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Abstract

Solving inverse problems without any training involves using a pretrained generative model and
making appropriate modifications to the generation process to avoid fine-tuning of the generative
model. While recent methods have explored the use of diffusion models, they still require the manual
tuning of many hyperparameters for different inverse problems. In this work, we propose a training-
free method for solving linear inverse problems by using pretrained flow models, leveraging the
simplicity and efficiency of Flow Matching models, using theoretically-justified weighting schemes,
and thereby significantly reducing the amount of manual tuning. In particular, we draw inspiration
from two main sources: adopting prior gradient correction methods to the flow regime, and a solver
scheme based on conditional Optimal Transport paths. As pretrained diffusion models are widely
accessible, we also show how to practically adapt diffusion models for our method. Empirically,
our approach requires no problem-specific tuning across an extensive suite of noisy linear inverse
problems on high-dimensional datasets, ImageNet-64/128 and AFHQ-256, and we observe that
our flow-based method for solving inverse problems improves upon closely-related diffusion-based
methods in most settings.

(a) Gaussian deblur (b) 2× Super-resolution

(c) Inpainting (d) Inpainting

Figure 1: Corrected images by solving linear inverse problems with flow models. For each pair of images, we show the
noisy measurement (left) and the reconstruction (right).
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1 Introduction

Solving an inverse problem involves recovering a clean signal from noisy measurements generated by a known
degradation model. Many interesting image processing tasks can be cast as an inverse problem. Some instances of these
problems are super-resolution, inpainting, deblurring, colorization, denoising etc. Diffusion models or score-based
generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021d) have emerged
as a leading family of generative models for solving inverse problems for images (Saharia et al., 2022b;a; Wang et al.,
2022; Chung et al., 2022a; Song et al., 2022; Mardani et al., 2023). However, sampling with diffusion models is known
to be slow, and the quality of generated images is affected by the curvature of SDE/ODE solution trajectories (Karras
et al., 2022). While Karras et al. (2022) observed ODE sampling for image generation could produce better results,
sampling via SDE is still common for solving inverse problems, whereas ODE sampling has been rarely considered,
perhaps due to the use of diffusion probability paths.

Continuous Normalizing Flow (CNF) (Chen et al., 2018b) trained with Flow Matching (Lipman et al., 2022) has been
recently proposed as a powerful alternative to diffusion models. CNF (hereafter denoted flow model) has the ability to
model arbitrary probability paths, and includes diffusion probability paths as a special case. Of particular interest to
us are Gaussian probability paths that correspond to optimal transport (OT) displacement (McCann, 1997). Recent
works (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022; Shaul et al., 2023) have shown that
these conditional OT probability paths are straighter than diffusion paths, which results in faster training and sampling
with these models. Due to these properties, conditional OT flow models are an appealing alternative to diffusion models
for solving inverse problems.

In this work, we introduce a training-free method to utilize pretrained unconditional flow models for solving linear
inverse problems. Our approach adds a gradient-based adaptation term to the unconditional vector field that takes into
account knowledge from the degradation model and converts it to a conditional vector field. Specifically, we introduce
an algorithm that extends ΠGDM (Song et al., 2022) gradient adaptation to ODE sampling with an affine Gaussian
probability path. Given the wide availability of pretrained diffusion models trained with diffusion probability paths, we
also present a way to convert these models to other affine Gaussian probability paths. Empirically, we observe images
restored via a conditional OT path exhibit perceptual quality better than that achieved by the model’s original diffusion
path, as well as recently proposed diffusion approaches such as ΠGDM (Song et al., 2022) and RED-Diff (Mardani
et al., 2023), particularly in noisy settings. To summarize, our key contributions are:

• We present a training-free approach to solve linear inverse problems that can be applied to any continuous-
time diffusion or flow model under affine Gaussian probability paths that extends ΠGDM gradient adaptation
to this more generic setting.

• We explain subtleties in converting models between different affine Gaussian probability paths. Specifically,
we enable the use of pre-trained continuous-time diffusion models with conditional OT probability paths by an
adjusted initialization procedure.

• We demonstrate that images restored via our ODE algorithm using conditional OT probability paths have
perceptual quality that is largely on par with, or better than that achieved by diffusion probability paths, and
other recent methods like ΠGDM and RED-Diff, without the need for problem-specific hyperparameter tuning.

2 Preliminaries

We introduce relevant background knowledge and notation from conditional diffusion and flow modeling, as well
as training-free inference with diffusion models.

Notation. Both diffusion and flow models consider two distinct processes indexed by time between [0, 1] that convert
data to noise and noise to data. Here, we follow the temporal notation used in prior work (Lipman et al., 2022) where the
distribution at t = 1 is the data distribution and t = 0 is a standard Gaussian distribution. Note that this is opposite of the
prevalent notation used in diffusion model literature (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021a;d). We
let xt denote a real-valued vector at time t, without regard to which process (i.e., diffusion or flow) it was drawn from.
The probability density for the data to noise process is denoted q and the parameterized probability density for the noise
to data process is denoted pθ. Expectations with respect to q are denoted via Eq, where the relevant random variables
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are noisy xt, clean data x1, and conditioning y with density q(xt, x1, y) = q(xt|x1, y)q(x1, y). Here q(x1, y) is
unknown and q(xt|x1, y) will be a modeling choice. Conditional diffusion or flow models aim to produce samples
x1 ∼ q(x1|y). We generally keep function arguments of t implicit (i.e. f(xt, t) is informally written as f(xt).)

Conditional diffusion models. Suppose we have samples x1 (e.g. an image) and conditioning y (e.g. a distorted
image) drawn from a data distribution q(x1, y). Conditional diffusion models use latent variables x0:1 = {xt|t ∈ [0, 1)}
to model the joint distribution pθ(x0:1, x1|y) for the noise to data process pθ.1 The data to noise process q approximates
the posterior q(x0:1|x1, y) and is defined as a Markov chain2 that adds Gaussian noise to data, which in continuous
time satisfies a stochastic differential equation (SDE)(Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021d). The
parameters of pθ are learned via minimizing a regression loss derived from the variational bound on negative log-
likelihood with respect to x̂1:

Ldiffusion(x̂1) =
∫ 1

0
w(t)Ext∼q(xt|x1,y),x1,y∼q(x1,y)

[
∥x̂1(xt, y) − x1∥2]

dt, (1)

where w(t) are positive weights (Kingma et al., 2021; Song et al., 2021b; Kingma & Gao, 2023), and x̂1 is a deterministic
parametrized denoiser. The optimal solution for x̂1 with the squared L2 error in Eq. (1) is Ex1∼q(x1|xt,y)[x1|xt, y].
For brevity as well as ease of readability, henceforth we will typically write the expectations with respect to q such as
the one that appears in Eq. (1) in short as Eq . Many equivalent parameterizations exist for the loss in Eq. (1) and have
known conversions to denoising. Sampling using pθ proceeds by starting from x0 ∼ pθ(x0|y) and integrating the SDE
using x̂1 to t = 1. If pθ(x0|y) = q(x0|y), the SDE is integrated exactly, and x̂1(xt, y) = Eq[x1|xt, y], the resulting
x1 ∼ q(x1|y) as desired.

Conditional flow models Alternatively, continuous normalizing flow models (Chen et al., 2018b) define the data
generation process through an ODE. This leads to simpler formulations and does not introduce extra noise during
intermediate steps of sample generation. Recently, simulation-free training algorithms have been designed specifically
for such models (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022), an example being the
Conditional Flow Matching loss (Lipman et al., 2022),

Lcfm(v̂) =
∫ 1

0
Ext∼q(xt|x1,y),x1,y∼q(x1,y)

[
∥v̂(xt, y) − v(xt, y, x1)∥2]

dt, (2)

where v̂(xt, y) denotes a parameterized vector field defining the ODE

dxt

dt
= v̂(xt, y), (3)

and data-conditional vector field v(xt, y, x1) is determined by modeling choice q(xt|x1, y). If trained perfectly, the
marginal distributions of xt from ODE integration, denoted pθ(xt|y), will match the marginal distributions of q(xt|y).
Hence sampling from q(x1|y) as desired can be achieved by sampling initial value xt′ ∼ q(xt′ |y) and integrating the
ODE from t′ to 1. Typically, one samples from t′ = 0 since q(x0|y) is a tractable distribution.

Gaussian probability paths. The time-dependent densities q(xt|x1, y) are referred to as conditional probability
paths. We focus on the class of affine Gaussian probability paths of the form

q(xt|x1, y) = q(xt|x1) = N (αtx1, σ2
t I), (4)

where non-negative αt and σt are monotonically increasing and decreasing respectively. This class includes the
probability paths for conditional diffusion as well as the conditional Optimal Transport (OT) path (Lipman et al., 2022),
where αt = t and σt = 1 − t. The conditional OT path used by flow models has been demonstrated to have good
empirical properties, including faster inference and better sampling in practice, and has theoretical support in high-
dimensions (Shaul et al., 2023). As emphasized in Lin et al. (2023), a desirable property for probability paths, obeyed

1In discrete time, we can write this joint distribution as pθ(x0:1|y) = pθ(x0|y)
∏

t
pθ(xt+∆|xt, y) where ∆ denotes an appropriate step size

of time discretization in [0, 1].
2In discrete time, the forward process is q(x0:1|x1, y) =

∏
t

q(xt−∆|xt, y)
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by conditional OT but not commonly used diffusion paths, is to ensure q(x0|y) is known (i.e. N (0, I)), as otherwise
one cannot exactly sample x0 which can add substantial error. When using these affine Gaussian probability paths with
a conditional flow model, one sets (Lipman et al., 2022)

v(xt, y, x1) = dαt

dt
x1 + dσt

dt

(
xt − αtx1

σt

)
. (5)

Converting between flow and diffusion models. In our framing for affine Gaussian probability paths, a model is
identified as flow or diffusion by whether an ODE or SDE is used for sampling respectively. For this class of paths though,
we can convert directly between flow and diffusion models. To see this, note that the optimal v(xt, y) for the Conditional
Flow Matching loss in Eq. (2) is Eq[v(xt, y, x1)|xt, y], which for affine Gaussian probability paths using Eq. 5 is

v(xt, y) = dαt

dt
Eq[x1|xt, y] + dσt

dt

(
xt − αtEq[x1|xt, y]

σt

)
. (6)

This equivalence has been noted by Karras et al. (2022), leveraging a more complex conversion from SDE to probability
flow ODE from Song et al. (2021d). Rearranging Eq. (6), a diffusion model’s denoiser x̂1(xt, y) trained using affine
Gaussian probability path q can be interchanged with a flow model’s v̂(xt, y) with the same path via

v̂ =
(

αt
d ln(αt/σt)

dt

)
x̂1 + d ln σt

dt
xt. (7)

Training-free conditional inference using unconditional diffusion. Given pretrained unconditional diffusion
models that are trained to approximate Eq[x1|xt], training-free approaches for conditional inference aim to approximate
Eq[x1|xt, y] without any fine-tuning of the unconditional model. Under affine Gaussian probability paths, the two
terms are related by Tweedie’s identity (Robbins, 1992) which expresses Eq[x1|xt, y] = (xt + σ2

t ∇xt
ln q(xt|y))/αt.

