random teacher network for the forget set and KL-divergence to match distri-
butions, while retaining set training minimizes cross-entropy. SalUn Fan et al. (2024) generates a
gradient-based weight saliency map and modifies only the salient model weights impacted by the
forget set, rather than the entire model. SCRUB Kurmanji et al. (2023) employs a student-teacher
model where the student deviates from the teacher on the forget set while retaining performance on
the rest. SSD Foster et al. (2024b) is a post hoc method that avoids retraining. It first selects pa-
rameters using the Fisher information matrix, then dampens their effects to ensure unlearning while
preserving model performance. GKT Chundawat et al. (2023b) uses a generator to synthesize sam-
ples for unlearning. JiT Foster et al. (2024a) leverages Lipschitz continuity for zero-shot unlearning
by smoothing model outputs relative to input perturbations.

2.3 UNIFIED SOLUTIONS

The following are unlearning methods that are designed to operate in a continual setting. CLPU
Liu et al. (2022) involves learning independent networks for each task and discarding them upon
request, thereby achieving unlearning. Although CLPU achieves exact unlearning, it comes at the
cost of rampant parameter growth, making it unsustainable for long task sequences. UniCLUN
Chatterjee et al. (2024) adapts BadTeacher Chundawat et al. (2023a) to a continual setting with a
replay buffer. Distilling from a random teacher network enables forgetting, and distillation from the
previous task’s network helps mitigate forgetting when learning new tasks.

Unlearning methods vary in their data requirements. BadTeacher, SCRUB, SalUN, SSD, and Uni-
CLUN require both the forget and retain sets. JiT requires only the Forget set. GKT and the proposed
method, UnCLe, are data-free unlearning methods.

3 PROBLEM FORMULATION

The goal is to continually learn and unlearn tasks. The setting involves a model encountering a
sequence of requests R = {Ri}|R|

i=1 where each request Ri = (Ii, Ti, Di) is a triplet comprising the
instruction Ii, the task identifier Ti and the dataset Di. Given an instruction to learn, i.e., Ii = L,
the model is to learn task Ti = t through its corresponding dataset Di = Dt. Note that the CL
setup does not allow us to store the task-specific data from past requests. This work considers a
supervised setting with each task’s dataset Dt = {xt

j , y
t
j}

|Dt|
j=1 containing |Dt| input-output pairs.

For an unlearn instruction Ii = U , the model is required to unlearn a task Ti = t in the absence of
the task data Di = {}. This data-free unlearning requirement is a key characteristic of the continual
setting, which assumes that once a task is learned, the corresponding data is foregone.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF CONTEMPORARY UNLEARNING

In this section, we analyze how current unlearning algorithms fare in a continual setting. Given the
data requirements of most current unlearning algorithms, we adopt a replay-based CL strategy to
adapt them to a continual setting. The replay buffer enables both unlearning and forgetting mitiga-
tion. For our replay strategy, we choose the ubiquitous DER++ Buzzega et al. (2020) that blends
functional regularization with replay. DER++ stores the previous model’s output logits along with
the inputs and labels in the replay buffer. When learning a new task, in addition to minimizing the
classification loss, the error between the current and the stored logits is minimized as well. Formally,
the learning objective is as follows:

argmin
θ,ϕ

E(x,y)∼Dt
LCE(y, fθ(hϕ(x))) + α ·E(x′,y′)∼RLCE(y

′, fθ(hϕ(x
′)))

+ β ·E(x′′,z′′)∼R||z′′ − fθ(hϕ(x
′′))||22

(1)

where the first term is the current task t’s classification loss between the ground truth labels and the
model fθ(hϕ(.)) outputs, the second term is the replay bufferR’s classification loss and the last term
is the Euclidean distance between the feature extractor hϕ(.) logit outputs and the stored logits z. α
and β are hyperparameters to balance the current task and replay. The unlearning objective varies
with each unlearning algorithm. In addition, the replay buffer would no longer contain samples from
the task that is being unlearned.

We apply our CL-adapted unlearning baselines to a random sequence of learning and unlearning
operations as denoted in Figure 3’s X axis. We choose the TinyImageNet dataset and split the 200-
class dataset 20 ways, resulting in 20 tasks of 10 classes each. For brevity, we track the accuracy of
a single task (Task 0) through the entire sequence of operations to study its behavior in response to
each operation.

In the first operation L3, we see that Task 0’s accuracy is zero as it has not been learned yet. The
second operation, L0, results in a sharp increase in accuracy as Task 0 is learned. The third operation
U3 is an unlearning operation that is supposed to only impact Task 3. However, we see that all the
baselines witness sharp drops in Task 0’s accuracy of varying magnitudes. This hints at the current
methods’ incapacity to handle CL environments. The next operation L9 is a learning operation that
results in Task 0’s accuracy partially recovering among all baselines. This is due to the presence of
data from Task 0 in the replay buffer that enables the model to partially relearn what it has previously
unlearned. The subsequent learning operations from L5 to L19 show more or less stable accuracies
across the board until U17, which once again plunges Task 0’s accuracy. Accuracy degrades further
with another consecutive unlearning operation U7. This pattern of accuracy degradation and recov-
ery repeats until Task 0 is finally unlearned. At U0, we witness baselines differ in their behavior.
SSD, GKT, and SCRUB’s accuracies stay largely the same at 10 (equivalent to a random guess,
given 10 classes a task), having already degraded in the prior unlearning operations. BadTeacher’s
Task 0 accuracy dips, but not fully, until only after the next unlearning operation. SalUn and JiT
show a negligible impact. Note that as a task is unlearned, its corresponding dataset is removed from
the replay buffer. In this case, after U0, samples from Task 0 are removed from the buffer. Mov-
ing further, the subsequent sequence of unlearning operations till U12 sees the accuracies largely
unchanged. The tail end of the sequence sees a line of learning operations. Surprisingly, Task 0’s
accuracy again recovers across all baselines (excluding SCRUB, which seems to have completely
collapsed midway through the sequence). Despite the removal of replay data, accuracy improves due
to backward transfer of knowledge from learning subsequent tasks that are similar to the unlearned
task. Standard unlearning algorithms do not take into account the possibility of future learning and
therefore do not offer any safeguards against such performance recovery.

In summary, we identify two phenomena that are unique to continual settings where traditional
unlearning algorithms falter:

1. Unlearning operations spill into tasks other than the targeted task, resulting in performance
degradation across all learned tasks.

2. Subsequent learning operations lead to unlearned tasks relapsing and partially recovering
lost performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning (L) and Unlearning (R) in UnCLe

Input: Task Data Dt, regularization constant β,
learning epochs El

1: et = random init()
2: for j = 0 to EL do
3: for each batch (Xt

i , Y
t
i) in Dt do

4: θt = H(et;ϕ)
5: Ŷi

t
= F(Xt; θt)

6: Llrn = Ltask(Y
t
i , Ŷi

t
) + β · Lreg

7: Optimize {ϕ, et} w.r.t Llrn

8: end for
9: end for

10: ϕ∗ = ϕ

Input: Forget Task f , Unlearning regularization
constant γ, Burn-In Eu, Number of noise sam-
ples n

1: for j = 1 to Eu do
2: Lfgt = 0
3: for k = 1 to n do
4: Sample noise z ∼ N (0, Id)
5: Update Lfgt ← Lfgt +

1
n∥H(ef ;ϕ) −

z∥22
6: end for
7: Lul = γ · Lfgt + Lreg

8: Optimize ϕ with respect to Lul

9: end for

Our empirical observations thus demonstrate that current unlearning algorithms are ill-equipped
to deal with continual settings and that bespoke frameworks to tackle both continual learning and
unlearning are required.

