

DIVER-1 : DEEP INTEGRATION OF VAST ELECTRO-PHYSIOLOGICAL RECORDINGS AT SCALE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Electrophysiology signals such as EEG and iEEG are central to neuroscience,
 012 brain-computer interfaces, and clinical applications, yet existing foundation mod-
 013 els remain limited in scale despite clear evidence that scaling improves perfor-
 014 mance. We introduce DIVER-1, a family of **EEG and iEEG** foundation models
 015 trained on the largest and most diverse corpus to date—**5.3k hours of iEEG and**
 016 **54k hours of EEG (1.6M channel-hours from over 17.7k subjects)**—and scaled
 017 up to 1.82B parameters. We present the first systematic scaling law analysis for
 018 this domain, showing that they follow data-constrained scaling laws: **for a given**
 019 **amount of data and compute**, smaller models trained for extended epochs consis-
 020 tently outperform larger models trained briefly. This behavior contrasts with prior
 021 electrophysiology foundation models that emphasized model size over training
 022 duration. To achieve strong performance, we **also** design architectural innovations
 023 including any-variate attention, sliding temporal conditional positional encoding,
 024 and multi-domain reconstruction. DIVER-1 **iEEG and EEG models each achieve**
 025 **state-of-the-art performance on their respective benchmarks, establishing** a con-
 026 **crete guidelines for efficient scaling and resource allocation in electrophysiology**
 027 **foundation model development.**¹

1 INTRODUCTION

030 Scaling has been a fundamental driver of progress in artificial intelligence, from early perceptrons to
 031 modern large language models. Systematic increases in data, compute, and model size have yielded
 032 reliable performance gains across language and vision, motivating principled investigations of neural
 033 scaling laws (Kaplan et al., 2020; Zhai et al., 2022).

034
 035 Electrophysiology (Ephys)—including intracranial (iEEG) and scalp EEG—presents a distinct op-
 036 portunity for foundation modeling in neuroscience, BCI, and clinical applications. The domain is
 037 marked by heterogeneity across subjects, recording sessions, montages, and neural states (Ebadi
 038 et al., 2025). Recent EEG foundation models (EFMs)² leverage self-supervised pretraining over
 039 large unlabeled corpora and have reported consistent improvements on downstream decoding tasks
 040 (Jiang et al., 2024; Zhang et al., 2023; Wang et al., 2024c).

041 Despite rapid progress, two gaps remain. First, no research has **scaled EFMs beyond the levels** nec-
 042 essary to fully exploit this potential—previous efforts have been limited by computational resources
 043 and dataset availability. Second, **no systematic, quantitative analysis of EFM scaling behavior**
 044 **has been conducted**, leaving fundamental questions unanswered about optimal resource allocation
 045 and scaling strategies for neural data—in particular, **how to allocate a fixed compute budget across**
 046 **model size and number of training epochs.**

047 We address these gaps of limited scale exploration and the lack of quantitative scaling analysis by
 048 conducting **the first systematic investigation of scaling laws in EFMs** while **pushing the bound-**
 049 **aries of scale** across all dimensions. Specifically, we expand across: (1) **Data**—assembling pre-
 050 training corpora with more than 77× more than the previous iEEG state-of-the-art model Chau et al.
 051 (2025) and 1.2× the channel-hours of iEEG data compared to Zhang et al. (2023), plus about 10×

052 ¹Code available at: <https://anonymous.4open.science/r/DIVER-1>

053 ²Although other terms such as large brain models (LBM) exist, we use **EFM** as it explicitly ties our setting
 054 to EEG (both iEEG and scalp EEG) and emphasizes that it is a **foundation**, not necessarily a **large**, model.

more EEG data than existing state-of-the-art (Wang et al., 2024c); (2) **Compute**—utilizing substantially more computational resources than previous EFM studies; and (3) **Model size**—systematically evaluating architectures ranging from 13M to 1.82B parameters, 3 \times the size of the largest open-source iEEG foundation model (Zhang et al., 2023)

Through this comprehensive scaling effort, we make a key discovery: **EFMs precisely follow the data-constrained scaling laws of Muennighoff et al. (2023)**. Unlike classical Kaplan-style scaling (Kaplan et al., 2020; Hoffmann et al., 2022)—which assumes unlimited data and thus optimizes for one-epoch training—Ephys is inherently data-limited and requires multi-epoch training. The data-constrained framework of Muennighoff et al. (2023) generalizes Kaplan-style scaling to this setting, and our empirical scaling curves quantitatively align with its predicted isoFLOPs trade-offs and exponents. This constraint fundamentally alters the optimal scaling strategy—we find that for a fixed data and compute budget, large models (≥ 1 B parameters) trained for only a few epochs underperform smaller models trained for extended epochs, as additional training passes enable more effective utilization of the limited data.

Building on these insights, our experiments yield **DIVER-1**, a family of **EEG** and **iEEG** EFMs that achieves state-of-the-art performance across diverse neural decoding tasks. To maximize performance, the models incorporate architectural adaptations tailored for Ephys signals. The model employs sliding temporal conditional positional encoding for context-aware positioning while preserving channel-permutation equivariance, and any-variate attention mechanisms to handle variable electrode configurations with full spatio-temporal awareness. Additionally, spatiotemporal register tokens provide dedicated computational space without interfering with signal representations, while multi-domain reconstruction heads enable robust learning across temporal and spectral views without altering the encoder backbone.

The contributions of this work are fourfold:

- **DIVER-1 model family:** We introduce a family of Ephys foundation models (EFMs) for both iEEG and EEG that achieve state-of-the-art performance in their respective modalities by leveraging our scaling insights and architectural innovations.
- **First systematic scaling law analysis for EFMs:** We provide the first quantitative characterization of how EFMs scale with data, compute, and model size, revealing that EFMs follow data-constrained scaling laws (Muennighoff et al., 2023) due to the inherent scarcity of Ephys data. Building on this analysis, we show that under a fixed data and compute budget, smaller models trained for more epochs consistently outperform larger models trained briefly—offering clear guidance on how to allocate compute between model size and training epochs for efficient EFM development.
- **Unprecedented scale demonstration:** We scale EFM pretraining to previously unattained levels across data volume, model size, and compute.
- **Novel architectural innovations for Ephys:** We develop specialized components including any-variate attention mechanisms, sliding temporal conditional positional encoding (STCPE), register tokens, and multihead prediction architectures—enabling effective scaling analysis and performance gains.

Importantly, our findings show that prior approaches emphasizing model size as the primary axis of scaling are not well aligned with the realities of Ephys data (Appendix G). A more effective path under limited compute budgets is to prioritize training duration and subject diversity, a perspective that reframes how future EFMs should be developed.

2 ARCHITECTURE

DIVER-1 uses an architecture custom-designed for multimodal EEG data that enables effective self-supervised pretraining through masked patch reconstruction, as described in Figure 1. This architecture consists of four main components: (1) *patch encoding*, (2) *embedding enhancement*, (3) a stack of *MOIRAI blocks* (Woo et al., 2024), and (4) *multi-output projection*. During pretraining, we randomly mask 50% of the input patches. The model then reconstructs missing information across multiple signal domains through the projection layer. The details of pretraining and architectural hyperparameters can be found in Appendix B.5.