Applying this identity (twice for both Eq[x1|xt, y] and Eq[x1|xt]) and simplifying gives

Eq[x1|xt, y] = Eq[x1|xt] + σ2
t

αt
∇xt

ln q(y|xt). (8)

Following Eq. 8, past approaches (e.g., Chung et al. (2022a); Song et al. (2022)) have used the pretrained model for
the first term and approximated the second intractable term to produce an approximate x̂1(xt, y). Diffusion posterior
sampling (DPS) (Chung et al., 2022a) proposed to approximate q(y|xt) via q(y|x1 = x̂1(xt)). Later, Pseudo-
inverse Guided Diffusion Models (ΠGDM) (Song et al., 2022) improved upon DPS for linear noisy observations
where y = Ax + σyϵ, where A is some measurement matrix and ϵ ∼ N (0, I), by approximating q(y|xt) as
N (Ax̂1(xt), σ2

yI + r2
t AAT ), derived via first approximating q(x1|xt) as N (x̂1(xt), r2

t I), where rt is an appropriate
time-dependent standard deviation. ΠGDM also suggested adaptive weighting, replacing σ2

t /αt with another function
of time to account for the approximation. While these past approaches have used Eq. (8) for diffusion probability paths,
this equation is valid for any affine Gaussian probability path.

3 Solving Linear Inverse Problems without Conditional Training via Flows

In the standard setup of a linear inverse problem, we observe measurements y ∈ Rn such that

y = Ax1 + ϵ (9)

where x1 ∈ Rm is drawn from an unknown data distribution q(x1), A ∈ Rn×m is a known measurement matrix, and
ϵ ∼ N (0, σ2

yI) is unknown i.i.d. Gaussian noise with known standard deviation σy. Given a pretrained flow model
with v̂(xt) that can sample from q(x1), and measurements y, our goal is to produce clean samples from the posterior
q(x1|y) ∝ q(y|x1)q(x1) without training a problem-specific conditional flow model defined by v̂(xt, y). In this
section, we motivate and propose our approach to solving this problem using flows.

3.1 Adapting the vector field of unconditional flow models for conditional sampling

To solve linear inverse problems without any training via flow models, we derive an expression similar to Eq. 8 that
relates conditional vector fields under Gaussian probability paths to unconditional vector fields.
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Let q be a Gaussian probability path described by Eq. 4. Assume we observe y ∼ q(y|x1) for arbitrary q(y|x1) and
v(xt) is a vector field enabling sampling xt ∼ q(xt). Note that Eq. (6) without y also holds for optimal unconditional
v(xt). Inserting Eq. (8) into Eq. (6) and taking the difference (v(xt, y) − v(xt)) yields

v(xt, y) = v(xt) + σ2
t

d ln(αt/σt)
dt

∇xt
ln q(y|xt). (10)

We use Eq. (10) in our training-free algorithm for solving linear inverse using flows by incorporating ΠGDM’s
adaptation. In particular, given v̂(xt) (or x̂1(xt)), our approximation will be

v̂(xt, y) = v̂(xt) + σ2
t

d ln(αt/σt)
dt

γt∇xt
ln qapp(y|xt), (11)

where qapp(y|xt) denotes an approximation for q(y|xt) and γt denotes time-dependent weights. We refer to γt = 1 as
unadaptive and other choices as adaptive weights. In general, we view adaptive weights γt ̸= 1 as an adjustment for
error in qapp(y|xt).

Approximating q(y|xt). The update for adapting the unconditional vector field in Eq. (10) requires q(y|xt) which is
intractable to compute as it involves marginalization over x1

q(y|xt) =
∫

x1

q(y|x1)q(x1|xt)dx1. (12)

In this equation, the first term q(y|x1) is tractable as it is equal to N (Ax1, σ2
yI). However, it is computationally

expensive to estimate the second term q(x1|xt) with a flow model or a diffusion model. We therefore use an
approximation for q(y|xt) and refer to this approximation as qapp(y|xt). Following ΠGDM, we set

q(x1|xt) ≈ N (x̂1(xt), r2
t I). (13)

where rt is an appropriately chosen time dependent standard deviation. We can now compute qapp(y|xt) in closed
form as qapp(y|xt) ≈ N (Ax̂1(xt), σ2

yI + r2
t AA⊤) which gives the following approximation for ∇xt

ln qapp(y|xt):

∇xt
ln qapp(y|xt) ≈ (y − Ax̂1)⊤(r2

t AA⊤ + σ2
yI)−1A

∂x̂1

∂xt
. (14)

Note that this is a vector-Jacobian product and can computed efficiently with packages for automatic differentiation. With
this we generalize ΠGDM to any Gaussian probability path described by Eq. 4 by using an alternate r2

t . We choose r2
t by

following ΠGDM’s derivation which assumes that q(x1) is N (0, I) to derive r2
t . We have q(xt|x1) = N (αtx1, σ2

t I).
Thus by Bayes’ rule, we can write the posterior as

q(x1|xt) ∝ q(x1)q(xt|x1) = N
(

αtxt

α2
t + σ2

t

,
σ2

t

α2
t + σ2

t

I

)
. (15)

With this, we approximate r2
t as

r2
t = σ2

t

σ2
t + α2

t

. (16)

When αt = 1, we recover ΠGDM’s r2
t as expected under their Variance-Exploding path specification.

3.2 Converting between affine Gaussian probability paths

To complete our derivation, we demonstrate how one can train with path q′ and perform sampling with alternative path
q. This conversion is crucial to enable sampling with any probability path, including particularly the conditional OT
probability path, without training given an existing pre-trained model. Such conversions have been noted previously
by Karras et al. (2022) using an SDE perspective. Our derivation exposes important subtleties when converting between
affine Gaussian probability paths.
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Consider two affine Gaussian probability paths, with joint densities q and q′, defined by Eq. 4 with αt, σt and α′
t,

σ′
t respectively. Define t′(t) as the unique solution to αt/σt = α′

t′/σ′
t′ when it exists for given t. The solution for

t′(t) is unique due to the monotonicity requirements of both α and σ. By definition, joint densities q and q′ share the
same distribution over data x1, q(x1|y) = q′(x1|y). Then for affine Gaussian probability paths, q(Xt = xt|x1, y) =
q′(X ′

t′(t) = α′
t′(t)xt/αt|x1, y) when t′(t) exists. Since the joint densities are identical, the conditional distributions

over x1 used by the optimal denoiser and vector fields are also identical at these values.

So x̂1 trained under q′ can be used for sampling under q via evaluating at x̂1(α′
t′(t)xt/αt, t′(t), y) (with explicit time

for clarity) whenever t′(t) exists, with identical argument changes for vector fields. In particular, if sampling uses the
conditional OT probability path, we have

t′(t) = SNR−1
q′ (SNRq(t))) = SNR−1

q′

(
t

1 − t

)
. (17)

where signal-to-noise ratio SNR(t) = αt/σt. The main avenue for non-existence for t′(t) is if the model under q′ is
trained using a minimum SNR above zero, which induces a minimum t for which t′(t) exists. When a minimum t exists,
we can only perform sampling with q starting from xt ∼ q(xt|y). Approximating this sample is entirely analogous to
approximating x0 ∼ q′(x0|y). This error already exists for q′ because q′(x0|y) is not N (0, I) unless q′ is trained to
zero SNR. An initialization problem cannot be avoided if q′ has limited SNR range by switching paths to q. This problem
is relevant when converting pre-trained diffusion models as typical diffusion paths have a nonzero minimum SNR.

3.3 Our algorithm for solving linear inverse problems

Starting flow sampling at time t > 0. Initializing conditional diffusion model sampling at t > 0 has been proposed
by Chung et al. (2022c). For flows, we similarly want xt ∼ q(xt|y) at initialization time t. In our experiments, we
examine (approximately) initializing at different times t > 0 using

xt = αty + σtϵ (18)

for ϵ ∼ N (0, I) when y is the correct shape. For super-resolution, we use nearest-neighbor interpolation on y instead.
We also consider using A†y as an ablation in the Appendix B (where A† is the pseudo-inverse of A (Song et al.,
2022)). We may be forced to use this initialization for flow sampling due to converting a diffusion model not trained
to zero SNR. However as shown in (Chung et al., 2022c) for diffusion, this initialization can improve results more
generally. Conceptually, if the resulting xt is closer to xt ∼ q(xt|y) than achieved via starting from an earlier time t′

and integrating, then this initialization can result in less overall error.

Algorithm summary. Putting this altogether, our proposed approach using flow sampling and conditional OT
probability paths is succinctly summarized in Algorithm 1, derived via inserting αt = t and σt = 1 − t. This algorithm
uses the unconditional vector field adaptation proposed in Eq. (11) and uses this vector field adaptation v̂adapted to
integrate the ODE from some initial time t0 to 1 to get the final corrected image x1. We can integrate the ODE by using
any standard numerical methods such as Euler method, Runge-Kutta method etc. As an example, an intermediate update
of Euler method from time t to t + ∆t during ODE integration is given by xt+∆t = xt + v̂adapted∆t. Unlike ΠGDM,
we propose unadaptive weights γt = 1. By default, we set initialization time t0 = 0.2. The algorithm therefore has no
additional hyperparameters to tune over traditional diffusion or flow sampling. In Appendix A, we detail our algorithm
for other Gaussian probability paths, and the equivalent formulation when a pretrained vector field is available instead.

