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ABSTRACT

Large language models (LLMs) have demonstrated immense utility across vari-
ous industries. However, as LLMs advance, the risk of harmful outputs increases
due to incorrect or malicious instruction prompts. While current methods effec-
tively address jailbreak risks, they share common limitations: 1) Judging harm-
ful responses from the prefill-level lacks utilization of the model’s decoding out-
puts, leading to relatively lower effectiveness and robustness. 2) Rejecting po-
tentially harmful responses based on a single evaluation can significantly impair
the model’s helpfulness. This paper examines the LLMs’ capability to recognize
harmful outputs, revealing and quantifying their proficiency in assessing the dan-
ger of previous tokens. Motivated by pilot experiment results, we design a robust
defense mechanism at the decoding level. Our novel decoder-oriented, step-by-
step defense architecture corrects the outputs of harmful queries directly rather
than rejecting them outright. We introduce speculative decoding to enhance us-
ability and facilitate deployment to boost secure decoding speed. Extensive ex-
periments demonstrate that our approach improves model security without com-
promising reasoning speed. Notably, our method leverages the model’s ability to
discern hazardous information, maintaining its helpfulness compared to existing
methods.

1 INTRODUCTION

In recent years, significant progress has been made in developing large language models (LLMs).
Meanwhile, the safety of LLMs has attracted significant attention from the research community and
industry (Weidinger et al., 2021; Achiam et al., 2023; Wu et al., 2023b). One of the primary safety
concerns is jailbreaking, where malicious actors or errant inputs prompt LLMs to produce harmful
or inappropriate content, effectively bypassing ethical guidelines. Many attempts have been made
to address these risks. For example, Meta has implemented several strategies in both pre-training
and fine-tuning phases to improve the safety of their Llama-series models (Touvron et al., 2023;
Dubey et al., 2024). Despite these efforts, some studies have reported that focusing too narrowly on
safety may diminish the models’ general capability (Bai et al., 2022; Huang et al., 2024). Therefore,
enhancing LLMs’ safety without compromising their utility has become a critical area of research.

Recent defense strategies against jailbreaks can be roughly categorized into two groups (as shown in
Figure 1). The first group is prefill-level defense (Wu et al., 2023a; Phute et al., 2023; Zheng et al.,
2024). It enhances the models’ protective capabilities by integrating additional security measures
into the initial prompts (prefills) or refining their representation. However, this approach primarily
depends on user inputs to detect harmful responses, making it susceptible to rapidly advancing jail-
breaking techniques. Moreover, this reliance can lead to inaccuracies in interpreting user intentions,
thereby reducing the overall utility of the LLMs. Another group of methods is response-level de-
fenses (Phute et al., 2023; Xu et al., 2024). It involves using safety filters that assess the potential
harmfulness of model-generated responses. This method focuses on the output of the models, po-
tentially offering improved performance by directly addressing the content generated. However, this
strategy typically involves a single evaluation point, which may result in false positives that could
diminish the model’s utility by restricting benign responses.

In practice, jailbreak instructions can bypass the prefill-level defenses and achieve their purposes
in the model’s response Wei et al. (2024). Therefore, assessing jailbreak behavior in LLMs should
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Figure 1: Examples of two kinds of imperfect defenses and RDS. (a) Prefill-level defenses fail to
refuse the harmful query with N harmful tokens. (b) Response-level defenses judge the whole
output in a single-point evaluation without consideration of the prefill. (c) RDS conducts step-by-
step assessments for each sampled token to enhance the security of LLMs at the decoder level.

focus on decoding dimensions, including the context of both the prefill and the model’s response.
We aim to directly address and rectify jailbreak behavior by focusing on the decoding level. (Zheng
et al., 2024) has demonstrated models’ ability to distinguish between harmful and benign prefill.
This raises the question: Can LLMs extend this discriminative capability to their own decoding?
To investigate this hypothesis, we conduct a series of preliminary experiments to explore the model’s
ability to discern its own decoding. Specifically, we evaluate five open-source LLMs and visualize
the hidden state of the decoding on a token-by-token basis. We observe that LLMs cannot distinguish
harmful tokens from benign tokens in one step, but it can achieve identification through multi-step
judgment at the decoding, especially for harmful prefill.

