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Abstract. The segmentation of abdominal organs and tumors plays a
crucial role in computer-aided diagnosis of medical images. To achieve
high-precision segmentation while maintaining efficiency, especially in
semi-supervised learning, we propose a novel semi-supervised knowledge
distillation framework. The framework consists of the teacher model and
the student model. In the first step, we design an attention nnU-Net
with a dual convolutional attention decoder as the teacher model to gen-
erate high-quality tumor pseudo-labels for unlabeled tumor data. The
dual attention decoder enhances attention to the regions of interest and
highlights the most relevant channels, improving the model’s ability to
optimize features. Additionally, we design an effective 2D sliding win-
dow inference strategy to accelerate the inference speed of the teacher
model. We utilize partial labels, organ pseudo-labels provided by the
FLARE2022 winner, and tumor pseudo-labels for multi-label fusion, en-
suring the fusion results closely resemble the ground truth. In the sec-
ond step, we employ a lightweight nnU-Net as the student model to
achieve efficient segmentation. Our method achieved an average DSC
score of 88.53% and 30.47% for the organs and lesions on the valida-
tion set and the average running time and area under GPU memory-
time cure are 15.85s and 15601MB, respectively. Our code is available at
https://github.com/zzm3zz/FLARE2023.

Keywords: Knowledge Distillation · Dual Attention · Multiple labels
fusion · Semi-supervised learning.

1 Introduction

Abdominal organs are commonly affected by cancer, such as colorectal can-
cer and pancreatic cancer, which rank as the second and third leading causes of
cancer-related deaths [20]. Therefore, it is necessary to accurately depict abdom-
inal organs and cancerous lesions. However, manual annotation of organs from
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CT scans is time-consuming and subjective. As a result, obtaining a large num-
ber of fully annotated cases is often impractical. In recent years, deep learning
models have achieved state-of-the-art performance in multi-organ or abdominal
organ and tumor segmentation tasks, and semi-supervised knowledge distilla-
tion has emerged as an important solution to address this issue. FLARE2023
is a competition aimed at efficiently segmenting 13 abdominal organs and pan-
cancer lesions in large-scale CT images. In addition to evaluating the accuracy
of organ and tumor segmentation, efficiency metrics such as inference time and
resource utilization are also taken into consideration. Compared to FLARE2022,
FLARE2023 faces the greater challenge of simultaneously segmenting 13 abdom-
inal organs while addressing various lesion tasks associated with abdominal can-
cers. Furthermore, it explores how to improve segmentation performance using
only partially labeled and unlabeled data while maintaining efficient inference.

In recent years, significant efforts have been devoted to exploring image seg-
mentation with partially labeled and unlabeled data. For partially labeled image
tasks, a straightforward strategy is to train separate networks on each partially
labeled dataset, but this approach leads to longer inference times and higher
complexity in post-processing. Recent research has focused on training a single
unified model using multiple partially labeled datasets. Zhou et al. [25] pro-
posed the Prior-aware Neural Network (PaNN), which utilizes prior anatomical
knowledge of organ sizes estimated from fully labeled datasets to regularize or-
gan distributions in partially labeled datasets. However, this approach requires
at least one fully annotated dataset and may not generalize well. Some studies
have attempted to design adaptive loss functions that can be directly applied to
partially labeled data [3], [19]. Fang et al. [3] introduced the Target Adaptive
Loss (TAL), treating unlabeled organs as background. Furthermore, some works
have explored the use of training with pseudo-labels, which is also applicable
to unlabeled image tasks. Liu et al. [12] proposed training individual models on
each partially labeled dataset to generate pseudo-labels for unlabeled organs, fol-
lowed by supervised training using a pseudo multi-organ dataset. Feng et al. [4]
introduced a Knowledge Distillation (MS-KD) framework where a pre-trained
teacher model on each partially labeled dataset generates soft pseudo-labels.

