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Abstract—Since most existing single-prototype clustering algorithms are unsuitable for complex-shaped clusters, many multi-

prototype clustering algorithms have been proposed. Nevertheless, the automatic estimation of the number of clusters and the

detection of complex shapes are still challenging, and to solve such problems usually relies on user-specified parameters and may be

prohibitively time-consuming. Herein, a stable-membership-based auto-tuning multi-peak clustering algorithm (SMMP) is proposed,

which can achieve fast, automatic, and effective multi-prototype clustering without iteration. A dynamic association-transfer method is

designed to learn the representativeness of points to sub-cluster centers during the generation of sub-clusters by applying the density

peak clustering technique. According to the learned representativeness, a border-link-based connectivity measure is used to achieve

high-fidelity similarity evaluation of sub-clusters. Meanwhile, based on the assumption that a reasonable clustering should have a

relatively stable membership state upon the change of clustering thresholds, SMMP can automatically identify the number of sub-

clusters and clusters, respectively. Also, SMMP is designed for large datasets. Experimental results on both synthetic and real datasets

demonstrated the effectiveness of SMMP.

Index Terms—Clustering, density peak, arbitrary shape clustering, auto-tuning

Ç

1 INTRODUCTION

DATA clustering, aiming to automatically group similar
objects into clusters, is a critical unsupervised learning

technique for extracting potential and valuable knowledge
from data [1], [2]. It has been applied to marketing analy-
sis [4], computer vision [5], pattern recognition [6], image
processing [7], machine learning [8], etc.

Clustering algorithms are commonly classified as parti-
tional and hierarchical [3]. Partitional clustering aims to obtain
a single partition of data, andmost partitional clustering algo-
rithms use a single prototype to represent a cluster. The well-
known K-centers technique [9], [10] considers a center as the
centroid (or medoid) of a cluster and assigns each point to its
closest center. All K-centers algorithms require the cluster
number as a prior input. While the Affinity Propagation algo-
rithm (AP) [11] can automatically identify the most represen-
tative points as the high-quality centers. Although the K-
centers and the AP all shine with simpleness and efficiency in
partitioning hyper-spherical clusters, they cannot work well
on non-spherical clusters. Some density-based partitional

methods try to divide the dataset into clusters withmaximum
density-connected points [12], [13] that can effectively recon-
struct non-spherical shapes, however, they often merge high-
overlapping clusters [14], [15].

Unlike partitional clustering which directly generates
clusters, hierarchical clustering generates a hierarchical
structure of clusters, that is, a dendrogram. The popular
linkage-based clustering [16], [17], [18] achieves clustering
by gradually merging similar data points according to a
specific linkage metric. Although linkage-based clustering
can effectively identify non-spherical clusters, a given num-
ber of clusters is usually required to cut the dendrogram
into final clusters. In 2014, the Density Peak Clustering algo-
rithm (DPC) [19] was proposed. DPC can manually find
appropriate centers without prior knowledge by a heuristic
method (i.e., finding density peaks). In general, hierarchical
clustering is more suitable for complex-shaped clusters (or
multi-prototype clusters), but it is usually unable to handle
large-scale data due to its higher time complexity.

However, in real applications, we usually encounter
large-size multi-prototype clusters [3]. In such a dilemma,
the extended algorithms of K-centers and AP directly for-
malize the multi-prototype clustering problem as an objec-
tive function, such as in [20], [21]. Another more common
and simpler way to achieve fine multi-prototype clustering
is to apply a hybrid clustering technique. It often uses a par-
titional technique to fast divide the dataset into small sub-
clusters, and then uses a hierarchical technique to gradually
merge similar sub-clusters into a given number of clusters,
such as in [22], [23], [24], [25], [26]. Although these methods
can achieve satisfying clustering, they often highly rely on
the user-specified parameters, mainly the numbers of sub-
clusters and clusters; and methods involving objective func-
tion optimization techniques may have unstable performan-
ces and be prohibitively time-consuming.
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To achieve successful clustering without encountering
the above-mentioned issues, a stable-membership-based
auto-tuning multi-peak clustering algorithm (SMMP) is pro-
posed. SMMP views a cluster as a density-connected area
with multiple density peaks to achieve fast and automatic
multi-prototype clustering without iterations. The main
contributions of SMMP are as follows:

1) A dynamic association-transfer method (DAT) is
designed to learn the representativeness of points to
sub-cluster centers during the generation of sub-
clusters by applying the density peak clustering
technique;

2) A border-link-based connectivity measure is pro-
posed to reliably evaluate the cohesion of sub-clus-
ters based on the learned representativeness;

3) An assumption that a reasonable clustering should
have a relatively stable membership state upon the
change of clustering thresholds is proposed to guide
SMMP’s adaptive estimation of the number of sub-
clusters and clusters, respectively;

4) SMMP only requires kNN distances of data as input
and is suitable for large dataset clustering.

The rest paper is composed as: Section 2 introduces the
related works; Section 3 mainly focuses on the proposed
method; while Section 4 displays the experiments and dis-
cussions; and Section 5 gives the final conclusion.

2 RELATED WORKS

DPC [19] inherits the main idea of the Mean-shift clustering
method (MSC) [28] to search for local density areas as clus-
ters. But unlike Mean-shift which views all local density
maximum points as cluster centers, DPC selects appropriate
cluster centers according to its assumption—cluster centers
are density peaks that have high densities and are far away
from points of higher densities.

Given a dataset X ¼ fx1; x2; . . . ; xn jxi 2 Rdg, for each
point xi, DPC first estimates its local density ri as in
Eq. (1), where the “cutoff distance” dc is a user-specified
parameter, and dij indicates the euclidean distance
between point xi and xj. Subsequently, for point xi

(except for xi with the highest density), DPC measures di
by computing the minimum distance between point xi

and another point with a higher density, as in Eq. (2).
Then, for point xi with the highest density, DPC defines
di ¼ maxxjðdijÞ.

ri ¼
X
xj2X

xðdij � dcÞ; xðzÞ ¼ 1 z < 0

0 z50

�
(1)

di ¼ min
xj:rj > ri

dij
� �

: (2)

Then, based on DPC’s center assumption, density peaks
with large r-d are manually selected as centers by observing
through a decision graph (i.e., a r-d plot). Subsequently,
each non-center point is allocated to the same cluster of its
nearest higher density point.

DPC can work well on single-peak sub-clusters (i.e., a
cluster with only one density peak) [29], [30], [31]. But its
heuristic method of finding density peaks may incorrectly
select some density peaks as cluster centers in dealing with
multi-prototype (or multi-peak) clusters, leading to a poor
clustering result; also, DPC’s allocation strategy may mis-
takenly allocate data points of a multi-peak cluster [31],
[32], [36].

For multi-prototype clustering, one often first splits the
dataset into multiple single-prototype sub-clusters by apply-
ing a single-prototype clustering method [22]. K-centers and
AP are two commonly used andwell-functioning single-pro-
totype clustering methods [20], [21]. Nevertheless, they have
to over-divide the dataset to pursue a reasonable multi-pro-
totype clustering, leading to the missing of some important
structure information (since they can only work well on
spherical shapes). DPC can better preserve the structure
information by identifying single-peak sub-clusters regard-
less of shapes to divide clusters reasonably. Hence, DPC is a
quite promising single-prototype clusteringmethod.