4 Experiments

Datasets. We verify the effectiveness of our proposed approach on three datasets: face-blurred ImageNet 64 × 64 and
128×128 (Deng et al., 2009; Russakovsky et al., 2015; Yang et al., 2022), and AnimalFacesHQ (AFHQ) 256×256 (Choi
et al., 2020). We report our results on 10K randomly sampled images from validation split of ImageNet, and 1500
images from test split of AFHQ.

Tasks. We report results on the following linear inverse problems: inpainting (center-crop), Gaussian deblurring,
super-resolution, and denoising. The exact details of the measurement operators are: 1) For inpainting, we use centered
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Algorithm 1 Solving linear inverse problems via flows using conditional OT probability path

Require: Pretrained denoiser x̂1(xt) converted to conditional OT probability path, noisy measurement y, measurement
matrix A, initial time t0, and std σy

1: Initialize xt0 = t0y + (1 − t0)ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.
4: r2

t = (1−t)2

t2+(1−t)2 ▷ Value of r2
t from Eq. (16)

5: v̂ = x̂1(xt)−xt

1−t ▷ Convert x̂1 to vector field, Eq. (7)

6: g = (y − Ax̂1)⊤(r2
t AA⊤ + σ2

yI)−1A ∂x̂1
∂xt

▷ ∇xt
ln qapp(y|xt)

7: v̂adapted = v̂ + 1−t
t g ▷ Adapt the unconditional vector field v̂, Eq. (11)

8: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

9: end for
10: return x1 ▷ This is the solution of ODE integration.

mask of size 20 × 20 for ImageNet-64, 40 × 40 for ImageNet-128, and 80 × 80 for AFHQ. In addition, for images of
size 256 × 256, we also use free-form masks simulating brush strokes similar to the ones used in Saharia et al. (2022a);
Song et al. (2022). 2) For super-resolution, we apply bicubic interpolation to downsample images by 4× for datasets
that have images with resolution 256 × 256 and downsample images by 2× otherwise. 3) For Gaussian deblurring,
we apply Gaussian blur kernel of size 61 × 61 with standard deviation of 1 for ImageNet-64 and ImageNet-128, and
61 × 61 with standard deviation of 3 for AFHQ. 4) For denoising, we add i.i.d. Gaussian noise with σy = 0.05 to the
images. For tasks besides denoising, we consider i.i.d. Gaussian noise with σy = 0 and 0.05 to the images. Images x1
are normalized to range [−1, 1].

Implementation details. We trained our own continuous-time conditional VP-SDE model, and conditional Optimal
Transport (conditional OT) flow model from scratch on the above datasets following the hyperparameters and training
procedure outlined in Song et al. (2021d) and Lipman et al. (2022). These models are conditioned on class labels, not
noisy images. All derivations hold with class label c since q(y|c, x1) = q(y|x1) (i.e. the noisy image is independent
of class label given the image). We use the open-source implementation of the Euler method provided in torchdiffeq
library (Chen, 2018) to solve the ODE in our experiments. Our choice of Euler is intentionally simple, as we focus on
flow sampling with the conditional OT path, and not on the choice of ODE solver.

Metrics. We follow prior works (Chung et al., 2022a; Kawar et al., 2022) and report Fréchet Inception Distance
(FID) (Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), peak signal-to-
noise ratio (PSNR), and structural similarity index (SSIM). We use open-source implementations of these metrics in the
TorchMetrics library (Detlefsen et al., 2022).

Methods and baselines. We use our two pretrained model checkpoints— a conditional OT flow model and continuous
VP-SDE diffusion model, and perform flow sampling with both conditional OT and Variance-Preserving (VP) paths,
labeling our methods as OT-ODE and VP-ODE respectively. Because qualitative results are identical and quantitative
results similar, we only include the VP-SDE diffusion model in the main text, and include the conditional OT flow
model in Appendix C. We compare our OT-ODE and VP-ODE methods against ΠGDM (Song et al., 2022) and
RED-Diff (Mardani et al., 2023) as relevant baselines. We selected these baselines because they achieve state-of-
the-art performance in solving linear inverse problems using diffusion models. The code for both baseline methods
is available on github, and we make minimal changes while reimplementing these methods in our codebase. A fair
comparison between methods requires considering the number of function evaluations (NFEs) used during sampling.
We utilize at most 100 NFEs for our OT-ODE and VP-ODE sampling (see Appendix C), and utilize 100 for ΠGDM
as recommended in Song et al. (2022). We allow RED-Diff 1000 NFEs since it does not require gradients of x̂1.
For OT-ODE following Algorithm 1, we use γt = 1 and initial t = 0.2 for all datasets and tasks. For VP-ODE
following Algorithm 2 in the Appendix, we use γt =

√
αt

α2
t +σ2

t
and initial t = 0.4 for all datasets and tasks. Ablations

of these mildly tuned hyperparameters are shown in Appendix B. We extensively tuned hyperparameters for RED-Diff
and ΠGDM as described in Appendix E, including different hyperparameters per dataset and task.
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Figure 2: Quantitative evaluation of pretrained VP-SDE model for solving linear inverse problems on super-resolution
(SR), gaussian deblurring (GB), inpainting with centered (IPC) and freeform mask (IPF), and denoising (DN) with σy =
0.05. We present results on face-blurred ImageNet-64 (INET-64), face-blurred ImageNet-128 (INET-128), and AFHQ.

4.1 Experimental Results

We report quantitative results for the VP-SDE model, across all datasets and linear measurements, in Figure 2 for
σy = 0.05, and in Figure 9 within Appendix C for σy = 0. Additionally, we report results for the conditional OT flow
model in Figure 11 and Figure 10 for σy = 0.05 and σy = 0, respectively, in Appendix C. Exact numerical values for
all the metrics across all datasets and tasks can also be found in Appendix C. Qualitative images have been selected for
demonstration purposes.

Gaussian deblurring. We report qualitative noisy results for the VP-SDE model in Figure 3 and for the conditional
OT flow (cond-OT) model in Figure 12. We observe that OT-ODE and VP-ODE outperforms ΠGDM and RED-Diff,
both qualitatively and quantitatively, across all datasets for σy = 0.05. As shown in these figures, ΠGDM tends to
sharpen the images, which sometimes results in unnatural textures in the images. Further, we also observe some
unnatural textures and background noise with RED-Diff for σy = 0.05. For σy = 0, OT-ODE has better FID and
LPIPS, but ΠGDM shows improved PSNR and SSIM. Figure 21 and Figure 18 show qualitative examples for σy = 0.

Super-resolution. We report qualitative noisy results for the VP-SDE model in Figure 4 and for the cond-OT model
in Figure 13. OT-ODE consistently achieves better FID, LPIPS and PSNR metrics compared to other methods for
σy = 0.05 (See Figure 2 and 11). Similar to Gaussian deblurring, ΠGDM tends to produce sharper edges. This is
certainly desirable to achieve good super-resolution, but sometimes this results in unnatural textures in the images
(See Figure 4). RED-Diff for σy = 0.05 gives slightly blurry images. In our experiments, we observe RED-Diff is
sensitive to the values of σy , and we get good quality results for smaller values of σy , but the performance deteriorates
with increase in value of σy. For σy = 0, as shown in Figure 19 and Figure 22, all the methods achieve comparable
performance and the method declared best varies per metric and dataset.

Inpainting. For centered mask inpainting, OT-ODE outperforms ΠGDM and RED-Diff in terms of LPIPS, PSNR
and SSIM across all datasets at σy = 0.05. Regarding FID, OT-ODE performs comparably to or better than VP-ODE
(See Figure 2 and 11). Similar observations hold true for inpainting with freeform mask on AFHQ. We present qualitative
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 3: Results for Gaussian deblurring with VP-SDE model and σy = 0.05 for (first row) ImageNet-64, (second
row) ImageNet-128, and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 4: Results for super-resolution with VP-SDE model and σy = 0.05 for (first row) ImageNet-64 2×, (second
row) ImageNet-128 2×, and (third row) AFHQ 4×.

noisy results for the VP-SDE model in Figure 5 and the cond-OT model in Figure 14. As evident in these images, OT-
ODE can result in more semantically meaningful inpainting (for instance, the shape of bird’s neck, and shape of hot-dog
bread in Figure 5). In contrast, the inpainted regions generated by RED-Diff tend to be blurry and less semantically
meaningful. However, we note that OT-ODE (and VP-ODE) inpainting occasionally produces artifacts in the inpainted
region as the resolution of image increases. We show examples of such negative inpainting results in Appendix C.2.
Empirically, we observe that performance of RED-Diff and ΠGDM improves as σy decreases. For σy = 0, RED-Diff
achieves higher PSNR and SSIM, but performs worse than OT-ODE in terms of FID and LPIPS (Refer to Figure 9).
OT-ODE’s tendency to produce inpainting artifacts for higher resolution images remains for σy = 0, and can occur

9
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) REDDiff

Figure 5: Results for inpainting (centered mask) with VP-SDE model and σy = 0.05 for (first row) ImageNet-64,
(second row) ImageNet-128, and (third row) AFHQ.

for the same images as σy = 0.05. These artifacts can significantly degrade the pixel-based metrics PSNR and SSIM
more than the perceptual metrics such as FID and LPIPS. We further note that noiseless inpainting for OT-ODE can be
improved by incorporating null-space decomposition (Wang et al., 2022). We describe this adjustment in Appendix D.

5 Related Work

The challenge of solving noisy linear inverse problems without any training has been tackled in many ways, often with
other solution concepts than posterior sampling (Elad et al., 2023). Utilizing a diffusion model has a host of recent
research that we build upon. Our state-of-the-art baselines ΠGDM (Song et al., 2022) and RED-Diff (Mardani et al.,
2023) correspond to lines of research in gradient-based adaptations and variational inference.

