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Abstract

Emerging wireless AR/VR applications require real-time
transmission of correlated high-fidelity speech from multi-
ple resource-constrained devices over unreliable, bandwidth-
limited channels. Existing autoencoder-based speech source
coding methods fail to address the combination of the fol-
lowing - (1) dynamic bitrate adaptation without retraining
the model, (2) leveraging correlations among multiple speech
sources, and (3) balancing downstream task loss with realism
of reconstructed speech. We propose a neural distributed prin-
cipal component analysis (NDPCA)-aided distributed source
coding algorithm for correlated speech sources transmitting
to a central receiver. Our method includes a perception-aware
downstream task loss function that balances perceptual real-
ism with task-specific performance. Experiments show sig-
nificant PSNR improvements under bandwidth constraints
over naive autoencoder methods in task-agnostic (19%) and
task-aware settings (52%). It also approaches the theoretical
upper bound, where all correlated sources are sent to a single
encoder, especially in low-bandwidth scenarios. Additionally,
we present a rate-distortion-perception trade-off curve, en-
abling adaptive decisions based on application-specific real-
ism needs.

1 Introduction
Upcoming use cases in wireless augmented reality (AR)
and virtual reality (VR) (Hu et al. 2020), as well as other
immersive applications, often require real-time transmis-
sion of high-fidelity speech data from resource-constrained
edge devices, such as AR glasses or VR headsets, over in-
herently unreliable and bandwidth-limited wireless chan-
nels (Petrangeli et al. 2019). Efficient and adaptive trans-
mission methods, which can handle dynamic channel con-
ditions and limited computational resources, are critical to
prevent disruptions that can degrade the immersive experi-
ence. Reliable speech source coding for transmission over
unreliable dynamic wireless channels is thus the need of the
hour (Weng et al. 2023; Wang et al. 2023; Bourtsoulatze,
Kurka, and Gündüz 2019).
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Current research in deep learning-aided source coding
(Xiao et al. 2023; Wu et al. 2023; Yue et al. 2023; Gündüz
et al. 2024) has advanced compression strategies for speech
data under fixed maximum output bitrates. However, three
critical aspects for practical variable bitrate compression in
real-world wireless systems remain overlooked: (1) A ro-
bust framework for deriving maximum permissible bitrate
based on wireless channel characteristics, such as dynamic
channel capacity computed from channel state information
(CSI), is missing. (2) Existing autoencoder-based methods
are designed for fixed bitrates with predetermined output
dimensions, requiring retraining for every new dimension,
which is impractical in dynamic environments. (3) Scenarios
with multiple correlated sources, like speech captured by de-
vices such as VR headsets, AR glasses, and smartphones, are
largely ignored. Exploiting correlations among these sources
can improve compression efficiency and bandwidth utiliza-
tion, but most methods treat sources independently. While
some works address correlated sources (han Li et al. 2023;
Whang et al. 2024), these techniques have not been applied
to speech data.

Recent advancements in source coding have moved be-
yond traditional methods focused solely on bit reconstruc-
tion accuracy (Salehkalaibar et al. 2023; Zhang et al.
2021). For AR/VR and next-generation wireless applica-
tions, where tasks like speech enhancement, source separa-
tion, cloning, and generation are critical, task-aware source
coding directly enhances task-specific performance. This ap-
proach enables higher compression rates, improved band-
width efficiency, and superior task performance. For speech
source coding, preserving perceptual realism is equally es-
sential (Zhang et al. 2021). Reconstructed speech must
sound natural to maintain authenticity, making realism
preservation a vital complement to task-aware optimization.
Perception-aware source coding has introduced perceptual
loss to maintain audio realism, showing promising results.
However, the interaction between perceptual loss and task-
aware optimization in distributed correlated source coding
for speech remains unexplored. Addressing this gap offers
an opportunity to design systems that balance task per-
formance and perceptual realism in dynamic, bandwidth-
constrained wireless channels.
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Figure 1: End to end proposed pipeline for distributed downstream speech enhancement using perceptual loss

In this paper, we propose a neural distributed principal
component analysis (NDPCA)-aided source coding algo-
rithm for correlated speech sources transmitting to a central
receiver. We also introduce a perception-aware downstream
task loss function for training learner encoders and decoders.
Experimental evaluations demonstrate:

• The proposed NDPCA-aided distributed source coding
algorithm achieves 19% higher average PSNR in task-
agnostic settings under bandwidth constraints compared
to naive autoencoder-based source coding.

• In task and perception-aware settings, the proposed algo-
rithm achieves 52% higher PSNR compared to the base-
line and approaches the performance of the upper bound
(all sources combined at one encoder), especially in low-
bandwidth scenarios.

• The rate-distortion-perception trade-off curve illustrates
the algorithm’s ability to balance perception and recon-
struction errors, enabling adaptive decision-making un-
der varying realism constraints.

These results highlight the algorithm’s effectiveness in op-
timizing compression, realism, and task performance under
bandwidth-constrained scenarios.

