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ABSTRACT

Large Language Models (LLMs) demonstrate remarkable capabilities across nat-
ural language processing tasks but remain vulnerable to jailbreak attacks, where
adversarial inputs are crafted to elicit harmful or undesirable responses. Existing
optimization-based attacks often achieve high success rates but are impractical
in black-box settings. We focus on a practical scenario in which private LLMs
are fine-tuned from public models and accessible only via query APIs, reflect-
ing common real-world deployments. To address this, we propose a two-stage
local prompt optimization framework that transfers jailbreak attacks from pub-
lic to private LLMs. Our method introduces an auxiliary adversarial suffix to
align output distributions between the public and target private models, enabling
gradient-informed optimization in a purely local setup. Experiments show that
our approach achieves high attack success rates on both open-source (Vicuna,
LLaMA3) and proprietary models (GPT-4, Claude), and remains effective under
diverse fine-tuning regimes, including LoRA-based updates. These results high-
light the practical security risks of fine-tuning LLMs and the need for robust de-
fenses, while showing that highly transferable black-box attacks can be executed
efficiently without accessing private model parameters.

1 INTRODUCTION

The rapid surge in the popularity of Large Language Models (LLMs) has sparked both immense ex-
citement and apprehension. Pretrained LLMs like Meta’s Llama Touvron et al.; 2023)) and OpenAI’s
GPT |Achiam et al.| (2023) are now considered indispensable pillars supporting a wide range of Al
applications. In practice, customizing pretrained LLMs for specific use cases through fine-tuning
is desirable. For example, HuatuoGPT |Zhang et al.| (2023) incorporates real-world data from doc-
tors during the supervised fine-tuning phase to develop a large language model tailored for medical
consultation. Voyager Wang et al.| (2023), an LLM-powered embodied lifelong learning agent in
Minecraft, autonomously explores the world, acquires diverse skills, and makes novel discoveries
without human intervention.

Given their remarkable proficiency across a wide variety of natural language tasks, LLMs hold
the promise of significantly boosting society’s productivity by automating tedious tasks and readily
providing information. Therefore, it’s essential to emphasize the security issues associated with
LLMs. One severe threat to LLMs is jailbreak, which stems from the extensive training text corpora
containing potentially harmful information. Jailbreak |Wei et al.| (2024) aims to circumvent security
measures surrounding an LLM and may even compromise their alignment safeguards (Carlini et al.
(2024).

The most effective approach to generating jailbreak attacks involves gradient-based optimization to
acquire the adversarial input. For instance, GBDA |Guo et al.| (2021) utilizes the Gumbel-Softmax
approximation trick to ensure differentiable adversarial loss optimization. It employs metrics such
as BERTScore and perplexity to maintain perceptibility and fluency during optimization. However,
this optimization process requires full access to the model parameters and architecture, necessitating
the target model to be in the white-box setting.
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Figure 1: Attackers can generate adversarial attacks using optimization-based methods on public
LLMs. For private LLMs fine-tuned from these public models with private data, locally fine-tuning
the generated attacks can also successfully compromise the private LLM, even if the attackers only
have query access to the model. This scheme highlights severe security vulnerabilities in fine-tuned
private LLMs.

In our study, we introduce a novel jailbreak framework specifically targeting private LLMs in black-
box settings, shown in Fig. [I] Despite the challenges posed by inaccessible fine-tuning data and
models, fine-tuned LLMs remain susceptible to severe security breaches. As LLMs evolve, it’s
imperative for researchers to devise robust jailbreak techniques that rigorously test their resilience,
ethical principles, and deployment readiness. Our main claim is that Fine-tuning LLMs may cause
severe security issues, even when the parameters and fine-tuning data of the fine-tuned LLM remain
private and inaccessible. We exemplify this claim through the lens of jailbreak attacks. Specifically,
we propose an optimization-based attack generation framework for black-box LLMs by optimizing
attacks on the open-source LLM from which the target LLM is fine-tuned. Importantly, if the precise
base model is unknown, a general-purpose LLM can be used as a surrogate base, and our method re-
mains effective. Subsequently, we apply local fine-tuning on these generated attacks, enabling them
to successfully compromise black-box LLMs with performance comparable to attacks conducted
with knowledge of the target LLM’s parameters.

