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Abstract

Game-based decision-making involves reasoning over both world dynamics and
strategic interactions among the agents. Typically, models capturing these respective
aspects are learned and used separately. We investigate the potential gain from
co-learning these elements: a world model for dynamics and an empirical game
for strategic interactions. Empirical games drive world models toward a broader
consideration of possible game dynamics induced by a diversity of strategy profiles.
Conversely, world models guide empirical games to efficiently discover new strategies
through planning. We demonstrate these benefits first independently, then in
combination as a new algorithm, Dyna-PSRO, that co-learns an empirical game
and a world model. When compared to PSRO—a baseline empirical-game building
algorithm, Dyna-PSRO is found to compute lower regret solutions on partially
observable general-sum games. In our experiments, Dyna-PSRO also requires
substantially fewer experiences than PSRO to compute at least equivalent quality
solutions, a key algorithmic advantage for settings where collecting player-game
interaction data is a cost-limiting factor.

1 Introduction

Even seemingly simple games can actually embody a level of complexity rendering them intractable
to direct reasoning. This complexity stems from the interplay of two sources: dynamics of the
game environment, and strategic interactions among the game’s players. As an alternative to direct
reasoning, models have been developed to facilitate reasoning over these distinct aspects of the
game. Empirical games capture strategic interactions in the form of payoff estimates for joint
policies (Wellman, 2006). World models represent a game’s transition dynamics and reward signal
directly (Sutton & Barto, 2018; Ha & Schmidhuber, 2018b). Whereas each of these forms of model
have been found useful for game reasoning, typical use in prior work has focused on one or the other,
learned and employed independent of its natural counterpart.

Co-learning both models presents an opportunity to leverage their complementary strengths as a
means to improve each other. World models predict successor states and rewards given a game’s
current state and action(s). However, their performance depends on coverage of their training data,
which is limited by the space of strategies considered during learning. Empirical games can inform
training of world models by suggesting a diverse set of salient strategies, based on game-theoretic
reasoning (Wellman, 2006). These strategies can expose the world model to a broader range of
relevant dynamics. Moreover, as empirical games are estimated through simulation of strategy
profiles, this same simulation data can be reused as training data for the world model.

Strategic diversity through empirical games, however, comes at a cost. In the popular framework of
Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017), empirical normal-form game models
are built iteratively, at each step expanding a restricted strategy set by computing best-response
policies to the current game’s solution. As computing an exact best-response is generally intractable,
PSRO uses Deep Reinforcement Learning (DRL) to compute approximate response policies. However,
each application of DRL can be considerably resource-intensive, necessitating the generation of
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a vast amount of gameplays for learning. Whether gameplays, or experiences, are generated via
simulation (Obando-Ceron & Castro, 2021) or from real-world interactions (Hester & Stone, 2012),
their collection poses a major limiting factor in DRL and by extension PSRO. World models can
reduce this cost by transferring previously learned game dynamics across response computations.

We investigate the mutual benefits of co-learning a world model and an empirical game by first
verifying the potential contributions of each component independently. We then show how to realize
the combined effects in a new algorithm, Dyna-PSRO, that co-learns a world model and an empirical
game (illustrated in Figure 1). Dyna-PSRO extends PSRO to learn a world model concurrently
with empirical game expansion, and applies this world model to reduce the computational cost of
computing new policies.

This is implemented by a Dyna-based reinforce-
ment learner (Sutton, 1990; 1991) that integrates
planning, acting, and learning in parallel. Dyna-
PSRO is evaluated against PSRO on a collection
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of partially observable general-sum games. In ‘ o
our experiments, Dyna-PSRO found lower-regret Planning

solutions while requiring substantially fewer cu- ‘
mulative experiences. Empirical Dyna-PSRO World
The main points of novelty of this paper are as Game Model

follows: (1) empirically demonstrate that world
models benefit from the strategic diversity in-
duced by an empirical game; (2) empirically
demonstrate that a world model can be effec-
tively transferred and used in planning with new
other-players. The major contribution of this
work is a new algorithm, Dyna-PSRO, that co-
learns an empirical game and world model find-
ing a stronger solution at less experiential cost
than the baseline, PSRO.