2 Related Work

2.1 Wireless CSI based rate adaptation/source
coding

(Gündüz et al. 2024) provides a comprehensive survey of
wireless CSI-based rate adaptation methods used in current
research (He, Yu, and Cai 2024). (Yue et al. 2023) pro-
poses and implements a neural joint source-channel coding-
based talking head semantic transmission system for vary-
ing SNR levels, however, the bandwidth is assumed to be
largely constant and pre-provided. (Li et al. 2024) imple-
ments reinforcement learning (RL)-based variable bitrate
video chunk sizing for efficient transmission, however, as-
suming the bandwidth to be pre-provided, and not comput-
ing it from wireless channel capacity measurements.

2.2 Speech source coding
Current research extensively explores single source single
receiver source coding for speech data. Works like (Xiao
et al. 2023; Wu et al. 2023; Casebeer et al. 2021) imple-
ment efficient source coding under noisy channels, while
(Salehkalaibar et al. 2023; Zhang et al. 2021) analyze rate-
distortion-perception trade-offs. However, these approaches
rely on fixed output encoder representations followed by en-
tropy coding, which is less efficient than variable output di-
mensional representations. Designing such variable output
representations with existing methods would require creat-
ing new encoder models for every output dimension, making
it impractical. Additionally, most research targets variational
autoencoder-based methods, unlike our proposed algorithm,
which employs NDPCA-aided autoencoder mechanisms for
fixed representations instead of stochastic latent-based gen-
eration.

2.3 Distributed source coding
There is a lack of prior work on distributed source cod-
ing for speech data under unreliable channel conditions.
(han Li et al. 2023) introduces and implements a distributed
source coding algorithm utilizing the correlation between
multiple participating sources using NDPCA, and this be-
comes the basis of our proposed algorithm. We utilize the
NDPCA-aware distributed source coding mechanism from
(han Li et al. 2023), while modifying the distributed au-
toencoder design and introducing task-perception loss for
speech-specific sources. In summary, there is a lack of cur-
rent research which implements practical downstream task-
aware distributed source coding schemes under dynamic
bandwidth wireless channels, specifically targeted to speech
data, and preserves high perceptual quality at the receiver
post decoding.

3 Wireless Channel-Aware Distributed
Source Coding

3.1 Channel State Information (CSI)-aware
Dynamic Bitrate

Fig. 5 illustrates a distributed source coding scenario where
multiple microphones at different room locations record



the same conversational speech. Each source encodes its
recorded speech and transmits it to a central receiver for
decoding and downstream tasks, such as speech enhance-
ment. We assume perfect wireless CSI availability at the
receiver, which is crucial for efficient source coding. Fluc-
tuating channel capacity, inferred from the CSI, determines
the total uplink bitrate which has to be optimally allocated
across all the sources. The variable dimension encoder out-
put is coded for transmission using entropy coding. From
rate-distortion (Zamir, Kochman, and Erez 2008), we have

R(D) ≤ 1

2
log2(

σ2

D
) (1)

where R(D) represents the minimum number of bits per
symbol required to maintain a quantization distortion less
than or equal to D, and σ2 is the source variance.

Now, if the encoder output at source s at time t has di-
mension ls,t, and the outputs are sent once every T second,
the bitrate required by that source is given by

Es,t =
ls,tηR(D)

T
≤

ls,tη log2(
σ2

D )

2T
(2)

where η is the number of symbols per floating point output.
For the total uplink bit rate constraint to be met, the sum of
the bit rates of the individual sources should be less than or
equal to the total capacity of the channel at time t, measured
as Ct at the receiver. Therefore, the sum of the encoder out-
put dimensions of all the sources can be given as∑

s

ls,t ≤
∑
s

lGaussian,s,t =
2CtT

η log2(
σ2

D )
(3)

We design the encoders for the worst case scenario, that is,
where the encoder output follows a Gaussian distribution,
and thus keep the number of output dimensions to be time-
varying and equal to lGaussian,s,t. Fig. 3a shows an experi-
mentally obtained graph of channel capacity varying across
time in a real-world wireless channel, and the sum of output
dimensions of all the source encoders varying accordingly,
as in Eq. (3). To simply things, henceforth in the paper, by
bandwidth, we would refer to the number of output floating
point numbers that are being transmitted/received.

3.2 NDPCA-aided Distributed System Model
We design a neural distributed spectral autoencoder with en-
coders at the transmitting sources and a decoder at the cen-
tral receiver, as shown in Fig. 1. The autoencoder processes
the spectrogram’s magnitude and phase, which include fre-
quency bins, channels, batch size, and timestamps. To han-
dle real-time dynamic bandwidth allocation without having
to retrain the autoencoder model for each new output dimen-
sion requirement, we apply neural distributed principal com-
ponent analysis (NDPCA) (han Li et al. 2023) on the latent
embeddings from the encoders. The architecture details of
the encoder, decoder, and the NDPCA mechanism for effi-
cient, dynamic output dimensions are elaborated in the fol-
lowing paragraphs.

NDPCA-aided Distributed Encoder. The designed
distributed neural encoder comprises two steps – an indi-
vidual multichannel spectral encoder at each of the sources,
followed by one distributed PCA encoder.
(a) Individual Spectral Encoder. We use a multichannel
spectral autoencoder leveraging a deep residual-based
encoder-decoder architecture for feature extraction, repre-
sentation learning, and data reconstruction. The encoder
architecture (E) employs a deep residual network with
an initial frequency projection followed by convolutional
and residual blocks. The input tensor x ∈ RB×C×F×T ,
representing batch size B, channels C, frequency bins F ,
and time steps T , is initially reshaped to handle the spectral
dimensions effectively.