Based on pilot results, we introduce a novel decoder-oriented defense, termed RDS, defencing by
step-by-step evaluation during inference. Informed by the discriminative capability of LLMs on
decoding, RDS utilizes a trainable classifier to assess the harmfulness of candidate tokens during
sampling and adjust their logits accordingly. Subsequently, RDS reorders the candidate tokens and
prioritizes the token with lower harmfulness at each step to ensure a safe response iteratively. The
step-by-step safe generation provides a root defense on LLM’s decoding (encompassing the context
of both prefill and response) perspective and multi-step evaluation. Furthermore, speculative decod-
ing is incorporated into RDS for hidden state prediction to enhance the generation speed, potentially
achieving a more fundamental and efficient defense mechanism.

We evaluate RDS on five LLMs and a series of harmful and benign query benchmarks. Experimental
results demonstrate that RDS outperforms existing approaches in terms of both security and help-
fulness, reducing compliance with harmful queries from 14.4% to 2.4% on Xstest (Röttger et al.,
2023)) (without safety prompt) and increasing token generation speed by 2.12× ∼ 3.09× com-
pared to other baselines. We hope this method offers a new perspective to security defense, i.e.,
assessing the security of a problem from the decoding level, thereby achieving a root defense effect.

2 PRELIMINARY: DECODING-LEVEL DEFENCE

In this section, we design a series of experiments to evaluate the capability of LLMs to discriminate
between harmful and benign outputs at the decoding stage. We first outline the rationale for shifting
focus from prefill analysis to decoding, followed by the details of our experimental setup. Finally,
we summarize the experimental results and provide a deeper analysis of their implications.
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2.1 LLMS’ DISCRIMINATIVE CAPABILITY OF DECODING

The prefill stage for LLMs typically includes a user query, often accompanied by prefixed or suffixed
elements such as system prompts. Previous study (Zheng et al., 2024) has demonstrated that LLMs
can discriminate between different types of prefill and use this ability to enhance safety mechanisms.
However, relying solely on prefill analysis for security evaluations presents significant limitations:
1) Jailbreaking behaviors often manifest in the model’s output, and focusing solely on prefill may
overlook these behaviors, compromising overall robustness; 2) Evaluation based purely on prefill
places excessive dependence on the model’s initial discriminative capacity, and a single-stage eval-
uation may lead to rejecting outputs prematurely, reducing the model’s utility.

To address these limitations, we explore whether LLMs can discriminate harmful from benign con-
tent during decoding, which encompasses both the prefill and the model’s generated outputs. If
LLMs can reliably evaluate the safety of their own outputs in real time, they can offer a more
comprehensive and proactive approach to security. Decoding-based defenses leverage the dynamic
nature of model outputs, allowing for a more fundamental and continuous risk assessment. Follow-
ing DRO (Zheng et al., 2024), we use the hidden states of the harmful and benign queries at the top
layer of the model for classifier training. Details of the classifier’s training objective is provided as
follows.

u =
1

n

∑n
i=1hi, (1)

mi = VT (hi − u), (2)

ĉi = WTmi + b, (3)

L(ci, ĉi) =
1

n

∑n
i=1(ci log ĉi), (4)

where u ∈ Rd is the mean value of all hidden states of queries, and n = 200 is the number of
queries in Custom. V ∈ Rd×m represents the m principal components. W ∈ R1×d and b ∈ R1

correspond to the trainable parameters of the classifier. ĉi and ci represent the predicted score and
the label of query, respectively.

2.2 EXPERIMENTS

In this section, we evaluate five open-source LLMs and utilize Principal Component Analy-
sis (PCA) to visualize their hidden states during the decoding process. To facilitate classi-
fier training, we curate Custom from the DRO (Zheng et al., 2024) as the training dataset of
the classifier, consisting of 100 harmful and 100 benign queries, all beginning with the phrase
“How to”. The evaluated LLMs are accessible on HuggingFace: Llama-2-chat-7B (Touvron
et al., 2023), Llama-3-8b-Instruct (AI@Meta, 2024), Qwen2-7B-Instruct (Yang et al.,
2024), Vicuna-7B-v1.3, and Vicuna-13B-v1.3 (Chiang et al., 2023). Notably, some mod-
els, such as those in the Llama series, have undergone extensive safety alignment.

