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Abstract

Achieving better alignment between vision embeddings and Large Language Mod-
els (LLMs) is crucial for enhancing the abilities of Multimodal LLMs (MLLMs),
particularly for recent models that rely on powerful pretrained vision encoders and
LLMs. A common approach to connect the pretrained vision encoder and LLM
is through a projector applied after the vision encoder. However, the projector is
often trained to enable the LLM to generate captions, and hence the mechanism by
which LLMs understand each vision token remains unclear. In this work, we first
investigate the role of the projector in compressing vision embeddings and aligning
them with word embeddings. We show that the projector significantly compresses
visual information, removing redundant details while preserving essential elements
necessary for the LLM to understand visual content. We then examine patch-level
alignment—the alignment between each vision patch and its corresponding se-
mantic words—and propose a multi-semantic alignment hypothesis. Our analysis
indicates that the projector trained by caption loss improves patch-level alignment
but only to a limited extent, resulting in weak and coarse alignment. To address
this issue, we propose patch-aligned training to efficiently enhance patch-level
alignment. Our experiments show that patch-aligned training (1) achieves stronger
compression capability and improved patch-level alignment, enabling the MLLM
to generate higher-quality captions, (2) improves the MLLM’s performance by
16% on referring expression grounding tasks, 4% on question-answering tasks, and
3% on modern instruction-following benchmarks when using the same supervised
fine-tuning (SFT) setting. The proposed method can be easily extended to other
multimodal models.

1 Introduction
Multimodal Large Language Models (MLLMs) [1, 2, 3, 4, 5, 6, 7] have recently gained significant
attention and made notable progress. These models possess the ability to process and understand
both visual and textual information, enabling them to perform complex reasoning [8, 9], generate
textual descriptions from images [10], and answer image-related questions [11].

Consider an MLLMM = (E ,L,P) where E is the vision encoder, L is the LLM, and P is the
lightweight projector that connects the two parts. The standardized training paradigm follows two key
phases: pretraining and instruction-tuning [1, 2]. During the pretraining phase, only the lightweight
projector P is trained leaving the vision encoder E and the LLM L frozen. In instruction-tuning stage,
both projector P and the LLM L are trainable. Despite the remarkable progress achieved through
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Figure 1: The patch-level alignment is measured in two aspects: Left) patch-level localization.
Using LLM word embeddings of labels LGT, we predict the most relevant image regions by cal-
culating cosine similarity with the vision embedding. Right) multi-semantic alignment. Using
matching pursuit, we decompose each vision embedding into several discrete words by treating LLM
word embeddings as a basis. Since the vision embedding are obtained after the MLLM projector,
we compare across three projectors: random projector PRandom (top), LLaVA1.5 projector PLLaVA
(middle), and our patch-aligned projector PPatch Aligned (bottom). Results show that PLLaVA exhibits
weak patch-level alignment abilities, while our PPatch Aligned significantly enhances these two aspects.

this training paradigm, recent works [12, 13, 14, 15, 16] reveal that these MLLMs still struggle with
region-specific understanding and tend to hallucinate with irrelevant or incorrect information. The
reason of these issues remains an active area. In addition to limitations in the vision encoder or the
capabilities of the language model, a significant contributing factor lies in the projector [4, 17].

The platonic representation hypothesis [18] suggests that representations in deep networks are
converging across data modalities2, implying a shared structural alignment. However, for a vision
encoder E and an LLM L that are pretrained separately, there is no guarantee that the embedding
space induced by E will share the same basis as the embedding matrix W in L, even if they have
the same dimensionality. Thus, as the only connection between the two modalities, the projector P
plays a crucial role. However, current work remains at a superficial understanding that the projector
performs alignment, lacking a thorough and systematic analysis of its function. Thus, in this paper,
we are motivated by the following questions:

How does the projector align multimodal information in MLLMs?
How to quantify and improve alignment in current models?

Contributions. In this work, we provide a detailed analysis of the alignment between each vision
patch and its corresponding semantic words and develop methods to improve patch-level alignment,
enabling the LLM to better understand visual content in the input space. Our contributions as follows,

Projector compresses visual information. Vision embeddings are naturally continuous and contain
redundant information, whereas LLM input word embeddings are discrete. Thus, a natural question
arises: Is the information contained in the vision embeddings compressed through the projector? To
address this question, we propose quantifying the amount of information contained in the embeddings

2In the sense that vision and language models measure the distance between data points in a similar way.
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using Von Neumann entropy [19]. Our experiments show that information is significantly compressed
after projection, indicating that the projector plays a crucial role in eliminating redundant information
while preserving the essential elements needed for the LLM to understand the visual content.

Analyzing patch-level alignment. We then examine each image patch in detail and study how its
embedding aligns with the corresponding text embedding. However, challenges arise due to (1) a lack
of text labels for each image patch and (2) the possibility that each image patch contains multiple
semantic meanings. To address these challenges, we propose two complementary approaches to
quantitatively and qualitatively study patch-level alignment.

We first focus on alignment with respect to the objects in the image. Specifically, for an input image
X with embedding V = P ◦ E(X), which serves as input to an LLM L, we propose a patch-level
alignment measure Align(V ,W ) to quantify the alignment between V and the word embedding W .
A higher Align(V ,W ) indicates a greater ability of the LLM to identify objects, even in the word
embedding space. Inspired by previous work on decomposing word embedding vectors [20, 21], we
then propose a multi-semantic alignment hypothesis, which states that the embedding for each vision
patch can be decomposed as a linear combination of word embeddings corresponding to all semantic
meanings within the patch. To verify this hypothesis, we apply the matching pursuit algorithm [22]
to identify the most relevant tokens from the LLM dictionary for each vision patch.

As shown in Figure 1, our analysis indicates that the LLaVA projector improves patch-level alignment
but only to a limited extent, resulting in weak and coarse alignment. This is due to (1) the caption
loss only implicitly enforces token-level alignment, (2) captions tend to be short and primarily focus
on a few prominent regions of interest, often neglecting many other regions. Consequently, numerous
visual tokens (e.g., floor and TV cabinet) are often aligned with meaningless or garbled words.

Patch-Aligned Training for Improving Patch-Level Alignment. To address this issue, we propose
a simple yet effective method called Patch-Aligned Training to enhance fine-grained alignment. In
addition to the standard image caption loss in the pretraining state, we introduce additional patch
loss, similar to Align(V ,W ), to capture the alignment between V and the word embedding W .
Notably, the patch loss relies only on the LLM embedding matrix W and is therefore computationally
negligible compared to the caption loss, which requires inference and backpropagation through
the LLM. As demonstrated in Figure 1, experiments show that Patch-Aligned training achieves
stronger compression capability and improved patch-level alignment, enabling the LLM to generate
higher-quality captions. Moreover, under the same SFT setting, the enhanced projector improves the
MLLM’s performance by 16% on referring expression grounding tasks, 4% on question-answering
tasks, and 3% on modern instruction-following benchmarks.

Patch-Aligned Dataset with Detailed Patch-Level Semantic Labels. To enable patch-aligned
training, we address the lack of patch-level annotated data by introducing an automated data annotation
pipeline that sequentially leverages RAM [23], Grounding DINO [24], and SAM [25]. Applying
this pipeline to the 558K LLaVA pretraining dataset, we construct the Patch-Aligned Dataset (PAD),
which provides extensive and diverse patch-level annotations. To support future research, we publicly
release both the annotation pipeline and the resulting dataset.

2 Related Works

Multimodality Large Language Models. Many MLLMs, such as LLaVA-1.5/1.6 [2, 26], BLIP-2
[4], InstructBLIP [27], MiniGPT-4 [5], Otter [28], and mPLUG-Owl [29], can be viewed as stitched
models, formed by connecting a pretrained (and often frozen) vision encoder (such as ViT) to a
pretrained LLM through a projector or connector. The projector can be trained using either (i) a
1-stage approach, where it is directly trained alongside the fine-tuning LLM during instruction training
[30], or (ii) a 2-stage approach, where the projector is first pretrained on adapter data before unfreezing
the LLM and connector during instruction tuning [2]. The 2-stage approach has been widely adopted
since LLaVA and has been shown to be beneficial [31]. However, during the pretraining stage, these
models primarily rely on caption loss to achieve coarse alignment between modalities, which tends
to lack region-level understanding abilities. Recent efforts, such as GPT4RoI [13], Kosmos-2 [14],
and GLaMM [15], have attempted to improve region-specific, fine-grained understanding. However,
these approaches often rely on grounding techniques or introduce additional tokens to enhance
inference-time capabilities. They focus on improving inference rather than representation analysis of
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fine-grained alignment. In contrast, our approach seeks to enhance fine-grained understanding by
improving patch-level alignment without requiring additional training or tokens.