Figure 1: Dyna-PSRO co-learns a world model
and empirical game. Empirical games offer world
models strategically diverse game dynamics. World
models offer empirical games more efficient strategy
discovery through planning.

2 Related Work

Empirical Game Theoretic Analysis (EGTA). The core idea of EGTA (Wellman, 2006) is to
reason over approximate game models (empirical games) estimated by simulation over a restricted
strategy set. This basic approach was first demonstrated by Walsh et al. (2002), in a study of
pricing and bidding games. Phelps et al. (2006) introduced the idea of extending a strategy set
automatically through optimization, employing genetic search over a policy space. Schvartzman &
Wellman (2009a) proposed using RL to derive new strategies that are approximate best responses
(BRs) to the current empirical game’s Nash equilibrium (NE). The general question of which strategies
to add to an empirical game has been termed the strategy exploration problem (Jordan et al., 2010).
PSRO (Lanctot et al., 2017) generalized the target for BR beyond NE, and introduced DRL for BR
computation in empirical games. Many further variants and extensions of EGTA have been proposed,
for example those using structured game representations such as extensive-form (McAleer et al., 2021;
Konicki et al., 2022). Some prior work has considered transfer learning across BR computations in
EGTA, specifically by reusing elements of policies and value functions (Smith et al., 2023a;b; 2021).

Model-Based Reinforcement Learning (MBRL). Model-Based RL algorithms construct or
use a model of the environment (henceforth, world model) in the process of learning a policy or value
function (Sutton & Barto, 2018). World models may either predict successor observations directly
(e.g., at pixel level (Wahlstrom et al., 2015; Watter et al., 2015)), or in a learned latent space (Ha &
Schmidhuber, 2018a; Gelada et al., 2019). World models can be either used for background planning
by rolling out model-predicted trajectories to train a policy, or for decision-time planning where
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the world model is used to evaluate the current state by planning into the future. Talvitie (2014)
demonstrated that even in small Markov decision processes (Puterman, 1994), model-prediction
errors tend to compound—rendering long-term planning at the abstraction of observations ineffective.
A follow-up study demonstrated that for imperfect models, short-term planning was no better than
repeatedly training on previously collected real experiences; however, medium-term planning offered
advantages even with an imperfect model (Holland et al., 2018). Parallel studies hypothesized that
these errors are a result of insufficient data for that transition to be learned (Kurutach et al., 2018;
Buckman et al., 2018). To remedy the data insufficiency, ensembles of world models were proposed
to account for world model uncertainty (Buckman et al., 2018; Kurutach et al., 2018; Yu et al.,
2020), and another line of inquiry used world model uncertainty to guide exploration in state-action
space (Ball et al., 2020; Sekar et al., 2020). This study extends this problem into the multiagent
setting, where now other-agents may preclude transitions from occurring. The proposed remedy is to
leverage the strategy exploration process of building an empirical game to guide data generation.

Multiagent Reinforcement Learning (MARL). Previous research intersecting MARL and
MBRL has primarily focused on modeling the opponent, particularly in scenarios where the opponent
is fixed and well-defined. Within specific game sub-classes, like cooperative games and two-player zero-
sum games, it has been theoretically shown that opponent modeling reduces the sample complexity of
RL (Tian et al., 2019; Zhang et al., 2020). Opponent models can either explicitly (Mealing & Shapiro,
2017; Foerster et al., 2018) or implicitly (Bard et al., 2013; Indarjo, 2019) model the behavior of the
opponent. Additionally, these models can either construct a single model of opponent behavior, or
learn a set of models (Collins, 2007; He et al., 2016). While opponent modeling details are beyond
the scope of this study, readers can refer to Albrecht & Stone’s survey (Albrecht & Stone, 2018) for
a comprehensive review on this subject. Instead, we consider the case where the learner has explicit
access to the opponent’s policy during training, as is the case in empirical-game building. A natural
example is that of Self-Play, where all agents play the same policy; therefore, a world model can be
learned used to evaluate the quality of actions with Monte-Carlo Tree Search (Silver et al., 2016; 2017;
Tesauro, 1995; Schrittwieser et al., 2020). Li et al. (2023) expands on this by building a population of
candidate opponent policies through PSRO to augment the search procedure. Krupnik et al. (2020)
demonstrated that a generative world model could be useful in multi-step opponent-action prediction.
Sun et al. (2019) examined modeling stateful game dynamics from observations when the agents’
policies are stationary. Chockingam et al. (2018) explored learning world models for homogeneous
agents with a centralized controller in a cooperative game. World models may also be shared by
independent reinforcement learners in cooperative games (Willemsen et al., 2021; Zhang et al., 2022).