We summarize the mainstream approaches in recent years and propose a
novel semi-supervised self-training knowledge distillation training framework. It
achieves comprehensive segmentation of all organs and lesions while maintaining
efficiency. Specifically, we first design a teacher model attention nnU-Net with a
dual convolution attention decoder to provide pseudo-labels for tumors. The spa-
tial attention module utilizes dual-path gating to enhance attention to regions of
interest, particularly challenging pan-cancerous tumors. The channel attention
module adaptively calibrates the connections between low-level and high-level
features, emphasizing the most relevant feature channels [7]. Additionally, to ac-
celerate the generation of pseudo-labels for tumors, which may lack annotations
in a large number of samples, we propose an effective 2D sliding window inference
strategy to speed up the teacher model’s inference. Furthermore, considering that
tumors may be occluded by genuine organ annotations and that pseudo-labels
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from organs may overlap with genuine organ annotations, we design two meth-
ods for pseudo-label fusion for partially labeled datasets and unlabeled datasets.
Finally, considering efficiency, we employ the small nnU-Net proposed by [10]
as the final student model for efficient inference and segmentation. Our main
contributions are summarized as follows:

– We propose a novel knowledge distillation training framework, which enables
high-precision segmentation and maintains efficiency in a semi-supervised
setting.

– We design a teacher model attention nnU-Net that incorporates a dual-
convolution attention decoder to achieve high-quality segmentation of re-
gions of interest.

– We propose an effective 2D sliding window inference strategy using prior
knowledge of abdominal organ slices to significantly enhance the inference
speed of the 2D nnU-Net framework.

– We have devised two label fusion methods to address the issues of inaccuracy
and overlap in multi-label scenarios.

Fig. 1. Overview of our proposed framework. It comprises partial label data selection,
teacher model attention nnU-Net for tumor segmentation, multi-label fusion methods,
and student model small nnU-Net for efficient segmentation.

2 Method

The semi-supervised knowledge distillation framework is shown in Figure 1. We
divided the partially labeled data of 2,200 cases into 7 groups to represent dif-
ferent combinations of organ or tumor labels based on our careful analysis.
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We employ pseudo-labels provided by the highest-precision method [22] from
FLARE2022 to label the images that miss organ annotations. To address miss-
ing tumor annotations, we train the teacher model attention nnU-Net using
group 1 and group 4 data with tumor labels to generate tumor pseudo-labels for
the remaining samples in the partially labeled dataset and unlabeled dataset.
Section 2.1 elaborates on the methodology that fuses ground truth partial la-
bels, tumors pseudo-labels, and organs pseudo-labels. Finally, we train a small
nnU-Net model by use of the final datasets with 4,000 samples to achieve high
accuracy and efficiency in the segmentation process.

2.1 Preprocessing

The first 2,200 data samples contain partial labels of organs and lesions. Hence,
we categorize the data based on the annotation distribution of segmentation
targets to train the labeled tumor data. The dataset partitioning results are
shown in Table 1.

Table 1. Results of partitioning the partially labeled dataset based on targets an-
notations. The abbreviations used in Table 1 are as follows: RK, Spl, Pan, Aor, IVC,
RAG, LAG, Gall, Eso, Sto, Duo, LK are short for Right Kidney, Spleen, Pancreas,
Aorta, Inferior Vena Cava, Right Adrenal Gland, Left Adrenal Gland, Gallbladder,
Esophagus, Stomach, Duodenum, Left Kidney.