1. Initial Frequency Projection: We project the frequency
dimension to a lower dimension:

f = ReLU(W2 · ReLU(W1 · x)) ∈ RB×C×128×T (4)

where W1 ∈ RF×256 and W2 ∈ R256×128 are learned
weights.

2. Residual and Convolutional Layers: The frequency-
projected data is passed through temporal convolutional
layers and residual blocks. Each residual block Ri intro-
duces non-linearity and stability in feature transforma-
tion, defined as:

Ri(h) = ReLU(L2(Conv(ReLU(L1(Conv(h))))))
(5)

where L1 and L2 are layer normalization layers. The out-
put of the convolutional layers and residual blocks is then
flattened and transformed to the latent space z ∈ RB×Z .

(b) Distributed PCA encoder We train a single distributed
encoder-decoder model, as described above, which would
be used for variable bit rate requirements. We derive the to-
tal uplink bandwidth, B derived from channel capacity at
the central receiver. The encoder output latent vector zi ∈
Rvi ∀i ∈ {1, 2, . . . S} at each source, where S is the total
number of sources and vi is the output dimension of the ith

source’s encoder. PCA is applied to each of the source en-
coder output latent vectors, followed by a distributed selec-
tion of the B maximum correlation components from across
all the PCA components across all the sources.

ẑi = Ui ·Σi ·Vi
T (6)

where Ui, Σi, and Vi
T are the principal vectors and prin-

cipal component correlations obtained at the ith source. On
selecting the B maximum PCA components from across all
the components from all the sources, we get the optimum
correlations (the selected singular values), the optimum di-
rections to transform the latent vectors to (the corresponding
columns of U ), as well as the individual allocated optimal
bandwidth for each source (number of components chosen
from each source). The selected PCA projection vetors from
each of the sources are then transmitted over wireless chan-
nels to the single receiver decoder, which concatenates the
individual incoming vectors to construct the decoder input,
ẑ.



Decoder The Spectral Decoder (D) reconstructs the origi-
nal data from the latent representation (ẑ), aiming to achieve
perceptual fidelity in the spectro-temporal domain. The de-
coder inverts the transformations applied by the encoder, uti-
lizing the latent vector for reconstructing spectral data.

1. Latent Projection and Residual Blocks: The decoder
first projects the latent space vector back to the temporal
resolution:

x0 = ReLU(W · ẑ) ∈ RB×128×T (7)

where W ∈ RZ×(128×T ) is a learned weight. The tempo-
ral representations are processed through residual blocks
similar to the encoder.

2. Reconstruction with Frequency Projection: Finally,
the data is reshaped and projected back to the frequency
dimension:

xout = Conv2D(Wfreq · x0) ∈ RB×C×F×T (8)

where Wfreq maps the temporal features back to the spec-
tral domain, ensuring that the output maintains the origi-
nal structure of the data.

4 Task and Perception-aware Loss Function
Directly optimizing the end to end NDPCA-aided dis-
tributed encoder-decoder model for the required down-
stream task enables better compression performance than
task-agnostic source coding. However, since we are deal-
ing with human speech reconstruction at the central receiver,
it is also crucial to preserve realism, that is, the recon-
structed speech at the decoder output should sound human
speech-like. To that end, we propose a task and perception-
aware loss function to train the distributed encoder-decoder
pipeline. The loss function comprises three parts - a task-
agnostic loss, a downstream task loss, as well as a perceptual
loss component. We formulate each of these components in
the subsequent subsections, after explaining an initial fea-
ture extraction on the original speech data, which is done in
the very beginning of the entire pipeline.

Feature Extraction. The initial step in this architecture is
transforming the speech signal into the time-frequency do-
main using STFT given as:

X(f, τ) =

∞∑
n=−∞

x(n) · w(n− τ)e−j2πfn (9)

where X(f, τ) represents the time-frequency domain repre-
sentation of the discrete-time signal x(n). Here, w(n− τ) is
a window function centered at τ , enabling localized analy-
sis of x(n), and e−j2πfn is a complex exponential isolating
the frequency component f . The STFT captures how the fre-
quency content of x(n) evolves over time. We use STFTs as
source encoder inputs, and recover reconstructed STFTs as
decoder outputs. The STFT window length was 2048 with
hop length 512 and window length 2048.

4.1 Task Agnostic Loss
The task agnostic loss for the distributed autoencoder model
is divided into following subparts:

1. Mean Squared Error (MSE): The MSE loss calcu-
lates the average squared difference between the origi-
nal ground truth speech data, that is, the STFT matrix of
the clean speech, and the reconstructed STFT at the out-
put of the decoder at the central receiver. For ground truth
speech STFT xgt and reconstructed decoder output STFT
xdec, the MSE loss LMSE is defined as:

LMSE =
1

2
E

 B∑
i=1

F∑
j=1

T∑
k=1

(xgt,ijk − xdec,ijk)
2

 (10)

where B is the batch size, F is the frequency dimension,
T is the temporal dimension, and the expectation is over
the dataset. The MSE loss is representing the simple task-
agnostic reconstruction loss.