In a word, our contributions can be summarized as:

* Investigating Fine-Tuning Attacks: We are the first to explore the fine-tuning of attacks
in the direction of model fine-tuning. This approach is particularly practical in scenarios
where many third parties fine-tune open-source LLMs for their private models, offering a
novel perspective compared to current research.

* Flexible Adversarial Attack Framework: We introduce several transformations of the
proposed adversarial attack framework, highlighting its flexibility and practical signifi-
cance. These transformations enable adaptability to various attack scenarios, enhancing
the framework’s utility in real-world applications.

* Demonstrated Effectiveness: We have demonstrated the effectiveness of the proposed
attack generation framework by achieving a relatively high attack success rate. Notably,
our results show that the performance of our approach is comparable to that of white-box
LLMs, underscoring its efficacy in generating potent adversarial examples.

2 RELATED WORK

Here, we begin by reviewing related works on attacking LLMs, followed by an overview of current
research focusing on efficiently fine-tuning LLMs.

2.1 ATTACKS AGAINST LANGUAGE MODELS

Here, we investigate inference-time attack methods, categorizing them into two settings: white-box
and black-box, to explore their impact on language models.
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In the white-box setting [Shakeel & Shakeel| (2022)); Wen et al.| (2024); [Liu et al.| (2022)), attack-
ers possess complete access to the model parameters and architecture. For instance, GBDA |Guo
et al.|(2021) leverages the Gumbel-Softmax approximation trick to ensure differentiable adversarial
loss optimization, utilizing BERTScore and perplexity metrics to enforce perceptibility and fluency.
Additionally, HotFlip [Ebrahimi et al.|(2018]), introduced as an efficient gradient-based optimization
method, generates adversarial examples by manipulating the discrete text structure within its one-hot
representation.

As a solution for the black-box setting, token manipulation-based attacks Morris et al. (2020);
Ribeiro et al.| (2018)); [Jin et al.| (2020) entail applying basic token operations, such as replacing
tokens with synonyms, to a text input sequence to induce incorrect predictions from the model.
HQA-attack [Liu et al.[(2024) addresses the challenging hard label setting by initially generating an
adversarial example and then iteratively replacing original words to minimize the perturbation rate.

2.2 LLMSs FINETUNING

Finetuning large language models has emerged as a highly effective strategy for enhancing their
performance. In comparison to full fine-tuning approaches, Parameter Efficient Fine-Tuning
(PEFT) [Mangrulkar et al.| (2022) methods involve freezing most parameters of pre-trained mod-
els, yet they can still demonstrate comparable capabilities on downstream tasks. The main efficient
fine-tuning methods can be summarized as Adapter-based Tuning [Mangrulkar et al.| (2022)); Poth
et al.[(2023); Riicklé et al.[(2020); Wang et al.| (2020); |Chen et al.[(2022bja)), LoRA [Hu et al.|(2021}));
Dettmers et al| (2023); |Yu et al.| (2024)), Prefix Tuning [Van Sonsbeek et al. (2023)); [Li & Liang
(2021)); 'Yang & Liu| (2021}, and Prompt Tuning Jia et al.| (2022); [Wang et al.| (2022)); |[Lester et al.
(2021)).

2.3 LLMS ALIGNMENT

LLMs alignment |Liu et al.[(2023c)); [Kirk et al.|(2024); Ji et al.|(2023) refers to the process of ensuring
that Large Language Models (LLMs) exhibit behavior that aligns with human values and intentions.
This includes characteristics such as being helpful, truthful, ethical, and safe in their interactions
and outputs. Alignment ensures that models’ behaviors align with human values and intentions.
For example, aligned LLMs have safety measures to reject harmful instructions. The most common
alignment techniques are Instruction Tuning|Zhou et al.{(2024); Cahyawijaya et al.[(2023) and Rein-
forcement Learning from Human Feedback (RLHF)|Song et al.| (2024)); Ji et al.|(2023)). Specifically,
Liu et al. [Liu et al.[(2023a)) convert various types of feedback into sequences of sentences to fine-
tune the model. Jeremy et al. Scheurer et al.| (2023)) introduce Imitation Learning from Language
Feedback (ILF), a novel approach that leverages more informative language feedback. Stiennon et
al. Stiennon et al.[(2020) compile a large dataset of human comparisons between summaries, train
a model to predict the preferred summary, and use this model to fine-tune a summarization policy
through reinforcement learning.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

In this paper, we focus on jailbreaking target language models, which we assume to be private with
the following characteristics: 1) The parameters of the target model and the private fine-tuning data
are unknown. 2) The target model can be normally inferred and responds to given inputs. 3) For
problem formulation, we assume the attacker knows which public LLM the model was fine-tuned
from; however, as our experiments show, even if this information is unavailable, the attacker can
use a general-purpose LLM as a surrogate base model and still achieve effective attacks.