MultiModal Alignment Analysis. Existing works analyze cross-modal alignment from two perspec-
tives: coarse alignment and fine-grained alignment. Coarse alignment is evaluated using metrics such
as AC Score [32], which heavily depends on the CLIP [33] model, and Modality Integration Rate
(MIR) [34], a statistic-based measure akin to FID. While these metrics provide insights into pretrain-
ing performance, they fail to address fine-grained token-level alignment. For fine-grained alignment,
methods like Logit Lens Analysis [35] show that object-specific information is localized to token
positions corresponding to image regions but lack proposals for improvement. Other works align
coordinate, text, and image modalities through question-answer formats but overlook feature-level
understanding [36]. Concurrently, SEA [37] enhances token-level alignment using predefined word
lists and contrastive loss, but its reliance on the CLIP model and fixed vocabularies limits accuracy
and flexibility. In contrast, as a fine-grained alignment model, our approach employs annotations from
the RAM [23] model, which avoids predefined word lists for more accurate tagging, and introduces a
cosine similarity loss, offering a simpler and more efficient alternative to contrastive loss.

3 Understanding Multimodal Projector by Compression and Alignment

In this section, we study the projector from both macro and micro perspectives: 1) information
compression in Section 3.1 and 2) patch-level alignment in Section 3.2.

3.1 Macro-scale Analysis: Information Compression

Consider a MLLMM = (E ,L,P). For each input images X , the vision embedding of the n-th
image before and after the projector is a sequence of embeddings as

V before = E(X) ∈ Rd×S , V after = P ◦ E(X) ∈ Rd′×S (1)

where S is the number of vision tokens and d, d′ are the embedding dimensions of the vision encoder
E and LLM L. For N images, we compute the embeddings for each image and stack them together.
We denote the resulting embeddings as V before ∈ Rd×NS and V after ∈ Rd′×NS .

We hypothesize that the projector plays a crucial role in eliminating redundant information while
preserving essential elements for the LLM to understand vision content. To quantify this, we measure
the information using the basis-independent, transformation-invariant Von Neumann entropy [19].
Definition 3.1 (Von Neumann Entropy of Feature Embeddings). Let V ∈ Rd×n be a set of n feature
vectors, each of dimension d, and let vi ∈ Rd denote the i-th column of V . Define the normalized
empirical covariance matrix by,

ρV =
ΣV

Tr
(
ΣV

) , ΣV =
1

n

n∑
i=1

vi v
⊤
i ∈ Rd×d,

where ΣV is normalized by its trace to obtain the density matrix of trace 1. Then, we compute the
information contained in the embeddings V through the Von Neumann entropy [19] as follows,

H(V ) = −Tr
(
ρV logρV

)
= −

∑
j

λj log(λj),

where {λj} are the eigenvalues of ρV .

The Von Neumann Entropy measures how evenly information spreads across the feature space of
learned embeddings, indicating their effective dimensionality. Higher values show a well-distributed,
high-rank representation with diverse features, while lower values indicate compression—resulting in
information loss and a reduced effective rank of the covariance matrix.

To measure the compression abilities of different projectors, we compare pretrained (stage 1) and
randomly initialized variants. We evaluate several projector types commonly used in the MLLM
field, including Linear, 2-layer MLP, and C-Abstractor [38]. We evaluated these across 100 selected
images from the COCO2017 dataset [39]. The Von Neumann Entropy of vision embeddings before
and after projection are shown in Table 1.
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Table 1: Comparison of Von Neumann Entropy of vision embedding before and after projection.
Projector PLLaVA Linear PRandom Linear PLLaVA MLP PRandom MLP PLLaVA C-Abs PRandom C-Abs

H(V before) 4.8353 4.8353 4.8353 4.8353 4.8353 4.8353
H(V after) 2.4829 4.8197 2.0362 4.8245 3.5850 7.4913

Based on Table 1, we make several key observations:

• Pretrained v.s. Random. The vision feature after the pretrained projectors (PLLaVA Linear,
PLLaVA MLP and PLLaVA C-Abstractor) exhibit lower entropy compared to random initialized ones
(PRandom Linear, PRandom MLP and PRandom C-Abstractor), indicating that the pretrained project ac-
tively compresses the vision features. By contrast, the random projector barely changes the
entropy, suggesting no meaningful compression occurs.

• MLP v.s. Linear. The vision feature after the MLP projectorPLLaVA MLP yields a larger drop in
entropy than a linear projectorPLLaVA Linear, suggesting that a deeper, non-linear transformation
can better remove “redundant” information. A simple linear mapping merely rotates or shifts
the embedding space; it has limited capacity that discards irrelevant information. This provides
an explanation for the performance advantage of MLP over linear porjector [2].

The compression appears essential for alignment since text embeddings, unlike visual inputs, are
compact and discrete—structured around a finite vocabulary and token-based representation. The
vision projector must therefore transform high-dimensional, continuous visual data into a format
that aligns with text embeddings, naturally producing a more condensed output. However, entropy
analysis alone cannot reveal how this alignment occurs at the patch level. Therefore, we examine
patch-level alignment from a micro-scale perspective in the next section.

3.2 Micro-scale Analysis: Patch-Level Alignment

Unlike the CLIP model, where an image and its corresponding caption are encoded as an embedding
vector, alignment can be simply measured using the cosine similarity between the two embedding
vectors. Here, however, since the image patch embeddings are given as input to the LLM L, we aim
to measure their alignment with word embeddings W . This presents several challenges: (1) There
is a lack of text labels for each patch; (2) each word may be decomposed into multiple tokens or
subwords in the LLM; (3) each image patch may contain multiple semantic meanings. To address
these challenges, we propose two complementary approaches to study patch-level alignment.

3.2.1 Patch-Level Localization

Given an input image X with S patches, we use V = P ◦ E(X) ∈ Rd×S to denote the S vision
embeddings. Due to the lack of labels for each patch, we adopt a simpler approach that relies only
on labels for the objects within the image. In particular, suppose the image X contains P objects,
each defined by its object tags and bounding box locations. We will develop a mask-label annotation
pipeline in the next section. Let the ground-truth mask-label pairs be denoted as {(M (p), L(p))}Pp=1.

For each label L(p) which may contain multiple words or a single word that is decomposed into
multiple subtokens in the LLM, we compute its text embedding t(p) by averaging the LLM word
embeddings of all its subtokens:

t(p) =
1

K

K∑
k=1

w
(p)
k , {w(p)

k }
K
k=1 = W (ϕ(L(p))), (2)

where ϕ is the tokenizer that converts L(p) into K subtokens, and w
(p)
k ∈ W represents the k-th

subtoken embedding. As each object may occupy multiple patches, we identify the relevant patches by
computing the cosine similarity COS(t(p),vi) between vision patch vi ∈ V and the text embedding
t(p). We then select the patches whose similarity score exceeds an adaptive threshold c > 0, i.e.,

Idx(p) = {i | COS(t(p),vi) > c,∀vi ∈ V }, (3)

which further gives the predicted bounding box locations Mpred. A visualization of the ground truth
mask M and predicted mask Mpred is shown in Figure 1 (left).
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We now quantify the patch alignment Align(V ,W ) between the image embeddings V and the word
embeddings W through the Intersection over Union (IoU) against the ground-truth mask M :

Align(V ,W ) =
1

P

P∑
p=1

Intersection(M (p)
pred,M

(p))

Union(M (p)
pred,M

(p))
. (4)

Table 2: Patch alignment of projectors.
Projector Align(V ,W )

PRandom MLP 0.065
PLLaVA Stage1 0.142
PLLaVA Stage2 0.152

To measure the patch-level alignment of projector, we
compare the above measure over three variants: the projec-
tor after pretraining (PLLaVA Stage1), the projector after SFT
(PLLaVA Stage2), and a random MLP projector (PRandom MLP).
The results on GranDf dataset [15] are shown in Table 2.