Fig. 1 illustrates four split results obtained by K-means,
AP, and DPC on the Spiral [41] dataset composed of three
spiral-shaped multi-peak clusters. As shown in Figs. 1a, 1b,
and 1c, while K-means and AP failed to identify the eigh-
teen sub-clusters due to non-spherical shapes, DPC per-
fectly identified all sub-clusters. In Fig. 1(d), although K-
means did a successful split, it over-divided the dataset into
fifty sub-clusters. This demonstrates that DPC can be a
good single-prototype clustering method.

Herein, we only apply the superior structure recognition
technique of DPC to split arbitrary-shaped sub-clusters, and
then use our connectivity measure to accurately merge high-
connected sub-clusters into complex-shaped clusters. Note
that DPC deals with the “global information” of data, which
may cause an unreasonable allocation. But we only apply the
DPC technique to deal with the “local information” to
achieve reliable local clustering, even when dealing with

Fig. 1. The split results of K-means (a), AP (b), and DPC (c) on the Spiral dataset with respect to eighteen sub-clusters, and the split result of
K-means with fifty sub-clusters.
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datasets of arbitrary shapes, different sizes, variable density,
and overlapping clusters [33], [34], [35], [36], [37], [38]. Also,
the allocation of each point in the local clustering process
results from its local behavior (without expecting any point
outside the local area), which significantly reduces the time
complexity.

3 THE PROPOSED SMMP ALGORITHM

In this section, the concept of “stable membership” that can
help achieve auto-tuning is introduced, together with a
detailed analysis of the proposed SMMP clustering strategy.
Fig. 2 demonstrates the clustering process of SMMP.

3.1 Stable Membership

Consider a clustering function F ðX; sÞ that takes dataset X
and similarity function s as inputs and returns a result
described as a membership logical matrix M 2 Rn�n, where
the ði; jÞth elementmij ¼ 1means points xi and xj are mem-
bers in the same cluster. Consider a clustering threshold t 2
It � ½minðsðxi; xjÞÞ;maxðsðxi; xjÞÞ� over F ðX; sÞ, making: if
sðxi; xjÞ5t, then mij ¼ 1, where It indicates the interval of
threshold t. Then, clustering function F ðX; sÞ can own the
Consistency property proposed by Kleinberg [39]. Clearly, a
reasonable threshold t should be within the range ðmaxmij¼0
ðsðxi; xjÞÞ;minmij¼1ðsðxi; xjÞÞ�. And the ideal range is when
maxmij¼0ðsðxi; xjÞÞ ¼ minðsðxi; xjÞÞ andminmij¼1 ðsðxi; xjÞÞ ¼
maxðsðxi; xjÞÞ. Therefore, a reasonable similarity function s
should bring a relatively large range ðmaxmij¼0ðsðxi; xjÞÞ;
minmij¼1ðsðxi; xjÞÞ�. Inspired by this, we propose Assump-
tion 1.

Assumption 1. A reasonable clustering should have a relatively
stable membership upon the change of the clustering threshold
according to a reasonable similarity measurement.

Definition 1. Notion (�Þt represents a corresponding result at a
threshold t 2 It. For example, Mt, Clt and Ct represent the
membership matrix, the clustering result, and the number of
clusters at threshold t 2 It, respectively.

Let notion (�Þt represent a corresponding result at a
threshold t 2 It as in Definition 1. According to the
Assumption 1, we can approximately detect a reasonable

threshold interval by solving the following problem:

maximize rangeðI 0tÞ
s.t. 8t1; t2 2 I 0t � It; C

t1 ¼ Ct2 : (3)

Where I 0t is a sub-interval within It. The constraint Ct1 ¼
Ct2 , as a sufficient condition of Mt1 ¼Mt2 , roughly repre-
sents a stable membership to reduce calculation.

The optimal threshold sub-interval I�t � It of Eq. (3)
gives the most stable Ct� , and is considered as the reason-
able clustering threshold interval, i.e., ðmaxmij¼0ðsðxi; xjÞÞ;
minmij¼1 ðsðxi; xjÞÞ�  I�t . Then, we set clustering threshold
as t ¼ meanðI�t Þ.

In what follows, based on the stable membership, an
automatic method is proposed to estimate the ideal num-
bers of sub-clusters and clusters, respectively.

3.2 The Identification of Single-Peak Sub-Clusters

For each point xi, its k nearest points are defined as its sur-
rounding points, denoted as NkðxiÞ. Its local density ri is
estimated according to its within-surrounding similar-
ity [40], as in Eq. (4).

ri ¼
1

1
k

P
xj2NkðxiÞ dij

: (4)

Density peaks with the characteristic of local density
maxima are defined in Definition 2.

Definition 2. Point xi is a density peak, denoted as p 2 P , if
ri > maxxj2NkðxiÞðrjÞ. P is the density peak set ofX.

On this basis, we obtain sub-clusters with only one den-
sity peak by applying the DPC technique: to select all den-
sity peaks as centers and assign each non-center point to the
same cluster of its nearest higher density point within its
surrounding points.

The above assignment relationship of data can be
expressed as an adjacency graph AG 2 Rn�n, where the
ði; jÞth element aij 2 f0; 1g, and aij ¼ 1means that point xj is
associated with its nearest higher density neighbor xj. Sin-
gle-peak sub-clusters are connected components of AG,
where point xi without out-degree (degþðxiÞ ¼ 0) is a density

Fig. 2. The clustering process of SMMPon the Agg [41] dataset.
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peak; while point xi without in-degree (deg�ðxiÞ ¼ 0) is an
edge point (see Fig. 3).

For the generation of sub-clusters, parameter k is the only
dependent variable of the clustering threshold, because the
construction of AG is only subject to parameter k. Clearly, a
large k tends to produce a small number of sub-clusters. Let
notion (�Þk represent a corresponding result at a k 2 Ik, just
like (�Þt as in Definition 1. Based on Assumption 1, a reason-
able threshold interval of k can be detected by solving the
following problem:

maximize rangeðI 0kÞ
s.t. 8k1; k2 2 I 0k �Ik ¼ ½1; d

ffiffiffi
n
p e�; Ĉk1 ¼ Ĉk2 ; (5)

where Ik ¼ ½1; d
ffiffiffi
n
p e� is the default interval of k [51], and sym-

bol d�e is a ceiling function. Ĉk indicates the sub-cluster num-
ber at k 2 Ik. Then, the optimal threshold sub-interval I�k � Ik
gives the most stable Ĉk� ; k� 2 I�k . So, by auto-tuning k ¼
dmeanðI�kÞe, we can automatically generate sub-clusters as
Ĉl ¼ fĈl1; Ĉl2; . . . ; ĈlĈg; Ĉ ¼ Ĉk. Then, the original clustering
of data points is simplified into the clustering of sub-clusters.

3.3 Border-Link-Based Connectivity Measure

In this subsection, a border-link-based connectivity measure
is proposed to reliably evaluate the cohesion of sub-clusters.
Besides, a dynamic association-transfer method (DAT) is
designed to learn the representativeness of points to sub-
cluster centers during the generation of sub-clusters.

3.3.1 Border Links

In Definition 3, border points are defined to be only existed
in intersecting sub-clusters, where kb ¼ bminðk2 ; 2 lnðnÞÞc
(symbol b�c is a floor function). Note that small-value kb 	 k
can effectively help to detect the proximal border points
between intersecting sub-clusters.