Group Total Liver RK Spl Pan Aor IVC RAG LAG Gall Eso Sto Duo LK Tumor
group1 888 ✓
group2 6 ✓ ✓ ✓ ✓
group3 447 ✓ ✓ ✓ ✓ ✓
group4 609 ✓ ✓ ✓ ✓ ✓ ✓
group5 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
group6 24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
group7 222 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We perform image reorientation to align the images with the target orien-
tation for each modality-specific data. The resource-intensive teacher model is
expected to generate high-quality tumor pseudo-labels, which inevitably leads to
higher resource consumption. Therefore, we adopted a 2D method with a smaller
memory footprint. A more effective 3D method is employed for segmentation
in the lightweight student model. Our configuration information is provided in
Table 2. Intensity normalization is conducted using the default method of nnU-
Net [11]. We set intensity values below 14 to 0 in the ground truth of group 1
and group 4, and intensity values of 14 to 1 to improve the accuracy of tumor
segmentation in the teacher model. This conversion transforms the task of multi-
organ tumor segmentation into a binary tumor classification. Subsequently, the
labeling intensity is adjusted during the label fusion process.
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Table 2. Comparison of different strategies. The first one is the default 3D nnU-Net
configuration. The input patch sizes and inter-axis spacing are denoted as (z, y, x) or
(y, x).

Setting Default Attention nnU-Net Small nnU-Net
method 3D 2D 3D

channels in the first stage 32 32 16
convolution number per stage 2 2 2

downsampling times 5 7 4
input patch size (40, 224, 192) (512, 512) (32, 128, 192)
input spacing (2.5, 0.8, 0.8) (0.8164, 0.8164) (4, 1.2, 1.2)

test time augmentation yes no no

2.2 Proposed Method

Fig. 2. The network architecture of Attention nnU-Net

Resource Intensive Attention nnU-Net. We design attention nnU-Net
to label tumor pseudo-labels more effectively. As shown in Figure 2, our at-
tention nnU-Net expands upon the 2D nnU-Net architecture by incorporating
a dual attention mechanism comprised of spatial attention (SA) and channel
attention (CA) in the decoder [7]. The spatial attention utilizes dual-path gat-
ing to enhance attention towards regions of interest, particularly challenging
pan-cancer tumors. The channel attention module dynamically adjusts the con-
nections between low-level and high-level features, enabling higher coefficients to
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be assigned to more relevant channels, thereby emphasizing the most pertinent
feature channels.

Our SA block is a type of dual-path spatial attention that utilizes two atten-
tion gates simultaneously to enhance attention to regions of interest and reduce
noise in the attention maps. Figure 3(a) illustrates the detailed information of
a single attention gate pathway. Here, zl represents the low-level feature map in
the encoder, while zh represents the high-level feature map upsampled from the
decoder. Both zh and zl are compressed with 1×1 convolutions, with the output
channels C, and then summed and passed through a ReLU activation function.
The activated feature map is then fed into another 1×1 convolution with one
output channel, and the resulting attention coefficients α ∈ [0, 1]H×W on a pixel
level are obtained through the Sigmoid function. Subsequently, zl is calibrated
by multiplication with α. In the dual-path attention gate, the spatial attention
maps in the two pathways are represented individually as α̂ and ã, as shown in
Figure 3(b), and the output of the dual-channel attention gate is obtained as:

Output = ReLU
[
φC((zl · α̂)C○(zl · α̃))

]
(1)

where C○ indicates channel concatenation and φC represents a 1×1 convolution
with C output channels.

Fig. 3. Details of our spatial attention(SA).

To better utilize the most informative feature channels, we introduce channel
attention to automatically emphasize relevant feature channels while suppressing
irrelevant ones. Our channel attention (CA) block primarily combines the low-
level features from the encoder, calibrated by spatial attention, and the high-
level features from the decoder, as shown in Figure 4. Let z represent the input
features with C channels. We use global average pooling Pavg and global max
pooling Pmax to obtain the global information for each channel, resulting in
Pavg(x) ∈ RC×1×1 and Pmax(x) ∈ RC×1×1, respectively. The channel attention
coefficients β are obtained using a multilayer perceptron (MLP ) and can be
represented as β ∈ [0, 1]C×1×1. The results are summed and input to Sigmoid
to obtain β, and the output can be represented as:

Output = z · β + z (2)
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Fig. 4. Details of our channels attention(CA).