5 METHODOLOGY

The goal is to build a unified framework that is capable of both continual learning and unlearning.
As a result, the framework should simultaneously satisfy both continual learning and unlearning re-
quirements. CL frameworks endeavor to minimize catastrophic forgetting while maximizing knowl-
edge transfer between tasks. On the other hand, unlearning frameworks strive for completeness,
specificity, and permanence. Moreover, unlearning has to be now data-free as the continual setting
relinquishes past tasks’ data. This marks a stark departure from conventional unlearning settings.

A trivial way to address all the aforementioned challenges in tandem is through parameter isolation.
Consider a setting wherein a separate model is learned for each task. Such a scenario avoids catas-
trophic forgetting altogether, as no interference can occur between tasks since they occupy disjoint
parameter sets. A task unlearning operation would simply mean discarding the appropriate model.
The modularity of the framework ensures the exact unlearning Nguyen et al. (2022) of a task: guar-
anteeing completeness, specificity, and permanence. It is complete since no other network contains
an unlearned task’s information other than the discarded network. It is specific as discarding a partic-
ular network has no ill bearing on other tasks’ networks, and finally, its effects are permanent since
there is no way to recover lost information through the remaining networks. The obvious down-
side to this ideal framework is the substantial increase in parameters with every new task, violating
the limited memory assumptions in CL settings. Furthermore, parameter isolation also skimps on
knowledge transfer between tasks, which has proven massively beneficial in continual learning.

5.1 AN UNLEARNING FRAMEWORK FOR CONTINUAL LEARNING

We propose an Unlearning Framework for Continual Learning (UnCLe) that achieves parameter
efficiency and knowledge transfer while ensuring desired continual learning and unlearning proper-
ties. The proposed approach forgoes maintaining task-specific networks and generates them instead
through a hypernetwork Ha et al. (2017). A hypernetworkH(.;ϕ) is a neural network that generates
parameters of another neural network termed the main network. The hypernetwork can parameter-
ize different main networks when conditioned on different learnable embeddings. UnCLe employs
hypernetworks to generate unique main network parameters θt for each task t, when conditioned on
corresponding task embeddings et.

5.1.1 LEARNING

In a CL setting, the hypernetwork encounters tasks sequentially von Oswald et al. (2020). As a
result, learning to generate new task-specific parameters will inevitably lead to the catastrophic for-
getting of the previous tasks. The hypernetwork is hence regularized to ensure consistent generation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of previous task-specific parameters. This is achieved through a knowledge distillation-inspired ob-
jective that minimizes the difference in the generated output between the current hypernetwork and
a hypernetwork frozen prior to learning the current task. The objective for learning a new task t is
thus formulated:

argmin
ϕ,et

Ltask(Dt,H(et;ϕ)) + β · Lreg, where

Lreg =
1

t− 1

t−1∑
t′=1

∥H(et′ ;ϕ∗)−H(et′ ;ϕ)∥22 (2)

Ltask is the task-specific loss (cross-entropy for the classification tasks) computed for the data set
Dt associated with task t, β is a hyperparameter controlling the strength of regularization, and
Lreg is the distillation-inspired regularization term. The hypernetwork parameters are initialized
via the Hyperfan initialization Chang et al. (2023), which ensures that the hypernetwork generates
main network parameters that are, in turn, Kaiming He initialized He et al. (2015). The parameter
efficiency problem is therefore addressed through the hypernetwork framework, as we only need to
store the hypernetwork parameters and the low-dimensional task embeddings. The addition of new
embeddings with each new task accounts for a negligible growth in parameters. This framework also
allows for inter-task knowledge transfer through the shared hypernetwork parameters. The learning
methodology is summarized in Algorithm 1.

5.1.2 UNLEARNING

A model that has unlearned a task is required to behave in a way that is similar to a model that
has never been trained on that particular task. UnCLe realizes this goal by reverting the forget-
task parameters generated by the hypernetwork back to a standard normal initialization. During the
learning phase, given a task t and its associated embedding et, the hypernetwork learns to generate
parameters θt that minimize the empirical risk on the dataset Dt corresponding to task t. Similarly,
when instructed to unlearn t, we enforce the hypernetwork to learn to map the embedding et back to
zero-centered Gaussian noise. This is attained through minimizing the error between the generated
parameters θt and a Gaussian noise sample z. This has the desired effect of unlearning the task
t as the hypernetwork conditioned on et no longer generates meaningful parameters θt but rather
noise that is akin to a randomly initialized network. As with learning a new task, unlearning too
can cause catastrophic forgetting of the retain-tasks. To confine unlearning to the forget-task and to
safeguard retain-tasks, we adopt a similar regularization term in the objective that enforces consistent
parameter generation for the retain-tasks. Overall, the unlearning objective for a forget-task f is
formulated as:

argmin
ϕ

γ ·

(
1

n

n∑
i=1

∥H(ef ;ϕ)− zi∥22

)
+ Lreg (3)

where zi are samples from a zero-centered Gaussian. The hyperparameter γ controls the strength of
regularization. We average the MSE over a batch of n different noise samples to prevent the hyper-
network from memorizing any particular noise sample, which can impact generalization. Given an
unlearning request, the hypernetwork is optimized with the aforementioned objective over a number
of iterations that we term burn-in. The unlearning procedure is summarized in Algorithm 1.

6 EXPERIMENTS & RESULTS

We generate a random sequence of learning and unlearning requests and train the model continually
on the corresponding task datasets. Descriptions of various sequences and seeds used are found in
Appendix C.

6.0.1 IMPLEMENTATION

We use a fully connected Hypernetwork with 3 hidden layers of dimensions 128, 256, and 512.
The hypernetwork generates ResNet18 parameters in the case of Permuted MNIST experiments and
ResNet50 elsewhere to demonstrate scalability. We also include ResNet18 results on other datasets
in Appendix H. To improve efficiency, the parameters are generated in chunks. We defer details on
the chunking mechanism to Appendix B. We use the Adam optimizer Kingma & Ba (2017) for both

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 4: Plot tracking Task 0’s accuracy through
a sequence of learning and unlearning operations
on the CIFAR 100 dataset.

L3 L0 U3 L9 L5 L17 L1 L7 L14 L15 L19 U17 U7 L6 U15 U9 L12 L4 U5 U4 U6 U0 U1
U14 U12 L13 L18 L2 L11 L8

Request Sequence

0

10

20

30

40

50

60

70

Te
st

 se
t A

cc
ur

ac
y

Only Learning
UnCLe

Figure 5: Comparing individual task accuracies
of UnCLe and a trivial baseline that only per-
forms learning on the TinyImageNet dataset.