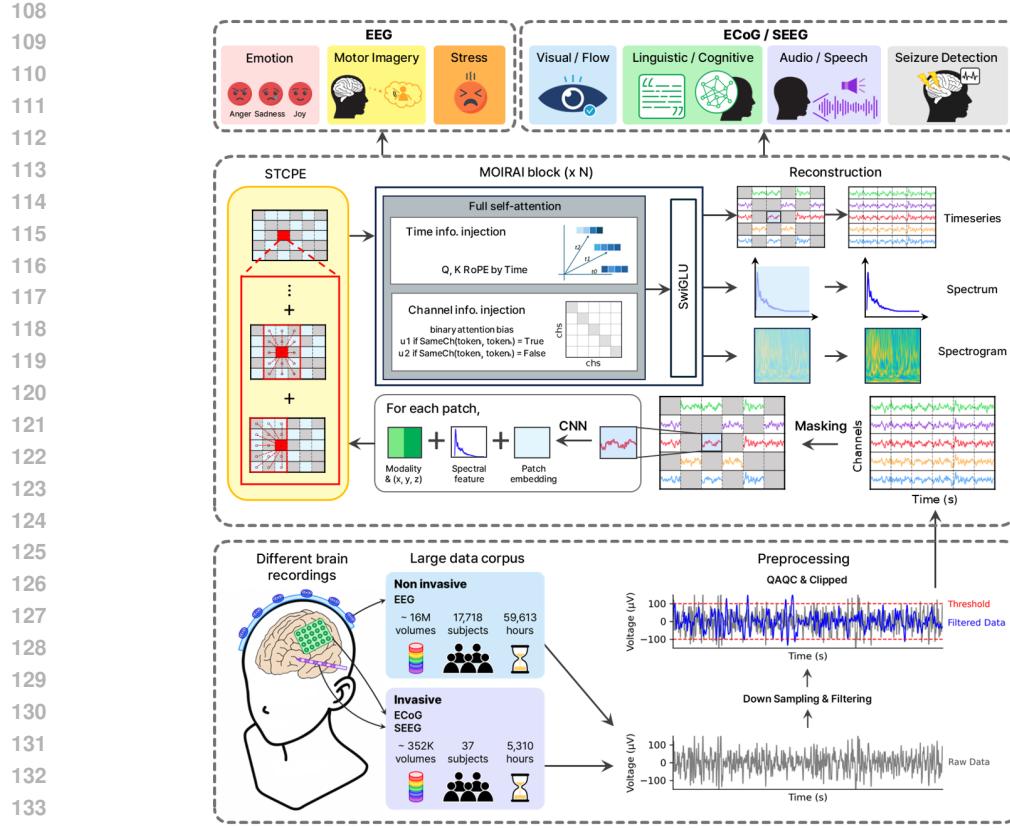


Figure 1: **Overview of DIVER-1 architecture and pretraining.** DIVER-1 is pretrained on a large EEG and iEEG data corpus. After preprocessing, input patches are randomly masked and enhanced by adding modality, spectral, and CNN-based patch embeddings, along with STCPE. The enhanced patches are processed through MOIRAI blocks and trained to reconstruct missing patches across multiple signal domains (time series, spectrum, spectrogram). The pretrained model is then applied to diverse downstream tasks.

2.1 STRUCTURE OVERVIEW

Patch encoding converts the raw signal into patch representations and extracts temporal features. Given an input time series $\mathbf{Y} \in \mathbb{R}^{C \times T}$, where C is the number of channels (variables) and T is the sequence length, we patchify \mathbf{Y} into 1 or 0.1 second patches, each containing $P \in \{500, 50\}$ timepoints (at 500Hz sampling rate). During pretraining, 50% of the patches are randomly masked with zero, and the remaining patches are passed through a three layer patch-wise convolutional neural network (CNN) to extract temporal features. This results in a basic representation $\mathbf{Y}_{\text{CNN}} \in \mathbb{R}^{C \times N \times d_{\text{model}}}$, where $N = T/P$ is the number of patches and d_{model} is the embedding dimension.

Embedding enhancement augments the patch representations with signal and channel information through two mechanisms. First, *spectral embeddings* inject patch-wise frequency domain information, and *channel position and modality embeddings* jointly encode spatial electrode locations and electrode characteristics. Second, *spatio-temporal conditional positional embedding (STCPE)* is applied via a sliding window mechanism to capture both spatial channel relationships and local temporal information across the electrode array. The final transformer input is computed as:

$$\mathbf{X} = \mathbf{Y}_{\text{CNN}} + \mathbf{E}_{\text{spectral}} + [\mathbf{E}_{\text{position}}, \mathbf{E}_{\text{modality}}] + \mathbf{E}_{\text{STCPE}} \quad (1)$$

where $[\cdot, \cdot]$ denotes concatenation, and each embedding component $\mathbf{E}_i \in \mathbb{R}^{C \times N \times d_{\text{model}}}$ maintains the same dimensional structure to ensure consistent element-wise addition.

MOIRAI blocks form the computational backbone of DIVER-1, adapted from MOIRAI (Woo et al., 2024) to model spatio-temporal dependencies in Ephys data. Our implementation incorpo-

162 rates three components: (1) *Any-Variate Attention* for improved multivariate attention, (2) *Gated*
 163 *Linear Units (GLU)* (Shazeer, 2020) for improved expressivity through gating mechanisms, and (3) *Spatio-Temporal Register Tokens* (our novel addition) for dedicated computational space without
 164 interfering with EEG signal representations, inspired by Darcet et al. (2023). The enhanced embedding
 165 $\mathbf{X} \in \mathbb{R}^{C \times N \times d_{\text{model}}}$ is processed through stacked MOIRAI blocks that preserve input dimensions
 166 while progressively refining spatio-temporal representations.

167 **Multi-output projection** enables simultaneous reconstruction across multiple signal domains during
 168 pretraining. Refined spatio-temporal representations are linearly projected to reconstruct patches
 169 in three complementary domains: raw time series, FFT, and STFT. This multi-domain reconstruction
 170 objective encourages comprehensive learning of temporal and spectral properties.

173 2.2 KEY COMPONENT DETAILS

175 Embedding enhancement components

176 *Spectral embeddings* $\mathbf{E}_{\text{spectral}}$ inject patch-wise frequency information by applying FFT to each patch
 177 and projecting the features to d_{model} dimensions via a learnable linear layer.

178 *Channel position and modality embeddings* jointly encode spatial electrode locations and electrode
 179 modality to handle heterogeneous recording setups. While EEG follows standardized montages,
 180 iEEG channels are implanted in specific brain regions based on individual clinical needs. To ad-
 181 dress this heterogeneity, we encode both channel position embeddings $\mathbf{E}_{\text{position}}$ using the 3D spatial
 182 coordinates (registered to MNI space) and modality embeddings $\mathbf{E}_{\text{modality}}$ to distinguish between
 183 different electrode types. We then define the combined position–modality embedding term as:

$$185 \quad [\mathbf{E}_{\text{position}}, \mathbf{E}_{\text{modality}}] = [PE^{(x)}(x), PE^{(y)}(y), PE^{(z)}(z), \mathbf{E}_{\text{modality}}^{\text{type}} + \mathbf{E}_{\text{modality}}^{\text{subtype}}] \quad (2)$$

187 where electrode coordinates (x, y, z) are in centimeters and:

$$189 \quad PE_{2i}^{(j)} = \sin\left(\frac{j/256}{2000^{2i/d_j}}\right), \quad PE_{2i+1}^{(j)} = \cos\left(\frac{j/256}{2000^{2i/d_j}}\right) \quad (3)$$

190 for $j \in \{x, y, z\}$ and $d_x = d_y = d_z = d_{\text{model}}/4$, following PopT (Chau et al., 2025). **If the**
 191 **coordinates x,y,z for a given channel are not available, the positional embedding for that channel is**
 192 **set to zero.** The modality embedding $\mathbf{E}_{\text{modality}}$ is computed as $\mathbf{E}_{\text{modality}}^{\text{type}} + \mathbf{E}_{\text{modality}}^{\text{subtype}}$, where $\mathbf{E}_{\text{modality}}^{\text{type}}$
 193 distinguishes between EEG and iEEG channels, and $\mathbf{E}_{\text{modality}}^{\text{subtype}}$ encodes electrode subtypes (grid, strip,
 194 or depth for iEEG electrodes) through learnable embedding vectors shared across all patches within
 195 the same category.

197 *Spatio-Temporal Conditional Positional Embedding (STCPE)* addresses the need for dynamic po-
 198 sitional encodings that can adapt to heterogeneous electrode configurations. Transformers require
 199 positional information because self-attention is inherently permutation-invariant. While vision trans-
 200 formers typically rely on fixed positional encodings, *Conditional Positional Encoding* (CPE) (Chu
 201 et al., 2021) applied lightweight convolutions over local neighborhoods, allowing positional infor-
 202 mation to adapt to the structure present in each input.

203 Building on this encoding scheme, *Asymmetric Conditional Positional Encoding* (ACPE) (Wang
 204 et al., 2024c) applied asymmetric convolutions across channels and time for EEG, but these convo-
 205 lutions operate along fixed channel axes and hence does not maintain channel permutation equivari-
 206 ance—the learned spatial relationships depend on the training-time channel order. This is a critical
 207 limitation for Ephys, where models must be invariant to arbitrary electrode reorderings to generalize
 208 across heterogeneous montages, recording systems, and channel counts.

209 To address this, *STCPE* replaces convolution with a sliding-window MOIRAI transformer block
 210 that computes channel-permutation-equivariant positional encodings. After patch encoding, embed-
 211 dings are first projected to a reduced dimension using $P_{\downarrow} : \mathbb{R}^{d_{\text{model}}} \rightarrow \mathbb{R}^{d_{\text{model}}/8}$ for computational
 212 efficiency. A temporal window of width w (stride 1) is then applied to the projected sequence. Let
 213 $m = (w - 1)/2$. For each window centered at index t' , MOIRAI receives the spatiotemporal slice
 214 $\mathbf{X}_{[:, t'-m:t'+m, :]} \in \mathbb{R}^{C \times w \times (d_{\text{model}}/8)}$ and produces w outputs—one per relative temporal offset:

$$215 \quad \mathbf{H}_{t'} = \text{MOIRAI}(\mathbf{X}_{[:, t'-m:t'+m, :]}) \in \mathbb{R}^{C \times w \times (d_{\text{model}}/8)}.$$

216 The *STCPE* embedding at absolute time t aggregates contributions from all overlapping windows,
 217 and the original dimension is restored with P_{\uparrow} , yielding the final *STCPE* embedding:
 218

$$219 \quad \mathbf{E}_{\text{STCPE}}[:, t, :] = P_{\uparrow} \left(\sum_{k=-m}^m \mathbf{H}_{t+k}[:, k+m, :] \right) \in \mathbb{R}^{C \times w \times (d_{\text{model}})}, \quad t = 1, \dots, N. \quad (4)$$

222 *STCPE* thus provides input-dependent positional information while maintaining both **temporal**
 223 **translation equivariance** (via temporal sliding windows) and **channel permutation equivariance**
 224 (via MOIRAI blocks)—properties that ACPE lacks.