We use the summation between Dice loss and cross-entropy loss because
compound loss functions have been proven to be robust in various medical image
segmentation tasks [13].

Fusion strategy for partial labels. The simple fusion method performs
direct fusion of partial labels, organs, and tumor pseudo-labels, and chooses to
use the value of the partial label if the positions overlap when the annotation
is not zero. However, the simple fusion method ignores the inaccuracy of organ
pseudo-label edges and the fact that tumors can be masked by organ labeling.
We therefore perform dual fusion on partial labels to obtain a more comprehen-
sive and reasonable distribution of target annotations. Specifically, for group i,
where i ∈ {2, 3, 5, 6, 7}, there may be missing tumor annotations. We incorpo-
rate high-quality tumor pseudo-labels generated by the teacher model for fusion.
As real tumors can be masked by organ annotations, when there is an overlap
between organ annotations and tumor pseudo-annotations, we prioritize the tu-
mor pseudo-annotations. The specific method is described in Equation 3, where
θp represents the ground truth partial annotations, and θt represents the tumor
pseudo-annotations.

θ̂(z,x,y) =

{
θ
(z,x,y)
p , θ

(z,x,y)
t = 0

θ
(z,x,y)
t , θ

(z,x,y)
t ̸= 0

(3)

Subsequently, for group j where j ∈ {1, 2, 3, 4, 5, 6} with remaining missing
organ annotations, we fuse θ̂(z,x,y) with corresponding organ pseudo-labels [22]
using the approach outlined in Equation 4. θo represents organ pseudo-labels. λ
represents the annotated organ categories in group j.

θ(z,x,y) =


θ̂(z,x,y), θ̂(z,x,y) ̸= 0

θ
(z,x,y)
o , θ̂(z,x,y) = 0 ∧ θ

(z,x,y)
o ̸= λ

0 otherwise

(4)

Different from the tumor pseudo-label fusion strategy, there are two scenarios
for organ pseudo-label fusion. (1)When the organ pseudo-annotations overlap
with the foreground of the θ̂(z,x,y), we use the annotations of θ̂(z,x,y) in over-
lapping regions. (2) In the background region of θ̂(z,x,y), if the corresponding
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position in the organ pseudo-label is annotated as a missing organ in θ̂(z,x,y),
we use the organ annotations labeled by the organ pseudo-label. However, if the
corresponding position is annotated as background or as an already annotated
organ in θ̂(z,x,y), it is considered as background.

Fusion strategy for unlabeled images pseudo-labels. For unlabeled
images, similar to the partial label fusion strategy, in cases of overlap at the
same location, we give priority to the tumor pseudo-label. The fusion method is
described in Equation 5.

θ(z,x,y) =

{
θ
(z,x,y)
o , θ

(z,x,y)
t = 0

θ
(z,x,y)
t , θ

(z,x,y)
t ̸= 0

(5)

Efficient 2D Sliding Window Inference. We employed a precise config-
uration and trained using a large-scale 2D attention nnU-Net to infer tumors.
This inevitably leads to higher resource consumption and longer inference time.
Based on [10], we have designed an efficient 2D sliding window inference method.
The default sliding window strategy is designed with separate steps for the X
and Y axes, using a nested two-layer for loop to iterate over the image. How-
ever, a significant portion of 2D slices in the entire 3D image does not contain
the abdominal organs and tumor regions, especially in whole-body CT images.
Moreover, the abdominal organs and tumors should be located in the middle of
the slice plane. Therefore, we use 2 × 2 windows on each cross-sectional plane,
with a window size of 512×512. As shown in Figure 5, since the resized 2D slices
have similar dimensions to the window size after resampling, we start by per-
forming inference on the first window. We can skip the remaining three windows
if this window does not contain any foreground regions.