Framework Permuted MNIST CIFAR-100 TinyImageNet 5-Tasks
RA FA RA FA RA FA RA FA

BadTeacher 92.17 10.20 61.75 14.57 52.79 15.73 54.38 8.550
SCRUB 9.970 9.840 29.45 10.06 19.48 10.00 9.160 12.97
SalUn 92.39 59.24 66.56 44.89 58.44 36.02 74.75 25.02

JiT 86.93 29.90 65.94 43.93 57.86 32.70 19.10 17.20
GKT 89.77 12.13 57.05 10.70 52.44 11.35 10.27 13.67
SSD 86.32 9.930 43.27 10.00 39.78 10.37 8.850 10.36

CLPU 91.73 - 63.10 - 54.90 - 85.00 -
UnCLe (Ours) 96.87 10.00 62.65 10.00 55.24 10.00 94.12 10.04

Table 1: A comparison of Retain-task (Higher, the better) and Forget-task accuracies (Closer to
random (10%), the better). Presented results are from Request Sequence 1 averaged over 3 runs
with different seeds (Appendix C).

learning and unlearning, with a learning rate of 0.001 and a scheduler. Details regarding learning
rate schedule, batch size, and training epochs are deferred to Appendix C. All training was done on
a single V100 GPU.

6.0.2 DATASETS

We conduct experiments with four datasets, namely, Permuted-MNIST Goodfellow et al. (2015), 5-
Tasks Clanuwat et al. (2018); Xiao et al. (2017); Deng (2012); Bulatov (2011); Netzer et al. (2011),
CIFAR-100 Krizhevsky (2009), and Tiny ImageNet Moustafa (2017). Apart from 5 Tasks, which
comprise 5 classification tasks of 10 classes each, all the other datasets entail 10 tasks, each with 10
classes. Details are deferred to Appendix C.

6.0.3 HYPERPARAMETERS

When learning, tuning β plays a crucial role in balancing stability and plasticity. The values for β
were obtained through a search detailed in Appendix C. Conversely, the intensity of unlearning is
controlled by two variables: the regularization hyperparameter γ and the burn-in period Eu. As with
β in learning, γ balances the remembrance and the forgetting terms of the unlearning objective. The
burn-in, Eu, controls the number of iterations the hypernetwork is optimized over the unlearning
objective. A range of values for γ and Eu was explored as detailed in Appendix C.

6.1 DISCUSSION

In our prior analysis, we discussed how current unlearning methods are deficient in a continual set-
ting. Figure 3 details the particular instances where they fail. Figure 3 also describes UnCLe’s
accuracy trajectory through the sequence of learning and unlearning operations. We find that Task
0’s accuracy spikes after its learning operation. Unlike other baselines, where Task 0’s accuracy fell
due to other unlearning operations, UnCLe maintains Task 0’s accuracy stably until it is unlearned.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The unlearning operation swiftly reduces Task 0’s accuracy to 10% (equivalent to a random guess,
given 10-way classification), and the accuracy stays at 10% or below even in the face of subse-
quent learning operations. UnCLe resists unlearning operations spilling over to other tasks and also
prevents unlearned tasks from relapsing due to future learning operations. Figure 4 shows similar
patterns in the CIFAR 100 dataset, where UnCLe stably learns and unlearns at specified operations
without deviating much during other intermediate and future operations. The same cannot be said
for the other baselines, which show the same unpredictable behavior as before.

Summarily, we compare UnCLe and the baselines across datasets in Table 1. We use Retain-task
Accuracy RA) and Forget-task Accuracy (FA) as metrics, measuring the average accuracy of
the retained and the forgotten tasks, respectively, at the end of the experimental sequence. These are
analogous to Retain-set and Forget-set accuracy, which are the standard metrics in offline unlearning
settings. Across baselines, we find that UnCLe achieves an FA equivalent or close to random,
indicating complete forgetting of unlearned tasks. CLPU’s FA cannot be measured as unlearning
in CLPU implies discarding the corresponding task network. Other baselines show high FA due
to accuracy relapsing on account of future learning operations. In terms of RA, UnCLe performs
competitively with the baselines.

As Figures 3&4 have shown, RA and FA alone are ill-poised to paint a full picture of the complex-
ities of continually learning and unlearning. An unlearning operation at the end of the sequence
would plummet the RA of most of, if not all, the baselines. Similarly, a steady sequence of learning
operations at the end would further increase the FA. We therefore need a better summary statistic
beyond accuracy to paint a more holistic picture. To that end, we propose two new metrics: Spill and
Relapse, each measuring a different aspect of the effects of unlearning in continual settings. Spill
measures unlearning specificity and is calculated after each unlearning operation. Spill measures
the effect of an unlearning operation on all other tasks other than the targeted task. If u is the index
of the unlearning operation on a task tf , its spill is defined as:

Su =
∑
t̸=tf

|atu−1 − atu| (4)

Relapse measures unlearning permanence. It measures the magnitude of difference between a task’s
accuracy right after it is unlearned and at the end of the experimental sequence. Formally, we define
relapse for each forget-task t as:

Pt = |atu − ate| (5)
where u denotes where the task is unlearned and e denotes the end of the sequence. In Table 2, we
report the average spill and relapse across baselines and datasets.

From Table 2, we see that UnCLe demonstrates the lowest spill by a large margin. GKT and SSD
show the highest spill, consistent with their unstable trajectories seen in Figures 3&4. The other
baselines fare in between. With regards to relapse, UnCLe scores the lowest in CIFAR 100 and
the second lowest in 5-Tasks. SCRUB demonstrates the lowest relapse in most datasets, but demon-
strates poor RA, FA, and Spill. Although BadTeacher ranks well in RA and FA, it falls short on Spill
and Relapse. This shows that no single metric can fully capture unlearning performance in continual
settings, and we need all four metrics to properly quantify the performance of each framework. We
also see that UnCLe ranks best or near best in most datasets measured by each of the four metrics.
All of this confirms the need for tailored unlearning frameworks to suit the continual setting, as
conventional unlearning methods are simply not designed to anticipate such repeated learning and
unlearning operations.

We include further results on more experimental sequences with mean and variance obtained over
multiple seed runs in Appendix H.

Membership Inference Attack A Membership Inference Attack (MIA) on UnCLe results in a
score of 50%. A 50% MIA value indicates the attack is no better than random guessing, meaning
the model has effectively mitigated membership inference risks. We include a detailed description
of MIA and further results in Appendix G.

Hypernetwork-based Baselines In addition to using DER++ to adapt our unlearning baselines to
a CL setting, we also pair them with a hypernetwork to understand how unlearning performance
differs when paired with a different CL strategy. We delegate the results of this study, alongside
other trivial baselines, to Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Framework Permuted MNIST CIFAR-100 TinyImageNet 5-Tasks
Spill Relapse Spill Relapse Spill Relapse Spill Relapse

BadTeacher 33.05 30.51 14.61 23.57 9.317 8.706 54.62 1.566
SCRUB 17.50 0.149 28.02 0.513 9.450 0.739 44.67 0.00
SalUn 17.82 14.82 7.547 9.233 5.128 7.200 15.86 0.788

JiT 35.83 23.73 12.16 10.73 7.617 9.344 63.94 0.342
GKT 51.86 5.431 32.96 16.55 16.36 9.594 83.08 1.512
SSD 51.18 2.586 30.02 5.80 14.21 5.828 79.15 0.661

UnCLe (Ours) 0.044 8.703 0.640 0.507 0.722 2.233 0.023 0.539

Table 2: A comparison of Spill and Relapse (Lower, the better). Presented results are from Request
Sequence 1 averaged over 3 runs with different seeds (Appendix C).