3 Co-Learning Benefits

We begin by specifying exactly what we mean by world model and empirical game. Let t € T
denote time in the real game, with st € S the information state and h' € H the game state at
time ¢. The information state s = (m™¢, o') is composed of the agent’s memory m™ € M™ | or
recurrent state, and the current observation o € . Subscripts denote a player-specific component
si, negative subscripts denote all but the player s_;, and boldface denote the joint of all players s.
The transition dynamics p: H x A — A(H) x A(R) define the game state update and reward
signal, where R is the space of rewards r and A is the space of actions a. The agent experiences
transitions, or experiences, (s', at,rt1 s't1) of the game; where, sequences of transitions are
called trajectories T and trajectories ending in a terminal game state are episodes.

At the start of an episode, all players sample their current policy 7 from their strategy' o : 11 — [0, 1],
where II is the policy space and ¥ is the corresponding strategy space. A wutility function
U : II — R™ defines the payoffs/returns (i.e., cumulative reward) for each of n players. The tuple
I' = (I1,U, n) defines a normal-form game (NFG) based on these elements. We represent empirical
games in normal form. An empzmcal normal-form game (ENFG) (f[ U, n) models a game
with a restricted strategy set IT and an estimated payoff function U. An empirical game is typically

IThis is equivalent to the meta-strategy defined in PSRO (Lanctot et al., 2017).
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built by alternating between game reasoning and strategy exploration. During the game reasoning
phase, the empirical game is solved based on a solution concept predefined by the modeler. The
strategy exploration step uses this solution to generate new policies to add to the empirical game.
One common heuristic is to generate new policies that best-respond to the current solution (McMahan
et al., 2003; Schvartzman & Wellman, 2009b). As exact best-responses typically cannot be computed,
RL or DRL are employed to derive approximate best-responses (Lanctot et al., 2017).

An agent world model w represents dynamics in terms of information available to the agent.
Specifically, w maps observations and actions to observations and rewards for all agents, w :
Ox Ax MY = O xR, where m¥ € MY is the world model’s memory, or recurrent state. For
simplicity, in this work, we assume the agents learn and use a shared deterministic world model,
irrespective of stochasticity that may be present in the true game. Implementation details for the
world models used throughout this work are are provided in Appendix C.2. These implementations
are intended to be representative of world models in general, an active area of ongoing research with
many design decisions that will affect their requirements and performance.

Until now, we have implicitly assumed the need for distinct models. However, if a single model could
serve both functions, co-learning two separate models would not be needed. Empirical games, in
general, cannot replace a world model as they entirely abstract away any concept of game dynamics.
Conversely, world models have the potential to substitute for the payoff estimations in empirical
games by estimating payoffs as rollouts with the world model. We explore this possibility in an
auxiliary experiment included in Appendix E.4, but our findings indicate that this substitution is
impractical. Due to compounding of model-prediction errors, the payoff estimates and entailed game
solutions were quite inaccurate. Despite this, it is plausible that a world model can substitute as a
high-fidelity empirical game. This suggests a future complementary yet tangential line of research.