Fig. 5. On the left is the default inference strategy of 2D nnU-Net. The middle image
illustrates our proposed strategy. The image on the right demonstrates that window
1 covers a large portion of the abdominal area. The inference of the remaining three
windows depends on whether window 1 detects the target.
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2.3 Post-processing

Our method does not utilize post-processing operations because techniques such
as connected component analysis and testing time augmentation tend to intro-
duce significant computational overhead during the prediction phase.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [15][16],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [2], LiTS [1], MSD [21], KiTS [8,9],
autoPET [6,5], TotalSegmentator [23], and AbdomenCT-1K [17]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [24], nnU-Net [11], and
MedSAM [14].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Table 3. Development environments and requirements.

System Ubuntu 20.04.3 LTS
CPU AMD EPYC 7T83@3.50GHz
RAM 1×90GB; 320MT/s
GPU (number and type) 1 NVIDIA RTX 4090 24G
CUDA version 11.3
Programming language Python 3.8.10
Deep learning framework torch 1.12.1, torchvision 0.13.1
Specific dependencies nnunet 1.7.0
Code https://github.com/zzm3zz/FLARE2023

The development environments and requirements are presented in Table 3.
The training protocols of attention nnU-Net and small nnU-Net are listed in Ta-
ble 4. During the training process, we employed data augmentation techniques
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such as dynamic additive brightness, gamma adjustment, rotation, scaling, and
elastic deformation. Mirror data augmentation is not used in either of the net-
works since test-time augmentation (TTA) involving flipping is not performed
during inference.

After training on group 1 and group 4 and obtaining high-precision pseudo-
labels for all potentially missing tumor annotated samples, we conducted four
experiments. In the first experiment, we obtained fused labels for the first 2,200
data using a simple label fusion method and conducted training evaluation using
the teacher model. In the second experiment, we utilized the proposed label fu-
sion method and continued the evaluation using the teacher model. In the third
round, based on the data from the previous round, we conducted an evaluation
using the student model. In the fourth round, different from the third experi-
ment, we employed all 4,000 samples and used the student model to conduct an
evaluation.

Table 4. Training protocols for the refine model.

Model Attention nnU-Net / Small nnU-Net
Network initialization "He" normal initialization
Batch size 4 / 2
Patch size 512×512 / 32×128×192
Total epochs 1000 / 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.005 / 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/Total epochs)0.9

Training time 19 hours / 17 hours
Number of model parameters 62.96M / 5.64M
Number of flops 114G / 70G

4 Results and discussion

4.1 Quantitative results on validation set

Table 5 shows our final submission result. We trained 4,000 cases of train data by
using the student model small nnU-Net with the proposed label fusion method
and achieved an average DSC score of 84.83% and an average NSD score 89.60%
on the public validation set. Similarly, on the online validation set, we achieved
an average DSC score of 84.38% and an average NSD score 89.28%.

Table 6 shows the results of our ablation experiments on the online valida-
tion set, corresponding to the four experiments mentioned above. Comparing the
first and second columns, our label fusion method improved the segmentation
accuracy of tumors by 9.62%. When comparing the second and third columns,
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Table 5. Quantitative evaluation results of our final submitted model.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.12 ± 2.38 98.25 ± 4.45 97.06 98.24 96.09 96.93
Right Kidney 93.83 ± 7.25 94.64 ± 9.05 93.07 94.06 94.06 94.52
Spleen 96.34 ± 1.41 97.92 ± 3.73 95.38 97.16 95.90 97.94
Pancreas 85.19 ± 6.36 96.36 ± 5.86 83.24 95.10 87.77 96.66
Aorta 95.36 ± 2.53 98.72 ± 2.76 95.40 98.63 96.04 99.60
Inferior vena cava 91.01 ± 4.93 93.12 ± 5.43 90.80 92.69 91.96 94.32
Right adrenal gland 81.22 ± 16.9 93.15 ± 19.1 82.46 94.91 83.58 96.00
Left adrenal gland 83.20 ± 5.78 96.02 ± 3.27 82.59 94.96 84.20 96.18
Gallbladder 83.22 ± 23.6 84.40 ± 24.7 82.56 83.54 80.93 83.29
Esophagus 80.57 ± 15.9 91.16 ± 16.4 81.55 92.59 87.29 97.19
Stomach 92.88 ± 4.65 96.43 ± 5.38 93.26 96.83 93.25 96.77
Duodenum 81.55 ± 8.25 94.55 ± 5.46 81.53 94.44 85.18 96.04
Left kidney 91.73 ± 14.3 92.52 ± 15.7 92.02 93.07 92.96 93.95
Tumor 34.46 ± 34.6 27.21 ± 29.0 30.47 23.67 36.35 23.96
Average Organs 88.71 94.40 88.53 94.32 89.77 95.23
Average All 84.83 89.60 84.38 89.28 85.95 90.14