Alternative Noising Strategies In UnCLe, the way the hypernetwork’s parameter output for the
forget-task is aligned with noise is central to the unlearning procedure. In addition to the noising
strategy discussed in the methodology, we explore alternative noising strategies for our unlearning
mechanism, such as Fixed-noise Alignment and L2-Norm Reduction, and study their impact on the
unlearning process. We find that UnCLe’s sampling average-based noise alignment fares better in
comparison. We explore alternative noising strategies in detail and present comparative results in
Appendix E.

Saturation Alleviation In a continual setting, as the model is exposed to an increasing number of
tasks, it gets saturated to a point where it loses all plasticity, rendering it unable to learn new tasks.
As stated, UnCLe’s unlearning objective restores the learned task-specific classifier parameters to
a randomly initialized state, akin to a Kaiming He initialization. This restores the hypernetwork’s
plasticity, allowing it to learn new tasks again. We test this hypothesis through a comparison between
a hypernetwork that only learns tasks and UnCLe, which both learns and unlearns. The results in
Table 3 demonstrate that relinquishing unnecessary tasks improves the learnability of newer tasks,
particularly in more complex datasets and longer sequences. The simple settings of Permuted-
MNIST and 5-Tasks do not show drastic improvement as they have not attained saturation yet.
This highlights how unlearning not only serves as a privacy tool but also extends the longevity and
maintainability of CL models by actively removing obsolete information. Figure 5 compares how
unlearning obsolete tasks enables higher accuracies in later tasks when compared to a baseline that
doesn’t unlearn. We defer further details on saturation alleviation to Appendix D.

Methods Permuted-MNIST CIFAR-100 Tiny-ImageNet 5-Tasks
Only Learning 96.84 60.51 50.47 94.12

UnCLe 96.87 62.65 55.24 94.12

Table 3: A comparison of average accuracy across the retained tasks from UnCLe versus a sequence
with just learning tasks, demonstrating that unlearning old tasks helps learn new tasks better.

Limitations Although UnCLe is capable of learning and unlearning tasks continually in any arbi-
trary manner, it currently lacks the flexibility to individually learn and unlearn classes within each
task. We opine that future works should address a class-incremental learning and unlearning setting.

7 CONCLUSION

Our study of existing unlearning algorithms in continual settings reveals concerning performance
degradation among retained tasks. Furthermore, we find that unlearned tasks are prone to relapse
when the model subsequently learns similar tasks. Recognizing such shortcomings, we propose a
tailored solution to continual learning and unlearning with UnCLe. Our experiments showcase Un-
CLe’s effectiveness in addressing current limitations, such as unlearning spill and relapse. Further-
more, we demonstrate that unlearning obsolete tasks helps in alleviating model saturation, paving
the way for more flexible CL frameworks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks,
2023. URL https://arxiv.org/abs/2312.08399.

Romit Chatterjee, Vikram Chundawat, Ayush Tarun, Ankur Mali, and Murari Mandal. A unified
framework for continual learning and unlearning, 2024. URL https://arxiv.org/abs/
2408.11374.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210–7217, 2023a.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot ma-
chine unlearning. IEEE Transactions on Information Forensics and Security, 18:2345–2354,
2023b. ISSN 1556-6021. doi: 10.1109/tifs.2023.3265506. URL http://dx.doi.org/
10.1109/TIFS.2023.3265506.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council, 2023. URL https://data.europa.eu/eli/reg/
2016/679/oj.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gn0mIhQGNM.

Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Öztireli, and Alexandra Brintrup. An information
theoretic approach to machine unlearning, 2024a. URL https://arxiv.org/abs/2402.
01401.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retrain-
ing through selective synaptic dampening. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 38(11):12043–12051, Mar. 2024b. doi: 10.1609/aaai.v38i11.29092. URL
https://ojs.aaai.org/index.php/AAAI/article/view/29092.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2015. URL https:
//arxiv.org/abs/1312.6211.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, 2015. URL https://arxiv.org/
abs/1502.01852.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

10

https://arxiv.org/abs/2312.08399
https://arxiv.org/abs/2408.11374
https://arxiv.org/abs/2408.11374
http://dx.doi.org/10.1109/TIFS.2023.3265506
http://dx.doi.org/10.1109/TIFS.2023.3265506
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://openreview.net/forum?id=gn0mIhQGNM
https://arxiv.org/abs/2402.01401
https://arxiv.org/abs/2402.01401
https://ojs.aaai.org/index.php/AAAI/article/view/29092
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://openreview.net/forum?id=rkpACe1lx
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1412.6980

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. To-
wards unbounded machine unlearning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 1957–1987. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022. URL https:
//arxiv.org/abs/2203.12817.

M. Loève. Probability Theory. Number v. 1-2 in Graduate texts in mathematics. Springer-
Verlag, 1977. ISBN 9783540902102. URL https://books.google.co.in/books?
id=f8xFAQAAIAAJ.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning, 2018.

Mohammed Ali Moustafa. Tiny imagenet, 2017. URL https://kaggle.com/
competitions/tiny-imagenet.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. Advances in Neural Information
Processing Systems (NIPS), 2011.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning, 2022. URL https://arxiv.
org/abs/2209.02299.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay, 2017.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models, 2017. URL https://arxiv.org/abs/1610.
05820.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJgwNerKvB.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks, 2018.

11

http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://arxiv.org/abs/2203.12817
https://arxiv.org/abs/2203.12817
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://arxiv.org/abs/2209.02299
https://arxiv.org/abs/2209.02299
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820
https://openreview.net/forum?id=SJgwNerKvB
https://arxiv.org/abs/1708.07747

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A BROADER IMPACT

This work on continual learning and unlearning (UnCLe) has significant implications for respon-
sible AI deployment and governance. Our approach enables more privacy-preserving AI systems
by allowing models to selectively forget sensitive or personal information while maintaining their
overall capabilities. This addresses growing regulatory requirements like the ”right to be forgotten”
and helps organizations comply with data protection laws. The ability to unlearn obsolete or harm-
ful content also supports efforts to mitigate bias and remove problematic behaviors from deployed
models without requiring complete retraining.

The demonstrated reduction in model saturation through strategic unlearning could lead to more
efficient and adaptable AI systems. Nevertheless, the capacity for models to ”relapse” and recover
supposedly forgotten information highlights the need for robust verification mechanisms and un-
learning algorithms.

B HYPERNETWORKS

Figure 6: Schematic of the architecture showcasing the task eTt
and chunk embeddings c, the hyper-

network and its various headsH, the generated parameters θ, the ResNet classifier F and, the input
image xi

t and the predicted output ŷit.

The large size of ResNet parameters causes the hypernetwork’s last layer to become excessively
large. To mitigate this, we partition the main network parameters into smaller chunks and generate
them separately, significantly reducing the hypernetwork’s size. The schematic of this chunked
hypernetwork architecture is shown in Figure 6.

The hypernetwork generates large networks in chunks by conditioning on unique chunk embeddings,
similar to how it generates task-specific networks using task embeddings. These chunk embeddings,
concatenated with task embeddings, form unique task-chunk pairs that generate corresponding pa-
rameter chunks. Learned via backpropagation, chunk embeddings are frozen after the first task to
prevent catastrophic forgetting. We set both chunk and task embedding dimensions to 32 and found
that dividing each task-specific network into 200 chunks balances efficiency and performance.