Projector improves patch-level alignment. As shown
in Table 2, the pretrained projector achieves a higher Align(V ,W ) than a random one, with the
measure further improving after SFT, indicating better alignment between the vision and word
embedding spaces. However, we also observe that the LLaVA projector exhibits low mIoU values in
both Stage 1 and Stage 2, suggesting that text labels derived from LLM embeddings cannot accurately
identify their corresponding image patch positions. This underscores the limitation of the original
LLaVA projector in patch-level alignment.

3.2.2 Multi-Semantic Alignment
Algorithm 1 Matching Pursuit for Vision Embedding

Input: Vision embedding v ∈ Rd; LLM word em-
bedding matrix W = [w1,w2, . . . ,wM ] ∈ Rd×M ;
Number of selected word embeddings K.
Output: Top-K matched word embeddings
{w(i)}Ki=1.

Initialize v(1) ← v
Initialize an empty set S ← ∅
for i = 1 to K do

// Find the most relevant word embedding
w(i) ← arg max

w∈W
⟨w,v(i)⟩

// Store selected embedding
S ← S ∪ {w(i)}
// Remove projection
v(i+1) ← v(i) − ⟨w(i),v(i)⟩w(i)

end for
Return S

While the above approach provides a quan-
titative method to measure patch-level
alignment, the label for each object is of-
ten very short. For example, a TV may be
labeled simply as “TV,” without additional
attributes such as color. On the other hand,
the continuous vision embedding v is ex-
pected to carry multiple semantic meanings
that are understandable by the LLM. We
express this as the following hypothesis.
Hypothesis 3.1. In an MLLM, the embed-
ding v for each vision patch can be de-
composed as a sparse linear combination
of word embeddings: v ≈

∑
k∈Ω αkwk,

where Ω is the set of subtokens represent-
ing all semantic meanings within the patch,
and αk is the coefficient for each subtoken.

This hypothesis is similar to previous ones
on (contextualized) word embedding vec-
tors as a sparse linear combination of word/transformer factors [20, 21], but extended to multimodal
embeddings. To support this hypothesis, we utilize the matching pursuit algorithm [22] to identify the
top-K most relevant subtokens. Specifically, at the i-th iteration, the algorithm selects the discrete
word embedding w(i) from the LLM embedding space W that has the highest similarity with the
current vision embedding v(i), ensuring it is the most semantically aligned token. Once selected, its
contribution is removed from the vision embedding. Through this iterative process, we identify the
key semantic components within the vision embedding. We present the details in Algorithm 1.

As in [20, 21], we provide qualitative results due to the lack of ground-truth multi-semantic labels.
As shown in Figure 1, while LLaVA vision embeddings can encode basic object information (e.g.,
“TV”) and color attributes (e.g., “white”), many patches remain uninterpretable. This analysis reveals
that the projector has limited multi-semantic alignment capabilities. More results in Appendix D.

4 Patch-Aligned Training and Analysis

The previous section demonstrates that training with image caption task leads to weak patch-level
alignment. In this section, we propose patch-aligned training to enhance fine-grained alignment.
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Figure 2: Annotation pipeline. Figure 3: Overview of patch-level alignment method.

4.1 Patch-Aligned Training

Mask-Label Annotation Pipeline. We develop an automated pipeline to create the Patch-Aligned
Dataset (PAD), which enriches the LLaVA-pretrained dataset with fine-grained annotations including
object tags, bounding boxes, and segmentation masks. Our pipeline combines state-of-the-art models
(RAM[23], Grounding DINO[24], and SAM[25]) for object recognition and segmentation. As shown
in Figure 2, RAM first generates object tags, which Grounding DINO uses to create bounding boxes.
After filtering with non-maximum suppression, SAM generates segmentation masks for each object.
More details about the format of PAD can be found in Appendix A.

Patch-Aligned Training. Given an input image X with P associated mask-label pairs
{(M (p), L(p))}Pp=1, the vision embedding after projection is represented as V = P ◦ E(X) ∈ Rd×S .
For each mask M (p), let Idx(p) represent the set of vision tokens that are covered by the mask for at
least half of the patch area. We use V (p) to denote the embeddings of the selected vision tokens in
Figure 3. Using the same approach as in eq. (2) to compute the text embedding t(p) for the label L(p),
we similarly represent the vision embedding of the object by taking the mean of the selected vision
embeddings v(p) = 1

L(p)

∑
i∈Idx(p) vi ∈ Rd. We then introduce the patch-alignment loss to maximize

the cosine similarity between the mask-selected vision embedding v(p) and the corresponding text
embedding t(p):

Lpatch = 1− 1

P

P∑
n=1

COS(v(p), t(p)). (5)

To achieve global-level alignment, we retain the commonly used caption loss. Specifically, given
tokenized caption tokens (x1, x2, ..., xT ) for the input image, the caption loss computes the ability to
predict each subsequent word in the caption sequence

Lcaption = −
T∑

t=1

log pL (xt | V , x<t) , (6)

where pL (xt | V , x<t) denotes the predicted probability for the t-th token xt based on the previous
tokens x<t and the vision embedding V .

Our patch-aligned training combines both the caption loss and the patch-alignment loss

L = Lcaption + βLpatch, (7)

where β > 0 is used to balance the global-level alignment and patch-level alignment.

Efficiency of the patch-alignment loss. The patch-alignment loss Lpatch is computationally more
efficient than the caption loss, as it does not rely on the LLM. It only requires calculating cosine
similarity with the LLM word embedding matrix W , making it lightweight to compute and optimize.
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4.2 Ablation Study on β

In this section, we present our ablation studies on hyperparameter β in Equation (7) in two aspects:

Linear increasing vs. fixed schedule. The linear schedule gradually increases β to impose patch-
level alignment progressively. This design choice stabilizes early training and prevents premature
over-compression. As shown in Table 3, when comparing fixed β = 5 versus linearly increasing
β from 0 to 5, the linear schedule showed better performance. Therefore, we adopted the linear
increasing schedule for all subsequent experiments.

Optimal final β value: Since β in the objective function balances global-level and patch-level
alignment, a larger β emphasizes patch-alignment loss over caption loss. We examined the impact
of β ∈ {0, 2, 5, 10}, where the baseline LLaVA-1.5 corresponds to β = 0. As shown in Table 3,
when β is too small (β = 0 or 2), patch-level alignment remains insufficient, leading to suboptimal
performance. Conversely, when β is too large (β = 10), the model overly focuses on local regions,
compromising its ability to establish comprehensive correspondence between the entire image and
sentences. This imbalance degrades global-level alignment and ultimately harms overall performance.

Table 3: Comparison of different β schedules on various benchmarks.
Setting GQA Science QA VizWiz VQA OKVQA Avg
fixed (β = 0) 61.93 66.80 50.00 53.42 58.04
fixed (β = 5) 62.16 68.07 54.86 56.51 60.40

linear increasing (β ∈ [0, 2]) 62.64 68.12 50.84 57.52 59.78
linear increasing (β ∈ [0, 10]) 62.64 68.57 50.82 56.85 59.72
linear increasing (β ∈ [0, 5]) 62.99 68.67 52.29 58.29 60.56

4.3 Compression–Information Loss Tradeoff

There exists a tradeoff between redundancy removal and semantic information loss when the compres-
sion level continues to increase. Within a proper compression range, more compression improves per-
formance by removing redundant information and enhancing alignment. However, over-compression
may potentially cause useful semantic information loss and performance degradation. To empirically
validate this tradeoff, we conducted a controlled ablation where we varied the patch loss weight β in
Equation (7). Larger β encourages stronger patch-level alignment and induces more compression. As
shown in Figure 4, as ∆H increases, the overall performance first improves then declines. Before
the tipping point, redundant information is removed, which improves performance compared to
the original LLaVA with β = 0. However, after the tipping point, performance drops rapidly as
over-compression causes semantic information loss.

Figure 4: Tradeoff between compression and information loss.