Definition 3. If mutual-proximity points xi and xj are in differ-
ent sub-clusters, i.e., xi 2 Ĉly \NkbðxjÞ; xj 2 Ĉlz \NkbðxiÞ,
then, points xi and xj are cross-cluster border points, denoted
as xiÐxj, indicating that sub-clusters Ĉly and Ĉlz are
intersected.

Among cross-cluster border points, we link unlinked
border point xi to its nearest unlinked cross-cluster border

point ti (see Eq. (6)) as a border link li ¼ fxi; tig.

ti ¼ argmin
xj:xjÐxi

dij
� �

; s.t. xi; xj are both unlinked: (6)

To quantitatively evaluate the connectivity between
intersecting sub-clusters, we let each border point have a
“representativeness” value (denoted as u 2 ½0; 1�) to repre-
sent its own sub-cluster, and design the DAT method—an
enhanced version of the association-transfer method (AT) of
our previous work [32]—to learn the representativeness.

3.3.2 Representativeness Learning of Border

Links via DAT

In the DAT method, each point has a transferable associa-
tion degree f 2 ½0; 1� with its adjacent point in AG, called
adjacent association degree, as in Eq. (7), and the transfer
logic is as in Definition 4:

Definition 4. Point xy and its adjacent point xz have an adjacent
association degree of fðxy; xzÞ, point xz and its adjacent point xr

have fðxz; xrÞ, then points xy and xr have an association degree
fðxy; xrÞ ¼ fðxy; xzÞ � fðxz; xrÞ, s.t. ayz ¼ azr ¼ 1.

fðxi; xjÞ ¼ ri
rj

aij ¼ 1 (7)

ui ¼ fðxi; pÞ ¼
Y

xy2Dxip

fðxy; xzÞ; ayz ¼ 1 (8)

Based on Definition 4, for each point xi 2 X, we define its
center-association degree fðxi; pÞ as its representativeness ui,
as in Eq. (8), where Dxip means all corresponding adjacent
points on the path from point xi to center p. If point xi is a
density peak p (a sub-cluster center), up ¼ 1, as inDefinition 5:

Definition 5. A density peak p 2 P owns the largest representa-
tiveness to represent its sub-cluster, i.e., up ¼ 1.

Fig. 3 shows the DAT method on a toy dataset D1, where
the point number indicates the density ranking order. As
shown in Fig. 3a, by applying the DPC technique, all points
are associated with their nearest higher density neighbors,
except for the cluster center (point 1). The corresponding
adjacency graph structure (a tree structure) is presented in
Fig. 3b. As Fig. 3c shows, point 9 has the path 9! 5! 3
! 2!1 towards the center point 1, then its representative-
ness u9 ¼ fð9; 1Þ ¼ fð9; 5Þ � fð5; 3Þ � fð3; 2Þ � fð2; 1Þ ¼
0:7� 0:8� 0:8� 0:9 
 0:4.

Note that along a path, the low-density points are usually
far away from the center, causing their small representative-
ness and speculating the small representativeness of edge
points (dashed circles).

3.3.3 Border-Link-Based Similarity Evaluation

After obtaining the representativeness of border points,
each border link li ¼ fxi; tig can help to judge the cohesion
(ie., the similarity) between sub-clusters. The representa-
tiveness gli of border link li is defined as the average repre-
sentativeness of its two border points, as in Eq. (9).

gli ¼
ui þ uti

2
; li ¼ xi; tif g: (9)

Fig. 3. The idea of the DATmethod on a toy dataset D1.

6310 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on April 11,2023 at 03:04:03 UTC from IEEE Xplore.  Restrictions apply. 



Inspired by the idea of density-connectivity [12], we pro-
pose Assumption 2:

Assumption 2. High-similarity sub-clusters are well-connected
and often have multiple border links of high representativeness.

We pick out a set of ng (i.e., the minimum standard sam-
ple number) border link samples with the top largest g val-
ues for the similarity evaluation of sub-clusters, denoted as
G, as in Eq. (10), where g½1�5g½2�5 . . .5g½ng�. If the total num-
ber of border links is less than ng, we fill the number of sam-
ples (with g ¼ 0) to ng.

The estimation of ng is defined in Eq. (11), where h 2 ½0; 1�
is a ratio parameter (default is 0.1), function n�ðĈlÞ means
the total number of edge points in sub-cluster Ĉl, as in Eq
(12), and �ð�Þ is an edge point judgment function.

GĈlyĈlz
¼ g½1�; g½2�; . . .; g½ng�

n o
(10)

ng ¼ dh�minðn�ðĈlyÞ; n�ðĈlzÞÞe (11)

n�ðĈlÞ ¼
X
xi2Ĉl

�ðxiÞ; �ðxÞ ¼ 1 deg�ðxÞ ¼ 0

0 others

�
: (12)

Based on Assumption 2, for two intersecting sub-clusters,
if the representativeness values of all border link samples
are (or almost) uniformly high, they are high-similar. We
calculate the similarity value sðĈly; ĈlzÞ as in Eq. (13). GðGÞ
returns the uniformity of all g values with the max g value
in G, as in Eq. (14).

sðĈly; ĈlzÞ ¼ maxðGĈlyĈlz
Þ � GðGĈlyĈlz

Þ (13)

GðGÞ ¼ 1�
1
ng

Png
i¼1 GðiÞ �maxðGÞj j

maxðGÞ : (14)

After obtaining the similarity matrix S 2 RĈ�Ĉ of sub-
clusters where the ðy; zÞth element is sðĈly; ĈlzÞ, we merge
sub-clusters into final clusters.

3.4 The Identification of Clusters

After inputting the similarity matrix S into a traditional
linkage-based method (herein we apply the Single-linkage
method), we obtain a dendrogram with clustering
threshold interval It ¼ ½minðsðĈly; ĈlzÞÞ;maxðsðĈly; ĈlzÞÞ� �
½0; 1�. Then, by solving Problem (3), SMMP automatically
tunes t ¼ meanðI�t Þ to generate final clusters as Cl ¼
fCl1; Cl2; . . . ; ClCg; C ¼ Ct.

In summary, the overall clustering process of the proposed
SMMP algorithm needs nomanual tuning or supervision.

3.5 Complexity Analysis

Fig. 4 presents the overall workflow of the SMMP algorithm,
where Algorithms 1, 2, and 3 show the pseudocode of the
four steps of the SMMP algorithm, respectively.

Step 1: the fast calculation of kNN distances (see Algo-
rithm 1 Line 1� 2). The time complexity is Oðnlog ðnÞÞ by
applying fast kNN search technique [27].

Step 2: the identification of single-peak sub-clusters (see
Algorithm 1 Line 3�39). Line 3�20 show the auto-tuning of k
with time complexity Oðcn~kÞ, where c (default as c ¼ 20) is
the number of k-samples picked out from Ik (by setting gap as
in Line 5). ~kmeans that each point’s ~kth neighbor (an average

concept) is its nearest higher density point. Since c is a con-
stant, the overall time complexity is Oðn~kÞ. In fact, most data
points can find a real close higher density point, i.e., ~k	 ffiffiffi

n
p

.
Line 21�39 show the generation of sub-clusters and u

learning, where the initialization of representativeness u

(see Line 22�24) needs complexity OðnÞ; the sub-cluster
label acquisition of each point and the representativeness
learning (see Line 25�37) need complexity Oðn~kÞ; the for-
mation of sub-clusters (see Line 38�39) needs complexity
OðnÞ. So, the overall time complexity is Oðn~kÞ.