225 **MOIRAI block components**

227 Any-variate attention (Woo et al., 2024) enables adaptive spatial modeling across heterogeneous
 228 electrode configurations while maintaining full spatio-temporal attention capabilities. Unlike vanilla
 229 attention mechanisms that rely solely on input embeddings to differentiate between tokens and
 230 model their relationships, any-variate attention directly embeds spatio-temporal information into
 231 the attention computation itself through two main components: Rotary Position Embedding (RoPE)
 232 (Su et al., 2024) and binary attention bias.

233 Given input $\mathbf{X} \in \mathbb{R}^{C \times N \times d_{\text{model}}}$, the attention score between the (i, m) -th query (where i denotes
 234 the patch index and m denotes the channel index) and the (j, n) -th key is computed as $A_{ij,mn} =$
 235 $\frac{\exp\{E_{ij,mn}\}}{\sum_{k,o} \exp\{E_{ik,mo}\}}$, where $E_{ik,mo}$ is computed as (we omit layer and attention head indices as well as
 236 scaling factors for clarity):

$$237 \quad E_{ij,mn} = (\mathbf{W}^Q \mathbf{x}_{i,m})^T \mathbf{R}_{i-j} (\mathbf{W}^K \mathbf{x}_{j,n}) + u^1 \cdot \mathbb{1}_{\{m=n\}} + u^2 \cdot \mathbb{1}_{\{m \neq n\}} \quad (5)$$

239 where $\mathbf{W}^Q \mathbf{x}_{i,m}, \mathbf{W}^K \mathbf{x}_{j,n} \in \mathbb{R}^{d_h}$ are the query and key vectors, $\mathbf{R}_{i-j} \in \mathbb{R}^{d_h \times d_h}$ is the rotary
 240 projection matrix encoding temporal relationships, $u^1, u^2 \in \mathbb{R}$ are learnable scalars that can differ
 241 across attention heads, and $\mathbb{1}_{\{cond\}} = 1$ if the condition is true and 0 otherwise.

242 *Spatio-temporal register tokens* are inspired by register tokens in vision transformers Darct et al.
 243 (2023). They consist of three types of learnable tokens each for channel, temporal, and combined
 244 spatio-temporal information, transforming input shape from $C \times N \times d_{\text{model}}$ to $(C+1) \times (N+1) \times$
 245 d_{model} . This transformation provides dedicated computational space to perform auxiliary computa-
 246 tions without corrupting the primary Ephys signal representations.

247 **3 TRAINING AND EXPERIMENTAL SETUP**

248 **3.1 PRETRAINING**

249 DIVER-1 employs self-supervised pretraining based on masked patch reconstruction to learn robust
 250 representations of Ephys signals.

251 **Multi-domain reconstruction objective.** Rather than reconstructing only raw time series, DIVER-
 252 1 utilizes a multi-output projection architecture that maps each learned patch representation $\mathbf{h}_{c,n} \in$
 253 $\mathbb{R}^{d_{\text{model}}}$ to three complementary signal domains through parallel linear transformations. For each
 254 patch (c, n) , the representation is projected to: (1) raw time series $\hat{\mathbf{y}}_{c,n}^{\text{raw}} \in \mathbb{R}^P$ to reconstruct temporal
 255 dynamics, (2) FFT coefficients $\hat{\mathbf{y}}_{c,n}^{\text{FFT}} \in \mathbb{R}^{P/2+1}$ to capture frequency domain characteristics, and (3)
 256 STFT spectrogram $\hat{\mathbf{y}}_{c,n}^{\text{STFT}} \in \mathbb{R}^{F \times T_s}$ to model time-frequency relationships, with specific FFT and
 257 STFT parameters detailed in the implementation section in Appendix B.5.

258 The total pretraining loss aggregates reconstruction errors across all masked patches and all signal
 259 domains:

$$260 \quad \mathcal{L}_{\text{total}} = \sum_{(c,n) \in \mathcal{M}} [\lambda_1 \mathcal{L}_{\text{MSE}}(\mathbf{y}_{c,n}^{\text{raw}}, \hat{\mathbf{y}}_{c,n}^{\text{raw}}) + \lambda_2 \mathcal{L}_{\text{MSE}}(\mathbf{y}_{c,n}^{\text{FFT}}, \hat{\mathbf{y}}_{c,n}^{\text{FFT}}) + \lambda_3 \mathcal{L}_{\text{MSE}}(\mathbf{y}_{c,n}^{\text{STFT}}, \hat{\mathbf{y}}_{c,n}^{\text{STFT}})] \quad (6)$$

261 where \mathcal{M} denotes the set of masked patch indices. We used $(\lambda_{1,2,3}) = (1, 0.1, 1)$ for $P = 500$ (1 s
 262 patches) and $(1, 1, 0)$ for $P = 50$ (0.1 s patches). **These coefficients were chosen so that the different**

270 reconstruction losses operated on comparable numerical scales; for $P = 50$, the window is too short
 271 for a meaningful STFT, so only the FFT term was used. This multi-domain approach encourages
 272 the model to learn comprehensive representations that capture both temporal dynamics and spectral
 273 features essential for robust Ephys understanding.

274 **Input resampling.** To train the model to handle heterogeneous channel layouts and variable se-
 275 quence lengths, we feed only a randomly resampled subset of each 30 s training segment. A
 276 30 s window yields $N=30$ patches for 1 s granularity and $N=300$ for 0.1 s. We then sample
 277 $C' \leq \min(C, 32)$ channels and $N' \leq 30$ temporal patches, with both C' and N' drawn from a
 278 scaled Beta(3, 1) distribution that favors larger subsets. Capping N' at 30 prevents the 0.1 s model
 279 from processing the full 300-patch sequence, keeping its effective context comparable to the 1 s
 280 model and avoiding excessive compute. This stochastic subsampling exposes the model to diverse
 281 channel sets and window lengths across epochs.

282 **Pretraining dataset.** DIVER was pretrained on, to our knowledge, the largest and most diverse
 283 collection of Ephys datasets compared to previous EFM. Our pretraining data encompasses diverse
 284 recording conditions including task-based experiments, resting-state recordings, and sleep studies,
 285 ensuring robust representation learning across different brain states. The pretraining datasets are
 286 summarized in Table 2 with further details in Appendix F.1.

287 All data underwent QAQC, minimal preprocessing, and resampling with the goal of preserving as
 288 much of the original signal as possible. QAQC applied conservative amplitude clipping, removing
 289 electrodes only when $> 3.33\%$ of samples exceeded the clipping threshold and discarding whole
 290 segments only when $> 50\%$ of channels were affected, ensuring minimal data loss while preventing
 291 extreme values from destabilizing training. Preprocessing then normalized EEG and iEEG ampli-
 292 tudes (100 μ V and 200 μ V scales, respectively), applied minimal filtering (0.3–0.5 Hz high-pass,
 293 60 Hz notch, no low-pass), and resampled all data to 500 Hz before segmenting into 30-second
 294 windows. Please refer to Appendix F.3 for more details.

295 **Scaling.** As DIVER-1 extends the scale of EFM, we require methods to transfer optimal hyper-
 296 parameters across different model sizes. In standard parameterizations, optimal hyperparameters are
 297 highly dependent on model width. Maximal Update Parametrization (μP) (Yang et al., 2022), by
 298 carefully scaling initializations and learning rates, ensures consistent weight update magnitudes as
 299 model width increases. This enables μ Transfer, where optimal hyperparameters from small models
 300 can be directly transferred to large models, precluding expensive hyperparameter tuning.

301 DIVER-1 was pretrained on either 128, 48, 32 NVIDIA A100 GPUs or 32, 24, 16 H200 GPUs,
 302 depending on the experimental configuration. We tested models varying in number of parameters,
 303 from 12.72M to 1.83B as in Table 1. Additional training details are provided in Appendix sec-
 304 tion B.4. We conducted comprehensive scaling law experiments across four dimensions: compute
 305 (training epochs 1–64), model size (varying width, depth, and patch size), dataset size (1–100% of
 306 available data), and subject diversity (2–16 subjects with fixed dataset size). Detailed experimental
 307 configurations and scaling behaviors for each dimension are provided in the Appendix Table 1.