Here, the change of entropy is measured as a normalized one ∆H(V ) = (Hbefore(V ) −
Hafter(V ))/Hbefore(V ) ∈ [0, 1]. Task performance is measured by taking the average of the per-
formance over the QA datasets (GQA, Science QA, VizWiz VQA, and OKVQA).

5 Experiments
In this section, we first introduce the experiment setup and training details for Patch-Aligned Training,
which is used only in the pretraining stage for training the projector P . We evaluate the effectiveness
of our methods in two stages: pretraining stage and SFT stage. In the pretraining stage, we verify that
the patch-aligned training achieves better compression and patch-level alignment abilities, enabling
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Table 4: Compression and alignment.
Projector ∆H(V ) Align(V ,W ) Cos Sim

PRandom 0.0108 0.065 0.06
PLLaVA 2.7991 0.142 0.07
PPatch Aligned 3.8352 0.279 0.56

Table 5: LLaVA v.s. Patch aligned method for
caption generation qualities.

Model METEOR ROUGE_L SPICE

MLLaVA 0.1220 0.1661 0.1571
MPatch Aligned 0.1256 0.1759 0.1710

Table 6: Comparison on refer expression comprehension benchmarks.
Models RefCOCO RefCOCO+ RefCOCOg

val test-A test-B val test-A test-B val test

LLaVA 1.5-7B 56.22 64.43 47.38 50.00 59.2 39.0 48.8 48.4
Patch Aligned (Ours) 65.97 72.26 55.82 58.49 66.87 48.09 55.78 56.24

the LLM to generate higher-quality captions. In the SFT stage, we verify that fine-tuning with the
new projector yields better performance across three aspects: (1) refer expression comprehension, (2)
visual question answering and (3) instruction following benchmarks.

5.1 Experiment Setup

For a fair comparison, we follow LLaVA-1.5 [1]’s architecture, training setup, and datasets. Our
approach differs in two key aspects: (1) we introduce a patch-aligned loss where β increases linearly
from 0 to 5 during stage 1, and (2) we use the PAD dataset with detailed annotations to pretrain the
projector. See Appendix B for details.

5.2 Stage1: Pretrained Model Evaluation

5.2.1 Compression and Patch-Level Alignment
We evaluate the patch-aligned projector PPatch Aligned using: Von Neumann entropy reduction
∆H(V ) = H(V before) − H(V after), patch alignment Align(V ,W ) (Section 3.2.1), and vision-
text embedding cosine similarity (Section 3.2.2). As shown in Table 4, compared to baselines PRandom
and PLLaVA on 100 COCO 2017 images [39], our projector achieves higher entropy reduction and
better performance on both mIoU and cosine similarity, demonstrating superior patch-level alignment.

5.2.2 Measuring Caption Quality
To examine the advantages of improved patch-level alignment, we first evaluate the stage1 MLLM
MPatch Aligned = (E ,L,PPatch Aligned) directly on caption generation while keeping both the vision
encoder and LLM frozen. To measure the caption quality, we utilize three metrics: METEOR,
ROUGE-L, and SPICE. As shown in Table 5,MPatch Aligned generate higher quality of captions that
benefits from the explicit patch-level alignment process in the pretraining stage.

5.3 Stage2: SFT Model Evaluation

5.3.1 Refer Expression Comprehension
To better demonstrate the method’s enhanced fine-grained image understanding and localization
capabilities, we further evaluate our approach on the refer expression comprehension(REC) tasks,
including the RefCOCO[40], RefCOCO+[41], and RefCOCOg[41]. Specifically, the REC task
requires the model to localize the target object under the guidance of a description. Here we report
Acc@0.5(higher is better). As shown in Table 6, our method achieves significant improvements
across all test splits, with approximately a 16% improvement on average. Notably, our approach uses
the same architecture and training data as LLaVA-1.5, only adding patch alignment during pretraining.
This minimal change yields substantial improvements in grounding and localization abilities.

5.3.2 Visual Question Answering
Visual understanding plays an important role in many real-world applications. We test how well our
models perform on text-based visual question answering tasks using multiple benchmark datasets.
As shown in Table 7, our method outperforms the LLaVA-1.5 baseline under identical conditions,
demonstrating that initializing the MLLM with improved patch-level aligned vision embeddings
leads to better fine-grained understanding and enhanced overall performance.

9



Table 7: Comparison on visual question answering benchmarks.
Models LM Img Sz GQA SciQA VizWiz OKVQA

BLIP-2 [4] Vicuna-13B 224 41.0 61.0 19.6 -
InstructBLIP [27] Vicuna-7B 224 49.2 60.5 34.5 -
InstructBLIP [27] Vicuna-13B 224 49.5 63.1 33.4 -
Shikra [42] Vicuna-13B 224 - - - -
IDEFICS-9B [43] LLaMA-7B 224 38.4 - 35.5 -
IDEFICS-80B [43] LLaMA-65B 224 45.2 - 36.0 -
Qwen-VL [44] Qwen-7B 448 59.3 67.1 35.2 -
Qwen-VL-Chat [44] Qwen-7B 448 57.5 68.2 38.9 -
LLaVA [1] Vicuna-7B 224 - - - -
LLaVA-1.5 [2] Vicuna-7B 336 62.0 66.8 50.0 53.4

PatchAligned (Ours) Vicuna-7B 336 63.0 68.7 52.3 58.3

Table 8: Comparison on instruction following benchmarks.
Models MMMU MMVet CMMMU MMBEN MMEC MMEP

LLaVA 1.5 35.30 30.70 21.80 64.00 316.10 1510.75
Patch Aligned (Ours) 36.56 31.61 22.70 63.14 339.64 1531.33

Table 9: Analysis of compatibility when switching between base LLMs and projector types.
Models RefCOCO RefCOCO+ RefCOCOg

val test-A test-B val test-A test-B val test

Applying to different LLMs (Vicuna 7B [45] → Llama 3.1 8B[46])

LLaVA (LLaMA3.1 8B) 66.32 74.30 56.09 58.92 68.62 48.21 56.90 55.87
Patch Aligned (LLaMA3.1 8B) 68.27 74.99 58.49 61.25 68.88 50.93 58.41 57.58

Applying to different projectors (MLP → C-Abstractor [38])

LLaVA (C-Abstractor) 58.08 65.83 49.44 50.28 59.10 41.01 49.38 49.81
Patch Aligned (C-Abstractor) 60.89 67.70 51.21 53.56 60.74 42.01 51.91 51.61

5.3.3 Instruction Following Benchmarks
In addition to conventional vision-language evaluations, we assess our method’s real-world capabili-
ties by conducting evaluations on modern instruction-following benchmarks. As shown in Table 8,
our model demonstrates superior performance in understanding when following user instructions.

5.3.4 Compatibility of Patch Aligned Training
We demonstrate our method’s general effectiveness by replacing both the MLLM (from Vicuna
7B[45] to Llama 3.1 8B[46]) and the projector (from MLP to C-Abstractor[38]). Using C-Abstractor,
we set the number of output visual tokens to 256. All models follow the same training as LLaVA 1.5.
We focus our evaluation on referring expression comprehension capabilities. As shown in Table 9,
patch-aligned methods achieve consistent improvements compared to their variants.

6 Conclusion
In this paper, we examine the projector’s role at macro and micro scales, showing it compresses
visual information while improving patch-level alignment. Though alignment remains coarse, our
proposed patch-aligned training enhances both compression and alignment capabilities. This leads to
better caption generation and grounding performance, providing insights into multimodal reasoning.

However, despite the improvements, certain limitations remain to be addressed. First, while we
introduce the multi-semantic alignment hypothesis, finding an optimal representation for each visual
token in the embedding space remains a significant challenge. Simply aligning with the same averaged
word embedding may limit the interpretability and expressive power of LLMs. Moreover, due to
the inherent compactness of language, manually guiding the projector for semantic alignment raises
concerns about potential information loss in visual tokens. Addressing these challenges requires the
development of more effective alignment strategies, which will be crucial for further enhancing the
capabilities and robustness of multimodal LLMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction is accurate.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations or our work in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the assumptions and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provide all the information to reproduce the main experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We would release the dataset and code to reproduce the main experimental
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental setting in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources in experimental setting in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conducted in the paper conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all datasets used in this paper are public available.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper do research related to multimodal LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
The appendix is organized as follows. First, we show the details of mask-label annotation pipeline and
the the patch-aligned dataset format in Appendix A. Then, we introduce the details about experiment
setting in Appendix B. Finally, we present visualizations related to token-level alignment—specifically
patch-level localization in Appendix C and multi-semantic alignment in Appendix D.