Earlier gradient-based adaptations that approximate ∇xt
ln q(y|xt) in various ways include Diffusion Posterior Sam-

pling (DPS) (Chung et al., 2022a), Manifold Constrained Gradient (Chung et al., 2022b), and an annealed approxi-
mation (Jalal et al., 2021). ΠGDM out-performs earlier methods combining adaptive weights and Gaussian posterior
approximation with discrete-time denoising diffusion implicit model (DDIM) sampling (Song et al., 2021a). Here we
adapt ΠGDM to all Gaussian probability paths and to flow sampling. Our results show adaptive weights are unneces-
sary for strongly performing conditional OT flow sampling. Denoising Diffusion Null Models (DDNM) (Wang et al.,
2022) proposed an alternative approximation of Eq[x1|xt, y] using a null-space decomposition specific to linear inverse
problems, which has been explored in combination with our method in Appendix D.

RED-Diff (Mardani et al., 2023) approximates intractable q(x1|y) directly using variational inference, solving for
parameters via optimization. RED-Diff was reported to have mode-seeking behavior confirmed by our results where
RED-Diff performed better for noiseless inference. Another earlier variational inference method is Denoising Diffusion
Restoration Models (DDRM) (Kawar et al., 2022). DDRM showed SVD can be memory-efficient for image applications,
and we adapt their SVD implementations for super-resolution and blur. DDRM incorporates noiseless method
ILVR (Choi et al., 2021), and leverages a measurement-dependent forward process (i.e. q(xt|x1, y) ̸= q(xt|x1)) like
earlier SNIPS (Kawar et al., 2021). SNIPS collapses in special cases to variants proposed in Song & Ermon (2019);
Song et al. (2021d); Kadkhodaie & Simoncelli (2020) for linear inverse problems. Additional related work can be found
in Appendix G.
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6 Discussion, Limitations, and Future work

We have presented a training-free approach to solve linear inverse problems using flows that can leverage either pretrained
diffusion or flow models. The algorithm is simple, stable, and does not require any problem-specific hyperparameter
tuning when used with conditional OT probability paths. Our method combines past ideas from diffusion including
ΠGDM and early starting with the conditional OT probability path from flows, and our results demonstrate that this
combination can solve inverse problems for both noisy and noiseless cases across a variety of datasets. Our algorithm
using the conditional OT path (OT-ODE) produced results superior to the VP path (VP-ODE) and also to ΠGDM and
REDDiff for noisy inverse problems. For the noiseless case, the perceptual quality from OT-ODE is on par with ΠGDM
for super-resolution and gaussian deblurring, but lagging for inpainting due to image artifacts.

Another important limitation, shared with most of the past related research, is a restriction to linear observations with
scalar variance. Our method can extend to arbitrary covariance, but non-linear observations are more complex. Non-
linear observations occur with image inverse tasks when utilizing latent, not pixel-space, diffusion or flow models.
Applying our approach to such measurements requires devising an alternative qapp(y|xt). Another shared limitation is
that we consider the non-blind setting with known A and σy .

Future research could tackle these limitations. For non-linear observations in latent space, we could perhaps build upon
Rout et al. (2023) that uses a latent diffusion model for linear inverses. For the blind setting, we might start from blind
extensions to DPS and DDRM (Chung et al., 2023a; Murata et al., 2023). As demonstrated here, we may be able to
adapt and possibly improve these approaches via conversion to flow sampling using conditional OT paths.
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A Our method for any Gaussian probability path

Algorithm 1 in the main text is specific to conditional OT probability paths. Here we provide Algorithm 2 for any
Gaussian probability path specified by Eq. 4. Algorithm 1 and Algorithm 2 are written assuming a denoiser x̂1(xt) is
provided from a pretrained diffusion model. For completeness, we also include equivalent Algorithm 3 that assumes
v̂(xt) is provided from a pretrained flow model. In all cases, the vector field or denoiser is evaluated only once per
iteration.

Our VP-ODE sampling results correspond to αt and σt given from the Variance-Preserving path, which can be found
in (Lipman et al., 2022).

Algorithm 2 A training-free approach to solve inverse problems via flows with a pretrained denoiser

Require: Pretrained denoiser x̂1(xt) converted to Gaussian probability path with αt and σt, noisy measurement y,
measurement matrix A, initial time t0, adaptive weights γt, and std σy

1: Initialize xt0 = αt0y + σt0ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.
4: r2

t = σ2
t

σ2
t +α2

t
▷ Value of r2

t from Eq. (16)

5: v̂ =
(

αt
d ln(αt/σt)

dt

)
x̂1 + d ln σt

dt xt ▷ Convert x̂1 to vector field, Eq. (7)

6: g = (y − Ax̂1)⊤(r2
t AA⊤ + σ2

yI)−1A ∂x̂1
∂xt

▷ ∇xt ln qapp(y|xt)
7: v̂adapted = v̂ + σ2

t
d ln(αt/σt)

dt γtg ▷ Adapt unconditional vector field v̂, Eq. (11)
8: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

9: end for
10: return x1 ▷ This is the solution of ODE integration.

Algorithm 3 A training-free approach to solve inverse problems via flows with a pretrained vector field

Require: Pretrained vector field v̂(xt) converted to Gaussian probability path with αt and σt, noisy measurement y,
measurement matrix A, initial time t0, adaptive weights γt, and std σy

1: Initialize xt0 = αt0y + σt0ϵ, where ϵ ∼ N (0, I) ▷ Initialize xt, Eq. (18)
2: xt = xt0

3: for each time step t of ODE integration do ▷ Integrate ODE from t = t0 to 1.
4: v̂ = v̂(xt) ▷ xt is value of xt at time t during ODE integration
5: r2

t = σ2
t

σ2
t +α2

t
▷ Value of r2

t from Eq. (16)

6: x̂1 =
(

αt
d ln(αt/σt)

dt

)−1 (
v̂ − d ln σt

dt xt

)
▷ Convert vector field to x̂1, Eq. (7)

7: g = (y − Ax̂1)⊤(r2
t AA⊤ + σ2

yI)−1A ∂x̂1
∂xt

▷ ∇xt ln qapp(y|xt)
8: v̂adapted = v̂ + σ2

t
d ln(αt/σt)

dt γtg ▷ Adapt unconditional vector field v̂, Eq. (11)
9: xt+∆t = ODESolverStep(xt, v̂adapted) ▷ One step of ODE solver to update xt

10: end for
11: return x1 ▷ This is the solution of ODE integration.
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B Ablation Study

Choice of initialization. We initialize the flow at time t > 0 as xt = αty + σtϵ (y-init) where ϵ ∼ N (0, I). Another
choice of initialization is to use xt = αtA

†y + σtϵ. However, empirically we find that this initialization performs
worse that y-init on cond-OT model with OT-ODE sampling. We summarize the results of our ablation study in Table 1.
We find that on Gaussian deblurring, initialization with A†y does worse than y-init, while the performance of both the
initializations is comparable for super-resolution. In all our experiments, we use y-init, due to its better performance on
Gaussian deblurring.

Table 1: Quantitative evaluation of choice of initialization for conditional OT flow model with OT-ODE sampling on
AFHQ dataset. We find that y-init outperforms A†y on Gaussian deblurring.

Initialization Start time NFEs ↓
Gaussian deblur, σy = 0.05 SR 4×, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

y init 0.2 100 7.57 0.268 30.28 0.626 6.03 0.219 31.12 0.739
A†y 0.1 100 41.22 0.449 28.79 0.392 12.93 0.292 30.46 0.664
A†y 0.2 100 56.42 0.554 28.11 0.249 6.09 0.219 31.12 0.739

Ablation over γt for VP-ODE sampling. We compare the performance of γt = 1 against γt =
√

αt

α2
t +σ2

t
. We show

results of VP-ODE sampling with VP-SDE model in Table 2 and Table 3. As seen our choice of γt outperform γt = 1
across all the metrics on face-blurred ImageNet-128.

Table 2: Quantitative evaluation of value of γt in VP-ODE sampling with VP-SDE model on face-blurred ImageNet-
128 dataset.

γt Start time NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

1 0.4 60 32.66 0.371 29.06 0.530 29.31 0.346 29.12 0.554√
αt

α2
t +σ2

t
0.4 60 9.14 0.167 32.06 0.838 10.14 0.196 31.59 0.800

Table 3: Quantitative evaluation of value of γt in VP-ODE sampling with VP-SDE model on face-blurred ImageNet-
128 dataset.

γt Start time NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

1 0.3 70 53.03 0.285 31.55 0.737 28.37 0.238 31.63 0.786√
αt

α2
t +σ2

t
0.3 70 8.47 0.129 34.43 0.876 5.83 0.087 35.85 0.938

Variation of performance with NFEs. We analyze the variation in performance of OT-ODE, VP-ODE and ΠGDM
for solving linear inverse problems as NFEs are varied. The results have been summarized in Figure 6. We observe that
OT-ODE consistently outperforms VP-ODE and ΠGDM across all measurements in terms of FID and LPIPS metrics,
even for NFEs as small as 20. We also note that the choice of starting time matters to achieve good performance
with OT-ODE. For instance, starting at t = 0.4 outperforms t = 0.2 when NFEs are small, but eventually as NFEs is
increased, t = 0.2 performs better. We also note that ΠGDM achieves higher values of PSNR and SSIM at smaller
NFEs for super-resolution but has inferior FID and LPIPS compared to OT-ODE.

Choice of starting time. We plot the variation in performance of OT-ODE and VP-ODE sampling with change in
start times for conditional OT model and VP-SDE model on AFHQ dataset in Figure 7 and Figure 8, respectively.
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Figure 6: Performance of different procedures for solving linear inverse problems with variation in NFEs on AFHQ
dataset. We use pretrained conditional OT model and set σy = 0.05. The legends VP and VE indicate the choice of r2

t

used in ΠGDM (See Appendix E.1). Time t = 0.2 and 0.4 indicates the starting time of sampling with OT-ODE.

18



Under review as submission to TMLR

We note that in general, OT-ODE sampling achieves optimal performance across all measurements and all metrics at
t = 0.2 while VP-ODE sampling achieves optimal performance between start times of t = 0.3 and 0.4. In this work,
for all the experiments, we use t = 0.2 for OT-ODE sampling and t = 0.4 for VP-ODE sampling.