2. Cosine Similarity Loss: We want to train the NDPCA-
aided distributed encoder-decoder model such that the
higher compression performance is achieved utilizing the
correlation between the sources. To ensure this, we in-
corporate a subcomponent in the loss function which
would penalize high correlation between the latent em-
bedding vector output by the different source encoders.
Cosine similarity compares the similarity between two
latent vectors z1 and z2, providing a measure of direc-
tional alignment. The Cosine loss Lcos is:

Lcos = 1− E

 ∑
i,j∈{1,2,...S}

zi · zj
∥zi∥∥zj∥

 (11)

where S is the total number of sources, and zi is the en-
coder output for the ith source.

3. Spectral SNR: Spectral SNR measures the fidelity of
the reconstructed spectral data relative to the original, in
decibels (dB). The spectral SNR loss is given by:

LSNR = 10 log10

(
E
[
(xgt − xdec)

2
]

E [xgt
2]

)
(12)

4. Peak Signal-to-Noise Ratio (PSNR): PSNR represents
the ratio between the maximum possible value and the
reconstruction error in dB. The PSNR loss is given by:

LPSNR = −10 log10

(
x2

max

LMSE

)
(13)

where xmax is the maximum possible value of the ground
truth speech STFT. Each of the aforementioned subparts
contributes uniquely to achieving the balance between
accurate spectral reconstruction and regularized latent
representations.



R
ec

on
st

ru
ct

ed
 D

at
a

Pa
dd

in
g

M
ag

ni
tu

de
Ph

as
e

In
ve

rs
e 

ST
FT

 (T
im

e 
D

om
ai

n

Si
gn

al
)

Speech Enhancement

MSE

To
ta

l L
os

s

Clean Data

MS-STFT Discriminator

Perceptual Loss

Figure 2: Proposed task aware speech enhancement using
perceptual loss.

4.2 Downstream Task: Speech Enhancement with
Score-Based Generative Model

We choose speech enhancement, that is, the task of extract-
ing the clean speech signal from the background noise, as
our downstream task of interest. This makes sense from a
practical standpoint, considering that speech enhancement
serves as a common initial block in multiple speech pipeline
tasks in wireless AR/VR. To do speech enhancement, we use
a score-based Langevin diffusion model (Welker, Richter,
and Gerkmann 2022a) directly on the decoder output re-
constructed STFT. The score output by the diffusion model
learns to estimate the gradient of the log probability density
of the noise-removed clean speech given the decoder output
reconstructed noisy speech.

Forward Process. Here we refer to the decoder output
STFT as the “noisy” spectrogram, and the clean speech
STFT, produced by the downstream speech enhancement
diffusion model, as the clean spectrogram. The forward pro-
cess of the score-based Langevin diffusion model is imple-
mented as an Ornstein-Uhlenbeck (OU) SDE:

dx = −θ(y − x)dt+ σ(t)dw, (14)

where x is the clean spectrogram, y is the noisy spectrogram,
θ is the stiffness parameter, σ(t) is the time-dependent noise
level, and w is the Wiener process. It adds noise gradually to
the spectrogram in subsequent timesteps as:

σ(t) = σmin

(
σmax

σmin

)t
√
2 log

(
σmax

σmin

)
(15)

where σmin and σmax are the minimum and maximum noise
levels.

Score Network. The score network is based on a speech
enhancement diffusion model (Welker, Richter, and Gerk-
mann 2022b). It uses time embedding and conditioning the
noisy spectrogram to output the score estimate (gradient of
log probability). The score computation is given as:

sθ(x, y, t) = −σ(t)2∇x log p(x|y, t) (16)

where sθ represents the score function, σ2(t) represents
time-dependent noise schedule, ∇x log p(x|y, t) represents
gradient of the log-probability of the clean spectrogram x
given the noisy spectrogram y. The score network learns

to estimate ∇x log p(x|y, t). This is used to estimate the
enhanced audio from the reconstructed noisy signal. The
speech enhancement task loss component is computed based
on denoising score matching as:

L = E
[
∥sθ(x, y, t) + σ(t)2∇x log p(x|y, t)∥2

]
(17)

4.3 Perceptual Loss: Preserving Realism

The last part of the loss function deals with preserving
human-like speech, or realism, at the decoder output. Note
that, to stay task-agnostic with the perceptual loss com-
ponent, we intend to preserve realism at the decoder out-
put, not at the downstream speech enhancement diffusion
model output. The MS-STFT Discriminator (Défossez et al.
2022)(Multi-Scale Short-Time Fourier Transform Discrim-
inator) is a neural network architecture designed to extract
perceptual features from audio data by leveraging multi-
resolution frequency analysis and convolutional operations.

Hierarchical Convolution Mapping. To extract mean-
ingful perceptual features from the decoder output
speech STFT, we use a hierarchical convolution map-
ping(Kavukcuoglu et al. 2010). Hierarchical convolutional
mapping involves applying a series of stacked convolutional
layers to extract progressively abstract and meaningful fea-
tures. Each convolutional operation extracts localized fea-
tures from the spectrogram using a kernel as:

yij =

kh∑
m=0

kw∑
n=0

x(i+m)(j+n) · wmn, (18)

where xij is the input at position (i, j), wmn represents
the kernel weights, and kh, kw denote the kernel height and
width. This operation slides the kernel over the input, com-
puting a weighted sum of overlapping regions to produce
the output yij . The use of progressively abstract feature ex-
traction at the later layers of the hierarchical CNN is partic-
ularly suited for speech, which comprises hierarchical fea-
tures, starting from localized phonemes, to broader semantic
features across words or sentences spoken.