Step 3: the similarity evaluation of sub-clusters (see Algo-
rithm 2), where the identification of cross-cluster border
points (see Line 1�8) needs OðnkbÞ; the identification of bor-
der links (Line 9�17) with OðjBorjkbÞ, jBorj 	 n represents
the total number of border points; the similarity evaluation
(Line 18�24) with OðĈ2Þ. So, the overall time complexity is
Oðnkb þ Ĉ2Þ.

Step 4: the adaptive merging of sub-clusters (see Algo-
rithm 3), where the dendrogram building via Single-linkage
(Line 1�2) needs OðĈ2Þ; the auto-tuning of clustering
threshold t and the adaptive merging of sub-clusters (Line
3�12) need OðĈÞ. So, the overall time complexity is OðĈ2Þ.

The overall time complexity of SMMP is Oðnðlog ðnÞ þ
~kþ kbÞ þ Ĉ2Þ, where kb; Ĉ, ~k, and k are all far less than n.
Notably, SMMP only needs to calculate the kNN distances
of data.

4 EXPERIMENTS

4.1 Experimental Set Up

Datasets. Thirteen synthetic datasets of different shapes and
eleven real-world datasets are selected to test the clustering

Fig. 4. The workflow of the overall SMMP algorithm.
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performance of the proposed algorithm, corresponding
detailed summarization is in Table 1.

Comparison Methods and Settings. K-means [9] (the most
typical K-centers clustering technique), the AP algo-
rithm [11] (an excellent non-parametric partitional cluster-
ing technique), the DBSCAN [12] and MSC [28] algorithms
(classic density-based non-parametric partitional clustering
techniques), the DPC [19] and SSSP-DPC [31] algorithms
(remarkable density peak clustering techniques), the Self-
tuning Spectral Clustering algorithm (SSC) [42] (a popular
Spectral Clustering technique), the KMM algorithm [20] (an
outstanding multi-prototype clustering technique based on
K-means), and the proposed SMMP algorithm.

In terms of the parameter setting, for K-means, we use
the correct number C of clusters as input; for AP, we use its
default parameter setting [11]; for SSC, DBSCAN, KMM,
MSC, we select the optimal parameter setting over a full
range of possible configurations; for DPC and SSSP-DPC,
we manually select the correct number C of clusters accord-
ing to an appropriate parameter dc setting; while for SMMP,

it adjusts parameters automatically. Besides, for iterative
algorithms, such as K-means, AP, SSC, MSC, and KMM, we
pick the best results among ten runs.

Machine Configuration. experiments are conducted by
applying Matlab (r2017b) on Mac-Book Pro with 2.9 GHz
Intel Core i5, 8 G RAM.

Data Preprocessing. all datasets are preprocessed by the
min-max normalization method [43], aiming to reduce the
influence of different metrics in different dimensions.

Evaluation Metric. the popular Adjusted Rand Index
(ARI) [48], Adjusted Mutual Information (AMI) [48], Nor-
malized Mutual Information (NMI) [49] and F-Score [50] are
used to measure the clustering performance of the compari-
son algorithms.

4.2 Experiments on Synthetic Datasets

In this subsection, experiments on twelve synthetic datasets
of different shape types are conducted to compare the clus-
tering performance of the proposed SMMP and the other
comparison algorithms: DPC [19], SSSP-DPC [31], K-
means [9], KMM [20], SSC [42], DBSCAN [12], MSC [28],
and AP [11].

4.2.1 Comparison With KMM

The SMMP is compared with KMM [20] on the Jain dataset
that is composed of twomoon shapeswith different densities.

Fig. 5 shows the comparison results, where different col-
ors indicate different clusters, and big dots are sub-cluster
centers. As shown, KMM failed to reconstruct the struc-
ture of the two moon shapes when setting a small num-
ber (ten or thirty) of sub-clusters. But it managed to
recognize the moon shapes when over-dividing the data-
set into 100 sub-clusters, leaving each sub-cluster with
almost no structural information (only about four data
points in each sub-cluster). As an iterative algorithm,
KMM’s accuracy and stability are highly dependent on
the initial settings of sub-cluster centers and cluster cen-
ters, which usually need prior knowledge.

In contrast, SMMP perfectly learned the data structure
when setting only ten sub-clusters, for which the excel-
lent shape recognition performance of DPC technology
in single-peak clusters and our reasonable evaluation of
sub-cluster similarity should get the credit. Also, sub-
clusters with complete structure can provide important
local cohesive information, which makes the study of
sub-clusters meaningful.

TABLE 1
Datasets

Dataset Instances Attributes Clusters Source

Agg 788 2 7 [41]
Jain 373 2 2 [41]
Spiral 312 2 3 [41]
Threecircles 299 2 3 [42]
Flame 240 2 2 [41]
D1 87 2 3 [38]
D2 85 2 4 [35]
R15 600 2 15 [41]
S3 5000 2 15 [43]
D31 3100 2 31 [41]
A3 7500 2 50 [41]
Birchrg1 100000 2 100 [41]
DIM1024 1024 1024 16 [41]

Breastcancer 569 30 2 [44]
Movementlibras 360 90 15 [44]
Parkin 195 22 2 [44]
Drivedata 606 6400 4 [44]
Waveform 5000 21 3 [44]
Lonosphere 351 34 2 [44]
Vote 345 17 2 [44]
Musk 6598 166 2 [44]
YTF 10000 10 41 [45]
REUTERS 10000 10 4 [46]
MNIST 10000 500 10 [47]

Fig. 5. The different results of KMM and SMMPon the Jain dataset.
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Algorithm 1. SMMP: The Identification of Single-Peak
Sub-Clusters

Input: datasetX ¼ fx1; x2; . . .; xng.
Output: density peak set P , sub-cluster result Ĉl, and represen-
tativeness u,w.r.t k.
1: // the fast calculation of kNN distances
2: fast obtain kNN distances of data with k ¼ d ffiffiffi

n
p e

3: // the auto-tuning of k
4: Ik ¼ ½1; d

ffiffiffi
n
p e�

5: gap ¼ � rangeðIkÞ
c

�
// set iterate twenty times (c ¼ 20 as

default).
6: for k ¼ minðIkÞ : gap : minðIkÞ do
7: calculate density rwith k // Eq. (4)
8: for each point xi 2 X do
9: Pk ¼ X // Pk is the density peak setw.r.t k
10: for xj 2 NkðxiÞ from near to far do
11: if ri < rj then
12: Pk ¼ Pk n fxig // xi is not a density peak.
13: break
14: end if
15: end for
16: end for
17: Ĉk  jPkj // Ĉk is the number of sub-clustersw.r.t k
18: end for
19: take obtained above pairs of Ĉk and k as input to obtain the

optimal threshold interval I�k via solving the Problem (5).
20: k ¼ dmeanðI�kÞe; P  Pk; Ĉ  Ĉk

21: //the generation of sub-clusters and u learning w.r.t k
22: for each point xi 2 X do
23: ui ¼ 1 // initialize the representativeness
24: end for
25: for each point xi 2 X, from high-r to low-r do
26: if xi 2 P is a density peak then
27: xi  a unique sub-cluster label // xi is a sub-cluster

center
28: else
29: for each neighbor xj 2 NkðxiÞ from near to far do
30: if rj > ri then
31: ui ¼ uj � fðxi; xjÞ // DAT, Eqs. (7) and (8)
32: xi’s label xj’s label
33: break
34: end if
35: end for
36: end if
37: end for
38: points with the same label form sub-clusters Ĉl.
39: return density peaks P ¼ fp1; p2; . . . ; pĈg, sub-clusters Ĉl ¼
fĈl1; Ĉl2; . . . ; ĈlĈg, and representativeness u ¼ fu1; u2; . . . ;
ung.