Having defined the models and established the need for their separate instantiations, we can proceed
to evaluate the claims of beneficial co-learning. Our first experiment explores the claim that the
strategic diversity embodied in an empirical game yields diverse game dynamics, resulting in the
training of a more performant world model. The second set of experiments investigates the claim that
a world model can help reduce the computational cost of policy construction in an empirical game.

3.1 Strategic Diversity

In this section, we discuss our first point of novelty: that an empirical game can benefit a world model
by introducing strategic diversity to its training data. A world model is trained to predict successor
observations and rewards, from the current observations and actions, using a supervised learning
signal. Ideally, the training data would cover all possible transitions. This is not generally feasible, so
instead draws are conventionally taken from a dataset generated from play of a behavioral [joint]
strategy. Performance of the world model is then measured against a target [joint] strategy
defined at test time. Differences between the behavioral and target strategies present a challenge in
learning an effective world model. This approach examines the potential of an empirical game to
mitigate this challenge by enhancing strategic diversity.

We call the probability of drawing a state-action pair under some joint strategy its reach probability.
From this, we define a joint strategy’s strategic diversity as the distribution induced from reach
probabilities across the full state-action space. These terms allow us to observe two challenges for
learning world models. First, the diversity of the behavioral joint strategy ought to cover the target
joint strategy’s diversity. Otherwise, transitions will be absent from the training data. It is possible to
supplement coverage of the absent transitions if they can be generalized from covered data; however,
this cannot be generally guaranteed. Second, the closer the diversities are, the more accurate the
learning objective will be. An extended description these challenges is provided in Appendix C.3.

If the target joint strategy were known, we could readily construct the ideal training data for the
world model. However the target is generally not known at the outset; indeed determining this target
is the ultimate purpose of empirical-game reasoning. The evolving empirical game essentially reflects
a search for the target. Serendipitously, construction of this empirical game entails generation of data



RLJ | RLC 2024

that captures elements of likely targets. This data can be reused for world model training without
incurring any additional data collection cost.

Game. We evaluate the claims of independent co-learning benefits within the context of a commons
game called “Harvest”. In Harvest, players move around an orchard picking apples. The challenging
commons element is that the apple regrowth rate is proportional to number of nearby apples, so
that socially optimum behavior would entail managed harvesting. Self-interested agents capture
only part of the benefit of optimal growth, thus non-cooperative equilibria tend to exhibit collective
over-harvesting. The game has established roots in human-behavioral studies (Janssen et al., 2010)
and in agent-based modeling of emergent behavior (Pérolat et al., 2017; Leibo et al., 2017; 2021). For
our initial experiments, we use a symmetric two-player version of the game, where in-game entities
are represented categorically (HumanCompatibleAI, 2019). Each player has a 10 x 10 viewbox within
their field of vision. The possible actions include moving in the four cardinal directions, rotating
either way, tagging, or remaining idle. A successful tag temporarily removes the other player from
the game, but can only be done to other nearby players. Players receive a reward of 1 for each apple
picked. More detailed information and visualizations are available in Appendix D.1.

Experiment. To test the effects of strategic diversity, we train a suite of world models that differ
in the diversity of their training data. The datasets are constructed from the play of three policies:
a random baseline policy, and two PSRO-generated policies. The PSRO policies were arbitrarily
sampled from an approximate solution produced by independent runs of PSRO. We sampled an
additional policy from PSRO for evaluating the generalization capacity of the world models. The
diversity of these policies was verified through their action agreement (Appendix E.1). These policies
are then subsampled and used to train seven world models. The world models are referred to by icons
FH that depict the symmetric strategy profiles used to train them in the normal-form. Strategy
profiles included in the training data of the world models are shaded black. For instance, the first
(random) policy [, or the first and third policies i . Each world model’s dataset contains 1
million total transitions, collected uniformly from each distinct strategy profile (symmetric profiles
are not re-sampled). The world models are optimized with a weighted-average cross-entropy objective.
Additional details are in Appendix C.2.
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Figure 2: World model cross-entropy loss across strategy profiles. Each heatmap portrays a world
model’s accuracy over 16 strategy profiles, with average above. The meta x-axis corresponds to the
profiles used to train the world model (as black cells). (5 seeds, with 95 % bootstrapped CI).
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Results. Figure 2 presents each world model’s cross-entropy loss, as well as its average over all
profiles with 95 % bootstrapped confidence intervals (CI). Inclusion of the random policy corresponds
to decreases in observation loss (left), and corresponds to no measurable change in reward loss (right):