Multi-Scale Discriminator The MS-STFT Discriminator
contains multiple discriminators, each configured with dif-
ferent STFT parameters. For each discriminator Di:

Li, Fi = Di(x), (19)

where Di(x) represents the i-th discriminator applied to in-
put x, producing logits Li and feature maps Fi. This for-
mulation captures both the decision output and intermediate
perceptual features extracted by the discriminator. The input
to the model is x ∈ RB×1×T , producing complex spectro-
grams CB×2×F×T ′

. It uses N -layer 2D convolutions with
kernel size k, stride s, dilation d, and normalization to itera-
tively map features CB×C×T ′×F → CB×C′×T ′′×F ′

. Multi-
ple discriminators at M -scale STFT resolutions capture hi-
erarchical time-frequency features, yielding logits and fea-
ture maps across scales.



Perceptual Loss. We extract perceptual features of both
the ground truth and the enhanced audio after passing it
through the discriminator. The difference of their logits is
then minimized to compute the perceptual loss. The logits
are computed using MS-STFT Discriminator. Fi at interme-
diate layers represent perceptual features of the audio. These
features correspond to local energy distributions in the spec-
trogram, harmonic structures and transient details. For the
l-th layer, the feature map Fl is defined as:

Fl = ϕ(Wl ∗ Fl−1 + bl), (20)

where ϕ is the activation function, Wl, bl are the weights and
biases and ∗ is the convolutional operator. These hierarchical
features capture perceptual cues such as pitch, timbre, and
temporal modulations.

Logits as Output. The final output logits L are computed
after the last convolutional layer. Each discriminator pro-
duces a scalar logit Li indicating the realism of the input
audio:

L = Conv2D(Fl). (21)
The logits are trained using adversarial objectives with real
and generated signals as inputs:

LD = −E[logD(xreal)]− E[log(1−D(xfake))]. (22)

By employing multiple STFT configurations, the model cap-
tures audio features across a wide range of temporal and
spectral resolutions. The convolutional layers learn hierar-
chical features, progressively refining perceptual represen-
tations and the normalization techniques ensure stable gra-
dient flows, improving convergence. The overall model ar-
chitecture has been illustrated in Fig. 2.

5 Experiments
5.1 Baseline Methods
The lack of prior work in task and perception-aware dis-
tributed source coding for speech data makes it impossible
to make a fair comparison with the existing source coding
baselines. Hence, we design the following two approaches
as baselines.

Joint Autoencoder (JAE) The joint autoencoder ap-
proach, which would be referred to as joint E1D1 hence-
forth, deals with the simple case where all the speech data
from all the sources are combined as a single super source,
and processed by a single encoder for source coding. This
is the best case when it comes to dynamic bandwidth-based
source coding rate adaptation, since all the information is
available at a single source. Thus, in this case, we take the
encoder output, followed by simple PCA, which chooses
the top k principal components, where k is the maximum
available bandwidth. This best case forms an upper bound
on our proposed NDPCA-based distributed source coding
architecture, where the individual sources cannot commu-
nicate with each other. For joint E1D1, the input spectral
data includes magnitude and phase components and is repre-
sented as X = [Xm,Xp] ∈ RB×2×F×T×S , where B is the
batch size, 2 represents the channels (magnitude and phase),
F is the number of frequency bins, T is the number of time

frames and S is the number of sources. A single encoder pro-
cesses the input X to generate a latent representation Z, from
which the top k PCA components are transmitted over the
channel, and decoded at the receiver. This process is mathe-
matically expressed as:

Z = Encoder(X), Ẑ = PCA(Z), X̂ = Decoder(Ẑ). (23)

Distributed E2D1 & E4D1 without NDPCA. Our sec-
ond category of baselines involves naive separated encoders
for every individual source, or partially separate encoders
combining a subset of the sources, without distributed PCA.
Since in our experiments, we deal with speech recorded by
4 different mics (sources), we refer to these baselines as
E4D1 and E2D1. E4D1 has a separate encoder for each of
the mics, and each encoder processes the spectrogram of the
recorded speech by that mic to extract latent representations.
For the E4D1 architecture, the spectral data input consists
of magnitude and phase components, represented as Xi =
[Xi,m,Xi,p] ∈ RB×2×F×T , i ∈ {1, 2, 3, 4}. Each input
Xi is processed by its corresponding encoder to produce
latent representations, Zi as Zi = Encoderi(Xi), i ∈
{1, 2, 3, 4}.The latent features are decomposed into pri-
vate and shared components as Zi = [Zi,p,Zi,s], i ∈
{1, 2, 3, 4}. and are then concatenated as:

Zi = [Zi,p,Zi,s], i ∈ {1, 2, 3, 4}. (24)

E2D1 follows the architecture along the same lines with a
small difference of two encoders instead of four.