Table 6. Ablation experimental results on online validation leaderboard. Data denotes
the number of training samples we used. Labels denote the way we fused the labels. The
first experiment uses simple fusion. The last three times used our proposed method.

Method Att nnU-Net Att nnU-Net Small nnU-Net Small nnU-Net
Data 2,200 2,200 2,200 4,000
Labels Simple Fusion Our Method Our Method Our Method
Target DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%)
Liver 98.25 98.14 98.27 97.49 96.58 97.42 97.06 98.24
RK 92.30 92.12 92.30 91.54 89.58 88.98 93.07 94.06
Spleen 95.38 94.85 98.00 97.33 95.07 96.69 95.38 97.16
Pancreas 85.08 94.61 85.76 94.80 81.50 94.27 83.24 95.10
Aorta 97.24 98.94 96.53 98.31 95.25 98.35 95.40 98.63
IVC 90.58 90.88 89.77 89.61 89.24 90.60 90.80 92.69
RAG 87.80 96.59 86.54 94.99 79.86 92.62 82.46 94.91
LAG 84.74 92.83 83.75 91.58 79.95 92.71 82.59 94.96
Gallbladder 87.37 87.82 84.93 85.01 79.54 79.39 82.56 83.54
Esophagus 83.68 93.48 83.99 93.64 79.98 91.69 81.55 92.59
Stomach 93.79 95.49 93.34 94.66 91.96 95.35 93.26 96.83
Duodenum 82.72 94.37 80.59 93.28 77.32 92.57 81.53 94.44
LK 90.73 90.56 92.64 91.98 91.40 91.14 92.02 93.07
Tumor 25.18 19.53 34.80 26.01 24.81 16.89 30.47 23.67
Avg Organs 88.97 93.90 89.72 93.40 86.71 92.44 88.53 94.32
Average All 85.34 88.58 85.80 88.58 82.29 87.04 84.38 89.28
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the attention nnU-Net teacher model outperformed the small nnU-Net student
model with higher scores of 3.51% and 1.54% in DSC and NSD, respectively.
Additionally, comparing the third and fourth columns, including an additional
1,800 cases resulted in a 2.09% and 2.24% improvement in DSC and NSD, re-
spectively.

Table 7. Ablation for tumor segmentation on public validation set

Method Tumor DSC(%) Tumor NSD(%)
2D nnU-Net 34.28 27.29

Attention nnU-Net 36.75 29.51

Table 7 demonstrates the ablation experiments for tumor segmentation abil-
ity. We use group1 and group4 contained 1497 cases with tumor label to evaluate
the ability of tumor segmentation. It can be seen that the addition of the dual
convolution attention decoder improves the model’s ability to segment tumors
compared to the regular 2D nnU-Net resulting in a 2.47% and 2.22% improve-
ment in DSC and NSD, respectively.

We compared the effectiveness of the model and sample selection. It can be
observed that using a larger number of samples improves the segmentation re-
sults of organs and lesions. The utilization of resource-intensive models yields
better segmentation performance compared to smaller models by using more
parameters and calculations. Additionally, there is significant room for improve-
ment in lesion segmentation. After balancing accuracy and performance, we ul-
timately selected the student model with 4,000 train cases that exhibited the
most comprehensive performance as our submission result.