SMMP is demonstrated to be stable and independent
without iterations or any initial setup, making it an excellent
multi-prototype clustering technique.

4.2.2 Comparisons Among the State-of-the-Art

Algorithms

Fig. 6 shows the comparison results of different algorithms,
where “$” represents the identified cluster centers of K-
means and DPC, and “�” represents the identified noise of
DBSCAN. As shown, the proposed SMMP almost perfectly
distinguished all datasets using multi-prototype clustering

technique; SSC distinguished all the ring and spiral shapes of
the Threecircles and Spiral dataset but had flaws in identifying
some non-spherical clusters in the Agg, Jain, and Flame data-
sets; DPC did a satisfying job on theAgg, Flame, Spiral, S3, and
A3 datasets, but it failed on the Jain, Threecircles, and D1 data-
sets due to incorrect cluster center recognition; DBSCAN
almost successfully reconstructed all shapes, but it falsely
identifiedmany border points as noise points in the S3 dataset
and misdetected the number of clusters of the Jain and D1
datasets; K-means failed to identify all non-spherical clusters.

Algorithm 2. SMMP: Border-Link-Based Connectivity
Measure of Sub-Clusters

Input: sub-cluster result Ĉl, and representativeness u, and k.
Output: similarity matrix S of sub-clusters Ĉl.
1: // the identification cross-cluster border points
2: kb ¼ bminðk2 ; 2 lnðnÞÞc
3: for each pair of sub-clusters Ĉly; Ĉlz 2 Ĉl do
4: if 9xi 2 Ĉly, 9xj 2 Ĉlz; xi 2 NkbðxjÞ; xj 2 NkbðxiÞ then
5: xi Ð xj are cross-cluster border points, and sub-clus-

ters Ĉly and Ĉlz are intersecting. // Definition 3
6: Bor ¼ Bor [ fxi; xjg // Bor: a set of border points.
7: end if
8: end for
9: // the representativeness calculation of border links
10: for each border point xi 2 Bor do
11: ti ¼ argminxj :xjÐxi

ðdijÞ; s.t. xi; xj are both unlinked //
Eq. (6)

12: if tðiÞ 6¼ ? then
13: li ¼ fxi; tig
14: xi; ti  linked // give linked points “linked” labels

15: gli ¼ uiþuti
2 ; li ¼ fxi; tig // gli is the representativeness

of li according to Eq. (9)
16: end if
17: end for
18: // the similarity evaluation of sub-clusters
19: for each pair of density peaks Ĉly; Ĉlz 2 Ĉl do
20: determine ng according to Eq. (11)
21: obtain GĈlyĈlz

¼ fg½1�; g½2�; . . . ; g½ng�g // Eq. (10)

22: get sðĈly; ĈlzÞ according to Eqs. (13) and (14).
23: end for
24: returnthe similarity matrix S.

For further information, a comparison table of AMI, ARI,
NMI, and F-Score is presented in Table 2, where the best
results are highlighted and the best results of non-paramet-
ric algorithms are marked with highlighted�. As shown, the
proposed SMMP stands out for its high scores on all experi-
mental datasets; KMM’s performance is secondary; SSSP-
DPC is merely superior to DPC on the Threecircles dataset;
while AP loses its competitiveness in identifying non-spher-
ical clusters; MSC as another density-based technique is
inferior to DBSCAN.

As verified, our SMMP algorithm has a quite pleasing
recognition performance.

4.3 Experiments on Real-World Datasets

The real-world dataset clustering has always been a hard
nut to crack for its high-dimensional and large-size charac-
ters, but this also indicates its vital importance.
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In this subsection, experiments are conducted on eleven
real-world datasets, including eight UCI [44] datasets (Breast-
cancer,Movementlibras, Parkin,Drivedata,Waveform, Lonosphere,
vote andMusk) and three popular large-scalemachine learning
datasets (YTF [45], REUTERS [46], and MNIST [47]) of 10,000
samples. The experimental results are reported in Table 3,

where the best results are highlighted and the best results of
non-parametric algorithms aremarkedwith highlighted�.

As Table 3 shows, the overall performance of SMMP is
outstanding, especially among non-parametric algorithms.
SMMP algorithm is demonstrated to be a good alternative
method to real-world dataset clustering.

Fig. 6. The results of different algorithms on synthetic datasets. The datasets from left to right are named: Agg, Jain, Spiral, Threecircles, Flame, D1,
S3, and A3.