A Patch Aligned Dataset
In this section, we present the format of the Patch Aligned Dataset(PAD) in comparison to the LLaVA
pretraining dataset following the mask-label annotation pipeline.

Mask-Label Annotation Pipeline. To address the lack of patch-level annotated data, we develop an
automated annotation pipeline for generating the Patch-Aligned Dataset (PAD), designed to refine
the LLaVA-pretrained dataset by incorporating fine-grained details. PAD enriches this dataset with
detailed annotations, including object tags, bounding box locations, and segmentation masks for
individual objects. By incorporating dense, pixel-level grounding information, PAD is designed
to enhance fine-grained image-text alignment during the pretraining stage, thereby improving the
model’s ability to understand localized regions within the image.

As illustrated in Figure 2, our automated annotation pipeline consists of diverse state-of-the-art
models, including Recognize Anything Model (RAM) [23], Grounding DINO [24], and Segment
Anything Model (SAM) [25]—to perform grounded image segmentation and object recognition. First,
RAM generates object tags from the input image. These tags are then passed to Grounding DINO,
which generates bounding boxes for each identified object. Afterward, a Non-Maximum Suppression
(NMS) process is applied to filter overlapping bounding boxes based on Intersection over Union
(IoU) thresholds. The remaining bounding boxes are passed to SAM, which generates segmentation
masks for each object. The pipeline outputs the segmented image with bounding boxes, along with
metadata in JSON format, including object tags, bounding box coordinates, and RLE-encoded masks
for further analysis. As shown in Table 10. we annotate the images of the LLaVA pretraining dataset
with additional object tags, bounding box coordinates, and RLE-encoded masks stored in JSON file.
The RLE-encoded masks can be decoded back into binary masks that have the image size.

Table 10: Comparison of LLaVA Pretraining Dataset and Patch Aligned Dataset (Ours).

"image_id" : "00000/00000030.jpg"
LLaVA Pretraining Dataset "size": [448, 336]

"caption": "a canyon wall reflects the water on a sunny day in utah."
"image_id" : "00000/00000030.jpg"
"size": [448, 336]
"caption": "a canyon wall reflects the water on a sunny day in utah."
"labels": [

{
"tag": "water",
"bbox": [-0.0003204345703125, 182.57894897460938,

447.99951171875, 335.67926025390625],
Patch Aligned Dataset "rle_mask": "k5d4L5000000100000001000100000000000000..."

(ours) },
{
"tag": "cliff",
"bbox": [-0.064117431640625, 0.34404754638671875,

447.9346005859375, 182.572509765625],
"rle_mask": "]S32.:0eE0V:5004LXY2:[fM302M20200N2N3N1010101N20101N20..."

}]
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To find the optimal hyperparameters in our mask-label annotation pipeline, we conducted a thorough
ablation study using the coco-val 2017 [39] dataset, which provides ground truth bounding boxes.
We focused on two key hyperparameters:

• Score threshold: Only boxes with confidence scores above this threshold are selected.
• NMS threshold: During non-maximum suppression (NMS), this determines the maximum allowed

overlap between two boxes—if their IoU exceeds this threshold, the box with the lower confidence
score is removed.

We evaluated performance using F1 score at IoU of 0.5, which classifies predictions as true or false
positives based on an IoU threshold of 0.5. First, we tested various score threshold values:

Table 11: Effect of varying score thresholds.
Score threshold 0.1 0.2 0.3 0.4 0.5

F1 @ [IoU=0.5] 0.2762 0.4931 0.6326 0.6677 0.6207

Next, we fixed the score threshold at 0.4 and evaluated various NMS threshold values:

Table 12: Effect of varying NMS thresholds.
NMS threshold 0.3 0.5 0.7 0.8 0.9

F1 @ [IoU=0.5] 0.6530 0.6677 0.6702 0.6722 0.6717

Based on this analysis, we selected the optimal hyperparameters (Score threshold = 0.4 and NMS
threshold = 0.8) for our final implementation.

To evaluate our pipeline with optimal hyper-parameters, we compare it with the original Grounding
DINO[24] on coco-val 2017 [39]. The results are as follows:

Table 13: Comparison of between our pipeline and original Grounding DINO.
AP@[IoU=0.50:0.95] AP@[IoU=0.50] AP@[IoU=0.75]

Original Grounding DINO 0.485 0.644 0.529
Our pipeline 0.531 0.676 0.572

where AP@[IoU=0.50:0.95] is the mean precision across IoU thresholds from 0.50 to 0.95 (stepped
by 0.05). A prediction is considered correct if its overlap with ground-truth exceeds the IoU threshold.
As the results demonstrate, our pipeline consistently outperforms the baseline.

B Experiment Setup

• Architecture To evaluate the effectiveness of our method, we ensure a fair comparison by
following the same architecture as LLaVA 1.5. Specifically, we use CLIP-ViT-L@336px [33] as
the vision encoder E , Vicuna-1.5-7B[47] as the LLM L, and a 2-layer MLP as the projector P .
The parameter β follows a linear schedule, increasing from 0 to 5.

• Training Details Following the standard training paradigm in LLaVA [1], our training pipeline
consists of two stages. In stage 1, keeping the vision encoder E and LLM L frozen, we train only
the projector P using our proposed Patch Aligned Training method to obtain the patch-aligned
projector PPatch Aligned. In stage 2, we perform supervised fine-tuning on both the LLM L and the
patch-aligned projector PPatch Aligned. Following LLaVA’s hyperparameters, we optimize all models
for 1 epoch using the AdamW optimizer with a cosine learning schedule. The learning rates are
set to 1e-3 for pretraining and 2e-5 for instruction tuning. Pretraining requires approximately
8 hours using 8×A5000 GPUs (24G), while visual instruction tuning takes about 10 hours for
LLaVA-v1.5-7B on 8xH100 (80G).

• Dataset For pretraining dataset, utilizing our automated annotation pipeline, we annotate the 558K
subset of the LAION-CC-SBU dataset, which is used as the pretraining dataset of LLaVA. The
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resulting dataset comprises 2.3M regions, each associated with a segmentation mask, and includes
33.5K unique tags. For fair comparision, we use the same vision instruction tuning dataset as the
one in the LLaVA-1.5, containing LLaVA-Instruct [1], TextVQA [48] , GQA [49], OCR-VQA
[50], and Visual Genome[51].

C Patch-Level Localization: More Visualizations

Following the micro-scale analysis on patch-level localization in Section 3.2.1, we provide more
examples comparing the ground truth mask MGT and predicted mask Mpred generated by three pro-
jectors: the random projector PRandom, pretrained LLaVA 1.5 projector PLLaVA, and our PatchAligned
Projector PPatch Aligned. As shown in Figure 5, the PPatch Aligned predicts more accurate masks.

“fence” “giraffe” “grass”“tree”

GT

Figure 5: Additional visualization for patch-level localization.

24



D Multi-Semantic Alignment: More Visualizations

We begin by showing the first iteration of matching pursuit, which finds the token in the LLM
embedding space that has the highest similarity with the vision embedding. We show the full
tokenmap in Figure 6, displaying the found token for each vision patch. We use font size to represent
similarity. Tokens recognizable by NLTK are shown in color, while unrecognized tokens remain
black. For LLaVA, only partial areas or objects achieve alignment. In contrast, PatchAligned LLaVA
achieves better alignment across most patches.

LLaVA PatchAligned LLaVA

Figure 6: Additional visualization for tokenmap comparing LLaVA and PatchAligned LLaVA.
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Next, following Section 3.2.2, we apply matching pursuit on PatchAligned LLaVA for 5 iterations.
As shown in Figure 7, the semantic meanings are decoded for each iteration, with cosine similarity
decreasing across iterations.