To further optimize parameter generation, the hypernetwork’s final layer is divided into specialized
heads, each responsible for a specific parameter type: network weights, batch normalization param-
eters, or residual connection parameters. This separation prevents redundancy and reduces computa-
tional overhead. The chunk-based generation seamlessly integrates with these heads, ensuring each
chunk receives only the necessary parameters.

This design enhances parameter efficiency, maintaining a manageable hypernetwork size even for
large architectures like ResNet18 and ResNet50. It balances scalability, modularity, and efficiency,
making it well-suited for generating complex networks.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Datasets Seq Nos Sequences

5-Tasks
(7 requests)

1 L0 → L1 → U0 → L2 → L3 → L4 → U1

2 L3 → L4 → L2 → L0 → L1 → U3 → U0

3 L0 → L2 → U0 → L4 → L3 → U2 → U4

Permuted-MNIST
& CIFAR-100
(15 requests)

1 L1 → L0 → U1 → L5 → L8 → L9 → L7 → U0 → L2 → L3
→ L4 → U8 → U3 → U5 → L6

2 L6 → L7 → L2 → L1 → L0 → U1 → L9 → U7 → U2 → U0
→ L4 → U4 → L8 → U6 → L5

3 L7 → L1 → L2 → L8 → L0 → U1 → L3 → L6 → U3 → U2
→ L4 → L5 → U8 → L9 → U7

Tiny-ImageNet
(30 requests)

1

L3 → L0 → U3 → L9 → L5 → L17 → L1 → L7 → L14 → L15
→ L19 → U17 → U7 → L6 → U15 → U9 → L12 → L4 → U5
→ U4 → U6 → U0 → U1 → U14 → U12 → L13 → L18 → L2
→ L11 → L8

2

L12 → L13 → L5 → L8 → L2 → U8 → L14 → U13 → U5 → U2
→ L3 → U3 → L16 → U12 → L11 → U16 → L7 → L15 → L10
→ L19 → L9 → U14 → U7 → L18 → L6 → L1 → L0 → L4
→ U6 → L17

3

L2 → L7 → U2 → L18 → L12 → U7 → U18 → L16 → L0 → U16
→ U0 → L13 → L4 → U12 → U13 → L9 → L19 → U19 → U4
→ L10 → L14 → L5 → U5 → U10 → L11 → L1 → U1 → L17
→ L6 → L3

Table 4: This table provides three different sequences that are used to understand the generalizabil-
ity of our approach. Here, L#n implies ‘learn task n’ and U#n implies ‘unlearn task n’. Also
for different task we have different sequence length showing that our method can scale to longer
sequences.

C EXPERIMENTS

C.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning
requests generated through random seeds. Experiments on the Five Datasets benchmark are per-
formed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize
sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request
sequences. The sequences used are presented in Table 4.

C.2 HYPERPARAMETERS

C.2.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for β. We perform experiments
with β values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The
results of the hyperparameter search are presented in 5:

Dataset 1 0.1 0.01 0.001

Permuted MNIST 96.24 96.68 96.64 96.52
5-Tasks 94.46 94.42 94.13 94.54
CIFAR-100 48.58 72.16 52.62 15.72
TinyImageNet 34.33 35.74 53.7 48.49

Table 5: Results of tuning hyperparameter β. The highest average accuracy values are highlighted
in bold.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

As is apparent, the chosen values for β are as follows: 1e-2 for TinyImageNet, 1e-3 for Five Datasets
and 1e-1 for both Permuted MNIST and CIFAR-100.

C.2.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN

We perform a hyperparameter search to determine the ideal value for γ. Our search range comprises
the γ values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
attain an FA of less than chance (1c where c is the number of classes, in this case 10%). We first
select all the γ values that result in an FA≤ 10. We then pick the γ that maximizes RA among those
selected values. The results of the hyperparameter search are presented in Table 6. We find that the
burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.

Dataset 0.1 0.01 0.001
Permuted-MNIST

FA 10.412 10.417 17.907
RA 96.524 96.544 96.602

CIFAR-100
FA 8.000 10.830 17.190
RA 70.950 71.817 72.173

5-Tasks
FA 8.278 8.070 9.783
RA 92.868 92.779 92.847

Tiny-ImageNet
FA 10.000 10.000 10.000
RA 45.590 48.625 48.623

Table 6: FA and RA for various γ values across datasets, with RA shown directly below FA for each
dataset.

The chosen γ values are 1e-1 for 5-Tasks and 1e-2 elsewhere.

Methods FA UT FA UT

CIFAR-100 Tiny-ImageNet

without Annealing 10.00 43.98 10.00 45.12
with Annealing 10.00 41.70 10.00 29.63

Table 7: A comparison of UnCLe with and without burn-in annealing.

We leverage the forward transfer observed in unlearning to enhance UnCLe’s efficiency by introduc-
ing an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate is
reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduction cap-
italizes on the model’s improved adaptability over time, significantly decreasing Unlearning Time
(UT) without compromising performance. As shown in ??, the Forget-Task Accuracy (FA) and
Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy maintains
the quality of unlearning while optimizing computational efficiency.

We use a burn-in of 100 iterations, annealed by 10% with each task, and a lower limit of 20 burn-in
iterations.

D SATURATION ALLEVIATION

We present additional saturation alleviation results on the TinyImageNet dataset in Figure 7 where
we measure the final accuracies of the tasks that are retained at the end of the sequence of operations.
We compare UnCLe with a trivial baseline that only performs learning operations. We find that

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

UnCLe consistently outperforms the baseline that only performs learning operations, demonstrating
that unlearning old tasks help learn new tasks better.

T19 T13 T18 T2 T11 T8
Tasks

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y

Only Learning
UnCLe

Figure 7: A comparison between the final accuracies of the tasks that remain.

E ALTERNATIVE NOISING STRATEGIES

5-Tasks

Methods RA FA UNI MIA UT

Fixed Noise 83.04 10.94 −∞ 50.07 18.74
Norm Reduce 94.31 26.11 52.44 51.19 18.3

Discard ef 94.52 80.91 −214.0 50.25 0.00
UnCLe 94.12 10.04 100.0 50.01 33.28

CIFAR-100

Methods RA FA UNI MIA UT

Fixed Noise 21.79 10.36 −∞ 49.97 25.76
Norm Reduce 62.75 34.42 41.27 44.13 25.39

Discard ef 60.21 20.70 11.21 46.88 0.00
UnCLe 62.65 10.00 100.0 50.00 41.70

Permuted-MNIST

Methods RA FA UNI MIA UT

Fixed Noise 84.55 9.870 −∞ 49.99 10.48
Norm Reduce 96.70 94.99 −49.56 49.10 10.34

Discard ef 96.87 61.79 −64.54 49.11 0.00
UnCLe 96.87 10.00 100.0 50.00 13.16

Tiny-ImageNet

Methods RA FA UNI MIA UT

Fixed Noise 34.68 9.440 −∞ 50.11 22.62
Norm Reduce 55.11 36.61 0.80 42.65 22.42

Discard ef 56.50 15.54 6.88 48.44 0.00
UnCLe 55.24 10.00 100.0 50.00 29.63

Table 8: Performance of different noising strategies on four datasets (Request Sequence 1). All other
unlearning hyperparameters (γ, Eu) are held constant.