308 3.2 FINETUNING

310 **Benchmark datasets.** For iEEG downstream evaluation, we use Neuroprobe (Zahorodnii et al.,
 311 2025), which provides 15 auditory, visual, and language decoding tasks from naturalistic movie-
 312 watching iEEG, and MAYO dataset (Bbrinkm & Cukierski, 2014)(seizure detection). For EEG
 313 evaluation, we use: FACED (Chen et al., 2023) (emotion decoding), PhysioNet-MI (Goldberger
 314 et al., 2000) (motor-imagery classification), and MentalArithmetic (Zyma et al., 2019) (cognitive-
 315 workload decoding). Refer to Appendix F.2 for more detail.

316 **Baseline models.** We evaluate DIVER-1 against state-of-the-art foundation models across both
 317 modalities: LaBraM (Jiang et al., 2024) and CBraMod (Wang et al., 2024c) for EEG, and Brain-
 318 BERT (Wang et al., 2023), Population Transformer (PopT) (Chau et al., 2025) and Brant (Zhang
 319 et al., 2023) for iEEG. These transformer-based models employ self-supervised pretraining strate-
 320 gies; LaBraM, CBraMod, BrainBERT and Brant use masked patch reconstruction objectives while
 321 PopT applies discriminative self-supervised learning on BrainBERT embeddings.

322 **Finetuning method.** For iEEG downstream tasks, we evaluate both linear probing and full finetun-
 323 ing using a linear classifier head on the flattened token representations. Linear probing freezes the

324 encoder and trains only the classifier, providing a clean measure of representation quality. Full fine-
 325 tuning updates all encoder parameters together with the linear head. Details are in Appendix B.8.
 326 For EEG downstream tasks, we follow CBraMod’s finetuning protocol (Wang et al., 2024c), jointly
 327 training the encoder and a three-layer MLP classifier. This MLP generally outperforms a linear head
 328 on EEG benchmarks, and depth-dependent results are provided in Appendix Table 22.
 329

330 4 RESULTS AND DISCUSSION

331 4.1 SCALING LAW

332 We systematically investigate scaling laws across multiple dimensions to understand how EFM
 333 scale with computational resources and data. Our analysis evaluates performance on (1) **pretext**
 334 **task loss** (reconstruction loss during self-supervised pretraining) and (2) **downstream task per-**
 335 **formance** across diverse neural decoding benchmarks. We vary traditional scaling axes (compute
 336 budget, dataset size, model size) and EFM-specific factors (training epochs, subject diversity).
 337

338 **Overall scaling law validation.** Both iEEG and EEG EFM exhibit precise neural scaling behavior
 339 consistent with established Kaplan scaling laws (Kaplan et al., 2020), as shown in Figure 2 (a-c,
 340 e-g). We fit our results to the data-constrained scaling law framework (Muennighoff et al., 2023)
 341 (see Appendix Section A.2 for detailed scaling law background), providing the first quantitative ev-
 342 idence that scaling EFM across compute, dataset size, model parameters, and training epochs – a
 343 dimension largely unexplored in EFM scaling – predictably and logarithmically improves per-
 344 formance. The scaling relationships exhibit strong log-log fits in iEEG EFM, with R^2 values of 0.8152
 345 for patch size 1 second models and 0.7718 for patch size 0.1 second models (Appendix Table C.3),
 346 confirming the validity of the power-law scaling framework. **The additional scaling result on EEG**
 347 **EFMs can be found at Appendix C.5.**

348 Our empirical results follow the data-constrained scaling law (Muennighoff et al., 2023):
 349

$$350 \quad 351 \quad 352 \quad L(N, D) = \frac{A}{(N')^\alpha} + \frac{B}{(D')^\beta} + E \quad (7)$$

353 where N' and D' account for diminishing returns with more epochs:
 354

$$355 \quad 356 \quad 357 \quad D' = U_D + U_D R_D^* \left(1 - e^{-\frac{R_D}{R_D^*}}\right), \quad N' = U_N + U_N R_N^* \left(1 - e^{-\frac{R_N}{R_N^*}}\right) \quad (8)$$

358 where U_D , R_D , and R_D^* each corresponds to unique data tokens, repetitions (epochs-1), and the
 359 “half-life” of repeated data. The fitted parameters are detailed in Appendix C.3.

360 **Standard scaling axes (model, data, compute).** We observe in Figure 2 (a-c, e-g) expected power-
 361 law relationships across standard dimensions. Model size, dataset size, and compute budget scaling
 362 logarithmically reduces loss, following Kaplan et al. (2020), though Ephys data limitations necessi-
 363 tate data-constrained formulation.

364 **EFM-specific scaling axes (epoch, subject number).** Beyond the traditional dimensions of model
 365 size, dataset size, and compute budget, we identify two novel scaling dimensions relevant to Ephys.
 366

367 *Epoch scaling* in Figure 2 (d,h) shows increasing epochs improves performance across all model
 368 sizes, and larger models achieve lower loss when given sufficient repetitions. However, overly large
 369 models (e.g., XXL in Figure 2 (d) and Large in 2 (h)) perform worse at very small epoch counts, only
 370 surpassing smaller models after many more epochs—consistent with the data-constrained scaling
 371 law, where repeated passes increase the effective dataset size D' required for large-capacity models.

372 *Subject diversity scaling* in Figure 2 (i) shows that under constant total training data volume, there
 373 exists an optimal balance between the number of subjects and data per subject.

374 **IsoLoss Analysis.** While increases in model size and training epochs both improve performance,
 375 they also raise compute cost, making it necessary to balance the two. To study this trade-off under
 376 fixed compute, we use the empirical IsoLoss landscape with IsoCompute curves (Figure 2(p), left),
 377 which map parameter–epoch pairs to equal FLOPs. The contours reveal a clear trend: at any fixed
 378 compute level, smaller and mid-sized models achieve lower loss than larger models. Thus, within

realistic compute budgets, allocating resources toward training smaller models longer is more effective than briefly training very large models. We revisit this in the Practical Implications section using predicted IsoLoss contours (Figure 2(p), right).

Data Constrained Scaling Law Fitting. Our fitted **data-constrained** scaling law parameters reveal important domain-specific characteristics (Appendix Table C.3). Most notably, EFM exhibit smaller R_N^* values (3.39 and 0.72 for 1s and 0.1s patch sizes, respectively) compared to language models (5.30) (Muennighoff et al., 2023). This indicates that increasing model parameters yields diminishing returns more rapidly in Ephys modeling than in language modeling, consistent with our finding that smaller models often suffice for EFM tasks.

The R_D^* values exhibit interesting patch-size dependence: 8.91 for 1s patches versus 20.09 for 0.1s patches, compared to 15.38 for language models. This suggests that while 1s models experience faster diminishing returns from repeated epochs than language models, 0.1s models retain efficacy from additional epochs for longer durations. This behavior aligns with our data sampling strategy—0.1s models sample up to 3s context windows from original 30s segments, creating genuine “multiple views” of the underlying data compared to 1s models.

Downstream performance scaling. Following pretraining loss scaling, downstream performance (Figure 2 (i-o)) also scales across most dimensions. However, model size scaling exhibits different behavior across modalities: on iEEG tasks, larger models achieve similar performance to smaller models, **while on EEG tasks, performance improves up to 813M parameters.** The limited effect of model size on iEEG performance may reflect the simplicity of the binary classification tasks used in this benchmark, though comprehensive analysis are needed to fully characterize this behavior.

Practical implications. These findings have direct consequences for resource allocation in EFM. Because the domain is data-constrained, the optimal compute strategy differs from that of language or vision: *smaller models trained for more epochs outperform larger models trained briefly under fixed compute budgets.* The IsoLoss and IsoCompute structure in Figure 2(p) (left) indicates that large models are compute-inefficient at realistic epoch counts. Building on this observation, Figure 2(p) (right) defines a clear “compute-optimal frontier” that specifies the most efficient combinations of model size and training duration. Prior EFM tend to fall outside this frontier, often emphasizing increased model size over additional training repetitions (estimation details in Appendix G). Our scaling framework therefore provides a principled tool for selecting compute-optimal configurations before launching expensive pretraining runs.

It should be noted, however, that when the goal is to achieve the highest possible performance for a given model size, training beyond the compute-optimal frontier is still beneficial. This was the case for our Small iEEG model, and also appears to have been the case for CBraMod (Wang et al., 2024c) and BIOT (Yang et al., 2023), which also trained substantially past their compute-optimal points.