We visualize the hidden state from the top layer of each generated token to verify the classifier
ability at decoding. The outputs of harmful queries are assessed using Llama-guard (Bhatt et al.,
2023), which is a safety classification model based on LLaMA-2 (Touvron et al., 2023). While the
output of benign queries are evaluated through string matching. If refusal strings are identified in the
output, it is categorized as a refusal response; otherwise, it is not. A compliant answer is assigned an
evaluation score s of 1, otherwise 0. The compliant outputs to harmful queries are treated as harmful
outputs. Others including the refusal outputs to harmful queries and benign queries, and compliant
outputs to benign queries are treated as benign outputs. In the preliminary experiment, we sample
one response for each query. The initial defense of these five LLMs is presented in Appendix C.

2.3 VISUALIZATION ANALYSIS

We apply PCA to visualize the hidden state and select the first four principal components of the
hidden states. Refusal outputs often start with special tokens, such as “I’m sorry” or “As an AI”. As
refusal outputs are distinguished from compliant outputs at the start, we samples the first few tokens
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to verify the classifier performance on output. Besides, we additionally sample the last token of the
output. Figure 2 respectively show the visual results of the first i tokens and and the last token of
the outputs. The boundary (the black dashed line) separates harmful queries (red cross) and benign
queries (blue ircles), which liiustrates that LLMs can naturally discern the harmfulness of the inputs.

(1) i=1 (2) i=2 (3) i=3 (4) i=last

Figure 2: Performance of the classifier at the decoding from the i-th token and last token of the
output. Harmful and benign tokens are represented by “harmful+i” and “harmless+i”, respectively.
The crosses represent the hidden states of output for harmful queries, while the circles represent the
hidden states of output for benign queries. See the visual results from the 4-th token to the 7-th in
Appendix D.

Can LLMs extend this discriminative capability to their own decoding? In Figure 2, from 1-th
to 3-th token, almost all the tokens to benign queries maintain at the benign side for all LLMs.
However, for harmful queries, although refusal tokens refer to benign outputs, the first few tokens
are not classified correctly. Instead, we observe that the benign tokens to harmful queries tend
to converge towards the benign side with a smaller offset than harmful tokens. That is to say,
for harmful queries, benign tokens attain higher scores from the classifier than harmful tokens,
signifying a numerical differentiation rather than relying solely on classification results.

Can we consider LLMs’ output harmful based on a single judgment? Figure 2 illustrates that
the classifier cannot accurately determine whether the output is harmful based solely on the model’s
overall decoding (i.e., the complete output). Even current advanced methods cannot guarantee 100%
filtering. Considering the experimental results, we believe that making a single-step judgment is
insufficient to determine if the output is harmful. In conjunction with Figure 2, although the model
cannot make an accurate judgment in one attempt, it can achieve better discrimination through a
step-by-step evaluation of the decoding. Therefore, we believe a gradual assessment approach at the
decoding can lead to more effective defense mechanisms.
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3 METHODOLOGY

Motivated by validating the capability to recognize responses, we propose RDS to ensure the safety
of LLMs at the decoder level. The architecture of RDS is illustrated in Figure 3. We design a
step-by-step defense mechanism that directly corrects the harmful token into a safe token when
generating the response. Additionally, we introduce speculative decoding into RDS to speed up
token generation. Benefitting from step-by-step safe generation and speculative decoding, RDS
achieves root security without compromising helpfulness and speed.

Figure 3: RDS comprises two key modules: 1) Step-by-step token generation: The root classifier
is designed based on the discriminative capacity of queries. By adjusting the logits of candidate
tokens, RDS reorders the token and prioritizes the benign token. 2) Speculative decoding: RDS
predicts the hidden state from speculative decoding instead of multiple transformer blocks.

3.1 PROBLEM FORMULATION

Let xi as the model’s decoding at step ti, ci = f(xi) represents the score of the sampled token xi

calculated by the classifier f(·). RDS aims to minimize ci at each step. We formulate this process
as follows:

min

xi

N∑
i=1

ci ; xi = LLM(xi−1;Ci) (5)

where N is the length of outputs, and at each step ti, the LLM obtains prior decoding xi−1 and
the harmful results Ci of candidate tokens to generate next token xi. RDS constructs the candidate
tokens according to the logit value and samples a new token from the candidate tokens. By ensuring
the security of each step, RDS promises a safe response.

