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Abstract

The simultaneous quantile regression (SQR) technique has been used to estimate1

uncertainties for deep learning models, but its application is limited by the require-2

ment that the solution at the median quantile (τ = 0.5) must minimize the mean3

absolute error (MAE). In this article, we address this limitation by demonstrating a4

duality between quantiles and estimated probabilities in the case of simultaneous5

binary quantile regression (SBQR). This allows us to decouple the construction of6

quantile representations from the loss function, enabling us to assign an arbitrary7

classifier f(x) at the median quantile and generate the full spectrum of SBQR8

quantile representations at different values of τ . We validate our approach through9

two applications: (i) detecting out-of-distribution samples, where we show that10

quantile representations outperform standard probability outputs, and (ii) calibrat-11

ing models, where we demonstrate the robustness of quantile representations to12

distortions. We conclude with a discussion of several hypotheses arising from these13

findings.14

1 Introduction15

Deep learning models have become ubiquitous across diverse domains, and are increasingly being16

used for several critical applications. Common questions which arise in practice are - (a) Can this17

model be used on the given data input? and (b) If so, how much can one trust the probability18

prediction obtained? The former refers to the problem of Out-of-Distribution (OOD) detection [13, 9]19

and the latter refers to the problem of Calibration [10, 19, 22]. Understanding the applicability of a20

given deep learning model is a topic of current research [30, 6, 25, 14]. In this article we consider the21

quantile regression approach to answer these questions.22

Quantile regression techniques [16, 17] provide much richer information about the model, allowing23

for more comprehensive analysis and understanding relationship between different variables. In [32]24

the authors show how simultaneous quantile regression (SQR) techniques can be used to estimate25

the uncertainties of the deep learning model in the case of regression problems. However, these26

techniques aren’t widely used in modern deep learning based systems since [5] - (a) The loss function27

is restricted to be mean absolute error (MAE) or the pinball loss. This might not compatible with28

domain specific losses. (b) Moreover, it is difficult to optimize the loss function in presence of29

non-linearity. (c) Adapting the quantile regression approach for classification is also challenging due30

to piece-wise constant behavior of the loss function, due to discrete labels.31

Decoupling loss function and computing quantile representations: Consider the problem setting32

where a pre-trained classifier fθ(x) (including the dataset on which it is trained) is given and we33

wish compute the quantile representations for detailed analysis of the pre-trained classifier. Classical34

approach is to retrain the classifier using the quantile loss (equation 2). However, one runs the risk35
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of losing important properties while retraining since pinball loss would have different properties36

compared to loss used for pre-training. Moreover, it is not clear how penalties (used for pre-training)37

given to attributes such as gender-bias etc. should change with the quantile1. Further, aspects like38

calibration error of the pre-trained network cannot be established by retraining with a different loss.39

Thus, one requires a more elegant solution than retraining using the pinball loss.40

Main Outcomes: In this article we propose an approach to decouple the construction of quantile41

representations from the loss function. We achieve this by identifying the Duality property between42

quantiles and probabilities. We leverage the duality to construct the quantile-representations for any43

pre-trained classifier fθ(x) in section 3.1. Such quantile representations are shown to capture the44

training distributions in section 4.2. We show that these representations outperform the baseline for45

OOD detection in section 4.4. And further verify that quantile representations can potentially identify46

OOD samples perfectly. We also show that probabilities arising from quantile-representations are47

invariant to distortions in section 4.3. Moreover, we see that standard post-hoc calibration techniques48

such as Platt-scaling fail to preserve invariance to distortions. Proof-of-concept experiments to49

improve OOD detection and identifying distribution shifts within the data are discussed in the50

appendix (supplementary material).51

Illustrating the Construction of Quantile Representations: Before diving into the details, we52

illustrate the construction using a simple toy example and considering the problem of OOD detection.53

Figure 1a shows a simple toy example with 3 classes - 0, 1, 2. Class 0 is taken to be out-of-distribution54

(OOD), while classes 1, 2 are taken to in-distribution (ID). To get the quantile representation - (step 1)55

we first construct a simple classifier to differentiate classes 1, 2, (step 2) To get a classifier at quantile56

τ , construct y+i = I[pi > τ ]2, where pi denotes the predicted probability in (step 1). Construct a57

classifier using the new labels y+i . Figure 1b illustrates the classifiers obtained at different τ . In58

(step 3) concatenate the outputs (predictions) of all the classifiers at different τ to get the quantile-59

representations. Figures 1c and 1d demonstrate the advantage of having several classifiers as opposed60

to one. By aggregating (detailed later) the outputs from different classifiers, we are able to identify61