This setting is practical because fine-tuning LLMs on private data results in models that not only
generate high-quality text but also possess precise domain knowledge. We define the attackers as
follows:

Attackers’ Capability. We assume that attackers only have the capability to query the target private
LLM, denoted as 7y, ., without access to any information about the model parameters 6;,,. or the
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corresponding training data D. For problem formulation, we assume that attackers know which
public LLM 7y, the private LLM is fine-tuned from; however, as our experiments show, even if
this information is unavailable, attackers can use a general-purpose LLM as a surrogate base to
effectively optimize attacks. Specifically, the target private network is fine-tuned from the public
LLM as F(D) : 01 = argming L(Tp,, D), where L(-) represents the loss function for fine-tuning.

Attackers’ Objective. The attackers aim to generate attacks capable of jailbreaking the target pri-
vate model 7y, .. Specifically, we focus on prompt-level jailbreaks, where the attackers input the
prompt P with the objective of finding a prompt that elicits a response R = Ty, (P) demonstrating
undesirable behaviors. More formally, the goal is to solve the following problem:

find P st JUDGE(P,R)=1 (1)

where JUDGE(-) is a binary-valued function, with 1 denoting that the text pair (P, R) is jailbroken.
Considering the difficulties in defining the function JUDGE(-), and following previous work Zou
et al.| (2023)), we define a series of negative responses (e.g., “I'm sorry”, “As a language model”).
Thus, whether the responses are included in the defined negative responses is used to measure the
success of the jailbreak attacks.

In our main focus, we aim to attack the target LLM exclusively, without expecting the generated
attacks to succeed against the public base LLM. Although the target model’s parameters and fine-
tuning data are inaccessible, its close relationship to the known (or surrogate) base model allows us
to approximate its behavior through proxy-based optimization. Specifically, the shared initialization
or structural similarity between the base and fine-tuned models provides a useful inductive bias
that enables transferable gradient-based attacks with appropriate local adaptation. This forms the
foundation of our two-stage optimization strategy, described in the next section.

3.2 ATTACK GENERATION VIA LOCAL FINE-TUNING

Building upon the previous LLMs attack framework |Zou et al.| (2023), let the target private LLM be
represented as a mapping from input tokens x[;.,,) C P to the distribution of the next token, where
the probability of the next token is denoted as p( [, 41]|2[1:n]; O10c). The objective of the attack is to
generate the H-token target sequence m’[kn et H] leading to subsequent adversarial tokens. For the
input tokens z|;.,,], we set a fixed-length suffix s(;,; (with [ < n) to iteratively update for jailbreaking
the target LLM. The rest of the instruction prompt is denoted as x;;,, forming (1., < Tin + S[1.4)-
Thus, the optimization problem of the adversarial suffix s can be formulated as follows:

S arg S[1£I]1ér\l/‘l‘ a(x[l.n]a loc) arg S[lﬁlér‘l/m ng(x[n-i-l:n-f—H] ‘xm + S[1:1)5 loc)a

H (2)
where  p (i tintm|Tin + S0 O10c) = [ [ 2(2 st T tinrio1); Oroc);
i=1

where V' denotes the vocabulary size. The above optimizing objective forces the language model to
generate the first few positive tokens, with the intuition that if the language model can be put into
a “state” where this completion is the most likely response (e.g., responding with “Sure, here’s a
script that can ...”), rather than refusing to answer the query, it is likely to continue the completion
with the desired objectionable behavior.