4.2 DECODING PERFORMANCE

As shown in Figure 2(q,r,s,t), DIVER-1 iEEG and EEG each **achieve state-of-the-art decoding performance across iEEG and EEG benchmarks.** On the iEEG downstream dataset, our 13M-parameter model surpasses nearly all prior approaches—including BrainBERT (43M) (Wang et al., 2023), PopT (63M)(Chau et al., 2025), and Brant (506M) (Zhang et al., 2023)—across nearly all 15 tasks in Neuroprobe binaray-label and by a large margin in MAYO. For Neuroprobe Multi-label, our model still surpasses the linear STFT laplacian, which surpasses other models except ours in binary-label. On EEG downstream tasks, DIVER-1 also establishes new SOTA results, outperforming CBraMod (Wang et al., 2024c) and LaBraM (Jiang et al., 2024) on FACED emotion recognition (Chen et al., 2023), PhysioNet-MI motor imagery (Goldberger et al., 2000), and MentalArithmetic workload decoding (Zyma et al., 2019). Full task-level values for all benchmark results are provided in Appendix Section D.1. We also evaluated DIVER-1 on additional EEG downstream tasks, where we identified a methodological (reproduction) problem. To ensure fair comparison and facilitate reproduction, we conducted a controlled investigation by standardizing the finetuning procedure across models and comprising performance over seven different finetuning methods. We find that under controlled finetuning settings, DIVER-1 also achieves comparable or superior performance to the other baseline models (Appendix Table 24). Detailed experimental procedures and results are provided in Appendix Section E

432 The strong performance of NeuroProbe results is particularly notable given the pretraining–finetuning distribution shift under which DIVER-1 was trained. Unlike PopT or BrainBERT,
 433 DIVER-1 was pretrained on different datasets than those used for finetuning, on adult data rather
 434 than pediatrics, and using both ECoG and SEEG modalities rather than exclusively SEEG data.
 435 Moreover, DIVER-1 is much smaller (13M) than the other models (BrainBERT : 43M, PopT : 63M).
 436 This highlights the robustness of our representations across dataset shifts and recording modalities.
 437

438 Interestingly, linear probing outperforms full fine-tuning on Neuroprobe. The limited sample size
 439 (-1750 for each fold) may be causing overfitting during full fine-tuning. Another possibility is the
 440 relatively low difficulty of the task. However, given that linear probing also outperforms in the multi-
 441 label, more challenging targets may be needed (e.g., regression to GPT-derived embeddings).
 442

443 4.3 ABLATION STUDIES

444 Because our performance gains reflect both architectural innovations and a much larger pretraining
 445 dataset, we disentangle these factors through architecture ablations and comparisons against baseline
 446 models trained on the same data.

447 Architecture ablations (Tables 17, 18) show that most components—any-variate attention, RoPE,
 448 STCPE, and the multi-domain reconstruction objective—generally improve performance across
 449 modalities. For iEEG specifically, several channel-wise embedding components (modality/subtype
 450 in some tasks and 3D position) produced slight improvements when removed, whereas in EEG these
 451 components typically *boosted* performance. This modality-dependent behavior suggests that future
 452 work may benefit from exploring architectures specialized for iEEG versus EEG.
 453

454 To isolate architectural effects from data scale, we additionally compare models pretrained on the
 455 same dataset as existing baselines (Table 19). When pretrained on the BrainTreebank dataset used
 456 by BrainBERT and PopT, DIVER still achieves higher downstream performance, indicating that the
 457 architectural design itself yields stronger representations independent of data volume.

458 Further ablations and interpretability analysis are in Appendix D due to space constraints.
 459

460 5 CONCLUSION

461 This work presents the first systematic investigation of scaling laws for Ephys foundation models
 462 (EFMs), introducing DIVER-1, a family of EEG/iEEG foundation models ranging from 13M to
 463 1.82B parameters. Our analysis reveals that EFM s follow data-constrained scaling laws with critical
 464 domain-specific characteristics that fundamentally differ from language domains.
 465

466 Through unprecedented scaling across data volume, model capacity, and computational resources,
 467 DIVER-1 achieves state-of-the-art performance on various iEEG and EEG tasks. Our novel archi-
 468 tectural innovations including any-variate attention mechanisms, sliding temporal conditional posi-
 469 tional encoding, and multi-domain reconstruction heads further enhance model performance.
 470

471 DIVER also exhibits strong generality. It offers patch-size variants to accommodate different tem-
 472 poral scales across downstream tasks. Importantly, while it can exploit spatial location features, it
 473 is designed to function robustly even in the absence of some channel position. Unlike PoPT, Brain-
 474 BERT, and Brant, which are trained exclusively on SEEG, DIVER is pretrained on both ECoG and
 475 SEEG while distinguish them by subtype embedding, and can therefore be applied to both. This
 476 versatility makes it a robust foundation model for a wide range of downstream applications.

477 Also, to better leverage the potential of large EFM s, future work should develop more sophisticated
 478 finetuning methodologies, including cross-subject learning frameworks that can handle heteroge-
 479 neous electrode configurations across subjects, and data-efficient approaches such as LoRA that can
 480 effectively adapt large models without overfitting to limited subject-specific data.

481 Looking forward, these findings establish the foundation for a new generation of neuroscience AI
 482 applications by demonstrating that Ephys requires tailored scaling strategies rather than direct ap-
 483 plication of scaling laws from other domains. While the specific scaling law parameters and optimal
 484 ratios we derived are tied to our particular architectural choices and pretext task, the fundamen-
 485 tal insight that data-constrained scaling necessitates prioritizing training duration over model size
 represents a broadly applicable principle for EFM development.