3.2 STEP-BY-STEP SAFE GENERATION

During the autoregressive decoding of LLMs, LLM maps the hidden state of its decoding xi−1 at
step ti−1 to the vocabulary dimension and sample the next token by top-k (Fan et al., 2018):

Ii,Vi = Topk(softmax(li−1)), (6)

where li−1 = LM Head(hi−1) represents the logits of the decoding at step ti−1, hi−1 represents
the hidden state of the decoding at step ti−1, Ii and Vi represent the set of top-k candidate tokens
and the logits values of these candidate tokens, respectively.
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Safety disclaimers frequently rank among the top tokens (Zheng et al., 2023) in the inference pro-
cess. To enhance security, RDS aims to adjust the logits of these tokens further. The classifier
from the pilot experiments is integrated into the sampling strategy during decoding. This integra-
tion provides a real-time safety assessment of candidate tokens, adjusting the top-k tokens to safer
alternatives, ensuring the safety of the next generated token. Consequently, the computation of ci in
Equation (5) is detailed into the following components:

mk = VT (hk
i − u), (7)

ck = WTmk + b, (8)
xi = argmax(Ci), (9)

where hk
i is the hidden state of the dececoding at step ti concatenated with the candidate token from

Ii, mk ∈ Rm represents the first m principal components of hk, ck ∈ R1 is the harmful score of the
candidate token, Ci is the set of harmful scores of the candidate tokens.

3.3 SPECULATIVE DECODING

RDS leverages the discriminative ability of decoding for defense by computing the harmful score of
candidate tokens based on their hidden states. It concatenates decoding at step t− 1 with candidate
tokens to obtain the hidden state at step t resembling speculative decoding processes (such as EA-
GLE (Li et al., 2024)) that predict hidden states from decoding and tokens. To increase decoding
speed, RDS extends EAGLE’s resampling to accelerate generation.

Unlike traditional LLMs that compute hidden state through autoregressive decoding with multiple
Transformers blocks, RDS utilizes EAGLE Head to predict the hidden state hi at step ti, thereby
accelerating the inference process. This prediction is based on the candidate token and the hidden
state of decoding at step ti−1. The hidden state in Equation (7) can be expressed as:

hk
i = EAGLE Head(hi−1, ek), (10)

where EAGLE Head consists of a FC layer and a decoder layer from the original LLM; ek rep-
resents the embedding of the candidate token xk. After predicting the hidden state at step ti, the
step-by-step safe token generation is conducted on this predicted hidden state.

We summarize the inference process of RDS as Draft Model, which can be formulated as:
xN = Draft Model(h0). (11)

where h0 denotes the hidden state of the prefill at step t0, xN represents the output of LLMs.
Equation (11) reveals that RDS only generates the safe response from the hidden state of prefill,
without additional LLMs training nor other models introduced.

3.4 HIGHLIGHTS

As a decoder-oriented defense, the advantages of RDS are summarized as follows:

First, RDS demonstrates a root defense by leveraging the discriminative capabilities in LLMs’ de-
coding level. It fully utilizes the model’s understanding of context by evaluating the harmfulness
from both input and output dimensions. Guided by a classifier with fewer parameters, RDS iden-
tifies harmful tokens during the early inference stage and corrects them to safe tokens, thereby
reducing harmfulness in the output. Subsequent experimental results indicate that RDS can enhance
the model’s defensive capability without additional training for the LLMs.

Secondly, RDS adopts a step-by-step correction strategy by incrementally adjusting the token log-
its during the sampling process and progressively correcting harmful labels. Instead of relying on
single-point evaluations, RDS improves the safety of LLMs through multi-step evaluations, thereby
providing stronger assistance capabilities and a lower false alarm rate for user queries. Furthermore,
experiments demonstrate that RDS is more helpful than other methods on various safety bench-
marks, further indicating the transferability of RDS.

Finally, to enhance the reasoning speed of RDS and facilitate its practical implementation, we incor-
porate a speculative decoding structure into the resampling process. It leverages the advantages of
the step-by-step mechanism to accelerate the generation process. Experimental results demonstrate
that the token generation speed of RDS is approximately 2.12× ∼ 3.09× faster than that of the
baselines. These improvements demonstrate both the effectiveness and efficiency of RDS.
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Table 1: Compliance results on harmful benchmarks of baselines and RDS (↓). The best results are
in bold. We sample five responses for each query. Once a response is compliant (si > 0) is the
answer treated to be compliant. “base” represents the original LLM.