(a) Matching Pursuit Iter 1
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0.58 0.52 0.5 0.49 0.47 0.46 0.42 0.29 0.47 0.4 0.64 0.51 0.45 0.47 0.42 0.4 0.4 0.65 0.59 0.058 0.43 0.32 0.26 0.43

0.32 0.5 0.77 0.48 0.45 0.21 0.48 0.51 0.48 0.42 0.7 0.25 0.43 0.46 0.7 0.43 0.48 0.47 0.5 0.5 0.5 0.4 0.52 0.37

0.34 0.7 0.54 0.57 0.61 0.53 0.61 0.52 0.45 0.17 0.13 0.44 0.45 0.44 0.42 0.51 0.52 0.52 0.64 0.48 0.51 0.24 0.68 0.47

(d) Cosine Similarity Iter 1

(e) Matching Pursuit Iter 2
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0.42 0.39 0.2 0.38 0.44 0.45 0.38 0.38 0.46 0.36 0.39 0.3 0.3 0.4 0.39 0.34 0.39 0.35 0.32 0.43 0.36 0.47 0.34 0.24

0.37 0.39 0.37 0.49 0.31 0.38 0.42 0.41 0.5 0.37 0.31 0.34 0.4 0.4 0.41 0.53 0.3 0.36 0.4 0.31 0.32 0.36 0.32 0.55

0.4 0.39 0.38 0.33 0.37 0.4 0.094 0.38 0.44 0.36 0.53 0.36 0.33 0.34 0.39 0.32 0.4 0.37 0.32 0.32 0.3 0.31 0.37 0.33

0.13 0.38 0.37 0.38 0.35 0.42 0.43 0.45 0.39 0.4 0.54 0.31 0.33 0.3 0.34 0.31 0.37 0.32 0.31 0.29 0.33 0.33 0.38 0.49

0.43 0.35 0.37 0.38 0.54 0.34 0.37 0.37 0.32 0.38 0.37 0.39 0.42 0.38 0.29 0.37 0.31 0.45 0.28 0.35 0.37 0.31 0.43 0.44

0.33 0.39 0.37 0.37 0.4 0.58 0.32 0.35 0.49 0.56 0.46 0.4 0.42 0.26 0.28 0.33 0.54 0.4 0.31 0.3 0.28 0.32 0.48 0.47

0.37 0.082 0.38 0.49 0.38 0.39 0.37 0.43 0.58 0.39 0.46 0.43 0.4 0.33 0.29 0.3 0.48 0.42 0.47 0.42 0.35 0.46 0.48 0.22

0.46 0.38 0.37 0.38 0.43 0.084 0.43 0.48 0.44 0.47 0.47 0.44 0.42 0.38 0.39 0.38 0.3 0.4 0.32 0.33 0.4 0.36 0.47 0.46

0.39 0.39 0.37 0.37 0.38 0.46 0.42 0.46 0.46 0.48 0.4 0.46 0.49 0.43 0.42 0.39 0.41 0.47 0.45 0.55 0.46 0.4 0.45 0.35

0.49 0.33 0.42 0.42 0.38 0.35 0.44 0.42 0.44 0.42 0.4 0.43 0.44 0.4 0.56 0.42 0.087 0.47 0.57 0.43 0.47 0.53 0.52 0.52

0.39 0.41 0.3 0.38 0.46 0.47 0.44 0.41 0.45 0.37 0.35 0.43 0.51 0.2 0.38 0.37 0.53 0.36 0.33 0.38 0.34 0.45 0.42 0.48

0.42 0.45 0.35 0.45 0.51 0.49 0.47 0.5 0.4 0.43 0.4 0.42 0.51 0.44 0.37 0.36 0.4 0.32 0.39 0.37 0.32 0.58 0.41 0.44

0.39 0.42 0.4 0.43 0.39 0.44 0.4 0.44 0.38 0.4 0.39 0.41 0.42 0.43 0.055 0.41 0.36 0.46 0.35 0.35 0.33 0.4 0.4 0.57

0.58 0.44 0.33 0.4 0.39 0.53 0.54 0.42 0.41 0.46 0.43 0.38 0.37 0.38 0.55 0.43 0.42 0.6 0.4 0.41 0.37 0.39 0.4 0.44

0.56 0.56 0.35 0.41 0.45 0.33 0.46 0.44 0.46 0.32 0.42 0.44 0.52 0.46 0.39 0.29 0.45 0.53 0.55 0.34 0.32 0.57 0.4 0.39

0.59 0.56 0.44 0.27 0.6 0.56 0.45 0.44 0.36 0.46 0.38 0.45 0.42 0.47 0.35 0.53 0.57 0.47 0.36 0.3 0.31 0.32 0.58 0.38

0.6 0.49 0.5 0.3 0.48 0.35 0.41 0.46 0.36 0.36 0.46 0.46 0.41 0.38 0.51 0.47 0.48 0.49 0.5 0.33 0.3 0.33 0.39 0.58

0.61 0.6 0.48 0.28 0.46 0.46 0.35 0.37 0.45 0.37 0.45 0.37 0.41 0.35 0.41 0.4 0.6 0.52 0.5 0.49 0.32 0.3 0.5 0.31

0.65 0.6 0.45 0.43 0.43 0.39 0.37 0.44 0.44 0.43 0.4 0.49 0.48 0.29 0.33 0.46 0.44 0.55 0.45 0.59 0.48 0.45 0.48 0.48

0.49 0.6 0.4 0.36 0.36 0.088 0.36 0.36 0.34 0.47 0.45 0.46 0.57 0.32 0.53 0.46 0.39 0.59 0.43 0.38 0.37 0.41 0.29 0.45

0.36 0.39 0.44 0.36 0.39 0.36 0.37 0.45 0.45 0.38 0.38 0.54 0.43 0.53 0.37 0.4 0.41 0.37 0.53 0.39 0.39 0.35 0.46 0.43

0.32 0.37 0.37 0.38 0.21 0.054 0.39 0.37 0.47 0.37 0.45 0.38 0.33 0.33 0.49 0.6 0.18 0.43 0.054 0.49 0.39 0.5 0.45 0.4

0.32 0.38 0.37 0.36 0.38 0.41 0.4 0.38 0.43 0.43 0.46 0.48 0.44 0.52 0.49 0.4 0.38 0.38 0.48 0.38 0.38 0.4 0.45 0.44

0.13 0.43 0.33 0.38 0.4 0.44 0.39 0.38 0.38 0.18 0.43 0.4 0.34 0.53 0.47 0.39 0.48 0.38 0.39 0.38 0.38 0.38 0.56 0.22

(f) Cosine Similarity Iter 2 (g) Matching Pursuit Iter 2
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0.13 0.55 0.25 0.31 0.42 0.38 0.24 0.14 0.46 0.49 0.35 0.83 0.79 0.12 0.76 0.54 0.42 0.81 0.82 0.4 0.15 0.79 0.44 0.78

0.39 0.65 0.64 0.75 0.51 0.089 0.41 0.4 0.28 0.38 0.71 0.8 0.4 0.42 0.38 0.41 0.76 0.083 0.48 0.79 0.59 0.72 0.22 0.77

0.7 0.4 0.58 0.64 0.39 0.4 0.3 0.32 0.42 0.46 0.78 0.47 0.81 0.79 0.74 0.74 0.38 0.37 0.38 0.38 0.59 0.65 0.4 0.77

0.36 0.38 0.43 0.39 0.68 0.38 0.3 0.27 0.46 0.57 0.75 0.7 0.62 0.63 0.61 0.61 0.57 0.77 0.67 0.39 0.58 0.46 0.4 0.72

0.48 0.42 0.41 0.66 0.42 0.51 0.49 0.58 0.43 0.39 0.79 0.66 0.73 0.37 0.41 0.6 0.53 0.51 0.39 0.38 0.42 0.41 0.58 0.3

0.48 0.5 0.54 0.65 0.46 0.49 0.46 0.47 0.46 0.51 0.61 0.69 0.5 0.43 0.65 0.39 0.42 0.58 0.6 0.62 0.63 0.48 0.63 0.55