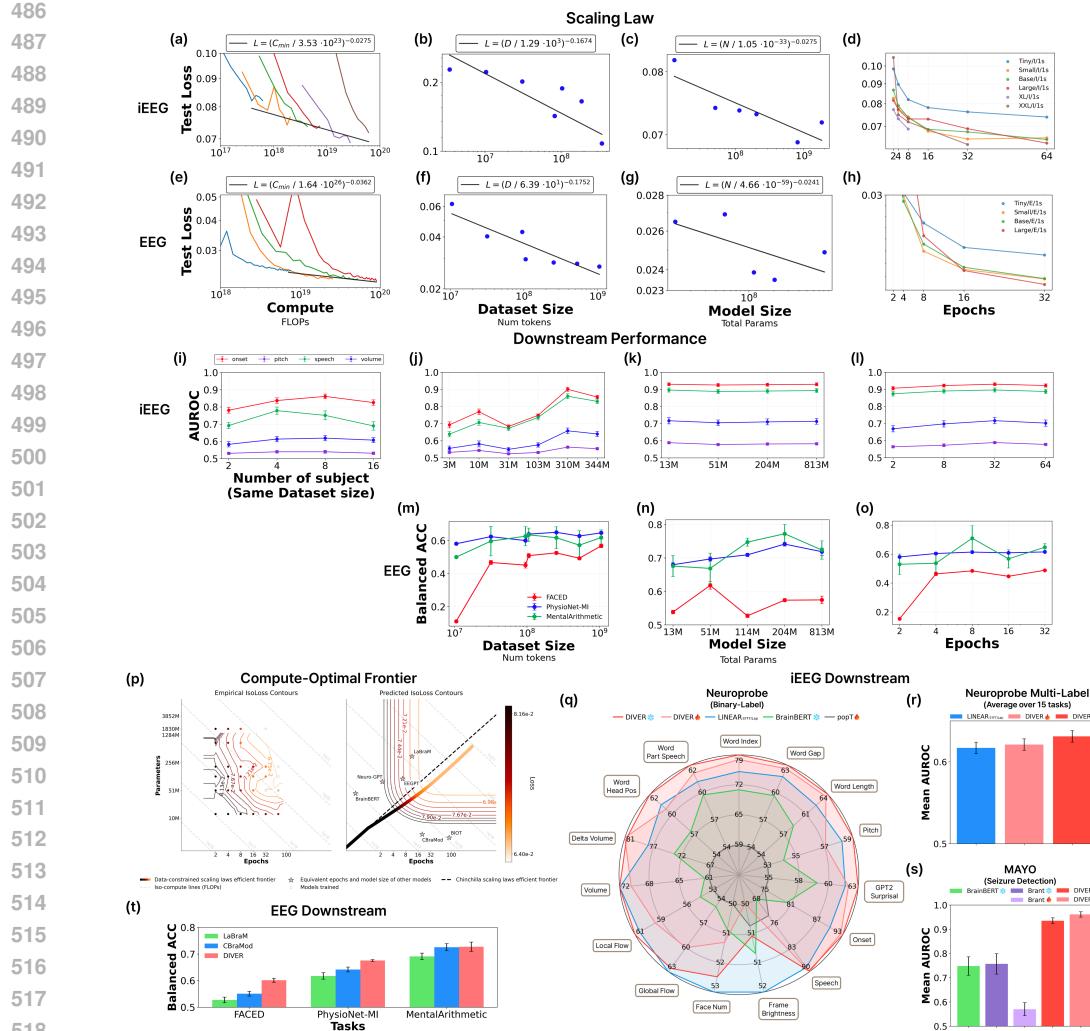


Figure 2: **Scaling laws and downstream performance of DIVER-1.** (a-h) **Scaling law validation:** DIVER-1 follows data-constrained scaling laws across four dimensions for iEEG (a-d) and EEG (e-h) modalities. Loss decreases predictably with increased (a,e) compute (training FLOPs), (b,f) dataset size (number of tokens), (c,g) model size (parameters), and (d,h) training epochs, with strong log-log fits. iEEG experiments (a-d) used 100% of the dataset, while EEG experiments used 20% of the dataset for (e,h) and 100% for (f,g). (q-t) **Downstream performance:** Performance for iEEG (i-l) and EEG (m-o) across increasing (i) number of subjects while keeping dataset size identical, (j,m) dataset size (k,n) model sizes and (l,o) epochs. (p) **Compute-Optimal Frontier (IsoLoss analysis):** Comparison between empirical isolation loss contours and predicted isolation loss contours, with model configurations plotted to show the relationship between training epochs and model parameters under fixed compute budgets. (q) **Neuroprobe benchmark results** Comprehensive performance (AUROC) comparison across multiple neural decoding tasks, with DIVER_{Tiny/1/0.1s} achieving state-of-the-art or competitive results on most tasks. DIVER_{Tiny/1/0.1s} with $d_{model} = 256$ and patch size 0.1s was pretrained on iEEG dataset for 32 epochs, past the compute optimal frontier for best performance. Performance with linear probing (red) and full finetuning (blue) are shown. (r, s) **iEEG downstream performance** (r) Neuroprobe multi-label classification results using DIVER_{Small/1/0.1s}. (s) MAYO(seizure detection task) results using DIVER_{Small/1/0.1s} (t). **EEG downstream performance:** DIVER-1 showed competitive performance compared to other EEG foundation models (CBraMod and LaBraM-base) on the FACED, PhysioNet-MI, and MentalArithmetic datasets. Results shown are obtained using full finetuning. The DIVER model refers to DIVER_{Small/IE/1s} with $d_{model} = 512$ and patch size 1s pretrained on iEEG and EEG datasets for 16 epochs. Other baseline results are replicated using their official code. Performance values for CBraMod and LaBraM are reported from their original publications.

540 REFERENCES
541

542 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
543 next-generation hyperparameter optimization framework. *CoRR*, abs/1907.10902, 2019. URL
544 <http://arxiv.org/abs/1907.10902>.

545 S Brinkm and W Cukierski. Upenn and mayo clinic's seizure detection challenge, 2014.

546 Geeling Chau, Christopher Wang, Sabera Talukder, Vighnesh Subramaniam, Saraswati Soedarmadji,
547 Yisong Yue, Boris Katz, and Andrei Barbu. Population transformer: Learning population-level
548 representations of neural activity. *ArXiv*, pp. arXiv–2406, 2025.

549

550 Jingjing Chen, Xiaobin Wang, Chen Huang, Xin Hu, Xinken Shen, and Dan Zhang. A large finer-
551 grained affective computing eeg dataset. *Scientific Data*, 10(1):740, 2023.

552

553 Yuqi Chen, Kan Ren, Kaitao Song, Yansen Wang, Yifan Wang, Dongsheng Li, and Lili Qiu. Eeg-
554 former: Towards transferable and interpretable large-scale eeg foundation model. *arXiv preprint*
555 *arXiv:2401.10278*, 2024.

556

557 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
558 encodings for vision transformers. *arXiv preprint arXiv:2102.10882*, 2021.

559

560 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
561 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *2024 IEEE International*
562 *Symposium on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2024.

563

564 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
565 registers. *arXiv preprint arXiv:2309.16588*, 2023.

566

567 Aida Ebadi, Sahar Allouch, Ahmad Mheich, Judie Tabbal, Aya Kabbara, Gabriel Robert, Aline
568 Lefebvre, Anton Iftimovici, Borja Rodríguez-Herreros, Nadia Chabane, et al. Beyond homogeneity:
569 charting the landscape of heterogeneity in neurodevelopmental and psychiatric electroen-
570 cephalography. *Translational psychiatry*, 15(1):223, 2025.

571

572 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
573 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
574 physiobank, and physionet: components of a new research resource for complex physiologic
575 signals. *circulation*, 101(23):e215–e220, 2000.

576

577 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
578 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
579 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
580 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
581 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.

582

583 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic repre-
584 sentations with tremendous eeg data in bci. *arXiv preprint arXiv:2405.18765*, 2024.

585

586 Michael J. Kahana, Joseph H. Rudoler, Lynn J. Lohnas, Karl Healey, Ada Aka, Adam Broitman,
587 Elizabeth Crutchley, Patrick Crutchley, Kylie H. Alm, Brandon S. Katerman, Nicole E. Miller,
588 Joel R. Kuhn, Yuxuan Li, Nicole M. Long, Jonathan Miller, Madison D. Paron, Jesse K. Pazdera,
589 Isaac Pedisich, and Christoph T. Weidemann. "penn electrophysiology of encoding and retrieval
590 study (peers)", 2023.

591

592 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
593 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
594 models. *arXiv preprint arXiv:2001.08361*, 2020.

595

596 Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bendr: Using transformers and a
597 contrastive self-supervised learning task to learn from massive amounts of eeg data. *Frontiers in*
598 *Human Neuroscience*, 15:653659, 2021.

594 Harlin Lee, Boyue Li, Shelly DeForte, Mark L Splaingard, Yungui Huang, Yuejie Chi, and Simon L
 595 Linwood. A large collection of real-world pediatric sleep studies. *Scientific Data*, 9(1):421, 2022.
 596

597 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 598 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

599 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
 600 Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
 601 models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.

602 Wajid Mumtaz. MDD Patients and Healthy Controls EEG Data (New). 11 2016. doi:
 603 10.6084/m9.figshare.4244171.v2. URL https://figshare.com/articles/dataset/EEG_Data_New/4244171.

604 Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. *Frontiers in*
 605 *neuroscience*, 10:196, 2016.

606 Steven M Peterson, Satpreet H Singh, Benjamin Dichter, Michael Scheid, Rajesh PN Rao, and
 607 Bingni W Brunton. Ajile12: Long-term naturalistic human intracranial neural recordings and
 608 pose. *Scientific data*, 9(1):184, 2022.

609 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 610 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 611 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
 612 3505–3506, 2020.

613 Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan R Wol-
 614 paw. Bci2000: a general-purpose brain-computer interface (bci) system. *IEEE Transactions on*
 615 *biomedical engineering*, 51(6):1034–1043, 2004.

616 Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. *Journal of*
 617 *Machine Learning Research*, 23(9):1–34, 2022. URL <http://jmlr.org/papers/v23/20-1111.html>.

618 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

619 Seyed Yahya Shirazi, Alexandre Franco, Maurício Scopel Hoffmann, Nathalia B Esper, Dung
 620 Truong, Arnaud Delorme, Michael P Milham, and Scott Makeig. Hbn-eeg: The fair implemen-
 621 tation of the healthy brain network (hbn) electroencephalography dataset. *bioRxiv*, pp. 2024–10,
 622 2024.

623 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 624 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

625 Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
 626 Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial
 627 recordings. *arXiv preprint arXiv:2302.14367*, 2023.

628 Christopher Wang, Adam Yaari, Aaditya Singh, Vighnesh Subramaniam, Dana Rosenfarb, Jan De-
 629 Witt, Pranav Misra, Joseph Madsen, Scellig Stone, Gabriel Kreiman, et al. Brain treebank: Large-
 630 scale intracranial recordings from naturalistic language stimuli. *Advances in Neural Information*
 631 *Processing Systems*, 37:96505–96540, 2024a.

632 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pre-
 633 trained transformer for universal and reliable representation of eeg signals. *Advances in Neural*
 634 *Information Processing Systems*, 37:39249–39280, 2024b.

635 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 636 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint*
 637 *arXiv:2412.07236*, 2024c.

638 Xujia Wang, Xuhui Liu, Xi Liu, Qian Si, Zhaoliang Xu, Yang Li, and Xiantong Zhen. Eeg-dino:
 639 Learning eeg foundation models via hierarchical self-distillation. In *International Conference on*
 640 *Medical Image Computing and Computer-Assisted Intervention*, pp. 196–205. Springer, 2025.

648 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
649 Unified training of universal time series forecasting transformers. International Conference on
650 Machine Learning, 2024.

651 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
652 the wild. Advances in Neural Information Processing Systems, 36:78240–78260, 2023.