TABLE 2
The Comparison of AMI, ARI, NMI, and F-Score on Synthetic Datasets

Dataset Metric DPC SSSP-DPC K-means KMM SSC DBSCAN MSC AP SMMP

Agg AMI ARI
NMI F-Score

0.99 1.00
0.99 1.00

0.97 0.98
0.97 0.98

0.82 0.75
0.85 0.85

0.99 0.99
0.99 1.00

0.96 0.97
0.97 0.99

0.97 0.98
0.98 0.99

0.83 0.83
0.90 0.89

0.61 0.40
0.76 0.59

0.99 1.00
0.99 1.00

Jain AMI ARI
NMI F-Score

0.54 0.62
0.58 0.90

0.36 0.32
0.39 0.80

0.49 0.58
0.53 0.89

1.00 1.00
1.00 1.00

0.64 0.73
0.67 0.93

0.87 0.98
0.93 0.99

0.52 0.62
0.56 0.90

0.22 0.12
0.37 0.32

1.00 1.00
1.00 1.00

Spiral AMI ARI
NMI F-Score

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

-0.01 -0.01
-0.00 0.35

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

0.28 0.13
0.46 0.37

0.24 0.13
0.37 0.34

1.00 1.00
1.00 1.00

Threecircles AMI ARI
NMI F-Score

0.18 0.03
0.23 0.53

1.00 1.00
1.00 1.00

0.16 0.06
0.17 0.43

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

0.41 0.32
0.51 0.53

0.37 0.27
0.56 0.41

1.00 1.00
1.00 1.00

Flame AMI ARI
NMI F-Score

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

0.43 0.48
0.45 0.85

0.91 0.95
0.91 0.99

0.54 0.61
0.55 0.89

0.84 0.94
0.88 0.98

0.86 0.92
0.87 0.98

0.23 0.13
0.38 0.31

1.00 1.00
1.00 1.00

D1 AMI ARI
NMI F-Score

0.59 0.53
0.68 0.76

0.59 0.49
0.67 0.73

0.95 0.96
0.95 0.99

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

0.73 0.81
0.85 0.83

0.75 0.84
0.87 0.90

0.73 0.81
0.85 0.84

1.00 1.00
1.00 1.00

D2 AMI ARI
NMI F-Score

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

0.85 0.91
0.90 0.97

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

0.96 0.97
0.97 0.99

R15 AMI ARI
NMI F-Score

0.99 0.99
0.99 1.00

0.99 0.99
0.99 0.99

0.94 0.89
0.95 0.92

0.99 0.99
0.99 1.00

0.99 0.99
0.99 1.00

0.98 0.98
0.99 0.99

0.99 0.99
0.99 1.00

0.99 0.99
0.99 1.00

0.99 0.99
0.99 1.00

S3 AMI ARI
NMI F-Score

0.94 0.93
0.94 0.96

0.88 0.83
0.88 0.91

0.90 0.87
0.90 0.94

0.92 0.90
0.92 0.95

0.90 0.86
0.90 0.93

0.66 0.30
0.70 0.79

0.88 0.85
0.88 0.92

0.47 0.32
0.67 0.49

0.95 0.94
0.95 0.97

D31 AMI ARI
NMI F-Score

0.95 0.93
0.96 0.97

0.96 0.94
0.96 0.97

0.91 0.82
0.92 0.86

0.96 0.95
0.96 0.97

0.97 0.95
0.97 0.98

0.87 0.71
0.88 0.93

0.95 0.92
0.95 0.96

0.77 0.80
0.87 0.79

0.96* 0.94*
0.96* 0.97*

A3 AMI ARI
NMI F-Score

0.99 0.98
0.99 0.99

0.98 0.97
0.98 0.99

0.98 0.93
0.98 0.95

0.99 0.98
0.99 0.99

0.99 0.99
0.99 0.99

0.90 0.74
0.91 0.95

0.98 0.96
0.98 0.98

0.34 0.32
0.70 0.32

0.99 0.98*
0.99 0.99

DIM1024 AMI ARI
NMI F-Score

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

1.00 1.00
1.00 1.00

0.39 0.65
0.73 0.53

1.00 1.00
1.00 1.00
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4.4 Comparison of Cluster Number Detection

Table 4 displays the comparison of cluster number detection
performance of the non-parametric clustering algorithms:
DBSCAN, MSC, AP, and SMMP.

As shown in Table 4 and Fig. 6, for synthetic datasets,
SMMP perfectly detected the number of clusters, except for
dividing S3 into sixteen clusters; DBSCAN mistakenly
divided the sparse moon-shaped cluster of the Jain dataset
into three clusters, the sparse cluster of the D1 dataset into
three clusters, and the S3 into fourteen clusters; AP over-

divided the S3 dataset into 1469 clusters; MSC wrongly
divided the Threecircles dataset into fifteen clusters and the
Agg dataset into merely five clusters.

Algorithm 3. SMMP: The Adaptive Merging of Sub-
Clusters

Input: the similarity matrix S and sub-clusters Ĉl.
Output: Clustering result Cl
1: // the dendrogram building
2: obtain a dendrogram by apply the Single-linkage clustering

technique with the similarity matrixw.r.t s as input.
3: // the auto-tuning of clustering threshold t
4: It ¼ ½minðsðĈly; ĈlzÞÞ;maxðsðĈly; ĈlzÞÞ� � ½0; 1�
5: gap ¼ 0:01 // set iterate times (gap is adjustable).
6: for t ¼ minðItÞ : gap : maxðItÞ do
7: detect cluster number Ct w.r.t t according to the

dendrogram.
8: end for
9: solve the Problem (3) to obtain the optimal clustering

threshold t ¼ meanðI�t Þ
10: obtain corresponding clustering result Clt w.r.t t
11: Cl Clt and C  Ct.
12: returnClustering result Cl ¼ fCl1; Cl2; . . .; ClCg.