OOD vs ID samples (using One-Class-SVM [31]).62

(a) (b) (c) (d)

Figure 1: Illustrating the construction of Quantile Representations. (a) Simple toy example. (b) Illus-
trates different classifiers obtained for different τ . (c) OOD detection using Quantile Representations.
(d) OOD detection using the predictions from a single classifier. The region of In-distribution is
highlighted in red. Observe that, in this case, quantile-representations are able to differentiate the
in-distribution (ID) vs out-of-distribution (OOD).
Remark: Note that the construction in (step 2) does not depend on the procedure followed in (step 1),63

but only the output probabilities pi. Thus, one can use any procedure in (step 1) without affecting (step64

2). This property of quantiles is based on the duality between quantiles and probabilities ( section 2).65

Intuitively, quantile representations capture the distribution of the training data. Thus, given a pre-66

trained classifier, quantile representations can be used to analyze the classifier. In particular, as we67

shall shortly illustrate, one can perform calibration and OOD-detection.68

2 Simultaneous Binary Quantile Regression (SBQR)69

In this section, we review some of the theoretical foundations required for constructing quantile70

representations. For more details please refer to [16, 17, 32].71

1Each quantile can be thought of as a significance level
2I[.] indicates the indicator function
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Let pdata(X,Y ), denote the distribution from which the data is generated. X denotes the features72

and Y denotes the targets (class labels). A classification algorithm predicts the latent variable (a.k.a73

logits) Z which are used to make predictions on Y .74

Let x ∈ Rd denote the d dimensional features and y ∈ {0, 1, · · · , k} denote the class labels (targets).75

We assume that the training set consists of N i.i.d samples D = {(xi, yi)}. Let zi = fℓ,θ(x; θ)76

denote the classification model which predicts the logits zi. In binary case (k = 1), applying the77

σ (Sigmoid) function we obtain the probabilities, pi = fθ(xi) = σ(fℓ,θ(xi)). For multi-class78

classification we use the softmax(fℓ,θ(xi)) to obtain the probabilities. The final class predictions are79

obtained using the argmaxk pi,k, where k denotes the class-index.80

2.1 Review - Quantile Regression and Binary Quantile Regression81

Observe that, for binary classification, Z denotes a one dimensional distribution. FZ(z) = P (Z ≤ z)82

denotes the cumulative distribution of a random variable Z. The function F−1
Z (τ) = inf{z :83

FZ(z) ≥ τ} denotes the quantile distribution of the variable Z, where 0 < τ < 1. The aim of84

quantile regression is to predict the τ th quantile of the latent variable Z from the data. That is, we85

aim to estimate F−1
Z (τ | X = x). Minimizing pinball-loss or check-loss [16],86

pinball loss =
n∑
i=1

ρ(fθ(xi), yi) where, ρ(ŷ, y; τ) =

{
τ(y − ŷ) if (y − ŷ) > 0

(1− τ)(ŷ − y) otherwise
(1)

allows us to learn fθ which estimates the τ th quantile of Y . When τ = 0.5, we obtain the loss87

to be equivalent to mean absolute error (MAE). For the multi-class case we follow the one-vs-rest88

procedure to learn quantiles for each class.89

Simultaneous Quantile Regression (SQR): Observe that the loss in equation 1 is for a single τ .90

[32] argues that - minimizing the expected loss over all τ ∈ (0, 1),91

min
ψ

Eτ∼U [0,1][ρ(ψ(x, τ), y; τ)] (2)

is better than optimizing for each τ separately. Using the loss in equation 2 instead of equation 192

enforces the solution to have monotonicity property. If Q(x, τ) denotes the solution to equation 2,93

monotonicity requires94

Q(x, τi) ≤ Q(x, τj) ⇔ τi ≤ τj (3)

Observe that for a given xi, the function Q(xi, τ) can be interpreted as a (continuous) representation95

of xi as τ varies over (0, 1). The function Q(x, τ) is referred to as quantile representation. Q(x, τ)96

is sometimes written as Q(x, τ ; θ), where θ indicates the parameters (such as weights in a neural97

neural network). For brevity, we do not include the parameters θ in this article unless explicitly98

required.99

Remark on Notation: To differentiate between the latent scores (logits) and probabilities - we use100

Q(x, τ), fθ(x) to denote the probabilities and Qℓ(x, τ), fℓ,θ(x) to denote the latent scores. Since101

we have the relation Q(x, τ) = σ(Qℓ(x, τ)) and fℓ(x) = σ(fℓ,θ(x)) and σ(.) is monotonic, these102

quantities are related by a monotonic transformation.103

Why Quantile Regression? Quantile regression techniques are relatively unknown in the machine104

learning community, but offers a wide range of advantages over the traditional single point regression.105