653 Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
654 der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
655 networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

656 Andrii Zahorodnii, Bennett Stankovits, Christopher Wang, Charikleia Moraitaki, Geeling Chau,
657 Ila R Fiete, Boris Katz, and Andrei Barbu. Neuroprobe: Evaluating intracranial brain responses
658 to naturalistic stimuli, 2025. URL TBD.

659 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
660 In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
661 12104–12113, 2022.

662 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
663 Foundation model for intracranial neural signal. Advances in Neural Information Processing
664 Systems, 36:26304–26321, 2023.

665 Igor Zyma, Sergii Tukaev, Ivan Seleznov, Ken Kiyono, Anton Popov, Mariia Chernykh, and Oleksii
666 Shpenkov. Electroencephalograms during mental arithmetic task performance. Data, 4(1):14,
667 2019.

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX TABLE OF CONTENTS

702	A Related Works	15
703	A.1 Ephys Data Foundation Models	15
704	A.2 Neural Scaling Law	15
705	B Experimental Setup Details	16
710	B.1 Tested Models	16
711	B.2 Pretraining Dataset	16
712	B.3 Downstream Task and Dataset Overview	17
713	B.4 Pretraining Setup and Model Scaling	17
714	B.5 DIVER Architecture and Pretext Task Hyperparamter Setting	18
715	B.6 Pretraining Hyperparameter Search using μ -Parameterization (μ P) and μ Transfer	18
716	B.7 μ -parameterization (μ P)	20
717	B.8 Finetuning Setup	21
722	C Scaling Law	21
723	C.1 Scaling Law Experiment Details	21
724	C.2 Extended Kaplan (Kaplan et al., 2020) Scaling Law Results for iEEG	24
725	C.3 Data-Constrained Scaling Law Fitting Results for iEEG	24
726	C.4 Extended Kaplan (Kaplan et al., 2020) Scaling Law Results for EEG	28
727	C.5 Data-Constrained Scaling Law Fitting Results for EEG	28
728	C.6 Extended EEG Downstream Scaling Results	31
731	D Extended Results	34
732	D.1 Comprehensive DIVER Downstream Task Results	34
733	D.2 Performance Evaluation across DIVER-1 model configurations	35
734	D.3 Ablations	36
735	D.4 Analysis of Joint Modality (intracranial/scalp-EEG) Pretraining	39
736	D.5 Interpretation Results	40
739	E Exploration of Finetuning Method	41
740	E.1 Overview:Impact of Finetuning Methodology on EEG Downstream Task Performance	41
741	E.2 Impact of MLP Classifier Depth on DIVER Performance	41
742	E.3 Challenges in Reproducing CBraMod Baseline Performance	41
743	E.4 Task-Specific Optimal Finetuning Configurations for CBraMod and DIVER	42
746	F Data Details	44
747	F.1 Pretraining Dataset Description	44
748	F.2 Finetuning Dataset Description	44
749	F.3 QAQC and preprocessing	46
751	G Comparison With Existing EEG/iEEG Foundation Models	46

756 A RELATED WORKS
757758 A.1 EPHYS DATA FOUNDATION MODELS
759

760 Ephys decoding has progressed from pipelines that coupled hand-crafted features with classical clas-
761 sifiers to end-to-end deep architectures that learn task-relevant representations directly from raw sig-
762 nals. Early EEG studies relied on feature engineering (e.g., band-power, CSP) paired with SVMs or
763 LDA; subsequent work introduced convolutional backbones and sequence models that absorb spec-
764 tral-temporal patterns with minimal preprocessing. Building on advances in self-supervised learning
765 (SSL) and “foundation” paradigms, recent efforts pretrain large models on heterogeneous, weakly
766 labeled or unlabeled EEG/iEEG corpora and adapt them to diverse downstream tasks (e.g., event de-
767 tection, cognitive state decoding, BCI control). Representative lines include large-scale EEG trans-
768 formers and montage-aware encoders (e.g., EEGFormer(Chen et al., 2024), NEURO-GPT(Cui et al.,
769 2024), LaBraM(Jiang et al., 2024)), intracranial representation learners (e.g., BrainBERT(Wang
770 et al., 2023), foundation models for intracranial neural signals), and broader neuro-sequence back-
771 bones emphasizing transfer and robustness (e.g., CBraMod(Wang et al., 2024c)).
772

773 A.2 NEURAL SCALING LAW
774

775 **Kaplan (Kaplan et al., 2020) scaling law** provides a principled framework for predicting model
776 performance as a function of model size and dataset size for large language models. They demon-
777 strated that language model cross-entropy loss follows smooth power-law relationships with respect
778 to model parameters (N) and training data (D). Concretely, they proposed a relation of the form
779

$$780 L(N, D) = \frac{A}{N^\alpha} + \frac{B}{D^\beta} + E \quad (9)$$

781 where A, B, E are constants, and $\alpha, \beta > 0$ are scaling exponents. This formulation implies that
782 increasing the number of parameters or training data yields a predictable reduction in loss, enabling
783 systematic optimization of compute allocation across model size and training duration.
784

785 **Data-constrained scaling law.** In scientific domains, including Ephys, unique high-quality data
786 are inherently limited. To address this, Muennighoff et al. (2023) extended the scaling framework
787 to data-constrained regimes, where models must repeatedly train on the same corpus for multiple
788 epochs. They proposed a modified law
789

$$790 L(N, D) = \frac{A}{(N')^\alpha} + \frac{B}{(D')^\beta} + E \quad (10)$$

791 where the effective number of parameters N' and effective tokens D' account for diminishing re-
792 turns: repeated tokens are progressively less valuable, and excessively large models are less sample-
793 efficient. They further define
794

$$795 D' = U_D + U_D R_D^* \left(1 - e^{-\frac{R_D}{R_D^*}}\right) \quad (11)$$

$$796 N' = U_N + U_N R_N^* \left(1 - e^{-\frac{R_N}{R_N^*}}\right) \quad (12)$$

797 where U_D is the number of unique tokens, R_D is the number of repetitions (epochs – 1), and R_D^* is a
798 learned constant describing the “half-life” of repeated data. Analogously, U_N is the compute-optimal
799 parameter count for U_D , and R_N^* governs diminishing returns beyond that point. Empirical results
800 suggest that up to ~ 4 epochs, repeated data is almost as useful as new data, but returns decrease
801 sharply thereafter.
802

803 Compared to the Chinchilla law (Hoffmann et al., 2022), which assumes abundant data and one
804 training epoch, this formulation makes epoch count itself a central axis of scaling. This perspective
805 is crucial for domains constrained by limited samples, such as EEG and iEEG, and it guides how
806 compute should be allocated between model size and additional training passes.
807

808 Finally, the data-constrained scaling law also connects scaling analysis to more fundamental theory.
809 Recent work has suggested that the exponents governing power-law scaling, such as α and β , are
810 intimately connected to the intrinsic dimension of the underlying data manifold (Sharma & Kaplan,
811

2022). In particular, it has been argued that the data exponent β can be interpreted in terms of an effective dimension d via an approximate inverse relation of the form:

$$\beta \approx \frac{2}{d}. \quad (13)$$

From this view, estimating β provides not only a measure of how data volume translates into performance but also an insight into the intrinsic dimensionality of Ephys signals, where scarcity and structural complexity are defining features.

B EXPERIMENTAL SETUP DETAILS

B.1 TESTED MODELS

We adopt a systematic naming convention for all DIVER model variants: $\text{DIVER}_{\text{Size}/\text{Modality}/\text{Granularity}}$. The *Size* component indicates model size (Tiny: 256, Small: 512, Base: 768, Large: 1024, XL: 2048, XXL: 3072 hidden dimensions). The *Modality* specifies input data types (I: iEEG-only, IE: iEEG+EEG). The *Granularity* indicates temporal resolution (0.1s or 1s window). For example, $\text{DIVER}_{\text{Base}/\text{I}/\text{1s}}$ represents a base-sized model trained on iEEG-only data with 1s temporal windows.

Table 1: Model configurations with measured parameters and total FLOPs per epoch.