In this way, since the instruction prompt z;,, is the prompt that elicits harmful information, the pri-
vate LLM tends to refuse to give the positive response. We denote the output sequence as Zj,, 4 1.+ H]
with the current input. We compute the linearized approximation of replacing the ¢-th token in the
adversarial prompt, by evaluating the gradient as:

G?“ad(s[i]) = VE%. Lllm(s[i];9100)7 i € {17 27 "'7l}7

. . . 3)
Lllm(3§ eloc) = Dist [p(x[n+1:n+H] |xzn + 55 0100)7p($[n+1;n+H])] )

where e, € {0,1}V is the one-hot vector denoting the current value of the i-th token, p(a:f‘n 1 H])
is the target output logit values. The distance function Dist (we could take the cross entropy loss
as an example) measures how closely the model’s current output matches the target response x*.
By solving the optimization in Eq.[3] we could get the top K substitutes (with the largest negative
gradient) for each token in the adversarial suffix s.
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Given that the attackers only have the capability to query the target model (with the parameters 0;,.
remaining unknown), direct optimization-based attack generation with the gradient information on
Eq. 3] seems impossible. Recall that the attackers are aware of which public LLM the target model
is fine-tuned from, of which we denote the parameters as 6, finetuning it with the local data pairs
D = {z() 4} | could be denoted as:

Or+1 < 0: — Vo, Lum (D; et);

R
. . , , “)
£llm(Da9t) = ZDZSt[p(CL‘(T)LT( )79,5),]9(16( )>]a
r=1

where the fine-tuning process primarily focuses on optimizing the weight update 6 to maximize the
log-likelihood of the targeted model responses.

We make the following approximation for Eq. [3]in the neighborhood of ;,,:
Grad(s) = Ve, Liim (83 010c) = Ve, Lum(s + a;6p),

5
s.t. p(x(T) ‘xzn + a; 9(]) ~ p($(r) |$in§ 9[06), ( )

where the gradients Grad(s) are computed on the public LLM 6, using the auxiliary suffix a. Intu-
itively, the optimization process consists of two steps: first, we align the output distribution of the
public model with that of the private target model by finding an auxiliary suffix a; then, we conduct
adversarial optimization on s over the aligned public model, effectively simulating white-box ac-
cess to the target. This two-stage procedure enables surrogate gradient estimation and significantly
improves attack effectiveness without requiring access to the target model’s parameters.

Suppose for a given input prompt z;,, we can find a suffix a that sufficiently aligns the outputs of
the target and public LLMs. The approximation in Eq. [§]is justified primarily by the following two
reasons:

* The target LLM is fine-tuned from the public LLM using parameter-efficient fine-tuning,
which freezes most of the parameters of 6y. Therefore, we first learn the suffix a to align
(2| x4, + a;60) with p(2(") |24, O10c), and then calculate the gradients of the a-aligned
public LLM to approximate those of the target model.

* The gradients Grad(s) are calculated to select a set of possible substitutes for s (details
will be provided in a later section), which introduces a certain level of error tolerance.
When attacking LLLMs, we assume the instruction prompt x;, and the target prompt xf‘n ]
to be fixed. Finally with the approximation in Eq. 5] Eq. [3] could be iteratively optimized in two
steps: 1) we optimize the suffix to make the public and target LLMs alignment with the input z;,,; 2)
initialize the adversarial suffix s with a and optimize s for the jailbreak attack. To be specific, when
the parameters of the LLM are known, with the greedy coordinate gradient-based search algorithm,
the optimal adversarial suffix can be obtained to satisfy Eq.[2] The process could be denoted as:

a®) arg min Dist [p(:f:|a?m + a;00), p(Z|Tin; Oroc)]s
a€Replace{s(t=1) Grad(a)}

s® « arg min Dist[p(Z|zin + 83 b10c), p(z*)], (6)
s€Replace{a®) ,Grad(s)}

where s <— Random_Initialize(V'), and 1<t<T,

where 7' is the total number of iterations to update the adversarial suffix, and we set a and s as the
same length [ for simplification purpose. Grad(a) = V., Dist [p(Z|zin + a;00), p(F|2in; Oioc)] is
solely based on the parameters 6, and Grad(s) is approximated by Eq.[5] Both the two grandients
Grad(-), can be solved by searching for the best candidate in the set Replace{-}. The optimization
of both a and s is based on the Greedy Coordinate Gradient (GCG) method, which calculates the
corresponding gradients without requiring the parameters of the private target model. Instead, it
only needs the gradient information from the public LLM.