® 5.33+0.89 — M 1.9940.23 B 1.55+0.72 — M 1.45+£0.72
M 425+0.74 — E& 1.83+0.24 fH 1.52+0.74 — E& 1.78+£0.97
W 3.76+0.67 — M 1.45+0.20 W 1.16+0.57 — W 1.62+0.77.

Figure 14 and 15 contain the accuracy and recall of the world models respectively (Appendix E.1).

Discussion. The world model W, trained on all policies, obtains the lowest observation loss.
While loss provides a strong summary statistic for the training effectiveness of world models, it
does not necessarily reflect their applicability. To better understand this, we further examine the
accuracy and recall of these world models. World model [ yields the highest observation accuracy
at 0.83 £ 0.02. Training this world model exclusively on PSRO policies provided it with the most
strategically salient view of the game’s dynamics. While including the random policy, world model
M | reduces both the observation loss and accuracy (0.68 + 0.04). The significant class imbalance in
the world model’s training data explains this seemingly counterintuitive result. The random policy
does not behave meaningfully, thereby creating irrelevant observational data. While this proves
harmful to observation accuracy, it is helpful in balancing the reward classes. The random policy
presents no competition for a non-random policy, allowing it to generate more examples of rewarding
states. As a result, inclusion of the random policy trends with improvements to reward recall with
world model B having the highest reward recall at 0.37 4 0.11. Given the importance of accurately
predicting both observations and rewards for effective planning, M appears to be the most promising
option. However, the strong performance of [M] suggests future work on algorithms that can benefit
solely from observation predictions. Overall, these results provide evidence supporting the claim that
strategic diversity tends to enhance world model training.

3.2 Response Calculations

This section discusses our second point of novelty: that world models can be effectively transferred
and used in planning with new coplayers. Thus establishing world models to be an effective means
of transfer learning to reduce the cost of empirical games. Empirical games are built by iteratively
calculating and incorporating responses to the current solution. However, direct computation
of these responses is often infeasible, so RL or DRL is used to approximate the response. This
process of approximating a single response policy using RL is computationally intensive, posing a
significant constraint in empirical game modeling when executed repeatedly. World models present
an opportunity to address this issue. A world model can serve as a medium for transferring previously
learned knowledge about the game’s dynamics. Therefore, the dynamics need not be relearned,
reducing the computational cost associated with response calculation.

Exercising a world model for transfer is achieved through planning. Planning is any procedure
that takes a world model and produces or improves a policy (Sutton & Barto, 2018). In the context
of games, planning can optionally take into account the existence of coplayers. This consideration
can reduce experiential variance caused by unobserved confounders (i.e., the coplayers). However,
coplayer modeling errors may introduce further errors in the planning procedure (He et al., 2016).

Planning alongside empirical-game construction allows us to side-step this issue as we have direct
access to the policies of all players during training. This allows us to circumvent the challenge of
building accurate coplayer models. Instead, the policies of coplayers can be directly queried and
used alongside a world model, leading to more accurate planning. In this section, we empirically
demonstrate the effectiveness of two methods that decrease the cost of response calculation by
integrating planning with a world model and coplayer policies.



RLJ | RLC 2024

3.2.1 Background Planning

The first type of planning that is investigated is background planning, popularized by the Dyna
architecture (Sutton, 1990). In background planning, agents interact with the world model to produce
planned experiences®>. The planned experiences are then used by a model-free reinforcement
learning algorithm as if they were real experiences (experiences generated from the real game).
Background planning enables learners to generate experiences of states they are not currently in.