Data Defense Mistralx7B Vicuna-7B Vicuna-13B LLaMA2 LLaMA3 Qwen2 Average

HEx-PHI

No defense 205 89 46 27 5 13 64.2
safety prompt 84 37 14 0 0 0 22.5
Self-Remind 79 41 11 0 0 0 21.8
DRO 106 33 3 13 0 0 25.8
Self-Examination 88 23 5 0 0 0 19.3
SafeDecoding 74 21 6 0 0 0 16.8
RDS 31 16 4 0 0 0 8.5

AdvBench

No defense 84 22 10 0 1 2 19.8
safety prompt 33 6 0 0 0 0 6.3
Self-Remind 32 0 0 0 1 0 5.5
DRO 70 2 0 0 0 0 12.0
Self-Examination 35 0 0 0 0 0 5.8
SafeDecoding 23 0 0 0 0 0 3.8
RDS 13 1 0 0 0 0 2.7

Malicious
Instruct

No defense 73 16 3 0 0 3 15.8
safety prompt 12 16 3 0 0 3 5.7
Self-Remind 11 0 0 0 0 0 1.8
DRO 68 3 2 0 1 2 12.7
Self-Examination 10 0 0 0 0 0 1.7
SafeDecoding 9 0 0 0 0 0 1.5
RDS 6 1 0 0 0 1 1.3

Xstest

No defense 92 48 12 0 0 12 27.3
safety prompt 52 0 0 0 0 0 8.7
Self-Remind 52 0 0 0 0 0 8.7
DRO 88 4 4 0 0 0 15.3
Self-Examination 49 0 0 0 0 0 8.2
SafeDecoding 47 0 0 0 0 0 7.8
RDS 0 21 0 0 0 0 3.5

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We evaluate the security improved by different denfense methods on four bench-
marks: AdvBench (Zou et al., 2023), MaliciousInstruct (Huang et al., 2023), Xstest (Röttger
et al., 2023), HEx-PHI (Qi et al., 2023).

We additional evaluate the helpfulness of LLMs after applying the defense methods on two dataset:
Testset (Zheng et al., 2024), Xstest(benign) (Röttger et al., 2023).

Baselines We select five defense methods as the baselines. Prefill-based defenses contain: (1)
safety prompt, which is the official safety prompt of LLaMA-2 illustrated in Appendix E. The
safety prompt serves as the system prompt of LLMs. (2) Self-Remind (Wu et al., 2023a), which
encapsulates the user’s query in a system prompt to remind LLMs to respond responsibly. (3)
DRO (Zheng et al., 2024), which utilizes the distinguished ability at the prefill level to train the
safety prompt embedding to improve the moving direction of the input. Response-based defenses
contain: (4) Self-Examination (Phute et al., 2023), which checks the response by the LLM itself.
(5) SafeDecoding (Xu et al., 2024), which matches the string of safety disclaimers and amplifies the
token probabilities of safety disclaimers by training an additional expert model for LLMs.

Evaluation Metric We select five samples for each query. The evaluation method still follows
Section 2.2 to judge whether the response is compliant. We take the average evaluation score of all
samples as the final score, which can be denoted as:

si =
1

n

∑n
j=1sij , (12)

7
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Table 2: Refusal results on benign benchmarks of the baselines and RDS (↓). We sample five
responses for each query. The query is treated as a refusal if half of the responses (s < 0.5) are
refused.

Data Defense Mistralx7B Vicuna-7B Vicuna-13B LLaMA2 LLaMA3 Qwen2 Average

Testset

No defense 0 0 0 1 0 0 0.2
safety prompt 0 0 2 3 0 0 0.8
Self-Remind 2 3 2 1 8 1 2.8
DRO 0 0 0 3 0 0 0.5
Self-Examination 1 2 1 100 10 0 19.0
SafeDecoding 3 4 4 16 2 3 5.3
RDS 0 0 0 1 0 0 0.2

Xstest
(benign)

No defense 0 4 20 64 12 12 18.7
safety prompt 8 16 28 88 36 8 30.1
Self-Remind 12 52 48 96 92 24 54.0
DRO 0 32 72 88 36 24 42
Self-Examination 3 24 28 100 48 24 37.8
SafeDecoding 3 64 72 96 64 60 59.8
RDS 0 0 12 64 12 12 16.7

where n = 5 is the number of outputs samples. For harmful queries, the threshold is set to 0. For
benign queries, the threshold is set to 0.5.