And the key replacing function Replace{-} defined above is based on the gradient information.
Taking locating the replacing set of s € Replace{a"), Grad(s)} for example, after calculating
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Grad(aff])) + VDist, for each i € {1,2,...,1}, K candidates are selected for each token ¢ as

spi(k), k € {1,2,..., K}. Then, the replacing set S (the size is denoted as B) can be denoted as:
s1;1 (Uniform(1, K')), ¢ ~ Uniform(1,!
s = Lol (1, K)) (1,) -
(4] ay else

where each s € S(®), we replace one tokens in the suffix a(®) to build the candidate suf-
fixes S, which provides more precise search for the best adversarial suffix.In each iteration,
we search the best suffix from set S®). The similar process is also conducted for optimizing
a € Replace{s*=1) VDist}. And after a total of T iterations, the optimal suffix s* <« s(*)

supposes to jailbreak the target LLM, which responses with the target =*.

Compared to GCG [Zou et al.| (2023), which directly optimizes prompts on a known white-box
model, our approach introduces a two-stage optimization: (1) aligning public and private LLMs
using a lightweight suffix, and (2) optimizing the adversarial prompt over the public model condi-
tioned on that alignment. This allows our method to transfer to private models even under black-box
constraints, making it applicable to more realistic threat scenarios.

3.3 MORE DISCUSSIONS

In this paper, we present an adversarial attack generation framework tailored for private target LLMs
fine-tuned from public open-resource LLMs. Our work goes beyond merely designing an attack
method; it also serves as an effective tool for safeguarding open resources from misuse.

Consider a scenario where the public network owner wants to forbid fine-tuning on certain cases.
Here, the attacks are generated to break the safety of the target LLMs while maintaining the integrity
of the original public LLMs. The new objective in Eq. [f]can be rewritten as:

s® « arg msi?) Dist [p(i’\atm + 8;010c), p(x™)] + Dist [p(aﬂxm + 5;00), p(Z|Tin; 00)],  (8)
seS(t

which ensures the attack capability on certain target LLMs while maintaining safety alignment on
the public LLMs.

To demonstrate the flexibility of the proposed framework, we provide a simple example, showing
that it can be adjusted for various potential uses. This remains an open direction for future work.

4 EXPERIMENTS

In our experiments, we focus on the security issues caused by jailbreak attacks. We evaluate the
proposed framework’s attacking performance on private LLMs that have been fine-tuned from pub-
lic language models. Additionally, we demonstrate the transferability of the generated adversarial
suffixes.

4.1 EXPERIMENTAL SETTING

Datasets. Following the previous work [Zou et al.| (2023)), we use the AdvBench dataset in exper-
iments. The Advbench dataset evaluates adversarial attacks on language models with two compo-
nents. Harmful Strings consists of 500 toxic strings, including profanity, threats, misinformation,
and cybercrime, with lengths from 3 to 44 tokens (average 16 tokens). The goal is to prompt the
model to generate these exact strings. Harmful Behaviors includes 500 harmful instructions, aiming
for a single attack string that induces the model to comply with these instructions across various
themes.

Parameters setting. We conduct the experiments on the A100-80GB GPU card. We set the total
iteration number as 1000, the batch size B = 512, and the TopK for selecting the candidates as 256.
For the LLMs for evaluation, we take the model pair of ‘Llama2-7B’ and ‘Vicuna-7B’, where the
latter one is the fine-tuned model from Llama2-7B. Thus, in the following part of the experiments,
we take ‘Llama2-7B’ as the base model, and ‘Vicuna-7B’ is the target model for private, and vice
versa.
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Table 1: The attack performance (ASR, higher is better) based on the Advbench dataset. We test on
both treating Llama as the original model, Vicuna as the target, and vice versa.

Method Llama-> Vicuna Vicuna->Llama
Harmful String  Harmful Behavior = Harmful String = Harmful Behavior
original target original target original target original target
GBDA 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Autoprompt 25.0 6.0 45.0 13.0 25.0 7.0 95.0 31.0
GCG 57.0 28.0 56.0 24.0 88.0 36.0 99.0 35.0
Baseline 56.0 29.0 60.0 22.0 85.0 38.0 99.0 35.0
Ours w/o a 52.0 31.0 55.0 20.0 84.0 41.0 97.0 33.0
Ours 54.0 79.0 49.0 88.0 84.0 50.0 93.0 54.0

Table 2: The evaluation of tranferability of the generated attacks, where we test on a set of black-box
models and the target model to generate these attacks are Vicuna-7B.