Experiment. To assess whether planned experiences are effective for training a policy in the actual
game, we compute two response policies. The first response policy, our baseline, learns exclusively
from real experiences. The second response policy, referred to as the planner, is trained using a
two-step procedure. Initially, the planner is exclusively trained on planned experiences. After 10000
updates, it then transitions to learning solely from real experiences. Policies are trained using
IMPALA (Espeholt et al., 2018), with further details in Appendix C.1. The planner employs the
M world model from Section 3.1, and the opponent plays the previously held-out policy. In this
and subsequent experiments, the cost of methods is measured by the number of experiences they
require with the actual game. Throughout the remainder of this work, each experience represents a
trajectory of 20 transitions, facilitating the training of recurrent policies.
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Figure 3: Effects of background planning on response learning. Left: Return curves measured by the
number of real experiences used, the key performance metric. Right: Return curves measured by
usage of both real and planned experiences. The planner’s return is measured against the real game
(Plan: Real) and the world model (Plan: Model). (5 seeds, with 95 % bootstrapped CI).

Results. Figure 3 presents the results of the background planning experiment. The methods are
compared based on their final return, utilizing an equivalent amount of real experiences. The baseline
yields a return of 23.00 + 4.01, whereas the planner yields a return of 31.17 £ 0.25.

Discussion. In this experiment, the planner converges to a stronger policy, and makes earlier gains
in performance than the baseline. Despite this, there is a significant gap in the planner’s learning
curves, which are reported with respect to both the world model and real game. This gap arises due
to accumulated model-prediction errors, causing the trajectories to deviate from the true state space.
Nevertheless, the planner effectively learns to interact with the world model during planning, and this
behavior shows positive transfer into the real game, as evidenced by the planner’s rapid learning. The
exact magnitude and significance of the benefit will vary across coplayers’ policies, games, and world
models. In Figure 16 (Appendix E.2), we repeat the same experiment with the poorly performing [

world model, and observe a marginal benefit (26.05 + 1.32). The key take-away is that background
planning tends to lead towards learning benefits, and not generally hamper learning.

20ther names include “imaginary”, “simulated”, or “hallucinated” experiences.
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3.2.2 Decision-Time Planning

The second main way that a world model is used is to inform action selection at decision time
[planning] (DT). In this case, the agent evaluates the quality of actions by comparing the value
of the model’s predicted successor state for all candidate actions. Action evaluation can also occur
recursively, allowing the agent to consider successor states further into the future. Overall, this process
should enable the learner to select better actions earlier in training, thereby reducing the amount of
experiences needed to compute a response. A potential flaw with decision-time planning is that the
agent’s learned value function may not be well-defined on model-predicted successor states (Talvitie,
2014). To remedy this issue, the value function should also be trained on model-predicted states, as
is done in background planning. Therefore, we study the impact of combining decision-time planning
with different methods for background planning to evaluate their combined efficacy.

Experiment. To evaluate the impact the decision-time planning, we perform an experiment similar
to the background planning experiment (Section 3.2.1). However, in this experiment, we evaluate the
quality of four types of decision-time planners that perform one-step three-action search. The planners
differ in the their ablations of background planning types: (1) warm-start background planning
(BG: W) learning from planned experiences before any real experiences, and (2) concurrent
background planning (BG: C) where after BG: W, learning proceeds simultaneously on both
planned and real experiences. The intuition behind BG: C is that the agent can complement its
learning process by incorporating planned experiences that align with its current behavior, offsetting
the reliance on costly real experiences. Extended experimental details are provided in Appendix C.
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Figure 4: Effects of decision-time planning on response learning. Four planners using decision-time
planning (DT) are shown in combinations with warm-start background planning (BG: W) and
concurrent background planning (BG: C). Left compares methods by the key performance metric,
and right includes planning experience. (5 seeds, with 95 % bootstrapped CI).