TABLE 3
The Comparison of AMI, ARI, NMI, and F-Score on Real-World Datasets

Dataset Metric DPC SSSP-DPC K-means KMM SSC DBSCAN MSC AP SMMP

Breastcancer AMI ARI
NMI F-Score

0.41 0.47
0.46 0.84

0.34 0.38
0.39 0.79

0.61 0.73
0.62 0.93

0.59 0.70
0.61 0.92

0.69 0.80
0.70 0.95

0.38 0.50*
0.38 0.85*

0.21 0.42
0.34 0.78

0.15 0.06
0.27 0.25

0.42* 0.49
0.48* 0.84

Movementlibras AMI ARI
NMI F-Score

0.48 0.26
0.58 0.46

0.58 0.31
0.60 0.51

0.55 0.32
0.61 0.51

0.50 0.30
0.59 0.50

0.58 0.36
0.63 0.53

0.27 0.09
0.41 0.38

0.47 0.29
0.65 0.48

0.49* 0.39*
0.64 0.48*

0.43 0.28
0.54 0.46

Parkin AMI ARI
NMI F-Score

0.23 0.09
0.25 0.68

0.23 0.09
0.25 0.68

0.22 0.05
0.24 0.65

0.05 -0.03
0.02 0.74

0.19 0.15
0.21 0.72

0.11 0.18
0.13 0.70*

0.07 0.03
0.16 0.46

0.09 0.03
0.19 0.27

0.25 0.13
0.28 0.70*

Drivedata AMI ARI
NMI F-Score

0.60 0.61
0.61 0.83

0.65 0.68
0.65 0.86

0.52 0.50
0.53 0.73

0.53 0.51
0.54 0.74

0.47 0.44
0.48 0.71

0.53 0.56
0.61 0.77

-0.00 0.00
0.35 0.01

0.31 0.14
0.49 0.28

0.56* 0.59*
0.62* 0.78*

Waveform AMI ARI
NMI F-Score

0.22 0.19
0.22 0.56

0.21 0.20
0.21 0.58

0.36 0.25
0.36 0.53

0.37 0.25
0.37 0.53

0.37 0.25
0.37 0.52

0.01 0.00
0.01 0.48

0.36 0.25
0.36 0.53

0.14 0.02
0.23 0.07

0.39 0.31
0.39 0.60

Lonosphere AMI ARI
NMI F-Score

0.07 0.03
0.09 0.62

0.05 -0.04
0.07 0.65

0.12 0.17
0.13 0.71

0.12 0.18
0.13 0.72

0.11 0.14
0.12 0.70

0.61 0.72
0.64 0.92

0.11 0.29
0.28 0.57

0.11 0.09
0.22 0.45

0.20 0.25
0.26 0.74

Vote AMI ARI
NMI F-Score

0.50 0.56
0.51 0.88

0.50 0.56
0.51 0.88

0.46 0.54
0.47 0.87

0.53 0.60
0.54 0.89

0.50 0.59
0.50 0.88

0.31 0.30
0.38 0.69

0.34 0.54*
0.42* 0.87*

0.12 0.04
0.23 0.18

0.36* 0.40
0.38 0.82

Musk AMI ARI
NMI F-Score

-0.00 0.00
-0.00 0.59

0.03 -0.04
0.03 0.64

0.06 0.15
0.06 0.77

0.03 -0.04
0.03 0.64

0.03 -0.03
0.03 0.63

0.07 0.05*
0.06 0.56

0.03 -0.04
0.03 0.59*

0.04 0.00
0.09 0.04

0.13 0.02
0.09 0.33

YTF AMI ARI
NMI F-Score

0.73 0.50
0.76 0.59

0.80 0.58
0.81 0.68

0.76 0.57
0.77 0.62

0.75 0.39
0.80 0.67

0.71 0.43
0.77 0.61

0.67 0.38
0.77 0.60

0.78* 0.68
0.87 0.71

0.53 0.24
0.75 0.37

0.72 0.53
0.76 0.61

REUTERS AMI ARI
NMI F-Score

0.27 0.28
0.26 0.60

0.25 0.22
0.24 0.58

0.51 0.57
0.51 0.76

0.12 0.01
0.09 0.44

0.50 0.36
0.48 0.67

0.31 0.09
0.28 0.43

0.31 0.16
0.31 0.48

0.18 0.01
0.30 0.05

0.36* 0.34*
0.36* 0.59*

MNIST AMI ARI
NMI F-Score

0.43 0.30
0.49 0.49

0.72 0.53
0.81 0.72

0.84 0.78
0.85 0.86

0.89 0.85
0.91 0.91

0.89 0.83
0.90 0.88

0.56 0.24
0.55 0.54

0.58 0.40
0.68 0.63

0.35 0.05
0.54 0.09

0.92 0.93
0.93 0.97

TABLE 4
The Comparison of Cluster Number Detection

Dataset DBSCAN MSC AP SMMP

Agg (C ¼ 7) 7 6 16 7
Jain (C ¼ 2) 4 2 14 2
Spiral (C ¼ 3) 3 34 18 3
Threecircles (C ¼ 3) 3 11 18 3
Flame (C ¼ 2) 2 2 13 2
D1 (C ¼ 3) 5 5 5 3
D2 (C ¼ 4) 4 4 4 4
R15 (C ¼ 15) 15 15 15 15
S3 (C ¼ 15) 15 15 654 16
D31 (C ¼ 31) 31 32 300 31
A3 (C ¼ 50) 50 50 3548 50
DIM1024 (C ¼ 16) 16 16 512 16
Breastcancer (C ¼ 2) 1 65 43 2
Movementlibras (C ¼ 15) 9 58 31 7
Parkin (C ¼ 2) 2 30 21 2
Drivedata (C ¼ 4) 9 606 42 6
Waveform (C ¼ 3) 12 4 147 4
Lonosphere (C ¼ 2) 1 103 44 4
Vote (C ¼ 2) 2 20 38 2
Musk (C ¼ 2) 5 3 445 19
YTF (C ¼ 41) 195 129 1238 29
REUTERS (C ¼ 4) 353 76 454 13 Fig. 7. Fifteen bottom u digit images (a) and fifteen top u digit images

(b) in each clusters of theMNIST dataset.

GUAN ETAL.: SMMP: A STABLE-MEMBERSHIP-BASEDAUTO-TUNING MULTI-PEAKCLUSTERING ALGORITHM 6315

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on April 11,2023 at 03:04:03 UTC from IEEE Xplore.  Restrictions apply. 



For real-world datasets, SMMP also has a better cluster
detection performance compared with DBSCAN, MSC, and
AP, especially for theYTF andREUTERSdatasets. Also, unlike
non-parametric clustering techniques such as DBSCAN and
MSCwhich highly rely on laboriousmanual parameter tuning,
SMMP is an auto-tuningmethod.

4.5 The Handwritten Digit Recognition ofMNIST

In handwritten digit recognition applications, a class is
often composed of multiple subclasses, because different
users write the same digits in different ways [1]. So, a hand-
written digit class can be modeled as a multi-prototype
cluster. A strong feature representation MNIST [47] (a well-
known handwritten digit image dataset) test set of 10,000

TABLE 5
The Runtime Comparison of Different Algorithms (Unit: Second)

Dataset DPC SSSP-DPC K-means KMM SSC DBSCAN MSC AP SMMP

Agg (n ¼ 788) 0.112 0.320 0.009 2.653 0.580 0.013 0.008 1.470 0.027
Jain (n ¼ 373) 0.032 0.107 0.004 1.146 0.619 0.005 0.007 0.263 0.011
Spiral (n ¼ 312) 0.009 0.201 0.005 0.304 0.248 0.005 0.005 0.175 0.012
Threecircles (n ¼ 299) 0.024 0.117 0.007 1.018 0.159 0.005 0.005 0.188 0.011
Flame (n ¼ 240) 0.041 0.051 0.003 1.335 0.118 0.003 0.006 0.149 0.008
D1 (n ¼ 87) 0.001 0.021 0.007 0.178 0.062 0.002 0.002 0.014 0.004
D2 (n ¼ 85) 0.001 0.025 0.006 0.270 0.069 0.001 0.001 0.011 0.009
R15 (n ¼ 600) 0.046 0.272 0.007 1.538 0.328 0.025 0.002 1.607 0.028
S3 (n ¼ 5000) 3.150 12.492 0.069 56.610 7.592 0.457 0.124 316.723 0.132
D31 (n ¼ 3100) 0.855 4.727 0.051 25.061 2.714 0.142 0.020 69.094 0.064
A3 (n ¼ 7500) 5.511 32.424 0.054 110.314 8.802 0.759 0.083 506.514 0.184
DIM1024 (n ¼ 1024) 0.493 0.804 0.063 0.517 1.298 0.068 0.142 22.450 0.024
Breastcancer (n ¼ 569) 0.073 0.182 0.053 3.865 0.425 0.012 0.074 0.612 0.031
Movementlibras (n ¼ 360) 0.023 0.082 0.021 0.996 0.257 0.013 0.032 0.374 0.018
Parkin (n ¼ 195) 0.005 0.005 0.003 0.503 0.118 0.001 0.014 0.072 0.007
Drivedata (n ¼ 606) 0.662 0.493 0.211 2.142 1.694 0.127 2.396 13.664 0.019
Waveform (n ¼ 5000) 2.484 12.798 0.022 43.199 5.403 0.432 2.942 55.551 0.509
Lonosphere (n ¼ 351) 0.043 0.071 0.003 1.346 0.138 0.016 0.022 0.216 0.023
Vote (n ¼ 345) 0.049 0.189 0.005 23.685 0.265 0.004 0.012 0.573 0.019
Musk (n ¼ 6598) 6.882 29.374 0.086 48.563 15.807 1.266 0.535 482.611 0.407
YTF (n ¼ 10000) 11.681 83.328 0.122 149.977 28.625 4.561 0.394 2488.182 1.030
REUTERS (n ¼ 10000) 11.316 86.601 0.052 72.533 29.294 3.138 1.975 3635.583 1.531

Total time 43.493 264.684 0.863 547.753 104.615 11.235 8.801 7597.096 4.108

TABLE 6
The Time Complexity of Algorithms

DPC [19] Oðn2Þ SSSP-DPC [31] Oðn2Þ
K-means [9] OðnCT Þ SSC [42] Oðn2Þ
DBSCAN [12] Oðnlog ðnÞÞ MSC [28] Oðn2Þ
AP [11] Oðn2T Þ SMMP (ours) Oðnðlog ðnÞ þ ~kþ kbÞ þ Ĉ2Þ
KMM [20] OðnððĈdþ ĈC þ ĈĈÞT1 þ ĈdÞT Þ
T and T1 indicate iteration times.