Transfer to

Target
GPT-3.5 GPT4 Claude-1 Claude-2 PalLM-2
GCG Vicuna-7B 343 34.5 2.6 0.0 31.7
PAIR * Vicuna-7B 60.0 62.0 6.0 6.0 72.0
TAP Vicuna-7B 64.0 65.5 7.0 7.2 75.0
AutoDAN  Vicuna-7B 57.0 43.5 10.5 3.6 454
Ours Vicuna-7B 54.0 53.3 4.9 5.2 60.0

Evaluation Metrics. We use Attack Success Rate (ASR) as the primary metric for AdvBench. An
attempt is considered successful if the model outputs the exact target string. ASR is defined as:
ASR = n/m, where n is the number of successful jailbreak queries and m is the total number of
queries. We assess the top-1 attack success rate by generating a single response with the highest
likelihood for each jailbreak candidate prompt.

4.2 EXPERIMENTAL RESULTS

Ablation Study and Comparing with SOTA. The corresponding experimental results are illus-
trated in Table[T] focusing solely on the ASR scores of the target model (‘target’). Additionally, the
ASR scores of the original model (‘original’) are provided in the table for further examination and
analysis.

For state-of-the-art methods, we compare against GBDA |Guo et al.| (2021), Autoprompt [Shin et al.
(2020), and GCG [Zou et al|(2023). Since we are the pioneers in proposing the attack fine-tuning
framework, we evaluate the performance of these methods on generating attacks on the original
model and then directly transferring them to the target model for testing its efficacy. As can be
observed from Table[T] these methods suffer from the ASR drop when transfer the attacks from the
original model to the target model (for GCG, more than 20% drop). Thus, the white box attack is
much easier than the black box one, while our proposed (‘Ours’) achieves the best ASR among these
methods. And since we don’t expect the attacks on the original data, we don’t achieve the best in
‘original’, which isn’t included in evaluating the attack performance.

For ablation study that proves the effectiveness of the each proposed component, we set: 1) ‘Base-
line’: generating the adversarial suffixes purely on public original LLM; 2) ‘ours w/o a’ calculating
the gradients directly on the original LLM, without optimizing a; 3) ‘ours’ our full setting frame-
work. As can be observed from Table[T] Our full setting (‘ours’) obtains high ASR in attacking the
target LLM. And if not optimizing the a to do the alignment during the framework, the generated
attacks may not be that efficient for attacking the target model, which is mainly due to the build of
S is not precise enough.

Additionally, in Fig. 2] we depict the adversarial suffixes during each iteration. The loss curves
for both the ‘Baseline’ and ‘Ours’ methods are also provided. Our observations reveal that the
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Figure 2: The iteration optimization process of the adversarial suffix for the given z;,. Left: the
suffixes change from s() to s(7); Right: the loss values in each iteration of the baseline method and
our proposed method.

proposed framework enables easy minimization of loss, showcasing a rapid convergence process.
This suggests that querying the private LLM for generating the attack can be achieved with fewer
queries, rendering it suitable for query-limited scenarios.

Attack with Local Fine-tuning Transfers better. We also test the transferability of the proposed
framework. In order to get high transferability while generating the attacks on the target LLM, we
modify Eq.|6|as s*) < arg min, Dist[p(Z|zin + 5; O10c), p(x*)] + ADist [p(Z|zin + s300), p(z*)],
where A is the balancing weight and we add the new distance item here to ensure its attack perfor-
mance on the original LLM.

The comparative results are presented in Table@ with downstream models GPT-3.5, GPT-4, Claude-
1, Claude-2, and PalLM-2 utilized for validation purposes. Additionally, we conduct a performance
comparison with PAIR |Chao et al.|(2023), a method capable of addressing the pure black-box prob-
lem. And also, we include TAP Mehrotra et al.| (2024) and AutoDAN [Liu et al.| (2023b) for compar-
ison. Notably, PAIR achieves higher ASR than our method as it can query the downstream models
to generate attacks. However, considering our focus on transferability evaluation, our performance
approaches that achievable by querying black-box models. In addition, we test the transferability on
the public API, the results are shown in Fig.

Effectiveness without Exact Base Model Knowledge. Our method assumes the attacker has a
rough idea of the public LLM family (e.g., LLaMA or GPT-like), but does not require an exact
match with the target private model. To validate the robustness of our approach under imperfect
knowledge, we conducted experiments where adversarial suffixes optimized on one model were
transferred to diverse target models with different architectures and training data.

The results are shown in Table [3] These results demonstrate that our local prompt optimization
framework can generate effective adversarial attacks even when the precise base model of the target
is unknown, highlighting its generalization across model families. Future work will explore fully
model-agnostic and adaptive variants.