Figure 7: Performance of OT-ODE and VP-ODE in solving linear inverse problems with varying start times on AFHQ
dataset. We use pretrained cond-OT model and set σy = 0.05.
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Figure 8: Performance of OT-ODE and VP-ODE in solving linear inverse problems with varying start times on AFHQ
dataset. We use pretrained VP-SDE model and set σy = 0.05.
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C Additional Empirical Results

The main text includes Figure 2 with σy = 0.05 produced with the denoiser from the continuous-time VP-SDE diffusion
model showing plots of various metrics across all datasets and tasks. Here we provide the same for our pre-trained
conditional OT flow matching model using Algorithm 3 in Figure 11, and noiseless figures for both models in Figure 9
and 10. To save compute, for the flow model we only include our ΠGDM baseline as RED-Diff required extensive
hyperparameter tuning. The qualitative results using the flow model instead of diffusion model checkpoint are identical.

This section also includes tables containing the numerical values of metrics across all datasets and tasks. The tables are
hierarchically organized by noise, dataset, and task in consistent ordering. Noisy results with σy = 0.05 are in Table 4
to 9 and noiseless results with σy = 0 are in Table 8 to 13.

Figure 9: Quantitative evaluation of pretrained VP-SDE model for linear inverse problems on super-resolution (SR),
gaussian deblurring (GB), image inpainting - centered mask (IPC) and inpainting - free-form (IPF) with σy = 0. We
show results on face-blurred ImageNet-64 (INET-64), face-blurred ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).

Table 4: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64 × 64

Model Inference NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.07 0.157 30.88 0.799 6.83 0.185 30.51 0.773
OT VP-ODE 80 7.82 0.163 30.75 0.792 8.72 0.190 30.40 0.765
OT ΠGDM 100 6.52 0.168 30.54 0.753 55.19 0.374 28.74 0.516

VP-SDE OT-ODE 80 5.57 0.155 30.88 0.799 6.33 0.181 30.52 0.773
VP-SDE VP-ODE 80 7.40 0.160 30.75 0.792 8.16 0.187 30.42 0.766
VP-SDE ΠGDM 100 6.84 0.174 30.48 0.743 54.77 0.376 28.74 0.511
VP-SDE RED-Diff 1000 23.02 0.187 31.22 0.839 51.20 0.236 30.19 0.776
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Figure 10: Quantitative evaluation of pretrained conditional OT model for linear inverse problems on super-resolution
(SR), gaussian deblurring (GB), image inpainting - centered mask (IPC) and inpainting - freeform (IPF) with σy = 0. We
show results on face-blurred ImageNet-64 (INET-64), face-blurred ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).

Table 5: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64 × 64

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑

OT OT-ODE 80 5.45 0.101 34.21 0.870 2.91 0.044 35.96 0.968
OT VP-ODE 80 5.70 0.105 33.87 0.865 3.54 0.049 35.37 0.960
OT ΠGDM 100 9.25 0.111 34.13 0.863 16.59 0.102 34.60 0.906

VP-SDE OT-ODE 80 5.03 0.098 34.25 0.872 2.76 0.042 36.02 0.969
VP-SDE VP-ODE 80 5.26 0.103 33.93 0.866 3.29 0.048 35.45 0.961
VP-SDE ΠGDM 100 9.75 0.113 34.03 0.860 17.19 0.107 34.25 0.901
VP-SDE RED-Diff 1000 12.18 0.119 33.97 0.881 6.02 0.041 35.64 0.964

Table 6: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128 × 128

Model Inference NFEs ↓
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 3.22 0.141 32.35 0.820 4.84 0.175 31.94 0.821
OT VP-ODE 70 7.52 0.162 32.24 0.847 8.49 0.191 31.76 0.809
OT ΠGDM 100 4.38 0.148 32.07 0.831 30.30 0.328 29.96 0.606

VP-SDE OT-ODE 70 3.21 0.139 32.40 0.855 4.49 0.173 32.02 0.824
VP-SDE VP-ODE 70 9.14 0.166 32.06 0.838 9.35 0.193 31.66 0.804
VP-SDE ΠGDM 100 7.55 0.183 31.61 0.785 55.61 0.463 28.57 0.414
VP-SDE RED-Diff 1000 10.54 0.182 31.82 0.852 21.43 0.229 31.41 0.807
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Figure 11: Quantitative evaluation of pretrained conditional OT model for linear inverse problems on super-resolution
(SR), gaussian deblurring (GB), image inpainting - centered mask (IPC) and denoising (DN) with σy = 0.05. We show
results on face-blurred ImageNet-64 (INET-64), face-blurred ImageNet-128 (INET-128), and AFHQ-256 (AFHQ).

Table 7: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128 × 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 6.58 0.121 35.00 0.881 3.21 0.063 37.35 0.964
OT VP-ODE 70 6.44 0.127 34.47 0.871 3.98 0.075 36.26 0.948
OT ΠGDM 100 7.99 0.122 34.57 0.867 9.60 0.107 35.11 0.903

VP-SDE OT-ODE 70 6.39 0.120 35.04 0.882 3.25 0.062 37.41 0.965
VP-SDE VP-ODE 70 8.47 0.129 34.43 0.876 5.83 0.087 35.85 0.938
VP-SDE ΠGDM 100 9.75 0.130 34.45 0.858 10.69 0.124 34.72 0.882
VP-SDE RED-Diff 1000 14.63 0.171 32.42 0.820 9.19 0.105 33.52 0.895

Table 8: Quantitative evaluation of linear inverse problems on AFHQ-256 × 256

Model Inference NFEs ↓
SR 4×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 6.03 0.219 31.12 0.739 7.57 0.268 30.27 0.626
OT VP-ODE 100 6.81 0.229 31.01 0.728 7.80 0.276 30.21 0.616
OT ΠGDM 100 12.69 0.285 30.18 0.665 24.60 0.383 28.93 0.429

VP-SDE OT-ODE 100 7.28 0.238 30.83 0.714 8.53 0.276 30.37 0.641
VP-SDE VP-ODE 100 8.02 0.243 30.96 0.727 10.21 0.289 30.21 0.621
VP-SDE ΠGDM 100 77.49 0.469 29.34 0.469 116.42 0.535 28.49 0.313
VP-SDE RED-Diff 1000 20.84 0.331 29.97 0.675 15.81 0.341 30.15 0.645
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Table 9: Quantitative evaluation of linear inverse problems on AFHQ-256 × 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.98 0.104 35.32 0.897 2.48 0.061 37.18 0.965
OT VP-ODE 100 7.48 0.107 35.02 0.892 3.38 0.075 37.41 0.954
OT ΠGDM 100 19.09 0.153 34.20 0.855 22.87 0.237 32.93 0.823

VP-SDE OT-ODE 100 9.93 0.107 35.18 0.892 2.17 0.060 37.95 0.963
VP-SDE VP-ODE 100 8.78 0.107 35.12 0.891 3.08 0.071 37.68 0.959
VP-SDE ΠGDM 100 57.46 0.239 32.40 0.773 81.15 0.451 29.62 0.639
VP-SDE RED-Diff 1000 11.02 0.124 34.97 0.893 4.93 0.112 34.18 0.899

Table 10: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64 × 64

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.46 0.119 31.59 0.839 2.59 0.038 35.31 0.961
OT VP-ODE 80 8.29 0.147 31.20 0.817 6.13 0.083 33.31 0.929
OT ΠGDM 100 6.89 0.115 32.02 0.853 4.53 0.051 35.88 0.963

VP-SDE OT-ODE 80 6.32 0.118 31.60 0.839 2.61 0.037 35.45 0.963
VP-SDE VP-ODE 80 7.76 0.145 31.21 0.817 5.68 0.080 33.37 0.931
VP-SDE ΠGDM 100 6.47 0.113 32.03 0.853 4.35 0.049 35.95 0.964
VP-SDE RED-Diff 1000 11.74 0.224 30.12 0.798 15.39 0.134 31.99 0.879

Table 11: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-64 × 64

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 4.94 0.080 37.42 0.885
OT VP-ODE 80 7.85 0.120 34.24 0.858
OT ΠGDM 100 6.09 0.082 36.75 0.901

VP-SDE OT-ODE 80 4.85 0.079 37.64 0.887
VP-SDE VP-ODE 80 7.21 0.117 34.33 0.860
VP-SDE ΠGDM 100 5.79 0.081 36.81 0.902
VP-SDE RED-Diff 1000 7.29 0.079 39.14 0.925

Table 12: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128 × 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 5.88 0.095 37.06 0.894
OT VP-ODE 70 8.63 0.144 34.48 0.864
OT ΠGDM 100 5.82 0.097 36.89 0.908

VP-SDE OT-ODE 70 5.93 0.094 37.31 0.898
VP-SDE VP-ODE 70 8.08 0.142 34.55 0.865
VP-SDE ΠGDM 100 5.74 0.095 37.01 0.911
VP-SDE RED-Diff 1000 5.40 0.068 38.91 0.928
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Table 13: Quantitative evaluation of linear inverse problems on face-blurred ImageNet-128 × 128

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 4.46 0.097 33.88 0.903 2.09 0.048 37.49 0.961
OT VP-ODE 70 7.69 0.144 32.93 0.871 6.02 0.108 34.73 0.925
OT ΠGDM 100 6.09 0.105 34.28 0.910 4.28 0.066 37.56 0.961

VP-SDE OT-ODE 70 4.62 0.096 33.95 0.906 2.26 0.046 37.79 0.967
VP-SDE VP-ODE 70 7.91 0.144 32.87 0.869 5.64 0.105 34.81 0.928
VP-SDE ΠGDM 100 6.02 0.104 34.33 0.911 4.35 0.065 37.70 0.963
VP-SDE RED-Diff 1000 3.90 0.082 34.47 0.92 4.19 0.085 34.68 0.929

Table 14: Quantitative evaluation of linear inverse problems on AFHQ-256 × 256

Model Inference NFEs ↓
SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 5.75 0.169 32.25 0.792 6.63 0.213 31.29 0.722
OT VP-ODE 100 6.14 0.194 31.93 0.773 7.38 0.231 31.10 0.705
OT ΠGDM 100 8.89 0.173 32.57 0.812 9.78 0.209 31.54 0.743

VP-SDE OT-ODE 100 6.58 0.178 32.18 0.789 8.24 0.226 31.21 0.717
VP-SDE VP-ODE 100 8.00 0.225 31.48 0.742 9.19 0.252 30.91 0.688
VP-SDE ΠGDM 100 10.85 0.189 32.52 0.811 11.46 0.228 31.47 0.738
VP-SDE RED-Diff 1000 8.65 0.191 32.21 0.801 11.67 0.268 31.30 0.731