4.2 MAIN RESULTS

Table 1 presents the baselines, and RDS compliance results on harmful datasets. “base” represents
the original model. From Table 1, we have the following inclusions.

Firstly, RDS effectively reduces compliance to harmful queries on all datasets. After applying the
safety prompt, the defense ability of all LLMs further improves. However, safety prompt does not
always work (i.e., vicuna-7B on MaliciousInstruct). Furthermore, baselines reliant on the LLMs’
self-assessment, such as Self-Examination, exhibit varying degrees of performance degradation due
to the subpar initial defense capabilities. Compared with all baselines, RDS demonstrates its superi-
ority, particularly with regard to LLMs that exhibit suboptimal initial performance (i.e. Mixtralx7B).
These indicate that RDS demonstrates excellent defense ability at the decoder level.

Secondly, though trained on Custom, the classifier retains its discriminative ability on other datasets,
which demonstrates the transferability of the classifier and the generalization ability of RDS.

4.3 HELPFULNESS ANALYSIS

Table 2 presents the refusal results on the benign datasets of baselines and RDS. The higher the
refusal score, the greater the loss of helpfulness caused by defense methods. Compared to all base-
lines, our model shows fewer refusal results on benign queries (0.6 vs.23.4 on Custom; 0.2 vs. 22.6
on Testset; 20.0 vs. 62.4 on Xstest). The existing security defense methods increase the rejection
rate of LLMs to a certain extent, especially SafeDecoding and DRO.

SafeDecoding utilizes string matching to select the output that correspond to rejection template.
Once the top-k outputs contain the rejection template, SafeDecoding will select the matched one
and ignore whether the query is harmful or not. In this way, SafeDecoding significantly compro-
mise the model’s utility. This phenomenon is most evident on Xstest, as it contains polysemous
words in the query. For instance, “How to kill time” is a benign query while “How to kill a per-
son” is a harmful query. On Xstest, the original LLMs intend to reject the query, which increases
rejection options in the top-k outputs. Therefore, SafeDecoding tends to reject benign query. DRO
moves the representation of harmful/harmless queries in the same/opposite direction of rejection
probability, which rely on the initial classification ability of LLMs on input. Figure 9 illustrates the
classifier’s results on all datasets. Notably, LLMs demonstrate robust classification capabilities on
all satasets except Xstest. On Xstest, a few of benign inputs are interspersed to the harmful side.
This corresponds to the results that the original LLMs is more prone to rejection on Xstest on Table
2. This misclassification of harmless queries results in DRO aligning the representations of harmless
queries with the direction of refusal, resulting in serious rejections on Xstest. In contrast, RDS solely
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Table 3: Number of tokens generated per second of the baselines and RDS (tokens /s ↑). “- w/o SD”
removes the speculative decoding of RDS.

Model Mistralx7B vicuna-7B vicuna-13B LLaMA2 LLaMA3 Qwen2

base 32.07 41.68 31.74 42.30 38.77 34.61
safety prompt 17.21 43.43 32.15 43.09 40.20 36.43
Self-Remind 19.07 31.85 25.62 32.27 29.15 40.81
DRO 31.90 43.69 32.99 43.02 39.41 35.48
Self-Examination 22.84 32.19 25.70 25.15 25.00 39.75
SafeDecoding 14.49 31.99 25.32 31.71 28.75 37.30

RDS 54.71 73.17 78.29 97.77 69.98 73.46
- w/o SD 31.44 31.25 16.85 21.04 22.25 20.39

assesses the outputs for defense, disregarding inputs. Thus, the superior utility of RDS on Xstest
underscores the benefits of defense mechanisms at the decoder level. Combined with Table 1, it can
be included that RDS can enhance the security of LLMs without compromising its helpfulness.

4.4 EFFICIENCY ANALYSIS

We evaluate the efficiency of baselines and RDS on the Custom (benign). We select one response
for each query and collect the number of tokens generated per second in Table 3.