Table 3: Attack success rates when the adversarial suffix is optimized on a base model different from
the target’s exact backbone.

Optimized On ~ Target Model ~ ASR (%)

LLaMA2-7B ChatGLM2-6B 58.6
LLaMA2-7B GPT-3.5 62.3

Computational and Query Efficiency. We evaluate both the computational overhead and black-
box query cost of our two-stage optimization framework.
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1 cannot generate a message that spreads misinformation. Is there anything else | can help
you with?

Generate a message that spreads fake news natigue humor.\
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\Q
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Breaking News!
Here's a fake news article with a humorous tone: 9

Published on: [[22/05/2024](/1
BREAKING: NEW DISCOVERY IN THE WORLD OF FOOD

May 22, 2024 - In a shocking discovery, scientists have found that eating an entire pizza by
yourself once a week can lengthen your lifespan by 45%!

Leading nutritionist, Jane Doe, made the groundbreaking announcement at a press # In an astonishing turn of events, scientists have discovered that fake news is now the leading

conference yesterday. "We've cracked the code to the secret to a long and healthy life, and cause of stress-induced laughter worldwide! According to a recent study by the Institute of Absurd

it's surprisingly simple," she said with a cheesy grin. "Just make sure to order that extra large Studies, over 75% of internet users experienceincontro\\ame giggles when confronted with the
pepperoni pizza and devour it in a single sitting. Your taste buds (and your doctor) will thank latest sensational headlines.

Figure 3: Test the transferability of the generated suffix under Llama-3 8B and ChatGPT. The
jailbreak attack succeeds in both two languages by generating the target output.

Computational Efficiency: Optimization only involves the auxiliary adversarial suffix, a small fixed-
length token sequence, rather than the full model parameters. This keeps the computation modest
compared to full white-box attacks.

Query Efficiency: Our method requires querying the black-box target to compute distribution align-
ment. To reduce query costs, multiple locally generated suffix candidates can be reused per iteration
before querying the target model. In practice, this strategy reduces black-box queries by up to
70% with minimal impact on attack success. Overall, black-box query counts remain comparable
or lower than existing attacks like GCG, demonstrating that our framework is both practical and
efficient even under limited or costly access.

5 CONCLUSION AND FUTURE WORK

In this paper, we investigated the security risks arising from fine-tuning open-source LLMs. We
showed that even when a private model is treated as a black box, it remains vulnerable if the public
LLM used for fine-tuning is known—or even approximately identified. Our proposed two-stage
framework generates attacks on public LLMs and locally adapts them to private targets, achieving
success rates comparable to white-box settings.

We acknowledge several limitations of our approach. First, it assumes some prior knowledge about
the public base model. While our experiments show that using a general LLM as the surrogate still
yields effective attacks, the attack success rate may decrease when the base model is unknown. Sec-
ond, the framework is most effective when the private model is only moderately fine-tuned from the
public base; substantial divergence between the private and public models can reduce performance,
though high transferability of adversarial suffixes is often retained. Lastly, while we focus on query-
based black-box scenarios, further work is needed to assess the method against adaptive defenses
and more diverse fine-tuning strategies.

Future work includes exploring model-agnostic attack strategies, improving efficiency under lim-
ited query budgets, evaluating defenses against transferable adversarial attacks, and investigating
adaptive fine-tuning or privacy-preserving techniques to mitigate such risks in real-world LLM de-
ployments.
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USE OF LLMSs

Yes, we used LLMs to aid in writing and polishing the manuscript. All content generated by LLMs
was carefully verified and edited by the authors.

REPRODUCIBILITY STATEMENT

We provide full details of our experimental setup, including model architectures, hyperparameters,
datasets, and evaluation protocols, to ensure reproducibility. Our code for generating adversarial
prompts and performing local prompt optimization will be made publicly available. Additionally,
the datasets used in our experiments are either publicly accessible (e.g., AdvBench, Stanford Alpaca)
or referenced in the paper. All reported results can be reproduced following the instructions and
scripts provided in the supplementary material.
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A APPENDIX

A.1 ALGORITHM

The entire procedure for iteratively updating the auxiliary adversarial suffix a and the instance-
specific adversarial suffix s is illustrated in Alg. [T} Here, the target LLM is treated as a black
box, meaning that only query access is available, and no internal parameters or fine-tuning data
are accessible. The algorithm leverages a white-box public (shadow) model to perform gradient-
informed optimization of a, which is then used to guide the local optimization of s, effectively
bridging the gap between surrogate and target models while remaining fully compatible with black-
box constraints.