Fig. 8. The speed comparison between K-means and SMMP on ten
different size sampling datasets of the Birchrg1 dataset.

TABLE 7
The Ranges of AMI, ARI, NMI, and F-Score at k 2 I�k

Dataset AMI ARI NMI F-Score

Agg 99.2(�0) 99.6(�0) 99.2(�0) 99.8(�0)
Jain 100.0(�0) 100.0(�0) 100.0(�0) 100.0(�0)
Spiral 96.6(�3.4) 97.1(�2.9) 96.6(�3.4) 99.0(�1.0)
Threecircles 100.0(�0) 100.0(�0) 100.0(�0) 100.0(�0)
Flame 100.0(�0) 100.0(�0) 100.0(�0) 100.0(�0)
D1 100.0(�0) 100.0(�0) 100.0(�0) 100.0(�0)
D2 96.4(�0) 96.8(�0) 96.6(�0) 98.8(�0)
R15 99.4(�0) 99.3(�0) 99.4(�0) 99.7(�0)
S3 95.4(�0.9) 94.9(�1.2) 96.0(�0.8) 97.3(�0.6)
D31 95.7(�0.2) 93.8(�0.3) 95.9(�0.1) 96.9(�0.1)
A3 98.8(�0.1) 98.2(�0.1) 98.8(�0.1) 99.1(�0.1)
DIM1024 100.0(�0) 100.0(�0) 100.0(�0) 100.0(�0)
Breastcancer 43.9(�0.7) 49.9(�0.8) 48.4(�0.6) 84.7(�0.3)
Movementlibras 42.4(�0.9) 27.6(�1.3) 54.3(�0.6) 45.7(�0.8)
Parkin 22.4(�2.4) 7.6(�5.0) 24.8(�2.8) 66.5(�3.7)
Drivedata 55.5(�0) 59.1(�0) 62.1(�0) 77.6(�0)
Waveform 39.4(�0.2) 31.1(�0.2) 39.3(�0.2) 59.9(�0.2)
Lonosphere 20.2(�0.5) 24.8(�0.5) 25.8(�0.5) 73.8(�0.4)
Vote 38.9(�2.3) 43.6(�3.1) 40.5(�2.4) 83.5(�1.1)
Musk 13.6(�0.4) 1.9(�0.1) 9.3(�0.3) 29.3(�0)
YTF 72.8(�0.0) 53.3(�0.1) 76.1(�0.0) 60.7(�0.0)
REUTERS 36.4(�0) 34.2(�0) 35.6(�0) 58.7(�0)
MNIST 92.5(�0.3) 92.7(�0.5) 92.5(�0.3) 96.6(�0.3)
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samples with 500 features from [14] is used to evaluate the
performance of our proposed algorithm.

To obtain a high recognition accuracy, we define a noise
threshold uc based on representativeness, i.e., points with
u < uc are considered as noise. By applying uc to cut 16% of
data as noise, we obtain an almost perfect clustering result
with AMI ¼ 0:97; ARI ¼ 0:98. Fig. 7 shows some recogni-
tion results of the digit images of different u values. As
shown, SMMP provided an almost perfect recognition
result with just five slips (red). Although digit images with
low u are often difficult to recognize, SMMP did a satisfying
job. In addition, for each class, SMMP identified multiple
subclasses (with centers marked by green) that represent
different writing ways, which effectively reflects the real
underlying structure of data.

4.6 The Speed of SMMP

In large-scale data clustering tasks, the execution speed is
one of the most important factors that need special atten-
tion. As Table 5 shows, SMMP (the second-fastest clustering
algorithm) only takes about one second to execute a dataset
of 10,000 data points; while AP, KMM, and SSSP-DPC are
prohibitively time-consuming. Also, SMMP is much faster
than KMM, although the two are both multi-prototype clus-
tering techniques. Table 6 lists the time complexity of all
comparison algorithms.

To further verify the fast speed of SMMP, speed compari-
sons of K-means and SMMP are launched on the Birchrg1
dataset of 100,000 points, as in Fig. 8. As shown, SMMP
took about eight seconds to execute a dataset of 100,000
points, which is slower than K-means but still acceptable.

As verified, SMMPwith fast speed is promising for large-
scale data clustering.

4.7 Parameter Sensitivity

SMMP has three auto-tuned parameters: k ¼ dmeanðI�kÞe,
kb ¼ bminðk2 ; 2 lnðnÞÞc, t ¼ meanðI�t Þ, and a fixed parameter
h ¼ 0:1, and the effectiveness of the auto-tuning has already
been verified in Sections 4.2 and 4.3. In fact, when k, kb, and
h are fixed, similarity matrix S is obtained. Then, on the
basis of S, we can obtain I�t by solving Problem (3). Because
8t 2 I�t returns the same clustering result, SMMP is insensi-
tivity to t ¼ meanðI�t Þ. So, we only need to verify the sensi-
tivity of k ¼ dmeanðI�kÞe and h, because different k 2 I�k and
h 2 ½0; 1�may return different clustering results.

Table 7 shows the ranges of AMI, ARI, NMI, and F-Score
at k 2 I�k on different datasets. As shown, the clustering per-
formance of SMMP at k 2 I�k is efficient and robust. Table 8
shows the average AMI, ARI, NMI, and F-Score (AMI_arv,
ARI_arv, NMI_arv, and F-Score_arv) over all datasets with

different h 2 ½0; 1� (the best results are highlighted). As
shown, SMMP had a stable performance at h 2 ½0; 0:5�, and
obtained the best performance around h ¼ 0:1. So, we set
h ¼ 0:1 as default. As verified, SMMP is insensitive to
parameters k and h, and the setting of h ¼ 0:1 is efficient.

5 CONCLUSION

Herein, a stable-membership-based parameter-free multi-
peak clustering algorithm (SMMP) is proposed. As a multi-
prototype non-parametric clustering technique, SMMP can
achieve fast, automatic, and accurate multi-prototype clus-
tering without iteration. Our designed DAT method can
help learn the representativeness of points to sub-cluster
centers during the generation of sub-clusters. Benefited
from the superiority of DPC technology in recognizing
shapes, the generated sub-clusters can have arbitrary
shapes, which allows the algorithm to preserve sufficient
local structure information. Also, our proposed border-link-
based connectivity measure method can help to obtain a
high-fidelity similarity evaluation of sub-clusters based on
the learned representativeness. According to the similarity
matrix, high-similar arbitrary-shaped sub-clusters are suc-
cessfully spliced into complex-shaped clusters by applying
the Single-linkage method. Besides, the introduced concept
of the “stable membership”, as a core criterion for a reason-
able clustering state, allows SMMP to achieve auto-tuning.
As analyzed, SMMP is proven to be suitable for large data-
sets, requiring only kNN distances of data. The effectiveness
and the efficiency of SMMP are well-verified in the con-
ducted comparisons on synthetic datasets and real-world
datasets, as well as its application to the handwritten digit
recognition ofMNIST.

Nevertheless, as a non-parametric clustering technique,
SMMP is more suitable for low-dimensional data clustering.
Because our border detection method and similarity estima-
tion of sub-clusters are more suitable for low-dimensional
data. We believe these methods can be further refined to
better suit datasets with high dimensions. Besides, we will
seek some dimensionality reduction techniques to trans-
form high-dimensional datasets into low-dimensional ones
to expand the application of SMMP.
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