0.57 0.5 0.49 0.39 0.58 0.49 0.52 0.57 0.71 0.59 0.53 0.38 0.58 0.47 0.67 0.33 0.41 0.39 0.43 0.54 0.49 0.48 0.62 0.44

0.47 0.49 0.43 0.61 0.54 0.31 0.58 0.51 0.39 0.59 0.31 0.45 0.44 0.39 0.42 0.36 0.45 0.41 0.49 0.51 0.54 0.58 0.51 0.46

0.45 0.51 0.5 0.49 0.29 0.34 0.57 0.29 0.31 0.48 0.39 0.5 0.44 0.34 0.37 0.47 0.38 0.4 0.39 0.34 0.57 0.3 0.58 0.42

0.5 0.58 0.49 0.38 0.37 0.42 0.4 0.33 0.32 0.59 0.51 0.48 0.5 0.43 0.37 0.49 0.4 0.33 0.37 0.41 0.48 0.46 0.36 0.47

0.41 0.47 0.51 0.45 0.38 0.41 0.42 0.39 0.62 0.66 0.57 0.32 0.56 0.46 0.6 0.6 0.54 0.64 0.47 0.42 0.46 0.46 0.55 0.6

0.53 0.54 0.45 0.38 0.4 0.42 0.46 0.27 0.41 0.62 0.64 0.66 0.58 0.3 0.56 0.49 0.57 0.59 0.46 0.36 0.5 0.52 0.41 0.61

0.46 0.47 0.44 0.39 0.41 0.5 0.34 0.32 0.61 0.57 0.63 0.67 0.67 0.4 0.69 0.69 0.67 0.48 0.51 0.59 0.48 0.34 0.35 0.64

0.48 0.41 0.49 0.39 0.43 0.12 0.48 0.43 0.26 0.63 0.62 0.55 0.58 0.64 0.33 0.61 0.63 0.58 0.52 0.34 0.58 0.62 0.59 0.55

0.5 0.51 0.54 0.41 0.42 0.38 0.16 0.33 0.13 0.71 0.72 0.6 0.42 0.72 0.51 0.44 0.37 0.65 0.66 0.59 0.6 0.5 0.58 0.54

0.49 0.5 0.53 0.41 0.41 0.4 0.43 0.26 0.56 0.42 0.68 0.69 0.7 0.35 0.42 0.41 0.37 0.36 0.48 0.54 0.54 0.58 0.37 0.23

0.54 0.47 0.44 0.43 0.4 0.088 0.41 0.24 0.34 0.44 0.62 0.61 0.75 0.74 0.68 0.67 0.33 0.45 0.45 0.37 0.53 0.22 0.35 0.57

0.45 0.52 0.44 0.43 0.41 0.43 0.42 0.4 0.46 0.46 0.55 0.67 0.76 0.67 0.49 0.32 0.52 0.56 0.44 0.38 0.31 0.54 0.37 0.54

0.45 0.57 0.42 0.41 0.42 0.4 0.45 0.5 0.36 0.46 0.48 0.53 0.55 0.57 0.73 0.76 0.67 0.22 0.36 0.41 0.36 0.29 0.63 0.67

0.52 0.48 0.35 0.47 0.37 0.38 0.39 0.42 0.077 0.39 0.054 0.5 0.35 0.69 0.42 0.7 0.64 0.4 0.43 0.4 0.35 0.51 0.62 0.54

0.42 0.44 0.41 0.4 0.4 0.62 0.42 0.42 0.32 0.4 0.41 0.39 0.39 0.44 0.59 0.4 0.47 0.41 0.34 0.37 0.39 0.38 0.42 0.49

0.51 0.48 0.49 0.42 0.35 0.39 0.37 0.23 0.43 0.41 0.43 0.39 0.38 0.48 0.4 0.42 0.41 0.39 0.48 0.056 0.36 0.27 0.23 0.3

0.33 0.43 0.45 0.42 0.36 0.18 0.4 0.43 0.41 0.43 0.33 0.19 0.43 0.39 0.42 0.4 0.41 0.44 0.42 0.43 0.41 0.39 0.53 0.36

0.34 0.4 0.45 0.5 0.39 0.44 0.39 0.47 0.42 0.14 0.095 0.44 0.38 0.47 0.43 0.31 0.43 0.43 0.38 0.4 0.41 0.23 0.46 0.41

(h) Cosine Similarity Iter 2

(i) Matching Pursuit Iter 3
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0.21 0.37 0.18 0.28 0.36 0.32 0.32 0.36 0.39 0.26 0.36 0.3 0.3 0.42 0.29 0.34 0.33 0.36 0.31 0.28 0.28 0.27 0.29 0.22

0.38 0.34 0.39 0.35 0.28 0.36 0.34 0.28 0.39 0.38 0.28 0.26 0.37 0.33 0.42 0.46 0.28 0.28 0.27 0.28 0.31 0.29 0.22 0.36

0.37 0.36 0.38 0.3 0.36 0.37 0.083 0.36 0.3 0.37 0.32 0.38 0.29 0.29 0.37 0.31 0.31 0.31 0.29 0.31 0.29 0.31 0.37 0.31

0.11 0.39 0.39 0.4 0.35 0.32 0.4 0.37 0.38 0.37 0.34 0.26 0.31 0.3 0.3 0.28 0.36 0.32 0.27 0.23 0.33 0.3 0.35 0.31

0.31 0.33 0.4 0.39 0.36 0.29 0.39 0.38 0.31 0.29 0.35 0.38 0.39 0.37 0.29 0.38 0.27 0.31 0.27 0.32 0.34 0.3 0.36 0.41

0.35 0.37 0.39 0.38 0.35 0.34 0.32 0.36 0.52 0.31 0.31 0.35 0.38 0.24 0.25 0.31 0.37 0.27 0.31 0.32 0.25 0.3 0.34 0.38

0.26 0.078 0.39 0.3 0.37 0.36 0.33 0.42 0.4 0.35 0.36 0.36 0.35 0.3 0.28 0.25 0.39 0.27 0.31 0.26 0.33 0.27 0.37 0.19

0.29 0.34 0.39 0.39 0.37 0.077 0.39 0.41 0.4 0.33 0.41 0.37 0.36 0.3 0.33 0.29 0.28 0.3 0.28 0.29 0.29 0.31 0.3 0.4

0.37 0.38 0.38 0.38 0.36 0.47 0.4 0.41 0.41 0.43 0.39 0.37 0.43 0.27 0.32 0.29 0.33 0.35 0.34 0.34 0.38 0.32 0.3 0.29

0.37 0.27 0.36 0.33 0.34 0.36 0.36 0.35 0.38 0.41 0.33 0.37 0.38 0.38 0.34 0.32 0.082 0.49 0.34 0.35 0.32 0.36 0.37 0.34

0.4 0.29 0.26 0.36 0.37 0.39 0.38 0.4 0.42 0.39 0.28 0.38 0.27 0.19 0.38 0.39 0.4 0.33 0.28 0.37 0.33 0.38 0.37 0.42

0.41 0.45 0.32 0.41 0.37 0.37 0.45 0.43 0.41 0.38 0.38 0.4 0.21 0.36 0.38 0.38 0.34 0.28 0.32 0.33 0.28 0.31 0.37 0.34

0.33 0.37 0.3 0.33 0.35 0.32 0.37 0.39 0.37 0.39 0.34 0.39 0.37 0.34 0.051 0.34 0.32 0.32 0.3 0.3 0.29 0.35 0.34 0.26

0.45 0.46 0.27 0.32 0.33 0.23 0.31 0.39 0.4 0.41 0.42 0.4 0.38 0.34 0.21 0.39 0.34 0.48 0.37 0.32 0.34 0.35 0.35 0.27

0.48 0.46 0.3 0.31 0.29 0.34 0.38 0.45 0.46 0.31 0.43 0.46 0.33 0.26 0.35 0.27 0.4 0.47 0.47 0.29 0.3 0.25 0.34 0.35

0.53 0.48 0.31 0.26 0.26 0.25 0.37 0.36 0.39 0.43 0.34 0.48 0.38 0.22 0.31 0.48 0.47 0.46 0.36 0.28 0.29 0.3 0.19 0.34