Results. The results for this experiment are shown in Figure 4. The baseline policy receives a final
return of 23.00 & 4.01. The planners that do not include BG: W, perform worse, with final returns of
9.98 +7.60 (DT) and 12.42 £3.97 (DT & BG: C). The planners that perform BG: W outperform the
baseline, with final returns of 44.11 +2.81 (DT & BG: W) and 44.31 + 2.56 (DT, BG: W, & BG: C).

Discussion. Our results suggest that the addition of BG: W provides sizable benefits:

9.98+7.60 (DT) — 44.11+2.81 (DT & BG:W), and
12.42 £3.97 (DT & BG: C) — 44.31+2.56 (DT, BG: W, & BG: Q).

We postulate that this is because it informs the policy’s value function on model-predictive states
early into training. This allows that the learner is able to more effectively search earlier into training.
BG: C appears to offer minor stability and variance improvements throughout the training procedure;
however, it does not have a measurable difference in final performance.
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However, we caution against focusing on the magnitude of improvement found within this experiment.
As the margin of benefit depends on many factors including the world model quality, the coplayers’
policies, and the game. To exemplify, similar to the background planning section, we repeat the same
experiment with the poorly performing [ world model. The results of this ancillary experiment
are in Figure 18 (Appendix E.3). The trend of BG: W providing benefits was reinforced:

6.29+5.12 (DT) — 20.984+9.76 (DT & BG: W), and
3.64£0.26 (DT & BG: C) — 33.07+7.67 (DT, BG: W, & BG: C).

However, the addition of BG: C now measurably improved performance
20.98 £9.76 (DT & BG: W) — 33.07 £ 7.67 (DT, BG: W, & BG: C).

The main observation of these experiments is that when multi-faceted planning is applied effectively,
it is unlikely to harm response calculation. This affords us confidence that we can apply world models
as a means for transfer learning during empirical-game solving. Moreover, in some cases, this transfer
can have a potentially large benefit to the quality of response calculation when applied effectively.

4 Dyna-PSRO

In this section we introduce the main contribution of this work: Dyna-PSRO, Dyna-Policy-Space
Response Oracles, an algorithm for approximate game-solving that extends the PSRO (Lanctot et al.,
2017) framework. Dyna-PSRO employs co-learning to combine the benefits of world models and
empirical games.

Dyna-PSRO is defined by two significant alterations to the original PSRO algorithm. First, it trains
a world model in parallel with all the typical PSRO routines (i.e., game reasoning and response
calculation). We collect training data for the world model from both the episodes used to estimate
the empirical game’s payoffs, and the episodes that are generated during response learning and
evaluation. This approach ensures that the world model is informed by a diversity of data from a
salient set of strategy profiles. By reusing data from empirical game development, training the world
model incurs no additional cost for data collection.

The second modification introduced by Dyna-PSRO pertains to the way response policies are learned.
Dyna-PSRO adopts a Dyna-based reinforcement learner (Sutton, 1990; 1991; Sutton et al., 2012)
that integrates simultaneous planning, learning, and acting. Consequently, the learner concurrently
processes experiences generated from decision-time planning, background planning, and direct
game interaction. These experiences, regardless of their origin, are then learned from using the
IMPALA (Espeholt et al., 2018) update rule. For all accounts of planning, the learner uses the single
world model that is trained within Dyna-PSRO. This allows game knowledge accrued from previous
response calculations to be transferred and used to reduce the cost of the current and future response
calculations. Pseudocode and additional details are provided in Appendix C.4.

Games. Dyna-PSRO is evaluated on three games. The first is the harvest commons game used in
the experiments described above, denoted “Harvest: Categorical”. The other two games come from
the MeltingPot (Leibo et al., 2021) evaluation suite and feature image-based observations. “Harvest:
RGB” is their version of the same commons harvest game (details in Appendix D.2). “Running With
Scissors” is a temporally extended version of rock-paper-scissors (details in Appendix D.3). World
model details for each game are in Appendix C.2, likewise, policies in Appendix C.1.