Quantiles give information about the shape of the distribution, in particular if the distribution is106

skewed. They are robust to outliers, can model extreme events, capture uncertainty in predictions.107

Quantile regression techniques have been used for pediatric medicine, survival and duration time108

studies, discrimination and income inequality. (See supplememtary material for a more thorough109

discussion.)110

3 Quantile Representations111

As discussed earlier, minimizing equation 2 is not recommended due to unaccountable side-effects.112

Thus, we require a procedure to construct quantile representations without resorting to minimizing113

equation 2. In this section we present duality property of the quantile representations, which allows114

us to do this.115
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Algorithm 1 Generating Quantile Representations.

• Let D = {(xi, yi)} denote the training dataset. Assume that a pre-trained binary classifier
fθ(x) is given. The aim is to generate the quantile representations with respect to f(x). We
refer to this fθ(x) as base-classifier.

• Assign Q(x, 0.5) = fθ(x), that is take the median classifier to be the given classifier.

• Define y+i,τ = I[fθ(xi) > (1− τ)]. We refer to this as modified labels at quantile τ .

• To obtain Q(x, τ), train the classifier using the dataset D+
τ = {(xi, y+i,τ )}. Repeating this

for all τ allows us to construct the quantile representation Q(x, τ).

3.1 Generating Quantile Representations Using Duality between Quantiles and Probabilities116

Observe that, for binary classification, equation 1 can be written as117

ρ(ŷ, y; τ) =

{
τ(1− ŷ) if y = 1

(1− τ)(ŷ) if y = 0
(4)

Thus the following property holds :118

ρ(ŷ, y; τ) = ρ(1− τ, y; 1− ŷ) (5)

We refer to the above property as duality between quantiles and probabilities. Let Q(x, τ) denotes a119

solution to equation 2. It follows from above that, for a given xi and τ0, if we have Q(xi, τ0) = pi,120

then we should also have Q(xi, 1−pi) = 1−τ0. In words, a solution which predicts the τ th quantile121

can be interpreted as the quantile at which the probability is 1 − τ . This observation leads to the122

algorithm 1 for generating the quantile representations.123

Why does algorithm 1 return quantile representations? Assume for an arbitrary xi, we have124

Q(xi, 0.5) = pi. Standard interpretation states - at quantile τ = 0.5, the probability of xi in class 1 is125

pi. However, thanks to duality in equation 5, this can also be interpreted as - At quantile τ = (1− pi),126

the probability of xi in class 1 is 0.5.127

Thanks to monotonocity property in equation 3, we have for all τ < (1− pi), probability of xi in128

class 1 is < 0.5, and hence belongs to class 0. And for all τ > (1− pi), probability of xi in class 1129

is > 0.5, and hence belongs to class 1.130

This implies that at a given quantile τ∗, xi will belong to class 1 if τ∗ > (1− pi) or if pi > (1− τ∗)131

or if fθ(xi) > (1 − τ∗). Defining, y+i,τ∗ = I[fθ(xi) > (1 − τ∗)], we have that the classifier at132

quantile τ∗ fits the data D+
τ = {(xi, y+i,τ∗)} and thus can be used to identify Q(x, τ∗). This gives us133

the algorithm 1 to get the quantile representations for an arbitrary classifier fθ(x).134

Remark (Sigmoid vs Indicator function): In theory, we approximate ŷi = I[ẑi > 0] (i.e Indicator135

function) with the sigmoid as ŷi = σ(ẑi). The algorithm 1 gives a solution up to this approximation.136

In particular we have the following theorem137

Theorem 3.1 Let the base classifier fθ(x) = σ(fℓ,θ(x)) be obtained using the MAE loss, i.e by138

minimizing139

min
θ

∑
i

|yi − fθ(xi)| (6)

Then the solution Q(x, τ) obtained by algorithm 1 minimizes the cost in equation 2 over the dataset140

D, i.e141

Q(x, τ) = argmin
ψ

Eτ∈U [0,1]

[
1

N

N∑
i=1

ρ(I[ψ(xi, τ) ≥ 0.5], yi; τ)

]
(7)