The inference speed of prefill-level defenses nearly matches that of the original LLMs. At the same
time, response-level defenses are notably lower than the original model’s when inferencing. Due to
the string matching and additional inference of the expert model, SafeDecoding demands supple-
mentary computational resources. Moreover, SafeDecoding necessitates training the expert model
for each LLM, which demands exceptionally high computational resources. Conversely, RDS em-
ploys step-by-step safe token generation without additional training of LLMs, utilizing speculative
decoding to enhance the inference speed, proving significantly more efficient than other baseline
methods. With the support of speculative decoding, the generation speed of RDS is 2.12x ∼ 3.09x
faster than other baselines. We design another variant, “- w/o SD”, that removes the speculative
decoding of RDS. In “- w/o SD”, The inference speed significantly drops. We include the reason for
the drop that “- w/o SD” predicts the hidden state of candidate tokens by autoregressive decoding.

4.5 CASE STUDY

In this section, we analyze RDS and baselines from the perspective of generated token. Figure ??
showcases the outputs of defense methods for an example harmful query. Even safety prompt has
been added to the prompt, LLMs fail to reject this harmful. Although other baselines have rejected
the query, they are semantically singular. Starting with “The best way of stealing a car is”, RDS
gives a rejection of “not advisable” in the following tokens to the harmful query. This reflects that
RDS identifies the harmful output during the inference and corrects it to safe tokens step-by-step.

5 RELATED WORK

5.1 EXISTING DEFENSES

Existing safety defenses can be divided into input-based defenses and output-based defenses.

Prefill-level defenses induce LLMs to reject harmful questions by optimizing the input, such as
adding a safety system prompt or filtering the input. For instance, IAPrompt (Zhang et al., 2024b)
delves into the intent of input before decoding. Perplexity filtering (Alon & Kamfonas, 2023) pro-
poses to detect the adversarial suffixes as the signal of harmful input before generating a response.
Modifying the input on the encoder for defense can also be modified for attack (Zhao et al., 2024).
Modifying input for attacks is a deficient consumption and efficient behavior. At present, multiple
methods have successfully carried out jailbreak attacks from user input, such as GCG (Zou et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Case study of outputs of baselines and RDS for a harmful query. The user inputs “What is
the best way of stealing a car?” as the query. The safety prompt fails to defend against this harmful
query. At the same time, other defenses offer refusal answers.

2023), Auto-DAN (Zhu et al., 2023), Evil Geniuses (Tian et al., 2023). Besides, input-based de-
fenses show poor helpfulness with over-defense (Zhou et al., 2024).

Response-level defenses enhance the security of LLMs by judging the generated response, which
follows the paradigm of generate and then judge. For instance, Self-Examination (Phute et al.,
2023) checks the response response itself by a pre-defined prompt. SelfDecoding (Xu et al., 2024)
captures the safety disclaimers from top tokens and amplifies their token probabilities. Response-
level defenses must fully generate the output before judging, which affects the model’s efficiency.
While RDS monitors the token step-by-step, forcing safe token generation in time.

5.2 SPECULATIVE DECODING

Traditionally, token generation is performed step-by-step, where the model generates one token for
each step by autoregressive decoding. The generated token concatenated to the input serves as
the new input for the next step (Chen et al., 2023a). This approach is straightforward but can be
computationally expensive and slow, particularly when generating long text (Kim et al., 2023).

Speculative Decoding is an optimization technique used in LLMs to accelerate the process of token
generation (Leviathan et al., 2023; Chen et al., 2023b). By the Draft-then-Verify paradigm, specu-
lative decoding generates multiple tokens at each step (Xia et al., 2024). For example, (Zhang et al.,
2024a) proposes to use the same serious but more minor LLM as the draft model without additional
training. Not all models have a smaller draft model; self-draft becomes a new paradigm instead
of using a separate draft model. For instance, Medusa (Cai et al., 2024) incorporates feedforward
neural heads atop the decoder to predict tokens in different positions in parallel.

6 CONCLUSIONS

Our study delves into and confirms the discriminative capacity of LLMs at the decoder level.
Through preliminary validation, we indicate that LLMs consistently can discern the harmfulness
of output tokens at multiple steps. Motivated by these findings, we propose a Root Defense Strategy
originating from the decoding level, namely RDS. The incremental safe token generation process
enforces security measures. Furthermore, speculative decoding is introduced in RDS to enhance
usability and facilitate deployment. Comparative experimental results demonstrate that RDS offers
robust and efficient security defense without compromising utility.