5.2 Experimental Setup
The experimental setup leverages a structured spectral
dataset comprising clean and noisy audio signals. Clean
spectral samples Xclean ∈ R1025×600 were paired with their
noisy counterparts X

(c)
noisy, sourced from four distinct chan-

nels, c ∈ {3, 4, 5, 6}, ensuring consistent input dimensions
through zero-padding where necessary. Training was per-
formed with a batch size of N = 16 and a learning rate of
η = 2× 10−4, over T = 100 epochs. Metrics such as mean
squared error LMSE, nuclear norm ∥Z∥∗, cosine similarity,
spectral SNR, magnitude loss Lmag, phase loss Lphase, and
PSNR for both clean and noisy reconstructions were mon-
itored. Training utilized PyTorch, executing on a CUDA-
compatible GPU with a fixed random seed seed = 0 for
reproducibility.

5.3 Results
Task Agnostic: Comparison between Baselines and Pro-
posed Algorithms. Fig. 3b shows the PSNR achieved for
the reconstructed speech versus the total bandwidth. In the
task-agnostic setting, the total bandwidth is optimally al-
located among the various sources involved using the pro-
posed NDPCA-aided perception-aware source coding algo-
rithm. We see from Fig. 3b that the baseline Joint E1D1,
which represents all source data being concatenated at one
encoder, and thus maximum utilization of correlation of the
different sources, achieves the upper bound PSNR values.
Similarly, the baselines Distributed E4D1 and E2D1, where
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Figure 3: (a) Efficient source coding using CSI-aware feedback vs. channel capacit, (b) Dimensions of latent space vs. task
agnostic PSNR [db] for baseline E1D1, E2D1 and E4D1 autoencoders, (c) Dimensions of latent space vs. task aware PSNR
[db] for baseline E1D1, E2D1 and E4D1 autoencoders.
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Figure 4: Experimental distortion versus total bandwidth un-
der varying relative weights given to perception loss

the 4 source mic data are all encoded individually, or as-
sembled in pairs of 2 and encoded using 2 encoders, re-
spectively, without any communication between the differ-
ent encoders, and thus no NDPCA, forms the lower baseline
on our proposed NDPCA-aided algorithm. As expected, the
E2D1 cases perform better than the E4D1 cases, since pairs
of sources are processed at one encoder for E2D1, creating
higher correlation utilization than E4D1, where each source
has its own encoder. The proposed algorithm with E2D1
achieves comparable performance to the upper bound Joint
E1D1 ( 91%), thus demonstrating its efficiency and near-
optimality. The proposed algorithms with distributed PCA
E4D1 and E2D1 outperform the PSNR values obtained us-
ing the naive distributed source coding E4D1 and E2D1 by
18.8% and 16.1% respectively.

Task Aware: Comparison between Baselines and Pro-
posed Algorithms. Fig. 3c shows the results of the pro-
posed algorithm, compared to the baselines, under the task
and perception-aware setting. Once again, the trend is sim-
ilar, with the proposed algorithms distributed PCA E4D1
and E2D1 outperforming the baselines E4D1 and E2D1 by
52.2% and 46.9% respectively, and achieving PSNR values
comparable to the upper bound single encoder case ( 98.1%),
especially under low bandwidth conditions. We see that the

PSNR values obtained for the reconstructed speech spectro-
gram under the speech enhancement task and perception-
aware setting significantly outperform the task-agnostic set-
ting, the results for which are in Fig. 3b. This clearly shows
the effectiveness of our downstream task and perception
aware loss function for the distributed speech source coding
pipeline.

Rate-distortion-perception analysis. Finally, we set out
to experimentally analyze the effect of perception loss com-
ponent on the Fig. 4 shows the experimental rate-distortion
levels obtained at various weights given to the perception
loss component in the loss function, relative to the nor-
malized speech enhancement task loss, which for our pur-
poses becomes the task-aware distortion loss. As expected,
the distortion obtained at a given total bandwidth, or rate,
is higher for a higher relative weight given to the percep-
tion loss component, indicating that optimizing for distor-
tion does not necessarily also optimize for higher realism
and vice versa. Hence, it is upto use-case designers in future
wireless AR/VR settings to asign relative importance levels
to perception of decoded speech and accordingly tolerate the
corresponding distortion level under a fixed total bandwidth.