Table 15: Quantitative evaluation of linear inverse problems on AFHQ-256 × 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0 Inpainting-Free-form, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.87 0.061 37.45 0.921 4.98 0.097 36.15 0.889
OT VP-ODE 100 9.18 0.106 35.63 0.898 6.92 0.135 34.72 0.869
OT ΠGDM 100 7.36 0.080 37.45 0.933 6.52 0.100 36.58 0.913

VP-SDE OT-ODE 100 9.95 0.064 37.49 0.918 5.39 0.099 36.15 0.887
VP-SDE VP-ODE 100 10.50 0.112 35.59 0.893 7.36 0.139 34.65 0.865
VP-SDE ΠGDM 100 8.61 0.088 37.27 0.925 7.25 0.109 36.37 0.906
VP-SDE RED-Diff 1000 8.53 0.050 38.89 0.951 7.27 0.090 36.88 0.892
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C.1 Additional qualitative results

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 12: Gaussian-deblur with conditional OT model and σy = 0.05 for (first row) face-blurred ImageNet-64,
(second and third row) face-blurred ImageNet-128, and ( fourth and fifth row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 13: Super-resolution with conditional OT model and σy = 0.05 for (first row) face-blurred ImageNet-64 2×,
(second row) face-blurred ImageNet-128 2×, and (third row) AFHQ 4×.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 14: Inpainting (Center mask) with conditional OT model and σy = 0.05 for (first row) face-blurred ImageNet-
64, (second row) face-blurred ImageNet-128, and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 15: Inpainting (Free-form mask) with conditional OT model and σy = 0.05 for AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 16: Denoising with conditional OT model and σy = 0.05 for (first row) face-blurred ImageNet-64, (second
row) face-blurred ImageNet-128, and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 17: Denoising with pretrained VP-SDE model and σy = 0.05 for (first row) face-blurred ImageNet-64, (second
row) face-blurred ImageNet-128, and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 18: Gaussian deblurring with conditional OT model and σy = 0 for (first row) face-blurred ImageNet-64,
(second row) face-blurred ImageNet-128 and (third row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 19: Super-resolution with conditional OT model and σy = 0 for (first row) face-blurred ImageNet-64, (second
row) face-blurred ImageNet-128 and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM

Figure 20: Inpainting (centered mask) with conditional OT model and σy = 0 for (first row) face-blurred ImageNet-64,
(second row) face-blurred ImageNet-128 and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 21: Gaussian deblurring with VP-SDE model and σy = 0 for (first row) face-blurred ImageNet-64, (second
row) face-blurred ImageNet-128 and (third and fourth row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 22: Super-resolution with VP-SDE model and σy = 0 for (first row) face-blurred ImageNet-64, (second row)
face-blurred ImageNet-128 and (third row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 23: Inpainting (centered mask) with VP-SDE model and σy = 0 for (first and second row) face-blurred
ImageNet-64, (third row) face-blurred ImageNet-128 and (fourth row) AFHQ.

(a) Reference (b) Distorted (c) OT-ODE (d) VP-ODE (e) ΠGDM (f) RED-Diff

Figure 24: Inpainting (freeform mask) with VP-SDE model and σy = 0 for AFHQ.
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C.2 Negative results from Inpainting

(a) Reference (b) Masked-noisy (c) Corrected-noisy (d) Masked σy = 0 (e) Corrected σy = 0

Figure 25: Negative results for inpainting with OT-ODE on AFHQ. We can observe artifacts in high-resolution images
where the masked region is not inpainted correctly and there are patches in the inpainted region that are semantically
incorrect. The observed artifacts are present in both the noiseless (e) and noisy (c) columns.
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(a) Reference (b) Masked-noisy (c) Corrected-noisy (d) Masked σy = 0 (e) Corrected σy = 0

Figure 26: Negative results for inpainting with OT-ODE on face-blurred ImageNet-128. We can observe artifacts in
high-resolution images where the masked region is not inpainted correctly and there are patches in the inpainted region
that are semantically incorrect. The observed artifacts are present in both the noiseless (e) and noisy (c) columns.

36



Under review as submission to TMLR

D Noiseless null and range space decomposition

When σ2
y = 0, we can produce a vector field approximation with even lower Conditional Flow Matching loss by

applying a null-space and range-space decomposition motivated by DDNM (Wang et al., 2022). In particular, when
y = Ax1, we have that A†y = A†Ax1 (where A† is the pseudo-inverse of A) and so

Eq[x1|xt, y] = Eq[A†Ax1 + (I − A†A)x1|xt, y] = A†y + (I − A†A)Eq[x1|xt, y]. (19)

So when σ2
y = 0, it is only necessary to approximate the second term, as the first term is known through y. The regression

loss is minimized for the first term automatically and x̂1(xt, y) is only responsible for predicting the second term.

In our experiments, we find that null space decomposition helps in inpainting but not other measurements. We
summarize the results in Table 16 to 21 and show qualitative results for inpainting in Figure 27 to 29.

Table 16: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decom-
position (NRSD) on face-blurred ImageNet-64 × 64. For inpainting, OT-ODE sampling with null and range space
decomposition outperforms simple OT-ODE sampling.

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 4.94 0.080 37.42 0.885
OT OT-ODE-NRSD 80 3.84 0.072 38.23 0.888
OT VP-ODE 80 7.85 0.120 34.24 0.858

VP-SDE OT-ODE 80 4.85 0.079 37.64 0.887
VP-SDE OT-ODE-NRSD 80 3.77 0.072 38.24 0.888
VP-SDE VP-ODE 80 7.21 0.117 34.33 0.860

Table 17: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decomposi-
tion (NRSD) on face-blurred ImageNet-64 × 64. For tasks like super-resolution and Gaussian deblurring, OT-ODE
sampling without null and range space decomposition outperforms other methods.

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 80 6.46 0.119 31.59 0.839 2.59 0.038 35.31 0.961
OT OT-ODE-NRSD 80 7.37 0.134 31.05 0.799 3.05 0.044 35.19 0.956
OT VP-ODE 80 8.29 0.147 31.20 0.817 6.13 0.083 33.31 0.929

VP-SDE OT-ODE 80 6.32 0.118 31.60 0.839 2.61 0.037 35.45 0.963
VP-SDE OT-ODE-NRSD 80 7.13 0.133 31.06 0.798 2.99 0.044 35.24 0.956
VP-SDE VP-ODE 80 7.76 0.145 31.21 0.817 5.68 0.080 33.37 0.931

Table 18: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decomposi-
tion (NRSD) on face-blurred ImageNet-128 × 128.

Model Inference NFEs ↓
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 4.46 0.097 33.88 0.903 2.09 0.048 37.49 0.961
OT OT-ODE-NRSD 70 3.62 0.099 33.24 0.876 1.42 0.036 38.35 0.969
OT VP-ODE 70 7.69 0.144 32.93 0.871 6.02 0.108 34.73 0.925

VP-SDE OT-ODE 70 4.62 0.096 33.95 0.906 2.26 0.046 37.79 0.967
VP-SDE OT-ODE-NRSD 70 3.44 0.098 33.28 0.877 1.36 0.035 38.44 0.969
VP-SDE VP-ODE 70 7.91 0.144 32.87 0.869 5.64 0.105 34.81 0.928
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Table 19: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decomposi-
tion (NRSD) on face-blurred ImageNet-128 × 128

Model Inference NFEs ↓
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 70 5.88 0.095 37.06 0.894
OT OT-ODE-NRSD 70 3.95 0.074 38.27 0.906
OT VP-ODE 70 8.63 0.144 34.48 0.864

VP-SDE OT-ODE 70 5.93 0.094 37.31 0.898
VP-SDE OT-ODE-NRSD 70 3.84 0.073 38.27 0.906
VP-SDE VP-ODE 70 8.08 0.142 34.55 0.865

Table 20: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decomposi-
tion (NRSD) on AFHQ-256 × 256

Model Inference NFEs ↓
SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 5.75 0.169 32.25 0.792 6.63 0.213 31.29 0.722
OT OT-ODE-NRSD 100 5.73 0.179 31.69 0.753 7.32 0.237 30.72 0.665
OT VP-ODE 100 6.14 0.194 31.93 0.773 7.38 0.231 31.10 0.705

VP-SDE OT-ODE 100 6.58 0.178 32.18 0.789 8.24 0.226 31.21 0.717
VP-SDE OT-ODE-NRSD 100 6.99 0.195 31.65 0.752 10.19 0.255 30.66 0.662
VP-SDE VP-ODE 100 8.00 0.225 31.48 0.742 9.19 0.252 30.91 0.688

Table 21: Comparison of performance OT-ODE sampling and OT-ODE sampling with null and range space decomposi-
tion (NRSD) on AFHQ-256 × 256

Model Inference NFEs ↓
Inpainting-Center, σy = 0 Inpainting-Free-form, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

OT OT-ODE 100 8.87 0.061 37.45 0.921 4.98 0.097 36.15 0.889
OT OT-ODE-NRSD 100 7.95 0.046 38.01 0.921 4.12 0.083 36.62 0.890
OT VP-ODE 100 9.18 0.106 35.63 0.898 6.92 0.135 34.72 0.869

VP-SDE OT-ODE 100 9.95 0.064 37.49 0.918 5.39 0.099 36.15 0.887
VP-SDE OT-ODE-NRSD 100 10.96 0.052 37.95 0.916 4.87 0.089 36.52 0.884
VP-SDE VP-ODE 100 10.50 0.112 35.59 0.893 7.36 0.139 34.65 0.865
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 27: Comparison of inpainting (center mask) via OT-ODE sampling with and without null and range space
decomposition (NRSD). We use conditional OT model and σy = 0 for (first and second row) face-blurred ImageNet-
64, (third row) face-blurred ImageNet-128, and (fourth row) AFHQ.
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 28: Comparison of inpainting (center mask) via OT-ODE sampling with and without null and range space
decomposition (NRSD) for (first row) face-blurred ImageNet-64, (second row) face-blurred ImageNet-128, and (third
row) AFHQ. We use VP-SDE model and σy = 0.
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(a) Reference (b) Distorted (c) OT-ODE (d) OT-ODE-NRSD (e) ΠGDM

Figure 29: Comparison of inpainting (free-form mask) via OT-ODE sampling with and without null and range space
decomposition (NRSD) for AFHQ. We use conditional OT model and σy = 0.
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E Baselines

E.1 ΠGDM

Implementation details. We closely follow the official code available on github while implementing ΠGDM. For
noisy case, we closely follow the Algorithm 1 in the appendix of Song et al. (2022). We use adaptive weighted guidance
for both noiseless and noisy cases as in the original work. We always use uniform spacing while iterating the timestep
over 100 steps. We use ascending time from 0 to 1. Note that the original paper uses descending time from T to 0.
According to the notational convention used in this paper, this is equivalent to ascending time from 0 to 1. For the choice
of r2

t , we consider the values derived from both variance exploding formulation and variance preserving formulation.