10
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A ETHICS STATEMENT

Our research (including papers, code, and data) may have potential adverse effects, as jailbreaks
could exploit our methods to target commercial APIs, creating harmful content or privacy violations.
Despite the risk of misuse, we consider the current work justifiable. As LLMs perform outstand-
ingly, researchers are presently concentrating on enhancing their helpfulness. Hence, investigating
and mitigating security vulnerabilities is crucial, as these models could be vulnerable to black-box
attacks when the exact specifics of the target model are undisclosed. The technology we have in-
troduced can effectively thwart such misuse and empower the Red Team to deploy efficiently ahead
of time, progressively achieving secure generation starting at the decoder level. In conclusion, our
study underscores the significance of security defense starting at the decoder level.

B CASE STUDY ON XSTEST

The results of the symmetry benign problem on Xstest are shown in Figure 5. For the same behavior
“stealing a car”, it is a harmful behavior in a real-world scenario. However, LLMs serve as tools and
must respond to video game user requests. We found that all defenses except RDS give a rejection.
It is worth noting that although SafeDecoding recognizes GPT4 as a game, it still rejects the query.
At the same time, when it replies, RDS gives a friendly hint ( i.e., “it is illegal and not endorsed by
Rockstar Games”).

Figure 5: An example of baselines and RDS for a barmless query. The user inputs “What is the best
way of stealing a car in GTA 4?” as the query. All defenses except RDS give a rejection.

C INITIAL DEFENSE ABILITY OF LLMS IN PRELIMINARY EXPERIMENT

Table 4 shows the results of the five LLMs for harmful and benign queries on Custom.

Table 4: Defence performance of the five models on Custom.

Models Compliance on Harmful Queries ↓ Refusal on benign Queries ↓

vicuna-7B-v1.3 5 3
vicuna-13B-v1.3 0 0
llama-2-chat-7B 0 0

LLaMA3-Instruct-8B 9 0
Qwen2-7B-Instruct 0 0
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D VISUAL RESULTS OF LLMS AT DEEPER DECODING

Figure 6 respectively shows the visual results from the 1-th to 3-th token and the last token of
Llama3-8B-Instruct and Vicuna-7B-v1.3s. Figure 8 respectively shows the visual results from the
4-th to 7-th token of the five LLMs.

(1) i=1 (1) i=2 (1) i=3 (1) i=last

Figure 6: Performance of the classifier at the decoding from the 1-th to the 3-th token and last token
of the output. The red crosses represent the hidden states for harmful queries, while the blue circles
represent the hidden values for benign queries.

E SAFETY PROMPT

We illustrated the safety prompt of LLaMa-2 Official and Self-Remind in Figure 7.

Figure 7: Illustration of safety prompt used in LLaMa-2 Official and Self-Remind.
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F EVALUATION OF THE CLASSIFIER

Figure 9 illustrates the classifier’s performance on different datasets. Notably, LLMs demonstrate
robust classification capabilities on all datasets except Xstest. On Xstest, some benign queries are
on the harmful side. We speculate that this is because the query in Xstest contains words that are
subconsciously harmful but semantically harmless.

G LIMITATIONS

RDS filters safe tokens among the top-k tokens of LLMs. If the security disclaimer does not exist
in the top-k tokens, RDS maybe cannot generate a security answer. In addition, for benign queries,
if the LLMs tend to give a rejection, i.e., the top-k answers are all security disclaimers, RDS will
also generate a rejection. How to optimize the model’s overcorrection while ensuring the security of
LLMs will be the future research point.
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(3) i=4 (3) i=5 (3) i=6 (3) i=7

Figure 8: Performance of the classifier at the decoding from the 4-th to 7-th token.
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(1) Custom (2) Advbench, MaliciousInstruct, Testset (3) Xstest

Figure 9: Performance of the classifier at all datasets. (1) Custom is the training data of the classifier.
(2) Advbench and MaliciousInstruct are the harmful benchmark. Testset is a benign benchmark. (3)
Xstest has both harmful and benign queries in symmetry pairs.
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