Experiment. Dyna-PSRO’s performance is measured by the quality of the Nash equilibrium
solution it produces when compared against the world-model-free baseline PSRO. The two methods
are evaluated on SumRegret (sometimes called Nash convergence), which measures the regret across all
players SumRegret (o, II) = Y max, g Ui(mi,0_i)=U;(04,0_;), where o is the method’s solution
and IT C IT denotes the deviation set. We define deviation sets based on policies generated across

€en
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methods: TT = (J,,0q IT™°°9 (i.c., regret is with respect to the combined game—a union of each

method’s empirical game), for all methods for a particular seed (detailed in Appendix C.5) (Balduzzi
et al., 2018). We measure SumRegret for intermediate solutions, and report it as a function of the
cumulative number of real experiences employed in the respective methods.

Harvest: Categorical Harvest: RGB Running With Scissors
102 A 0.02
P
© 1
Eo 10t _\/\/\_\ 10
2
g
5
»n
100 _ 100 _
0 T 0 T 0 T
0 1 2 0 1 2 0 1 2
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— PSRO Dyna-PSRO

Figure 5: PSRO compared against Dyna-PSRO. (5 seeds, with 95 % bootstrapped CI).

Results. Figure 5 presents the results for this experiment. For Harvest: Categorical, Dyna-PSRO
found a no regret solution within the combined-game in 3.2e6 experiences. Whereas, PSRO achieves
a solution of at best 5.45 4+ 1.62 within 2e7 experiences. In Harvest: RGB, Dyna-PSRO reaches a
solution with 0.89 + 0.74 regret at 5.12e6 experiences. At the same time, PSRO had found a solution
with 6.42 + 4.73 regret, and at the end of its run had 2.50 4 2.24 regret. In the final game, RWS,
Dyna-PSRO has 2e—3 + 5e—4 regret at 1.06e7 experiences, and at a similar point (9.6e6 experiences),
PSRO has 6.68e—3 £+ 2.51e—3. At the end of the run, PSRO achieves a regret 3.50e—3 4 7.36e—4.

Discussion. The results indicate that across all games, Dyna-PSRO consistently outperforms
PSRO by computing a more performant solution. Furthermore, this improved performance is realized
while consuming fewer real-game experiences. For instance, in the case of Harvest: Categorical, the
application of the world model for decision-time planning enables the computation of an effective
policy after only a few iterations. On the other hand, we observe a trend of accruing marginal gains
in other games, suggesting that the benefits are likely attributed to the transfer of knowledge about
the game dynamics. In all three games, Dyna-PSRO exhibited at least an order of magnitude lower
variance than PSRO.

5 Conclusion & Limitations

This study showed the mutual benefit of co-learning a world model and empirical game. First, we
demonstrated that empirical games provide strategically diverse training data that could inform
a more robust world model. We then showed that world models can reduce the computational
cost, measured in experiences, of response calculations through planning. These two benefits were
combined and realized in a new algorithm, Dyna-PSRO. In our experiments, Dyna-PSRO computed
lower-regret solutions than PSRO on several partially observable general-sum games. Dyna-PSRO
also required substantially fewer experiences than PSRO, a key algorithmic advantage for settings
where collecting experiences is a cost-limiting factor.

Although our experiments demonstrate benefits for co-learning world models and empirical games,
there are several areas for potential improvement. The world models used in this study necessitated
observational data from all players for training, and assumed a simultaneous-action game. Future
research could consider relaxing these assumptions to accommodate different interaction protocols,
a larger number of players, and incomplete data perspectives. Furthermore, our world models
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functioned directly on agent observations, which made them computationally costly to query. If the
generation of experiences is the major limiting factor, as assumed in this study, this approach is
acceptable. Nevertheless, reducing computational demands through methods like latent world models
presents a promising avenue for future research. Lastly, the evaluation of solution concepts could
also be improved. While combined-game regret employs all available estimates in approximating
regret, its inherent inaccuracies may lead to misinterpretations of relative performance.
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