6 Conclusion
In this paper, we introduce a novel task and perception-
aware distributed speech source coding algorithm under dy-
namic bandwidth conditions. The NDPCA-aided autoen-
coder design, coupled with the direct downstream speech
enhancement loss and perception loss-aware optimization,
leads to superior PSNR values under a given bandwidth than
those obtained for the following two baselines - (1)naive
source coding where each of multiple sources is treated as
an individual source and encoded without considering the
correlation with the other sources, and (2) the task-agnostic
case which is optimized for reconstruction loss only.
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Gündüz, D.; Wigger, M. A.; Tung, T.-Y.; Zhang, P.; and
Xiao, Y. 2024. Joint Source–Channel Coding: Fundamen-
tals and Recent Progress in Practical Designs. Proceedings
of the IEEE, 1–32.
han Li, P.; Ankireddy, S. K.; Zhao, R.; Mahjoub, H. N.;
Moradi-Pari, E.; Topcu, U.; Chinchali, S.; and Kim, H.
2023. Task-aware Distributed Source Coding under Dy-
namic Bandwidth. arXiv:2305.15523.
He, Y.; Yu, G.; and Cai, Y. 2024. Rate-Adaptive Cod-
ing Mechanism for Semantic Communications With Multi-
Modal Data. IEEE Transactions on Communications, 72(3):
1385–1400.
Hu, F.; Deng, Y.; Saad, W.; Bennis, M.; and Aghvami, A. H.
2020. Cellular-Connected Wireless Virtual Reality: Re-
quirements, Challenges, and Solutions. IEEE Communica-
tions Magazine, 58(5): 105–111.
Kavukcuoglu, K.; Sermanet, P.; Boureau, Y.-l.; Gregor, K.;
Mathieu, M.; and Cun, Y. 2010. Learning Convolutional
Feature Hierarchies for Visual Recognition. In Lafferty, J.;
Williams, C.; Shawe-Taylor, J.; Zemel, R.; and Culotta, A.,
eds., Advances in Neural Information Processing Systems,
volume 23. Curran Associates, Inc.
Li, W.; Huang, J.; Su, Q.; Jiang, W.; and Wang, J. 2024.
VASE: Enhancing Adaptive Bitrate Selection for VBR-
Encoded Audio and Video Content With Deep Reinforce-
ment Learning. IEEE Transactions on Mobile Computing,
23(12): 14889–14902.
Petrangeli, S.; Simon, G.; Wang, H.; and Swaminathan, V.
2019. Dynamic Adaptive Streaming for Augmented Reality
Applications. In 2019 IEEE International Symposium on
Multimedia (ISM), 56–567.
Salehkalaibar, S.; Phan, T. B.; Chen, J.; Yu, W.; and Khisti,
A. J. 2023. On the choice of Perception Loss Function for
Learned Video Compression. In Thirty-seventh Conference
on Neural Information Processing Systems.
Wang, Z.; Wen, M.; Xu, Y.; Zhou, Y.; Wang, J. H.; and
Zhang, L. 2023. Communication compression techniques
in distributed deep learning: A survey. Journal of Systems
Architecture, 142: 102927.

Welker, S.; Richter, J.; and Gerkmann, T. 2022a. Speech
Enhancement with Score-Based Generative Models in the
Complex STFT Domain. In Interspeech 2022, 2928–2932.
Welker, S.; Richter, J.; and Gerkmann, T. 2022b. Speech
Enhancement with Score-Based Generative Models in the
Complex STFT Domain. In Proc. Interspeech 2022, 2928–
2932.
Weng, Z.; Qin, Z.; Tao, X.; Pan, C.; Liu, G.; and Li, G. Y.
2023. Deep Learning Enabled Semantic Communications
With Speech Recognition and Synthesis. IEEE Transactions
on Wireless Communications, 22(9): 6227–6240.
Whang, J.; Nagle, A.; Acharya, A.; Kim, H.; and Dimakis,
A. G. 2024. Neural Distributed Source Coding. IEEE Jour-
nal on Selected Areas in Information Theory, 5: 493–508.
Wu, Y.-C.; Gebru, I. D.; Marković, D.; and Richard, A.
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Supplementary Materials
A Dataset Preprocessing
For our system model, we used Chime 6 dataset (Barker et al. 2018) which is a widely used for speech separation and recogni-
tion. The dataset consists of conversational speech audio with 8 speakers and 6 microphones spread across a room. The audio
signals are aligned, compensated for frame drops and clock skew. Furthermore, all audio data are distributed as WAV files with
a sampling rate of 16 kHz. Each session consists of the recordings made by the binaural microphones worn by each participant.
We extract the noisy and clean audio signals for speakers and microphones through the given .json file for each start and end
time for all the speaks as ground truth and the microphones as noisy data for that particular time. The extracted data is converted
into .pkl with magnitude, phase, and parameters across time.

Figure 5: Floor plan for correlated audio data retrieval for distributed task-aware source coding (Barker et al. 2018).

B Dataset Retrieval Explanation
As shown in Fig. 5, there are 8 speakers and 6 microphones in the room located at different positions as shown. Conversational
audio during a party session is recorded through all the microphones. The social gatherings consist of close acquaintances
who are encouraged to act casually and authentically. Multiple four-channel microphone systems capture and document these
gatherings in their entirety. While participants can freely move between different areas, they must spend a minimum of half an
hour in each location. The conversations are unscripted, allowing attendees to discuss any subject they choose, without following
predetermined scenarios. For privacy protection, certain identifying information has been removed from the recordings during
post-processing, in accordance with participant consent agreements.

The technical setup involves six Microsoft Kinect units positioned strategically throughout the space, ensuring that every area
is monitored by at least two devices simultaneously. To ensure clear audio recording for transcription purposes, each participant
is equipped with Soundman OKM II Classic Studio binaural microphones. These devices connect through a Soundman A3
adapter to personal Tascam DR-05 stereo recorders worn by the participants.

C Spectrogram Distributions
To obtain spectrogram distributions of noisy and clean audio files, first we preprocess the data to manually separate the clean
and noise wave file. we input a .wav file that contains raw waveform data and metadata describing speaker segments, including,
start and end time along with session ID. Using timestamps from the JSON file, audio segments for a specific speaker are



extracted by converting them into seconds. Using librosa, the waveform y(t) the waveform is sampled between start time and
end time with a sampling rate fs to yield:

y[n] = y

(
n

fs

)
, n = 0, 1, . . . , N − 1 (25)

where N is duration times fs.