We experiment with a variety of noising strategies and compare our approach to norm reduction and
fixed noise perturbation. Norm reduction uses the unlearning objective from 6.

argmin
ϕ

γ · ∥H(ef ;ϕ)∥22 + Lreg. (6)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Effect of varying the number of noise samples (n) in the unlearning objective

Fixed noise perturbation uses the objective ∥H(ef ;ϕ)− z∥22 + γ · Lreg where the noise z is fixed
throughout all tasks. Discard ef is the baseline in which to perform unlearning, the forget-task’s
embedding ef is simply discarded and replaced with a random embedding. From 8, we observe
that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task
accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas
UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good
RA but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it
compromises the model’s stability and impacts RA, as noted in the methodology. We also observe
that UnCLe, compared to all the other baselines, has the closest MIA value to 50, demonstrating its
superiority in data privacy.

We also study the effects of the various unlearning strategies considered on the hypernetwork pa-
rameters, particularly the effect of varying n, the number of noise samples over which the average
MSE is computed in the unlearning objective. We compare three cases namely n = 1 (Fixed Noise),
n = 10 (UnCLe), and n =∞, which is equivalent to a reduction of the L2-norm. The results are the
comparison are presented in 8 wherein we see that as n increases, the magnitude of the hypernet-
work parameters falls with each unlearning operation. When n = 1, MSE with a fixed noise value
can lead to the hypernetwork memorizing the particular noise value, which impacts generalization.
In contrast, as n = ∞, with regularization of the L2-norm of the parameters, the hypernetwork
parameters are themselves driven to zero, which can eventually destabilize the hypernetwork. With
UnCLe, we adopt n = 10 to strike a balance between the two extremes.

E.1 CONNECTING MSE AND L2

Minimizing the MSE term in the unlearning objective minimizes the L2-norm over the generated
main network parameters, and consequently drives them toward zero. As a result, the model’s logits
for the unlearned task become zero across all output nodes, leading to a uniform distribution over
classes. This corresponds to maximum entropy, indicating that the model is maximally uncertain
about the forgotten task, precisely the desired effect of unlearning.

However, direct application of the L2-norm loss in the unlearning objective runs the risk of driving
the hypernetwork’s parameters toward zero. We observe this empirically by tracking the magnitude
of the hypernetwork parameters through multiple unlearning operations (Figure 8). Consequently,
this degrades the performance on the retain-tasks and undermines the hypernetwork’s ability to
learn new tasks. In contrast, our empirical findings show that the proposed MSE-based unlearning
objective still yields uniformly distributed (high-entropy) outputs without compromising the hyper-
network’s stability.

Consider the parameters of a model to be θ ∈ Rd. The average mean squared error 1
n

∑n
i=1 ∥θ−zi∥22,

where zi ∼ N (0, Id), represents a noisy approximation to the L2-norm over the parameters θ.
Formally,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d (7)

Consider Yi = ∥θ − zi∥22 to be a random variable. Consider E[.] as the function calculating the
expectation of a random variable. As zi are i.i.d. samples of standard normal and θ is a constant, Yi

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

are also i.i.d. samples. Using Strong Law of Large Numbers Loève (1977), we can say that:

Pr

[
lim
n→∞

1

n

n∑
i=1

Yi = E[Yi]

]
= 1 (8)

Now we would show that E[Yi] = ∥θ∥22 + d, where d is the dimension of the parameter θ.

E[Yi] = E
[
∥θ − zi∥22

]
= E

[
θT θ − zTi θ − θT zi + zTi zi

]
= E

[
θT θ

]
− 2E

[
zTi θ

]
+ E

[
zTi zi

]
(9)

= θT θ − 2
∑
j

θjE[zij] +
∑
j

E[z2ij]

= ∥θ∥22 +
∑
j

1 (10)

= ∥θ∥22 + d (11)

Here, Eq 9 is using linearity property of expectation and Eq 10 uses the fact that E[zij] = 0 and
E[z2ij] is nothing but variance of that variable zij , which is equal to 1.

Based Eq 8 and Eq 11, we can say that,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d (12)

F OTHER BASELINES

F.1 HYPERNETWORK BASELINES

As an ablation, we consider JiT-Hnet and GKT-Hnet, which utilize a hypernetwork for CL in
DER++’s place. There is also Hnet that relies on natural catastrophic forgetting as an unlearning
mechanism (unlearning realized only after new learning). The results are presented in Appendix H:
More Results.

F.2 TRIVIAL BASELINES

We also compare with standard baselines like fine-tuning (FT) and retraining (RT & RT-Hnet). FT
and the two RT variants assume the availability of the complete retain-task data during unlearning.
FT fine-tunes the model on the retain set upon unlearning. RT Retrains from scratch on the retain
set. RT-Hnet trains a new hypernetwork sequentially on the retain set upon unlearning. The results
are presented in Appendix H: More Results.

G MEMBERSHIP INFERENCE ATTACK

The Membership Inference Attack (MIA) metric Shokri et al. (2017) assesses the effectiveness of
machine unlearning by measuring a model’s ability to ”forget” training data. MIAs exploit model
behavior to infer whether a data point was in the training set, posing privacy concerns. In unlearning,
the goal is for the model to treat forgotten data like unseen data. Adversarial attacks test this by
attempting to determine data membership. A 50% MIA value indicates the attack is no better than
random guessing, meaning the model has effectively mitigated membership inference risks.

Table 9 presents MIA values, including mean and standard deviation, across various methods and
datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The results, consistently around
50%, indicate that models generally exhibit strong resistance to MIA, making it difficult for attackers
to distinguish between training and non-training data points.

In the task unlearning setup with task-incremental continual learning, different heads are used for
different tasks. When a task is forgotten, the corresponding head undergoes severe randomization,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Permuted-MNIST & 5-Tasks

Methods 5-Tasks Permuted-MNIST
Mean Std Mean Std

FT* 49.56 0.22 49.63 0.07
RT* 49.95 0.37 49.98 0.07

BadTeacher 50.03 0.16 50.04 0.11
SCRUB 50.25 0.21 49.99 0.01
SalUn 50.25 0.29 49.85 0.13

JiT 49.99 0.17 49.95 0.08
GKT 50.05 0.08 49.99 0.01

RT-Hnet* 49.75 0.06 49.90 0.04
Jit-Hnet 50.10 0.06 50.02 0.08

GKT-Hnet 49.99 0.19 49.98 0.22

UnCLe 50.01 0.09 50.00 0.02

CIFAR100 & Tiny-ImageNet

Methods CIFAR100 Tiny-ImageNet
Mean Std Mean Std

FT* 45.00 0.66 45.26 0.73
RT* 49.82 0.50 49.72 0.23

BadTeacher 53.06 0.82 52.54 0.33
SCRUB 50.00 0.00 50.00 0.00
SalUn 46.26 0.42 47.47 0.73

JiT 45.80 0.73 47.28 0.15
GKT 49.88 0.20 49.93 0.06

RT-Hnet* 50.28 0.39 50.05 0.22
Jit-Hnet 48.74 1.11 49.39 0.24

GKT-Hnet 50.12 0.11 50.10 0.05

UnCLe 50.00 0.00 50.00 0.00

Table 9: MIA performance of baseline approaches versus UNCLE on four datasets (sequence 1,
averaged over three seeds).

rendering its representations indistinguishable. As a result, MIA performance remains equivalent
across all methods, as the forget head produces inherently random representations.