The proof for the above theorem is discussed in the supplementary material. In simple words, the142

proof follows from the duality and the fact that we are only interested in the labels (for this theorem)143

obtained by applying the indicator function.144
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Importance of duality: Algorithm 1 and theorem 3.1 hinges on the duality property. Recall that145

pinball loss equation 4 penalizes the positive errors and negative errors differently. In the case of146

binary classification, since fθ(x) ∈ (0, 1), positive errors occur for class 1 and negative errors occur147

for class 0. Hence, the quantile value implicitly controls the probability of class 1, giving the duality148

property.149

Thus, using quantile value as an input allows us to control the probabilities and hence confidence of150

our predictions. This is what we have exploited to construct quantile representations without resorting151

to optimizing equation 2. This ensures that the properties of the pre-trained model are preserved152

while still being able to compute quantile representations.153

Remark: The other alternate to computing quantile representations are the Bayesian approaches154

[15]. It is known that computing the full predictive distribution - p(y|D, x) =
∫
p(y|w, x)p(w|D)dw155

is computationally difficult. Quantile representations approximate the inverse of the c.d.f of the156

predictive distribution for the binary classification.157

To summarize, thanks to the duality in equation 5, one can compute the quantile representations for158

any arbitrary classifier. This allows for detailed analysis of the classifier and the features learned. In159

the following section we first discuss the implementation of algorithm 1 in practice and provide both160

qualitative and quantitative analysis for specific models.161

4 Experiments and Analysis162

4.1 Generating Quantile Representations in practice163

Let fθ(x) denote a pre-trained classifier. Given a dataset D = {(xi, yi)}i, we construct a quantile164

dataset - {(xi, y+i,τ )}i,τ as described in algorithm 1 with the following modifications:165

• Instead of computing y+i,τ = I[fθ(x) > (1 − τ)], we compute the τ th quantile of logits -166

{fℓ,θ(xi)}i. Moreover, as multi-class classification problem gives class imbalance under167

one-vs-rest paradigm, we compute weighted-quantiles, where weights are inversely propor-168

tional to the size of the class. Observe that since fℓ,θ(x) is a monotonic function of fθ(x),169

this does not make a difference in practice. However, this allows us to circumvent precision170

issues caused due to the sigmoid function.171

• We only consider a fixed finite number of quantiles. The nτ quantiles are given by172

{1/nτ+1, 2/nτ+1, · · · , nτ/nτ+1}.173

For the sake of valid experimentation, we model Q(x, τ) using the same network as fθ(x), except174

for the first layer. We concatenate the value of τ to the input, resulting in slightly more number of175

parameters in the first layer. For efficient optimization we start the training with the weights of the176

pre-trained classifier fθ(x), except for the first layer.177

Loss function to train Qℓ(x, τ): Recall that Qℓ(x, τ) indicates the latent logits. We use178

BinaryCrossEntropy loss to train Qℓ(x, τ) where the targets are given by the modified labels179

{y+i,τ}.180

Inference using Qℓ(x, τ) : After training, we compute the probabilities as follows181

pi =

∫ 1

τ=0

I[Qℓ(xi, τ) ≥ 0]dτ ≈ 1

nτ

∑
i

I[Qℓ(xi, τ) ≥ 0] (8)

Remark: For multi-class classification, we follow a one-vs-rest approach. Hence the loss in this case182

would be sum of losses over all individual classes. The probability, in multi-class case, is taken to be183

argmaxk pi,k. Note that the probabilities pi,k do not add up to 1 over all classes.184

Remark: Since the aim is to analyze the pre-trained model, we only consider one specific architecture185

- Resnet34, and two datasets - CIFAR10 and SVHN to illustrate our results. Other related experiments186

are included in the appendix (supplementary material).187

Training Details and Compute:Training quantile representations was done on a DGX server using 4188

GPUs. It takes around 10 hours (40 GPU hours in total) to learn the quantile representations for each189

5



model. We use stochastic gradient descent with cyclic learning rate for optimization. The base_lr190

is taken to be 0.02 and max_lr is taken to be 1.0, with exponentially decreasing learning rate using191

γ = 0.99994. The batch_size is taken to be 1024 for resnet34. The number of steps for the cyclic192

learning is taken to be 2(size_dataset/2(batch_size) + 1). The size_dataset describes the size of the193

training data. Complete code has been provided with the supplementary material.194

4.2 Quantile Representations captures the distribution of the input data195

Firstly, we analyze the learned quantile representations - Qℓ(., .). Broadly, the learned function196

Qℓ(., .) captures the 1 dimensional caricature of the input distribution, in the direction where the197

label changes. We illustrate this using a simple toy example (figure 2). Consider a 1-dimensional198

dataset in a 2d-space. The labels are assigned by splitting the dataset at the mean of the values on199

x-axis. We then learn a simple 1 hidden layer neural network with 100 hidden neurons. Using this200

as a base classifier, we then learn the quantile representation function Qℓ(., .) as described above.201

Figure 2: Quantile Representations captures the
distribution of the input data distribution.