4.2 Qualitative results on validation set

Figure 6 shows our final four representative segmentation results on the valida-
tion set. Additionally, we present the segmentation results using small nnU-Net
training 2,200 partially labeled data for comparison. For Case #43 and Case
#81, our network achieved high-precision recognition of all organs and lesions.
However, for Case #35, it is evident that our model exhibits segmentation defects
for tumors and struggles to correctly identify the targets in cases with multiple
overlapping objects. Additionally, for Case #67, we found that our model has
difficulty recognizing the esophagus.

We believe that there are two factors contributing to the suboptimal seg-
mentation results. Firstly, for small organs and lesions, the target regions are
small, exhibit significant shape deformations, and have low contrast and unclear
boundaries. In particular, as lesions can occur within different organs, accurately
determining their precise locations becomes challenging. Some lesions only oc-
cupy a small portion of the entire sample, making it difficult for our model to
differentiate them. Additionally, we attribute these issues to the inaccuracies in
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Fig. 6. Qualitative results of our small nnUNet and ablation comparative experiment
on two easy cases (Case #43 and Case #81) and two hard cases (Case #35 and Case
#67)
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the mixed annotations labels, as well as the loss of important details due to the
lower resolution resulting from image resampling.

4.3 Segmentation efficiency results on validation set

Table 8 presents the evaluation results of our validation dataset Docker sub-
mission, including all running time, max GPU memory usage, and total GPU
memory.

Table 8. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 18.21 2562 16305
0051 (512, 512, 100) 15.03 1694 15786
0017 (512, 512, 150) 26.23 3704 21449
0019 (512, 512, 215) 14.21 2562 14479
0099 (512, 512, 334) 15.20 1978 15303
0063 (512, 512, 448) 17.86 1694 18322
0048 (512, 512, 499) 19.55 1694 20940
0029 (512, 512, 554) 21.16 3704 22890

4.4 Results on final testing set

We submitted the docker of our final solution and was evaluated by the Flare
official. The results on final testing set are shown in Table 5.

4.5 Limitation and future work

Due to the large number of data samples and limited experimental resources and
time, the quality of pseudo-labels is not satisfactory, resulting in suboptimal
results. In future work, we will reference the latest research advancements to
improve efficiency and enhance segmentation quality.

5 Conclusion

In this paper, we followed a semi-supervised knowledge distillation strategy and
proposed a novel semi-supervised knowledge distillation framework. This frame-
work consists of the teacher model and the student model. In the first step, we de-
sign a resource-intensive teacher model, attention nnU-Net, which incorporates a
dual convolutional attention decoder, to generate accurate tumor pseudo-labels.
Additionally, we designed an effective 2D sliding window inference strategy to
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accelerate pseudo-label generation. Subsequently, we devised a method for multi-
label fusion to enhance target segmentation accuracy. In the second step, we
employ a lightweight nnU-Net as the student model to achieve efficient segmen-
tation. Experimental results on the FLARE2023 validation set demonstrated
that our method exhibits excellent segmentation performance and efficiency. In
the future, we will continue to optimize the framework to further improve the
model’s segmentation performance and enable fast, low-resource inference.
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Table 9. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 4
Author affiliations, Email, and ORCID Yes
Corresponding author is marked Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 4
Strategies to use the partial label Page 7
Strategies to use the unlabeled images. Page 8
Strategies to improve model inference Page 8
Post-processing Page 9
Dataset and evaluation metric section is presented Page 9
Environment setting table is provided Table 3
Training protocol table is provided Table 4
Ablation study Table 6, 7
Efficiency evaluation results are provided Table 8
Visualized segmentation example is provided Figure 6
Limitation and future work are presented Yes
Reference format is consistent. Yes