Notably, our approach, UnCLe, demonstrates near-perfect resistance to MIA, maintaining a mean
MIA value of 50.00% across all datasets. This suggests that the attacker’s ability to infer data
membership is no better than random guessing, ensuring robust privacy protection.

H MORE RESULTS

H.1 UNLEARNING TIME

Unlearning time refers to the time (in sec.) required to unlearn a particular task. In our approach the
unlearning time is controlled by burn-in epochs. 10 provides unlearning time values for different
unlearning methods. The value provided in the table is an average across all the unlearning time
required for each unlearning operation in a request sequence for CLU setting.

H.2 RESNET18 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these
experiments is performed on Sequence 1 (Table 4). The results are averaged over three runs with
different seeds. We can observe from Table 11, Table 12, Table 13, Table 14, Table ?? and Table ??
that UnCLe performs better than all the other baselines on at least 3 out of 5 metrics. On the metric
in which UnCLe is not the best, it performs equally well compared to the best one. These tables
show UnCLe’s superiority over other unlearning baselines.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Methods Unlearning Time (in sec)
5T PMNIST C100 TI

BadTeacher 76.78 55.50 10.95 8.680
SCRUB 171.1 118.9 30.02 32.52
SalUn 491.9 358.3 51.47 65.20

JiT 242.1 213.7 24.01 17.71
GKT 57.67 36.08 68.61 147.5
SSD 47.12 35.16 5.730 5.810

Jit-Hnet 306.6 257.5 22.94 22.83
GKT-Hnet 83.30 43.77 83.46 75.75

UnCLe 33.28 13.16 41.70 29.63

Table 10: Table provides comparison on Unlearning Time between different baselines and our ap-
proach on the datasets 5-Tasks (5T), Permuted MNIST (PMNIST), CIFAR100 (C100) and TinyIm-
ageNet (TI)

Methods RA FA

mean std mean std

BadTeacher 62.87 8.07 9.650 0.65
SCRUB 10.90 2.44 9.340 0.58
SalUn 58.94 9.87 35.16 5.02

JiT 16.66 2.77 8.990 1.93
GKT 10.82 1.25 15.21 1.68
SSD 30.22 22.5 15.07 6.14

Jit-Hnet 14.74 4.69 13.15 4.49
GKT-Hnet 10.07 0.71 10.69 1.40

UnCLe 93.77 0.40 9.600 0.99

Table 11: Results on PenTask (Sequence 1) with ResNet-18 backbone.

H.3 RESNET50 RESULTS

The results from the primary results table are obtained from Sequence 1, averaged over three runs
with different seeds. This section hosts the results from all three sequences, reported with mean and
standard deviation obtained from averaging each experiment performed over three different seeds.
The section is organized as a list of tables, with one table for each dataset-sequence pair, in the order
of 5-Tasks, CIFAR-100, and Tiny-ImageNet.

H.4 UNLEARNING PERMANENCE

Our results in Figure 9 and Figure 10 indicate that tasks unlearned via conventional unlearning
methods are prone to relapse due to subsequent learning operations. Unlike existing approaches,
UnCLe prevents relapse of unlearned tasks when new tasks are subsequently introduced, making it
a more reliable framework for permanent unlearning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Methods RA FA

mean std mean std

BadTeacher 65.13 3.67 10.11 0.52
SCRUB 53.39 3.15 10.00 0.00
SalUn 69.29 2.42 46.24 0.99

JiT 68.96 1.93 40.74 0.41
GKT 61.53 3.49 11.01 0.57
SSD 47.31 5.45 10.00 0.00

Jit-Hnet 51.52 18.8 21.84 4.71
GKT-Hnet 40.87 5.85 13.89 1.11

UnCLe 66.97 3.59 10.00 0.00

Table 12: Results on CIFAR-100 (Sequence 1) with ResNet-18 backbone.

Methods RA FA

mean std mean std

BadTeacher 53.76 1.63 12.12 0.52
SCRUB 11.71 1.90 10.00 0.00
SalUn 59.47 0.80 39.27 1.64

JiT 59.88 0.65 38.60 0.77
GKT 54.31 0.31 13.01 0.90
SSD 53.37 2.60 10.26 0.36

Jit-Hnet 59.20 1.77 16.32 0.23
GKT-Hnet 48.34 1.15 10.92 0.43

UnCLe 59.22 2.14 10.00 0.00

Table 13: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone.

Methods RA FA

Mean Std Mean Std

FT* 94.47 0.12 67.70 2.11
RT* 93.35 0.19 10.38 1.53

BadTeacher 92.17 0.04 10.20 0.40
SCRUB 9.97 0.46 9.84 0.14
SalUn 92.39 0.26 59.24 2.74

JiT 86.93 6.09 29.90 4.96
GKT 89.77 0.31 12.13 0.95
SSD 86.32 0.40 9.93 0.13

CLPU 91.73 0.22 0.00 0.00
RT-Hnet* 70.78 1.71 14.08 0.54

Hnet 96.60 0.16 96.91 0.09
Jit-Hnet 76.81 14.1 10.27 0.94

GKT-Hnet 95.34 0.37 14.46 0.35

UnCLe 96.87 0.20 10.00 0.06

Table 14: Permuted-MNIST — Sequence 1 (ResNet-18).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Methods RA FA

Mean Std Mean Std

FT* 95.12 0.68 70.51 1.29
RT* 95.19 0.41 10.22 0.68

BadTeacher 94.88 0.30 9.94 0.54
SCRUB 10.06 0.07 9.81 0.31
SalUn 95.30 0.11 56.92 0.87

JiT 36.59 47.23 19.70 3.11
GKT 92.35 0.25 10.70 0.82
SSD 89.75 0.74 9.84 0.16

CLPU 95.21 0.29 0.00 0.00
RT-Hnet* 82.94 14.33 14.02 0.55

Hnet 96.67 0.29 96.71 0.12
Jit-Hnet 94.15 2.19 10.55 0.54

GKT-Hnet 96.31 0.09 13.84 0.33

UnCLe 97.00 0.15 9.84 0.16

Table 15: Permuted-MNIST — Sequence 2 (ResNet-18).

Methods RA FA

Mean Std Mean Std

FT* 94.22 0.10 65.17 1.93
RT* 93.49 0.06 10.62 1.01

BadTeacher 79.56 4.29 10.28 0.81
SCRUB 9.97 0.08 9.98 0.25
SalUn 82.40 0.89 64.78 2.31

JiT 34.45 42.3 31.00 11.7
GKT 12.80 2.35 11.43 0.72
SSD 9.90 0.32 9.92 0.45

CLPU 91.72 0.16 0.00 0.00
RT-Hnet* 49.57 8.69 16.15 0.74

Hnet 96.80 0.08 96.72 0.11
Jit-Hnet 9.41 0.43 9.73 0.63

GKT-Hnet 13.96 2.53 17.25 2.26

UnCLe 96.98 0.23 9.93 0.19

Table 16: Permuted-MNIST — Sequence 3 (ResNet-18).