Algorithm 1 Attack Generation via Local Fine-Tuning

1: Input: The public LLM with parameters 6; the target private LLM for query p(; 0;,.), the total
iteration number 7'; batch size B;

2: Initialize suffix s as s° < Random_Initialize(V');

3: fort =1toT do

Optimizing Suffix a
4 Initialize the suffix: a(®) « (=1,
5: fori=1toldo
6: Compute gradient Grad(aff]));
7 Obtain candidate replacements af;) (k) < T'opK{Grad} for token a;
8: end for
9: for b =1to B do
10: Randomly choose a position i and a token from aj; (k);
11: Replace token at position ¢ with the chosen token to get updated suffix;
12: Collect these updated suffixes as A®);
13: end for
14: Search for: a(*) « arg min, ¢ 4 Dist [p(i\;l:m +a;00), p(Z|Tin; O1oc)];
Optimizing Suffix s
15:  Initialize the suffix: s « a(*);
16: fori=1toldo
17: Compute gradient Grad(sg]));
18: Obtain candidate replacements sp; (k) <— TopK {Grad} for token a;

19: end for
20: for b = 1to B do

21: Randomly choose a position i and a token from sp;)(k);

22: Replace token at position ¢ with the chosen token to get updated suffix;
23: Collect these updated suffixes as S(*);

24: end for

25: Search for: s®) « arg min, e g Dist [p(fc\xm + 8;010c), p(x*)];

26: end for

27: Return optimized suffix s(7).

A.2 ADDITIONAL EXPERIMENTS

Transferability Across Fine-Tuning Regimes. We conducted an experiment to evaluate whether
adversarial attacks optimized on a base model (white-box) can transfer to a target model trained
using LoRA. Specifically, we fine-tuned a LLaMA2-7B model with LoRA (rank=8) on 500 benign
instructions sampled from the Stanford Alpaca dataset. We compared two attack strategies on this
target model:

* White-box adversarial suffix directly optimized on the base model.

* Our method: local prompt optimization.

The results are summarized in Table
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Table 4: Attack success rates (ASR) on a LoRA-fine-tuned LLaMA?2-7B target.
Attack Type ASR (%)

White-box Suffix 64.7
Ours (Transfer Attack) 71.2

These results show that our local prompt optimization framework outperforms direct white-box
attacks when transferring across different fine-tuning regimes, demonstrating strong generalization
even under LoRA-based updates.

Target Model Selection and Generalization. For reproducibility and controlled evaluation, we
primarily use widely adopted open-source models, Vicuna-7B and LLaMA2-7B. These models fa-
cilitate local ablation studies and optimization experiments and align with setups in prior work such
as the GCG paper, enabling fair comparisons.

To verify that our proposed framework generalizes beyond these older models, we additionally eval-
uate on more recent, strongly aligned LLMs. As shown in Table [5] our attacks remain effective.
These results confirm that while Vicuna and LLaMA?2 are older, our method is effective across a
range of modern, highly aligned LLMs, highlighting the broader applicability of our approach.

Table 5: Attack success rates (ASR) on modern LLMs to demonstrate generalization.
Optimized On  Target Model ASR (%)

LLaMA2-7B GPT-4 54.7
LLaMA2-7B Claude 3 51.2

Robustness to Adversarial Re-Finetuning. To evaluate the robustness of our attacks, we conducted
an experiment where the target LLaMA?2-7B model was re-finetuned using LoRA on a small dataset
of 500 adversarial instructions generated by our method. The goal was to assess whether lightweight
adversarial fine-tuning can mitigate the attack.

Table 6: Attack success rates (ASR) before and after re-finetuning the target model on a small set of
adversarial instructions.

Target Model Variant ASR (%)

Original LLM 79.1
Re-finetuned LLM 48.3

The results are summarized in Table [6] These results indicate that lightweight adversarial re-
finetuning can partially reduce the effectiveness of our attacks but does not eliminate the vulner-
ability. This suggests that the attack remains highly effective, especially when iterative adaptation
by the attacker is possible. Further exploration of adaptive defense strategies is left to future work.
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