Then, we reconstruct data in the original space202

as follows - Assign arbitrary labels at each τ203

satisfying the monotonicity property equation 3.204

For each set of labels, keeping the learned func-205

tion Qℓ(., .) fixed, learn the input which gives206

these labels. This is illustrated in figure 2. Ob-207

serve that the shape of the learned inputs (1-d208

thread like structure) resembles the shape of209

the input dataset. This shows that the function210

Qℓ(., .) captures how the sample distribution211

changes in the input space.212

4.3 Calibration of ML models213

For several applications the confidence of the214

predictions is important. This is measured by215

considering how well the output probabilities216

from the model reflect it’s predictive uncertainty.217

This is referred to as Calibration.218

Several methods [28, 37, 19, 1, 22] are used to improve the calibration of the deep learning models.219

Most of these methods consider a part of the data (apart from train data) to adjust the probability220

predictions. However, in [26, 23] it has been shown that most of the calibration approaches fail under221

distortions. In this section we show that calibration using quantile-representations are invariant to222

distortions.223

Let pi,k denote the predicted probability that the sample xi belongs to class k. A perfectly calibrated224

model (binary class) will satisfy [10] P (yi = 1|pi,1 = p∗) = p∗. For multi-class case this is225

adapted to P (yi = argmaxk(pi,k)|maxk(pi,k) = p∗) = p∗. The degree of miscalibration is usually226

measured using Expected Calibration Error (ECE)227

E[|p∗ − E[P (y = argmax
k

(pi,k)|max
k

(pi,k) = p∗)]|] (9)

This is computed by binning the predictions into m bins - B1, B2, · · · , Bm and computing ˆECE =228 ∑m
i=1(

|Bi|/n)|acc(Bi) − conf(Bi)|. where acc(Bi) = (1/|Bi|)
∑
j∈Bi

I[yj = argmaxk(pj,k)]229

denotes the accuracy of the predictions lying in Bi, and conf(Bi) =
∑
j∈Bi

maxk(pj,k) indicates230

the average confidence of the predictions lying in Bi.231

In the ideal scenario, we have that quantile representations predict perfectly calibrated probabilities232

as illustrated in the following theorem.233

Theorem 4.1 Let fθ(.) denote the pre-trained model. Assume that the data is generated using the234

model y = I[fθ(x) + ϵ > 0], where ϵ denotes the error distribution. Let Q(x, τ) denote the quantile235

representations obtained on this data. The probabilities obtained using equation 8 are perfectly236

calibrated, that is,237 ∫ 1

τ=0

I[Q(x, τ) ≥ 0]dτ = P (fθ(x) + ϵ > 0) (10)
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(a) ECE (Resnet34) (b) Accuracy (Resnet34)

Figure 3: Quantile representations can be effective for calibration because they estimate probabilities
using Equation equation 8, which has been shown to be robust to corruptions. As demonstrated using
the CIFAR10C dataset [12], the Expected Calibration Error (ECE) of the probabilities obtained from
quantile representations (QUANT) does not increase with the severity of the corruptions. In contrast,
when using the standard Maximum Softmax Probability (MSP) method, the calibration error increases
as the severity of the corruptions increases.

The proof for theorem 4.1 is given in the supplementary material. The main idea is the notion that238

Q(x, τ) captures P (fθ(x) + ϵ < τ).239

Observe that, we can use theorem 4.1 to predict the calibration error of any pre-trained model,240

given the quantile representations. (Remark: This is another advantage of computing the quantile241

representations without retraining the original classifier. If the quantile representations are obtained242

by minimizing equation 2, then we cannot be sure that calibration error would remain the same.)243

Experimental Setup In this study, we employ the CIFAR10 dataset and the Resnet34 model to244

investigate the robustness of classifiers. To evaluate the classifiers’ robustness, we use the distorted245

CIFAR10 dataset introduced in [12], which contains 15 types of common corruptions at five severity246

levels. This dataset is a standard benchmark for testing the robustness of classifiers. We use quantile-247

representations trained on the CIFAR10 training data to assess the generalization performance of the248

classifiers on the distorted dataset. We compare the performance with Maximum Softmax Probability249

(MSP) as a baseline and evaluate both accuracy and calibration error. We construct the bins {Bi}250

using 5 equally spaced quantiles within the predicted probabilities. The probabilities of each class251

are predicted using equation 8. (Remark: These probabilities do not add upto 1 since we consider a252

one-vs-rest approach.)253

Figure 4: Correcting calibration error on the valida-
tion set may not improve performance on corrupted
datasets.