Short-Time Fourier Transform. The core transformation involves converting the time domain signal y[n] to time frequency
representation D(f, t) to plot a spectrogram as:

D(f, t) =

N−1∑
n=0

y[n] · w[n− t ·H] · e−j2πfn/N , (26)

where w[n] is the windowing function, H is the hop length, and t is the time frame index. As shown in Fig 6, we obtain a
magnitude and a phase response of the audio file, depicting and differentiating the characteristics of noisy and clean audio files.
Fig. 6a and Fig. 6b represent the magnitude and phase of clean audio spectrograms with a clear time-frequency representation.
The consistent patterns suggest the presence of tonal and structured features in the clean signal. The maximum magnitude
of sound goes up to 0db for the clean signals. While the phase is typically harder to interpret directly, it remains consistent
with the underlying clean signal. Fig. 6c and Fig. 6d demonstrate the noisy magnitude and phase response, where the noisy
signal magnitude go as high as 20db. The frequency components are less distinct, and additional energy appears spread across
frequencies, characteristic of added noise.
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(a) Clean magnitude spectrogram from speaker 8.
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(b) Clean phase spectrogram from speaker 8.
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(c) Noisy magnitude spectrogram from microphone 3.
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(d) Noisy phase spectrogram from microphone 3.

Figure 6: Magnitude and phase spectrogram distributions for clean and noisy audio signals with [FFT= 2048, Hop length= 512,
and window length= 2048] parameters.

3D Power Spectrgram. Fig. 7 shows the 3D power spectrogram distribution of the clean and the noisy signals. By applying
Fourier transform and using mesh in Matlab we plot the power spectrogram of both noisy and clean audio signals as shown in
Fig. 7a and Fig. 7b. In Fig. 7a we observe sharp and concentrated power peaks at specific frequencies, indicating well-defined
tonal or harmonic components of the signal. Most of the power is concentrated in lower frequencies, which is typical for many
natural sounds like speech. Fig. 7b shows a broader distribution of power across the frequency spectrum, indicating the presence
of noise. Furthermore, the increased power levels, especially in high-frequency regions, suggests noise contamination.



(a) Power spectrogram for clean audio. (b) Power spectrogram for noisy audio.

Figure 7: 3D power spectrogram distribution of clean and audio signals against time [s] and frequency [Hz]

Table 1: Comparison of task-agnostic and task-aware loss for various latent space dimensions

Table 2: Task-agnostic loss for latent space dimension = 8

Model Nuclear Loss Cosine Loss Spectral Loss

E1D1 0.1672 0 0.048
E2D1 0.2650 0.297 0.08
E4D1 0.4473 0.971 0.866

Table 3: Task-agnostic loss for latent space dimension = 256

Model Nuclear Loss Cosine Loss Spectral Loss

E1D1 0.1351 0 0.009
E2D1 0.1650 0.0148 0.021
E4D1 0.3173 0.767 0.317

Table 4: Task-aware loss for latent space dimension = 8

Model Speech Enhancement Loss Perceptual Loss

E1D1 0.0000579 0.3193
E2D1 0.000145 0.493
E4D1 0.000163 0.620

Table 5: Task-aware loss for latent space dimension = 256

Model Speech Enhancement Loss Perceptual Loss

E1D1 0.0000413 0.3052
E2D1 0.000081 0.512
E4D1 0.00034 0.745
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Figure 8: Task agnostic loss for different baseline models.

D Training Hierarchy and Loss values
In this section, we observe the convergence and the loss for both task agnostic and task aware perceptual pipelines.

Loss Convergence. From Fig. 8, we observe that E2D1 performs better than E4D1 on the overall loss curve and converges
to a lower value. As expected, the E2D1 cases perform better than the E4D1 cases since pairs of sources are processed at
one encoder for E2D1, creating higher correlation utilization than E4D1, where each source has its own encoder. Mathe-



matically, consider the latent representations zi ∈ Rdi produced by the encoders. In E4D1, the four encoders independently
encode features as z1, z2, z3, z4, allowing the system to represent input modalities or perspectives as a concatenated vector
z = [z1; z2; z3; z4] ∈ Rd, where d = d1 + d2 + d3 + d4. However, this independent encoding limits the correlation utilization
between sources, resulting in a suboptimal alignment of features. In E2D1, the encoders process pairs of sources, producing
latent representations z1,2, z3,4 ∈ Rd1+d2 . This structure enables better correlation utilization between paired sources, mini-
mizing the projection error ϵ = ∥x− PZ(x)∥, where PZ(x) is the projection onto the latent space. The improved inter-source
alignment in E2D1 results in richer feature extraction and higher reconstruction accuracy. Furthermore, the proposed algorithm
with E2D1 achieves comparable performance to the upper bound Joint E1D1, demonstrating its efficiency and near-optimality.
By leveraging pairwise correlation, E2D1 achieves enhanced representational capacity, significantly reducing latent divergence
E[∥zi − zj∥]. This improves both cross-reconstruction and global decoding consistency, thus outperforming E4D1 in tasks
requiring efficient utilization of correlated features.

Loss values. The loss values are shown in Table. 1-4, for task aware and task agnostic loss. The nuclear loss corresponds to
reconstruction loss and cosine loss is for correlation. The correlation loss is 0 for joint autoencoders, because they can commu-
nicate with each other and are concatenated before encoding. The tables justify the above model performance explanations.