Methods RA FA

mean std mean std

FT∗ 88.66 0.45 67.99 2.83
RT∗ 84.79 1.88 9.600 4.22

BadTeacher 54.38 23.5 8.550 1.23
SCRUB 9.160 0.15 12.97 0.08
SalUn 74.75 1.56 25.02 1.22

JiT 19.10 13.8 17.20 3.55
GKT 10.27 0.91 13.67 1.52
SSD 8.850 0.00 10.36 0.09

LWSF+ 31.76 0.25 0.00 0.00
CLPU 85.00 0.43 0.00 0.00

RT-Hnet∗ 76.23 3.31 18.44 0.78
Hnet+ 94.56 0.28 96.73 0.04

Jit-Hnet 10.19 1.18 11.29 4.37
GKT-Hnet 10.53 0.61 14.48 1.00

UnCLe 94.12 0.43 10.04 1.14

Table 17: 5-Tasks (Sequence 1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Methods RA FA

mean std mean std

FT∗ 88.54 0.53 58.07 2.40
RT∗ 86.14 3.72 9.410 0.59

BadTeacher 40.01 3.01 8.270 0.37
SCRUB 9.90 0.24 12.80 2.63
SalUn 56.29 7.81 29.40 2.71

JiT 11.66 3.51 22.31 6.30
GKT 10.52 0.22 14.44 0.88
SSD 10.10 0.01 14.59 4.66

CLPU 83.18 1.62 0.00 0.00
RT-Hnet∗ 62.78 6.57 10.55 1.01

Hnet+ 96.39 0.07 93.84 0.24
Jit-Hnet 9.770 0.23 17.18 8.80

GKT-Hnet 9.010 1.14 9.370 0.69

UnCLe 95.91 0.07 9.930 3.23

Table 18: 5-Tasks (Sequence 2).

Methods RA FA

mean std mean std

FT∗ 91.21 0.45 58.63 0.59
RT∗ 91.87 0.66 7.86 1.81

BadTeacher 39.07 25.2 10.20 0.96
SCRUB 9.22 2.39 10.22 0.55
SalUn 37.55 6.75 21.99 1.96

JiT 12.56 7.53 11.77 1.43
GKT 8.35 0.88 13.03 1.25
SSD 12.42 7.55 10.22 0.55

CLPU 89.54 0.79 0.00 0.00
RT-Hnet∗ 94.05 0.13 9.350 0.48

Hnet+ 92.96 0.13 93.26 0.08
Jit-Hnet 7.12 0.66 11.40 2.95

GKT-Hnet 15.11 4.94 13.74 0.90

UnCLe 93.24 0.76 11.40 3.05

Table 19: 5-Tasks (Sequence 3).

Methods RA FA

Mean Std Mean Std

FT∗ 72.43 3.46 55.44 4.16
RT∗ 62.91 3.62 9.69 1.17

BadTeacher 61.75 4.47 14.57 0.60
SCRUB 29.45 7.18 10.06 0.10
SalUn 66.56 3.58 44.89 2.14

JiT 65.94 3.58 43.93 2.48
GKT 57.05 3.15 10.70 0.44
SSD 43.27 4.25 10.00 0.00

CLPU 63.10 3.77 0.00 0.00
RT-Hnet∗ 23.81 0.89 9.71 1.37

Hnet+ 60.52 3.73 62.84 2.72
Jit-Hnet 60.79 4.45 16.97 3.49

GKT-Hnet 40.22 7.49 9.97 0.83

UnCLe 62.65 3.85 10.00 0.00

Table 20: CIFAR-100 (Sequence 1) — RA and FA only.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Methods RA FA

Mean Std Mean Std

FT∗ 73.45 3.47 57.81 1.24
RT∗ 67.42 2.41 9.84 1.60

BadTeacher 66.67 3.58 12.97 1.37
SCRUB 13.13 4.09 10.00 0.00
SalUn 72.33 3.00 44.16 2.21

JiT 71.80 3.38 45.98 0.26
GKT 61.00 2.27 11.82 0.85
SSD 46.45 1.43 10.00 0.00

CLPU 69.83 1.85 0.00 0.00
RT-Hnet∗ 44.32 6.60 10.06 1.06

Hnet+ 66.08 2.07 62.59 1.37
Jit-Hnet 66.97 2.81 20.24 2.34

GKT-Hnet 58.58 5.98 11.36 0.29

UnCLe 66.82 2.85 10.00 0.00

Table 21: CIFAR-100 (Sequence 2) — RA and FA only.

Methods RA FA

Mean Std Mean Std

FT∗ 72.01 2.19 58.79 3.25
RT∗ 62.47 2.65 9.79 1.34

BadTeacher 52.76 1.51 14.55 1.58
SCRUB 10.00 0.00 10.00 0.00
SalUn 57.92 2.15 48.07 1.99

JiT 55.19 5.52 46.77 2.28
GKT 11.91 1.38 12.67 1.30
SSD 10.00 0.00 10.36 0.62

CLPU 61.23 2.56 0.00 0.00
RT-Hnet∗ 15.42 1.75 9.60 0.45

Hnet+ 60.66 2.37 62.04 0.35
Jit-Hnet 28.17 7.95 17.87 0.69

GKT-Hnet 9.54 0.94 11.44 1.49

UnCLe 58.15 6.09 10.00 0.00

Table 22: CIFAR-100 (Sequence 3) — RA and FA only.

Methods RA FA

Mean Std Mean Std

FT* 60.08 0.30 52.56 2.38
RT* 51.86 0.16 10.47 0.59

BadTeacher 52.79 1.40 15.73 1.09
SCRUB 19.48 15.4 10.00 0.00
SalUn 58.44 1.57 36.02 1.23

JiT 57.86 2.13 32.70 0.48
GKT 52.44 1.53 11.35 0.77
SSD 39.78 3.43 10.37 0.62

CLPU 54.90 1.27 0.00 0.00
RT-Hnet* 53.54 2.76 9.74 0.86

Hnet 57.53 2.26 54.31 3.35
Jit-Hnet 54.10 2.39 13.05 0.35

GKT-Hnet 44.40 2.26 9.85 0.30

UnCLe 55.24 3.66 10.00 0.00

Table 23: Tiny-ImageNet (Sequence 1, ResNet-50).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 9: Figure tracking task accuracies through the sequence of operations on the CIFAR 100
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

UnCLe SSD GKT JiT SalUn SCRUB BadTeacher

Figure 10: Figure tracking task accuracies through the sequence of operations on the TinyImageNet
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

25

	Introduction
	Related Works
	Continual Learning
	Machine Unlearning
	Unified Solutions

	Problem Formulation
	Analysis of Contemporary Unlearning
	Methodology
	An Unlearning Framework for Continual Learning
	Learning
	Unlearning

	Experiments & Results
	Implementation
	Datasets
	Hyperparameters

	Discussion

	Conclusion
	Broader Impact
	Hypernetworks
	Experiments
	Operation Sequences
	Hyperparameters
	Learning Hyperparameter: Beta
	Unlearning Hyperparameters: Gamma & Burn-in

	Saturation Alleviation
	Alternative Noising Strategies
	Connecting MSE and L2

	Other Baselines
	Hypernetwork Baselines
	Trivial Baselines

	Membership Inference Attack
	More Results
	Unlearning Time
	ResNet18 Results
	ResNet50 Results
	Unlearning Permanence