We present the results in Figure 3. As we in-254

crease the severity of the distortions, we ob-255

serve that the accuracy of both the quantile rep-256

resentations and MSP decreases. However, the257

probabilities obtained from quantile representa-258

tions are robust to distortions, as their Expected259

Calibration Error (ECE) does not increase with260

severity in the same way as MSP’s does. This261

indicates that quantile representations can more262

accurately predict calibration error and are more263

resistant to distortions.264

Cannot Correct the Calibration Error Fig-265

ure 3 shows that calibration error from quantile266

representations is robust to noise. So, an obvious267

question which follows is - Can we then correct268

it using validation data, improve the calibration269
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score without compromising invariance to distortions? It turns out that usual methods fail when trying270

to correct the calibration error of quantile representations. (Remark: A similar result is also obtained271

in Proposition 1 of [5]).272

To verify this we perform the same experiment as earlier. Further we use Platt Scaling on validation273

data and accordingly transform the probability estimates for the corrupted datasets. These results are274

shown in figure 4. Observe that at severity 0, the calibration error is 0 for the corrected probabilities275

as expected. However, as distortion increases, the calibration error increases as well.276

Discussion: Consider the following - Given a specific calibration error C (say), let the set of all277

probability assignments which give the calibration error C be PC . If the network fθ(x) has to remain278

invariant to distortions, it should return one of these possible probability distributions PC . Our279

explanation for the above result is that - The vanilla neural networks do not have this property. The280

quantile networks, as illustrated, are evidenced to have this property. However, this also implies that281

calibration error cannot be corrected post-hoc in a sample independent manner.282

4.4 OOD Detection using Quantile Representations283

An assumption made across all machine learning models is that - Train and test datasets share the284

same distributions. However, test data can contain samples which are out-of-distribution (OOD)285

whose labels have not been seen during the training process [25]. Such samples should be ignored286

during inference. Hence OOD detection is a key component of reliable ML systems. Several methods287

[13, 20, 2] have been proposed for OOD detection. Here we check how quantile representations288

compare to the baseline method in [13] for OOD detection.289

Quantile representations construct different classifiers at different distances from the base-classifier290

(illustrated in figure 1b). This allows us to differentiate between OOD samples and ID samples.291

Intuitively, OOD samples are far from the boundary and result in low softmax probabilities. Thus,292

one way to assign OOD scores to samples is by considering the maximum softmax probabilities MSP293

as described in [12]. We compare the OOD detection of quantile representations with this approach.294

Experimental Setup For this study, we use the CIFAR10[18] and SVHN[24] datasets as in-295

distribution (ID) datasets and the iSUN[34], LSUN[36], and TinyImagenet[21] datasets as out-of-296

distribution (OOD) datasets. Two versions of LSUN and TinyImagenet are considered - resized297

to 32 × 32 and cropped. We evaluate the quantile representations obtained using ResNet34[11]298

architecture. For evaluation we use (i) AUROC: The area under the receiver operating characteristic299

curve of a threshold-based detector. A perfect detector corresponds to an AUROC score of 100%. (ii)300

TNR at 95% TPR: The probability that an OOD sample is correctly identified (classified as negative)301

when the true positive rate equals 95%. (iii) Detection accuracy: Measures the maximum possible302

classification accuracy over all possible thresholds.303

Methodology and Results To identify OOD samples with quantile representations, we consider the304

entire representation - Qℓ(xi, τ) as input features. In our experiments this would be of the dimension305

nτ × n_classes. To assign an OOD-score we use the One-Class SVM approach. The first rows of306

Table 1 shows the results. Observe that quantile-representations perform marginally better than than307

the baseline.308

The more interesting result, however, is the fact that quantile representations have all the information309

required to identify OOD samples. To establish this we perform the following experiment - We use310

a simple linear classifier (logistic regression) to identify if the ID and OOD datasets are linearly311

separable or not. We measure the training accuracy to quantify linear separability - If the accuracy312

is close to 100%, then the datasets are considered to be linearly separable. For comparison we313

perform the same experiment with the pre-trained logits fℓ,θ(x). These results are shown in the314

bottom rows of Table 1. Note that while the baseline scores vary with the dataset, the quantile scores315

are consistently close to 100%. This provides additional evidence to the hypothesis that quantile316

representations capture all the “relevant” information about the train distribution.317
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Table 1: Comparison of Quantile-Representations with baseline for OOD Detection. Observe that
Quantile-Representations outperform the baseline in all the cases. The entries are represented as
BASELINE/QUANTILE-REPRESENTATIONS.