Value of r2
t . ΠGDM sets the value of r2

t = σ2
1−t

1+σ2
1−t

for VE-SDE, where q(xt|x1) = N (x1, σ2
1−tI). We can follow the

same procedure as outlined in Song et al. (2022), and solve for r2
t in closed form for VP-SDE. We know for that VP-SDE,

q(xt|x1) = N (α1−tx1, (1 − α2
1−t)I), where αt = e− 1

2 T (t), T (t) =
∫ t

0 β(s)ds, and β(s) is the noise scale function.
Using equation 16 for VP-SDE gives r2

t = 1 − α2
1−t. We can also obtain an alternate r2

t by plugging in value of σ2
t for

VP-SDE into the expression of r2
t derived for VE-SDE, which evaluates to r2

t = 1−α2
1−t

2−α2
1−t

. Empirically, we find that r2
t for

VE-SDE marginally outperforms VP-SDE. We report performance of ΠGDM with both choices of r2
t in Table 22 to 24.

Table 22: Relative performance of ΠGDM on face-blurred ImageNet-64 with VE and VP derived r2
t with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 2× OT 6.52 0.168 30.54 0.753 5.91 0.160 30.60 0.762
Gaussian deblur OT 55.19 0.374 28.74 0.516 39.36 0.326 29.00 0.572

Inpainting-Center OT 9.25 0.111 34.13 0.863 8.70 0.109 34.17 0.864
Denoising OT 16.59 0.102 34.60 0.906 16.44 0.101 34.64 0.907

SR 2× VP-SDE 6.84 0.174 30.48 0.743 6.11 0.166 30.54 0.753
Gaussian deblur VP-SDE 54.77 0.376 28.74 0.511 39.14 0.329 28.99 0.567

Inpainting-Center VP-SDE 9.75 0.113 34.03 0.860 9.36 0.112 34.06 0.862
Denoising VP-SDE 17.19 0.107 34.25 0.901 15.54 0.102 34.41 0.906

Table 23: Relative performance of ΠGDM on face-blurred ImageNet-128 with VE and VP derived r2
t with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 2× OT 4.38 0.148 32.07 0.831 4.26 0.145 32.12 0.834
Gaussian deblur OT 30.30 0.328 29.96 0.606 22.42 0.296 30.17 0.642

Inpainting-Center OT 7.99 0.122 34.57 0.867 7.64 0.120 34.61 0.869
Denoising OT 9.60 0.107 35.11 0.903 9.30 0.104 35.21 0.906

SR 2× VP-SDE 7.55 0.183 31.61 0.785 6.14 0.168 31.79 0.803
Gaussian deblur VP-SDE 55.61 0.463 28.57 0.414 41.69 0.404 28.98 0.493

Inpainting-Center VP-SDE 9.75 0.130 34.45 0.858 9.46 0.129 34.49 0.859
Denoising VP-SDE 10.69 0.124 34.72 0.882 10.11 0.119 34.92 0.886

Choice of starting time. For OT-ODE sampling and VP-ODE sampling, we observe that starting at time t > 0
improves the performance. We therefore perform an ablation study on ΠGDM baseline, and vary the start time to verify
whether starting at t > 0 helps to improve the performance. We plot the metrics for three different measurements in
Figure 30. We observe that starting later at time t > 0 consistently leads to worse performance compared to starting at
time t = 0. Therefore, for all our experiments with ΠGDM, we always start at time t = 0.
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Table 24: Relative performance of ΠGDM on AFHQ with VE and VP derived r2
t with σy = 0.05

Measurement Model
VP VE

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

SR 4× OT 12.69 0.285 30.18 0.665 12.31 0.282 30.23 0.672
Gaussian deblur OT 24.60 0.383 28.93 0.429 19.66 0.355 29.16 0.475

Inpainting-Center OT 19.09 0.153 34.20 0.855 16.51 0.145 34.40 0.863
Denoising OT 11.20 0.159 34.49 0.876 10.92 0.153 34.78 0.883

SR 4× VP-SDE 77.49 0.469 29.34 0.469 54.12 0.413 29.73 0.549
Gaussian deblur VP-SDE 116.42 0.535 28.49 0.313 95.09 0.493 28.74 0.368

Inpainting-Center VP-SDE 57.46 0.239 32.40 0.773 56.86 0.238 32.42 0.775
Denoising VP-SDE 81.15 0.451 29.62 0.639 35.33 0.278 31.72 0.776

Figure 30: Variation in performance ΠGDM sampling with variation in start times on AFHQ dataset. We use pretrained
conditional OT model and set σy = 0.05. We observe similar trends with VP-SDE checkpoint. We plot metrics for both
choices of r2

t that can be derived from variance preserving and variance exploding formulations.

E.2 RED-Diff

Implementation details. We use VP-SDE model for all experiments with RED-Diff. We closely follow the official
code available on github while implementing RED-Diff. Similar to (Mardani et al., 2023), we always use uniform
spacing while iterating the timestep over 1000 steps. We use ascending time from 0 to 1. Note that the original paper
uses descending time from T to 0. According to the notational convention used in this paper, this is equivalent to
ascending time from 0 to 1. We use Adam optimizer and use the momentum pair (0.9, 0.99) similar to the original work.
Further, we use initial learning rate of 0.1 for AFHQ and ImageNet-128, as used in the original work, and learning rate
of 0.01 for ImageNet-64. We use batch size of 1 for all the experiments. Finally, we extensively tuned the regularization
hyperparameter λ to find the value that results in optimal performance across all metrics. We summarize the results
of our experiments in Table 25 to 30. We note that more extensive tuning may be able to find better performing
hyperparameters but this goes against the intent of a training-free algorithm.
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Table 25: Hyperparameter search for RED-Diff on face-blurred ImageNet-64 × 64 with σy = 0.05. We use learning
rate of 0.01.

λ
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 34.09 0.224 30.12 0.798 46.76 0.254 29.29 0.715
0.25 28.45 0.206 30.40 0.814 51.20 0.236 30.19 0.776
0.75 23.02 0.187 31.22 0.839 73.76 0.287 30.47 0.750
1.5 32.35 0.243 30.80 0.792 82.26 0.335 30.29 0.705
2.0 40.33 0.284 30.41 0.750 86.48 0.358 30.17 0.683

λ
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 15.71 0.155 31.74 0.840 12.47 0.085 32.24 0.907
0.25 15.56 0.155 31.73 0.839 11.80 0.083 32.36 0.908
0.75 13.31 0.139 32.65 0.857 8.43 0.062 33.65 0.932
1.5 12.18 0.119 33.97 0.881 6.11 0.041 35.34 0.958
2.0 12.87 0.119 34.19 0.886 6.02 0.041 35.64 0.964

Table 26: Hyperparameter search for RED-Diff on face-blurred ImageNet-64 × 64 with σy = 0. We use learning rate
of 0.01.

λ
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 11.74 0.224 30.12 0.798 15.39 0.134 31.99 0.879
0.25 12.65 0.130 32.34 0.886 29.56 0.236 30.19 0.776
0.75 20.36 0.187 31.22 0.839 55.43 0.287 30.47 0.750
1.5 33.13 0.243 30.80 0.792 71.64 0.335 30.29 0.705
2.0 41.56 0.288 30.46 0.752 78.55 0.358 30.22 0.685

λ
Inpainting-Center, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 7.29 0.079 39.14 0.925
0.25 7.40 0.155 31.73 0.839
0.75 8.47 0.083 38.59 0.922
1.5 10.75 0.095 37.42 0.916
2.0 12.54 0.119 34.19 0.886
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Table 27: Hyperparameter search for RED-Diff on face-blurred ImageNet-128 × 128 with σy = 0.05. We use learning
rate of 0.1.

λ
SR 2×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 23.25 0.272 30.12 0.731 37.83 0.42 28.54 0.473
0.75 14.56 0.224 30.71 0.782 21.43 0.229 31.41 0.807
1.5 10.54 0.182 31.82 0.852 22.85 0.247 31.65 0.809
2.0 11.65 0.187 31.93 0.859 24.71 0.259 31.61 0.802

λ
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 19.68 0.191 31.75 0.795 12.83 0.134 32.27 0.854
0.75 19.03 0.202 31.36 0.779 12.69 0.14 32.09 0.846
1.5 16.33 0.189 31.81 0.794 10.67 0.121 32.89 0.874
2.0 14.63 0.171 32.42 0.819 9.19 0.105 33.52 0.895

Table 28: Hyperparameter search for RED-Diff on face-blurred ImageNet-128 × 128 with σy = 0. We use learning
rate of 0.1.

λ
SR 2×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 3.90 0.082 34.47 0.922 4.19 0.085 34.68 0.929
0.75 6.52 0.105 33.54 0.905 12.59 0.177 32.71 0.864
1.5 10.46 0.142 32.98 0.894 19.29 0.225 32.15 0.831
2.0 13.08 0.165 32.65 0.884 22.57 0.245 31.94 0.816

λ
Inpainting-Center, σy = 0 Inpainting-Freeform, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 5.39 0.068 38.91 0.928 8.94 0.162 35.54 0.830
0.75 5.52 0.073 38.11 0.924 9.26 0.166 35.05 0.826
1.5 6.09 0.079 37.32 0.920 10.13 0.172 34.58 0.821
2.0 6.68 0.083 36.87 0.917 10.87 0.176 34.30 0.818
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Table 29: Hyperparameter search for RED-Diff on AFHQ with σy = 0.5. We use learning rate of 0.1.