0.43 0.48 0.42 0.29 0.5 0.33 0.38 0.42 0.38 0.39 0.41 0.46 0.44 0.36 0.49 0.4 0.4 0.48 0.33 0.28 0.31 0.3 0.37 0.22

0.42 0.4 0.36 0.29 0.43 0.37 0.33 0.37 0.38 0.36 0.47 0.38 0.39 0.29 0.43 0.41 0.41 0.4 0.39 0.48 0.29 0.29 0.5 0.28

0.51 0.43 0.43 0.43 0.36 0.37 0.39 0.45 0.42 0.45 0.38 0.42 0.32 0.28 0.3 0.34 0.39 0.45 0.36 0.43 0.39 0.44 0.5 0.5

0.38 0.38 0.36 0.33 0.37 0.067 0.37 0.39 0.29 0.47 0.47 0.47 0.36 0.32 0.36 0.36 0.35 0.49 0.36 0.35 0.38 0.41 0.28 0.44

0.36 0.37 0.44 0.38 0.38 0.38 0.38 0.46 0.45 0.41 0.38 0.37 0.35 0.38 0.38 0.36 0.45 0.38 0.43 0.36 0.36 0.33 0.39 0.43

0.28 0.39 0.4 0.38 0.2 0.052 0.38 0.4 0.37 0.37 0.35 0.37 0.32 0.34 0.4 0.46 0.18 0.35 0.053 0.38 0.39 0.41 0.36 0.4

0.32 0.38 0.31 0.35 0.4 0.39 0.35 0.41 0.44 0.45 0.43 0.47 0.36 0.35 0.39 0.32 0.38 0.36 0.39 0.4 0.37 0.35 0.34 0.4

0.12 0.45 0.31 0.38 0.37 0.34 0.4 0.37 0.33 0.18 0.41 0.34 0.36 0.42 0.35 0.36 0.43 0.36 0.27 0.4 0.36 0.34 0.44 0.22

(j) Cosine Similarity Iter 3 (k) Matching Pursuit Iter 3
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0.13 0.28 0.25 0.26 0.36 0.32 0.24 0.12 0.43 0.36 0.29 0.27 0.42 0.1 0.47 0.29 0.37 0.55 0.52 0.31 0.15 0.46 0.37 0.38

0.35 0.6 0.53 0.59 0.37 0.084 0.39 0.4 0.26 0.4 0.32 0.43 0.41 0.21 0.4 0.44 0.53 0.081 0.35 0.41 0.39 0.59 0.19 0.6

0.41 0.35 0.59 0.59 0.38 0.39 0.2 0.26 0.39 0.33 0.32 0.34 0.39 0.56 0.46 0.4 0.41 0.38 0.4 0.4 0.51 0.27 0.4 0.38

0.36 0.35 0.41 0.32 0.66 0.36 0.31 0.27 0.3 0.39 0.46 0.44 0.46 0.61 0.48 0.43 0.29 0.55 0.56 0.37 0.44 0.33 0.4 0.47

0.42 0.42 0.42 0.38 0.32 0.42 0.4 0.36 0.34 0.2 0.32 0.56 0.42 0.37 0.4 0.54 0.36 0.51 0.41 0.39 0.38 0.38 0.48 0.19

0.43 0.43 0.48 0.4 0.43 0.44 0.45 0.37 0.33 0.28 0.39 0.47 0.5 0.37 0.33 0.41 0.33 0.44 0.39 0.37 0.36 0.44 0.25 0.48

0.46 0.39 0.41 0.4 0.33 0.49 0.43 0.42 0.4 0.5 0.36 0.35 0.5 0.33 0.38 0.33 0.42 0.36 0.36 0.29 0.41 0.34 0.41 0.38

0.41 0.46 0.45 0.4 0.44 0.27 0.44 0.56 0.37 0.44 0.31 0.41 0.45 0.35 0.4 0.33 0.44 0.43 0.45 0.42 0.42 0.4 0.37 0.41

0.37 0.46 0.48 0.47 0.25 0.31 0.44 0.28 0.29 0.39 0.35 0.41 0.45 0.35 0.35 0.39 0.4 0.41 0.41 0.31 0.46 0.31 0.43 0.44

0.41 0.5 0.45 0.35 0.34 0.35 0.31 0.33 0.27 0.39 0.42 0.47 0.39 0.4 0.28 0.39 0.42 0.33 0.34 0.39 0.42 0.43 0.35 0.38

0.42 0.5 0.41 0.41 0.36 0.44 0.38 0.38 0.4 0.39 0.42 0.29 0.49 0.36 0.39 0.39 0.35 0.38 0.42 0.43 0.43 0.34 0.37 0.33

0.49 0.48 0.43 0.33 0.39 0.37 0.43 0.23 0.38 0.36 0.42 0.38 0.41 0.25 0.4 0.33 0.36 0.32 0.34 0.34 0.36 0.44 0.36 0.29

0.47 0.44 0.42 0.42 0.36 0.41 0.34 0.32 0.39 0.41 0.41 0.38 0.39 0.41 0.39 0.41 0.36 0.38 0.36 0.42 0.34 0.3 0.33 0.42

0.38 0.37 0.5 0.37 0.4 0.095 0.37 0.41 0.22 0.38 0.48 0.37 0.44 0.39 0.33 0.25 0.44 0.33 0.43 0.35 0.38 0.35 0.32 0.38

0.44 0.42 0.49 0.44 0.36 0.41 0.14 0.34 0.11 0.41 0.42 0.49 0.36 0.41 0.42 0.45 0.34 0.42 0.39 0.37 0.37 0.31 0.4 0.37

0.49 0.51 0.48 0.42 0.33 0.32 0.4 0.27 0.5 0.39 0.43 0.44 0.42 0.34 0.34 0.33 0.36 0.34 0.32 0.41 0.38 0.42 0.34 0.21

0.45 0.5 0.31 0.36 0.42 0.068 0.42 0.23 0.28 0.46 0.42 0.43 0.42 0.39 0.42 0.43 0.32 0.45 0.32 0.35 0.4 0.22 0.31 0.3

0.43 0.42 0.38 0.42 0.39 0.41 0.3 0.43 0.48 0.45 0.39 0.44 0.35 0.39 0.37 0.32 0.35 0.37 0.39 0.4 0.27 0.39 0.37 0.3

0.47 0.49 0.36 0.45 0.45 0.43 0.34 0.47 0.27 0.47 0.38 0.34 0.36 0.32 0.38 0.38 0.4 0.19 0.33 0.41 0.32 0.25 0.39 0.41

0.42 0.36 0.32 0.44 0.36 0.35 0.34 0.39 0.068 0.36 0.053 0.45 0.31 0.34 0.38 0.32 0.37 0.33 0.3 0.41 0.25 0.35 0.34 0.41

0.34 0.4 0.39 0.4 0.41 0.42 0.4 0.35 0.29 0.41 0.39 0.38 0.38 0.34 0.39 0.38 0.36 0.42 0.27 0.37 0.41 0.39 0.32 0.43

0.46 0.45 0.42 0.46 0.36 0.36 0.34 0.21 0.37 0.41 0.46 0.39 0.35 0.39 0.4 0.4 0.33 0.39 0.37 0.052 0.33 0.25 0.23 0.29

0.28 0.46 0.37 0.42 0.35 0.16 0.4 0.46 0.42 0.33 0.33 0.18 0.34 0.39 0.36 0.33 0.42 0.42 0.42 0.42 0.43 0.38 0.32 0.32

0.28 0.39 0.47 0.41 0.35 0.4 0.36 0.4 0.38 0.11 0.087 0.38 0.35 0.34 0.32 0.26 0.46 0.41 0.36 0.39 0.43 0.21 0.36 0.37

(l) Cosine Similarity Iter 3

(m) Matching Pursuit Iter
4
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0.21 0.3 0.16 0.24 0.32 0.27 0.31 0.28 0.32 0.25 0.28 0.21 0.21 0.32 0.29 0.29 0.32 0.28 0.28 0.28 0.26 0.26 0.18 0.19
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(t) Cosine Similarity Iter 5

Figure 7: Perform Matching Pursuit using PatchAligned LLaVA. Each row represents an iteration,
with selected tokenmap (Column 1,3) and cosine similarity maps (Column 2,4).
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