AUROC TNR-TPR95 Det.Acc
Approach Model/ID OOD

OneClassSVM Resnet34/SVHN iSUN 92.28/96.13 77.43/80.15 89.77/90.65
LSUN(R) 91.50/95.44 74.95/77.05 89.09/89.67
LSUN(C) 92.99/95.76 77.96/80.93 90.10/90.03
Imagenet(R) 93.52/96.21 79.86/79.60 90.58/90.84
Imagenet(C) 94.18/95.98 81.13/79.77 91.23/90.57

ResNet34/CIFAR10 iSUN 90.29/93.53 41.90/61.24 84.28/87.06
LSUN(R) 90.07/93.41 41.24/61.01 84.25/86.77
LSUN(C) 91.74/91.79 45.87/51.96 86.37/85.77
Imagenet(R) 90.33/92.33 42.18/58.95 84.21/85.47
Imagenet(C) 90.96/91.44 43.95/52.08 84.80/84.58

LinearSeparability Resnet34/SVHN iSUN 83.00/99.98 60.87/99.90 78.98/99.38
LSUN(R) 81.90/99.98 56.34/99.97 77.76/99.47
LSUN(C) 80.44/99.75 52.80/99.25 75.35/97.76
Imagenet(R) 80.31/99.96 57.61/99.85 77.19/99.19
Imagenet(C) 81.88/99.93 61.28/99.78 78.75/98.91

ResNet34/CIFAR10 iSUN 98.73/99.94 96.06/99.88 95.75/98.92
LSUN(R) 98.80/99.96 96.18/99.84 95.94/99.17
LSUN(C) 92.78/99.55 70.72/98.31 87.47/96.87
Imagenet(R) 95.27/99.74 86.76/98.93 91.02/97.72
Imagenet(C) 94.38/99.67 82.37/98.72 89.15/97.25

5 Related Work318

[16, 27, 29, 3] provides a comprehensive overview of approaches related to quantile regression and319

identifying the parameters. [4] extends the quantiles to multi-variate case. [32, 33] use quantile320

regression based approaches for estimating confidence of neural networks based predictions. [1, 8]321

uses conformal methods to calibrate probabilities, and is closely related to computing quantiles. [5]322

proposes a similar algorithm to overcome the restriction to pinball loss for regression problems. [7]323

generates predictive regions using quantile regression techniques.324

6 Conclusion, Limitations and Future work325

To summarize, in this article we show the duality between quantiles and probabilities in the case326

of SBQR. Exploiting the duality, we propose an algorithm to compute quantile representations for327

any given base classifier. We verify that the quantile representations model the training distribution328

well both qualitatively (by resconstructing the data in the input space) and quantitatively (using329

OOD detection baseline). We further show that the probabilities from quantile representations are330

robust to distortions. Interestingly, we found that traditional approaches cannot be used to correct the331

calibration error. Further experiments to validate the observations made in this article are discussed332

in the supplementary material.333

The main limitation of the approach is the computation required for algorithm 1 for large scale334

datasets. Note that algorithm 1 creates nτ copies of the same dataset by assigning different labels.335

For large scale datasets and large scale networks this requires a lot more computation than using a336

pre-trained classifier. However, we hypothesize that - we only need to retrain the quantile network337

only on a small sample size instead of the entire dataset We consider this for future work.338

Based on strong convexity and Lipschitzness of loss functions, automatic learning rates can be339

computed for large networks via the inverse of the Lipschitz constant of the loss function being an340

ideal learning rate [35]. We conjecture that exploiting the loss functions which inherit some convexity341

and Lipschitz properties from the known, closed form loss representations would achieve higher342

learning rates for faster convergence to compute quantile representations. We defer this as future343

work.344

9



References345

[1] Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candès, Michael I. Jordan, and Lihua346

Lei. Learn then test: Calibrating predictive algorithms to achieve risk control. arXiv preprint347

arXiv:2110.01052, 2021.348

[2] Koby Bibas, Meir Feder, and Tal Hassner. Single layer predictive normalized maximum349

likelihood for out-of-distribution detection. In Neural Inform. Process. Syst., 2021.350

[3] Probal Chaudhuri. Generalized regression quantiles: Forming a useful toolkit for robust linear351

regression. L1 Statistical Analysis and Related Methods, Amsterdam: North-Holland, pages352

169–185, 1992.353

[4] Probal Chaudhuri. On a geometric notion of quantiles for multivariate data. Journal of the354

American Statistical Association, 91(434):862–872, 1996.355

[5] Youngseog Chung, Willie Neiswanger, Ian Char, and Jeff Schneider. Beyond pinball loss:356

Quantile methods for calibrated uncertainty quantification. In Neural Inform. Process. Syst.,357