λ
SR 4×, σy = 0.05 Gaussian deblur, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 21.59 0.385 29.51 0.607 17.36 0.379 29.95 0.639
0.25 22.47 0.374 29.66 0.635 15.81 0.341 30.15 0.645
0.75 20.84 0.331 29.97 0.675 25.41 0.366 29.76 0.588
1.5 22.46 0.355 29.68 0.642 38.66 0.409 29.34 0.525
2.0 25.02 0.376 29.49 0.618 45.01 0.427 29.18 0.500

λ
Inpainting-Center, σy = 0.05 Denoising, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.1 28.39 0.216 31.53 0.756 8.32 0.159 32.18 0.827
0.25 28.85 0.217 31.51 0.755 8.35 0.161 32.16 0.826
0.75 28.80 0.218 31.64 0.759 7.94 0.156 32.35 0.833
1.5 28.74 0.205 32.19 0.784 6.63 0.138 33.12 0.862
2.0 28.55 0.190 32.63 0.802 5.71 0.124 33.70 0.882
2.5 28.71 0.177 32.99 0.818 4.93 0.111 34.18 0.899

Table 30: Hyperparameter search for RED-Diff on AFHQ with σy = 0. We use learning rate (lr) of 0.1 unless mentioned
otherwise.

λ
SR 4×, σy = 0 Gaussian deblur, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.005 11.67 0.197 32.93 0.837 14.69 0.278 31.73 0.760
0.05 8.65 0.191 32.21 0.801 11.67 0.268 31.30 0.731
0.1 9.65 0.204 31.84 0.781 11.53 0.273 31.05 0.711

0.25 11.65 0.222 31.53 0.768 13.22 0.293 30.63 0.675
0.75 14.98 0.274 30.72 0.726 23.34 0.351 29.91 0.598
1.5 19.40 0.332 29.95 0.665 36.96 0.402 29.39 0.529
2.0 22.72 0.361 29.65 0.632 43.64 0.422 29.22 0.504

λ
Inpainting-Center, σy = 0, lr=0.01 Inpainting-Freeform, σy = 0

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

0.005 8.53 0.050 38.89 0.951 7.22 0.091 36.89 0.892
0.05 8.53 0.050 38.89 0.951 7.27 0.090 36.88 0.892
0.1 8.53 0.050 38.88 0.951 7.23 0.091 36.82 0.891

0.25 8.53 0.050 38.83 0.950 7.32 0.094 36.69 0.889
0.75 8.88 0.056 38.60 0.948 7.74 0.102 36.26 0.884
1.5 10.32 0.071 38.04 0.942 8.41 0.112 35.69 0.877
2.0 11.62 0.084 37.54 0.937 8.76 0.119 35.37 0.872
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F Additional Background

In this section, we follow the notation used in the prior work by Lipman et al. (2022).

Continuous Normalizing Flows (CNFs). A Continuous Normalizing Flow (Chen et al., 2018a) is a time-dependent
diffeomorphic map ϕt : [0, 1] × Rd → Rd that is defined by the ODE:

d

dt
ϕt(x) = vt(ϕt(x)); ϕ0(x) = x (20)

where x ∈ Rd and vt : [0, 1] × Rd → Rd is a time-dependent vector field that is usually parametrized with a neural
network. The generative process of a CNF involves sampling from a simple prior distribution x0 ∼ p0(x0) (e.g.
standard Gaussian distribution) and then solving the initial value problem defined by the ODE in Eq. (20) to obtain
a sample from the target distribution x1 ∼ p1(x1). Thus, a CNF reshapes a simple prior distribution p0 to a more
complex distribution pt, via a push-forward equation based on the instantaneous change of variables formula.

pt = [ϕ]∗p0 (21)

[ϕ]∗p0(x) = p0(ϕ−1
t (x))det

[
∂ϕ−1

t

∂x
(x)

]
(22)

CNFs are usually trained by optimizing the maximum likelihood objective. As shown in Chen et al. (2018a), the exact
likelihood computation can be done via relatively cheap operations despite the Jacobian term. However, this requires
restricting the architecture of the neural network to constrain the Jacobian term. FFJORD (Grathwohl et al., 2018)
improves upon this by proposing a method that uses Hutchinson’s trace estimator to compute log density, and allows
CNFs with free-form Jacobians, thereby removing any restrictions on the architecture. This approach has difficulties for
high-dimensional images where the trace estimator is noisy. Flow Matching provides an alternative, scalable approach
to training CNFs with arbitrary architectures.

Flow Matching. Suppose we have samples from an unknown data distribution x1 ∼ q(x1). Let pt denote a probability
path from the prior distribution p0 to the data distribution p1 that is approximately equal to q. Flow Matching loss is
defined as

LF M = Et,pt(x)∥vt(x; θ) − ut(x)∥2 (23)

where ut(x) is a vector field that generates the probability path pt(x), and θ denotes trainable parameters of the CNF.
In practice, we usually do not have any prior knowledge on pt and ut, and thus this objective is intractable. Inspired by
diffusion models, Lipman et al. (2022) propose Conditional Flow Matching, where both the probability paths and the
vector fields are conditioned on the sample x1 ∼ q(x1). The exact objective for Conditional Flow matching is given by

LCF M = Et,q(x1),pt(x|x1)∥vt(x; θ) − ut(x|x1)∥2 (24)

where, pt(x|x1) denotes a conditional probability path, and ut(x|x1) denotes the corresponding conditional vector
field that generates the conditional probability path. Interestingly, both the loss objectives in Eq. (24) and Eq. (23) have
identical gradients w.r.t. θ. More importantly, past research has proven that ut(x) = E[ut(x|x1)|xt = x]. The optimal
solution to the conditional Flow Matching recovers ut(x) and therefore vt(x; θ) generates the desired probability path
pt(x).Thus, we can train a CNF without access to the marginal vector field ut(x) or probability path pt(x). Compared
to the prior approaches to train flow models, Flow Matching allows simulation-free training with unbiased gradients,
and scales easily to high dimensions.
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G Additional Related Work

Inverse problems are ubiquitous in various domains like image processing (Krishnan & Fergus, 2009; Rick Chang
et al., 2017; Gilton et al., 2019; Bertalmio et al., 2000; Yang et al., 2010), medical imaging (Ribes & Schmitt, 2008;
Jin et al., 2017; Liang et al., 2020; Song et al., 2021c), and remote sensing (Krasnopolsky, 2009; Krasnopolsky &
Schiller, 2003; Dong et al., 2018). Many approaches have been developed over years to solve inverse problems.
Variational methods (Agrawal et al., 2022) formulate the inverse problem as an optimization task with a regularization
term (Benning & Burger, 2018) for certain desirable properties in the solution. Some of the well-known frameworks in
this category include plug-and-play prior (P 3) (Venkatakrishnan et al., 2013; Chan et al., 2016; Kamilov et al., 2017;
Meinhardt et al., 2017; Zhang et al., 2017; Vidal et al., 2020), deep image prior (DIP) (Ulyanov et al., 2018; Van Veen
et al., 2018), and regularization by denoising (RED) (Romano et al., 2017; Cohen et al., 2021). Subsequent works,
inspired by these prior works, have extended these frameworks to include flow models (Whang et al., 2021a;b), optimal
transport (Vidal et al., 2020), and more recently, diffusion models (Mardani et al., 2023; Graikos et al., 2022; Liu et al.,
2023b) as prior. Optimization-based inversion methods were also extended to include GANs (Bora et al., 2017; Shah &
Hegde, 2018; Raj et al., 2019; Daras et al., 2021; Pan et al., 2021). Optimization-based approaches for solving inverse
problems, despite their widespread popularity, have certain drawbacks. These methods are often computationally
expensive as they involve optimizing an objective, which might require many steps to converge to a solution. Further,
designing the optimization objective itself can be challenging. In addition, these methods are sensitive to the choice of
hyperparameters like regularization parameter, as noted in our experiments with RED-Diff (Mardani et al., 2023).

With emergence of diffusion models, another family of gradient-based approaches for inverse problems have emerged.
These approaches do not explicitly optimize an objective, i.e., they are training-free, but they use gradients to guide
the sampling process with diffusion model as prior. These approaches usually involve iterative denoising through a
SDE and gradient-based correction that is applied at each step of the process. Some of the approaches in this category
include Diffusion Posterior Sampling (DPS) (Chung et al., 2022a), Manifold Constraint Gradient (MCG) (Chung et al.,
2022b), ΠGDM (Song et al., 2022), and shortcut sampling for diffusion (SSD) (Liu et al., 2023a). Our proposed
approach for solving linear inverse problems with flow models also falls under this category. Computing gradients
at each step of denoising can be expensive. There are many gradient-free iterative methods for inversion that utilize
diffusion models as generative prior. Some prominent approaches in this category are denoising diffusion restoration
models (DDRM) (Kawar et al., 2022) and denoising diffusion null-space model (DDNM) (Wang et al., 2022). We have
covered important distinctions between these approaches briefly in Sec. 5 of the main paper.

The aforementioned approaches for solving inverse problems with diffusion models use pre-trained diffusion models
and are not specific to a particular measurement operator. There are works such as (Saharia et al., 2021; 2022a) that
train a conditional diffusion model to solve a specific inverse problem. This approach for solving inverse problems is
more computationally expensive as it involves training a model from scratch. Further, the resulting model is specific to
the measurement operator used in the training data and cannot be reused to solve inverse problems with a different
measurement operator.In addition to the above, there is also a line of research that considers the more general setting of
blind inverse problem where the method to solve an inverse problem is agnostic to the measurement operator. Some
works that have advanced this line of research are Chung et al. (2023b); Gan et al. (2024); Laroche et al. (2024).
Finally, we note that there are previously proposed methods such as Whang et al. (2021a;b); Hong et al. (2023) which
solve inverse problems using CNFs. As noted in these prior works, using CNFs for solving inverse problems presents
computational challenges as well as challenges due to restricted architecture. In this work, we consider CNFs that are
trained with flow matching (or similarly converted diffusion models) which are more computationally more efficient
and do not suffer from drawbacks observed due to restricted architectures.
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