2021.358

[6] Max H. Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and359

inference. Econometrica, 89(1):181–213, 2021.360

[7] Shai Feldman, Stephen Bates, and Yaniv Romano. Calibrated multiple-output quantile regression361

with representation learning. arXiv preprint arXiv:2110.00816, 2021.362

[8] Shai Feldman, Stephen Bates, and Yaniv Romano. Improving conditional coverage via orthogo-363

nal quantile regression. In Neural Inform. Process. Syst., 2021.364

[9] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution365

detection. In Neural Inform. Process. Syst., 2021.366

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural367

networks. In Int. Conf. Mach. Learning, 2017.368

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image369

recognition. In Proc. Conf. Comput. Vision Pattern Recognition, 2016.370

[12] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common371

corruptions and perturbations. In Int. Conf. on Learning Representations, 2019.372

[13] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution373

examples in neural networks. In Int. Conf. on Learning Representations, 2017.374

[14] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya R. Gupta. To trust or not to trust A375

classifier. In Neural Inform. Process. Syst., 2018.376

[15] Laurent Valentin Jospin, Hamid Laga, Farid Boussaïd, Wray L. Buntine, and Mohammed377

Bennamoun. Hands-on bayesian neural networks - A tutorial for deep learning users. IEEE378

Comput. Intell. Mag., 17(2):29–48, 2022.379

[16] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge University380

Press, 2005.381

[17] Gregory Kordas. Smoothed binary regression quantiles. Journal of Applied Econometrics,382

21(3):387–407, 2006.383

[18] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www.384

cs. toronto. edu/kriz/cifar. html, 2014.385

[19] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable386

predictive uncertainty estimation using deep ensembles. In Neural Inform. Process. Syst., 2017.387

[20] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for388

detecting out-of-distribution samples and adversarial attacks. In Neural Inform. Process. Syst.,389

2018.390

10



[21] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image391

detection in neural networks. In Int. Conf. on Learning Representations, 2018.392

[22] Jeremiah Z. Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshmi-393

narayanan. Simple and principled uncertainty estimation with deterministic deep learning via394

distance awareness. In Neural Inform. Process. Syst., 2020.395

[23] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil396

Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks.397

In Neural Inform. Process. Syst., 2021.398

[24] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.399

Reading digits in natural images with unsupervised feature learning. In Neural Inform. Process.400

Syst. Workshops, 2011.401

[25] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:402

High confidence predictions for unrecognizable images. In Proc. Conf. Comput. Vision Pattern403

Recognition, 2015.404

[26] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,405

Joshua V. Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncer-406

tainty? evaluating predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530,407

2019.408

[27] Emanuel Parzen. Quantile probability and statistical data modeling. Statistical Science,409

19(4):652–662, 2004.410

[28] J. Platt. Probabilistic outputs for support vector machines and comparison to regularized411

likelihood methods. In Advances in Large Margin Classifiers, 2000.412

[29] Stephen Portnoy and Roger Koenker. Adaptive l-estimation for linear models. The Annals of413

Statistics, 17(1):362–381, 1989.414

[30] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining415

the predictions of any classifier. In Proc. ACM SIGKDD Conf. Knowledge Discovery and Data416

Minining, 2016.417

[31] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C.418

Williamson. Estimating the support of a high-dimensional distribution. Neural Comput.,419

13(7):1443–1471, 2001.420

[32] Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. In421

Neural Inform. Process. Syst., 2019.422

[33] Anuj Tambwekar, Anirudh Maiya, Soma S. Dhavala, and Snehanshu Saha. Estimation and423

applications of quantiles in deep binary classification. IEEE Trans. Artif. Intell., 3(2):275–286,424

2022.425

[34] Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and426

Jianxiong Xiao. Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv427

preprint arXiv:1504.06755, 2015.428

[35] Rahul Yedida, Snehanshu Saha, and Tejas Prashanth. Lipschitzlr: Using theoretically computed429

adaptive learning rates for fast convergence. Applied Intelligence, 51:1460–1478, 2021.430

[36] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction431

of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint432

arXiv:1506.03365, 2015.433

[37] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass434

probability estimates. In Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Minining,435

2002.436

11


	Introduction
	Simultaneous Binary Quantile Regression (SBQR)
	Review - Quantile Regression and Binary Quantile Regression

	Quantile Representations
	Generating Quantile Representations Using Duality between Quantiles and Probabilities

	Experiments and Analysis
	Generating Quantile Representations in practice
	Quantile Representations captures the distribution of the input data
	Calibration of ML models
	OOD Detection using Quantile Representations

	Related Work
	Conclusion, Limitations and Future work