Models	# Parameters	Modality	Granularity	Hidden Dimension (d_{model})	total FLOPs / epoch
$\text{DIVER}_{\text{Tiny}/\text{I}/0.1\text{s}}$	12.72M	iEEG	0.1s	256	76.34P
$\text{DIVER}_{\text{Small}/\text{I}/0.1\text{s}}$	50.75M	iEEG	0.1s	512	253.96P
$\text{DIVER}_{\text{Base}/\text{I}/0.1\text{s}}$	114.07M	iEEG	0.1s	768	532.77P
$\text{DIVER}_{\text{Large}/\text{I}/0.1\text{s}}$	202.70M	iEEG	0.1s	1024	912.83P
$\text{DIVER}_{\text{XL}/\text{I}/0.1\text{s}}$	810.19M	iEEG	0.1s	2048	3.40E
$\text{DIVER}_{\text{XXL}/\text{I}/0.1\text{s}}$	1.82B	iEEG	0.1s	3072	7.50E
$\text{DIVER}_{\text{Tiny}/\text{I}/1\text{s}}$	13.03M	iEEG	1s	256	77.52P
$\text{DIVER}_{\text{Small}/\text{I}/1\text{s}}$	51.36M	iEEG	1s	512	256.44P
$\text{DIVER}_{\text{Base}/\text{I}/1\text{s}}$	115.00M	iEEG	1s	768	536.82P
$\text{DIVER}_{\text{Large}/\text{I}/1\text{s}}$	203.95M	iEEG	1s	1024	918.56P
$\text{DIVER}_{\text{XL}/\text{I}/1\text{s}}$	812.85M	iEEG	1s	2048	3.46E
$\text{DIVER}_{\text{XXL}/\text{I}/1\text{s}}$	1.83B	iEEG	1s	3072	7.64E
$\text{DIVER}_{\text{Tiny}/\text{E}/1\text{s}}$	13.03M	EEG	1s	256	238.83P
$\text{DIVER}_{\text{Small}/\text{E}/1\text{s}}$	51.36M	EEG	1s	512	790.01P
$\text{DIVER}_{\text{Base}/\text{E}/1\text{s}}$	115.00M	EEG	1s	768	1.65E
$\text{DIVER}_{\text{Large}/\text{E}/1\text{s}}$	203.95M	EEG	1s	1024	2.83E
$\text{DIVER}_{\text{XL}/\text{E}/1\text{s}}$	812.85M	EEG	1s	2048	10.65E
$\text{DIVER}_{\text{Tiny}/\text{IE}/1\text{s}}$	13.03M	iEEG+EEG	1s	256	316.35P
$\text{DIVER}_{\text{Small}/\text{IE}/1\text{s}}$	51.36M	iEEG+EEG	1s	512	1.05E
$\text{DIVER}_{\text{Large}/\text{IE}/1\text{s}}$	203.95M	iEEG+EEG	1s	1024	2.19E
$\text{DIVER}_{\text{XL}/\text{IE}/1\text{s}}$	812.85M	iEEG+EEG	1s	2048	3.75E

B.2 PRETRAINING DATASET

DIVER-1 was pretrained on the largest and most diverse Ephys corpus to date, with DIVER- $_{\text{-I}/\text{-}}$ trained on 352k channel-hours from 37 subjects using iEEG data (ECOG/SEEG), DIVER- $_{\text{-IE}/\text{-}}$ trained on 1.66M channel-hours from 17,718 subjects combining both iEEG and EEG modalities across multiple datasets. Pretraining dataset description is given in Table 2.

864
 865 Table 2: **Summary of DIVER-1 pretraining datasets.** The datasets are categorized by modality:
 866 iEEG (including ECoG and sEEG) and EEG. DIVER_I was pretrained on iEEG, DIVER_E on EEG,
 867 and DIVER_{IE} utilized both. Note that for the self-collected iEEG dataset in DIVER_{IE}, we applied
 868 stricter QAQC criteria (3.33% threshold) compared to DIVER_I (50% threshold) for consistency with
 869 EEG criteria.

Datasets	Data Type	# Subj.	Volume (channel-hours)	Duration (hours)	Sampling Rate (Hz)
iEEG (Used in DIVER_I & DIVER_{IE})					
AJILE12 (Peterson et al., 2022)	ECoG	12	124,423	1,282	1,000
Self-collected iEEG (DIVER _I)	ECoG/sEEG	25	227,612	4,028	2,000
Self-collected iEEG (DIVER _{IE})	ECoG/sEEG	25	144,634	2,844	2,000
EEG (Used in DIVER_E & DIVER_{IE})					
TUEG (Obeid & Picone, 2016)	EEG	10,874	422,036	23,178	250–512
HBN (Shirazi et al., 2024)	EEG	2,782	61,703	572	500
NCHSDB (Lee et al., 2022)	EEG	3,673	163,146	26,055	256–512
PEERS (Kahana et al., 2023)	EEG	364	870,447	6,964	500
Total (DIVER_I)	iEEG	37	352,035	5,310	—
Total (DIVER_E)	EEG	17,693	1,517,332	56,769	—
Total (DIVER_{IE})	iEEG + EEG	17,718	1,661,966	59,613	—

B.3 DOWNSTREAM TASK AND DATASET OVERVIEW

883 Table 3 provides a comprehensive overview of all downstream tasks and datasets used in our eval-
 884 uation. Our evaluation spans two modalities (iEEG and EEG) and covers diverse neural decoding
 885 objectives across visual, auditory, and language domains.

886 **iEEG tasks.** We evaluated on 15 tasks from the Neuroprobe (LITE) benchmark (Zahorodnii et al.,
 887 2025), including visual perception (frame brightness, optical flow, face detection), auditory pro-
 888 cessing (volume, pitch, delta volume), and language processing (speech decoding, word prediction,
 889 onset detection, part-of-speech tagging). The Neuroprobe dataset contains depth electrode record-
 890 ings from 6 subjects with 109–120 channels per subject, originally sampled at 2048Hz and was
 891 resampled to 500Hz to match our pretraining configuration. There are both binary-label and multi-
 892 label task options for Neuroprobe.³ In the multi-label configuration, the speech, onset, and head
 893 word position tasks remain binary, the part-of-speech task uses 6 labels, and the remaining tasks use
 894 3 labels. Throughout this paper, unless explicitly stated otherwise as multi-label, all reported Neu-
 895 roprobe results correspond to the binary-label setting. Also, we evaluated on the seizure detection
 896 test on MAYO dataset (modified the dataset in kaggle challenge (Bbrinkm & Cukierski, 2014)). The
 897 original dataset consists of 1 s samples, but to match the minimum patch length of Brant, one of the
 898 baseline models, we concatenated samples in temporal order to create 6 s samples. We evaluated the
 899 model separately for each of the 8 participants. To address the issue of having more test data than
 900 training data, we swapped the train and test sets for each participant.

901 **EEG tasks.** We evaluated on three EEG benchmarks: FACED (emotion recognition from 32-channel
 902 EEG, 9-class classification, 123 subjects)(Chen et al., 2023), PhysioNet-MI (motor imagery with
 903 64 channels, 4-class classification, 109 subjects)(Goldberger et al., 2000), and MentalArithmetic
 904 (mental stress detection with 20 channels reduced to 19, 2-class classification, 36 subjects)(Zyma
 905 et al., 2019). Sampling rates were standardized to 500Hz across all datasets to ensure consistency
 906 with our pretraining setup.

B.4 PRETRAINING SETUP AND MODEL SCALING

907 Training experiments were conducted across two high-performance computing configurations. The
 908 primary server consisted of nodes each equipped with a single 2.8 GHz AMD EPYC Milan 7543P
 909 32-core CPU and four NVIDIA A100 GPUs, which was more heavily utilized throughout the train-
 910 ing process. For large model variants, we additionally employed a secondary server equipped with
 911 dual Intel Xeon Platinum 8480+ processors (112 cores total) and eight NVIDIA H200 GPUs with
 912 144GB memory each. Training experiments were conducted using either 128, 32, 8 A100 GPUs or
 913 32, 24, 16 H200 GPUs depending on the experimental configuration. We maintained a fixed global
 914 915 916 917

³The multi-label setting is currently available only in the released code and has not yet been documented in the paper.

918
 919 Table 3: **Overview of downstream tasks and datasets.** Sampling rates were adjusted to 500Hz
 920 across all datasets to match the pretraining configuration. Arrows (\rightarrow) indicate resampling or channel
 921 selection from the original dataset.

Modality	Task Name	Datasets	Sampling Rate	# Ch.	# Subj.	Label
iEEG	frame_brightness (visual)	Neuroprobe (LITE)	2048 \rightarrow 500Hz	Var. (109–120)	6	2-class (2-6 in multilabel)
	global_flow (visual)					
	local_flow (visual)					
	face_num (visual)					
	volume (auditory)					
	pitch (auditory)					
	delta_volume (auditory)					
	speech (language)					
	onset (language)					
	gpt2_surprisal (language)					
EEG	word_length (language)	MAYO	5000 \rightarrow 500Hz	Var.(16–72)	8	2-class
	word_gap (language)					
	word_index (language)					
	word_head_pos (language)					
	word_part_of_speech (language)					
	Seizure Detection					
EEG	Emotion Recognition	FACED	250 \rightarrow 500Hz	32	123	9-class
	Motor Imagery					
	Mental Stress Detection					
EEG		PhysioNet-MI	160 \rightarrow 500Hz 500Hz	64 20 \rightarrow 19	109 36	4-class 2-class

938
 939 batch size of 192 across all training runs, with the per-GPU batch size adjusted dynamically based
 940 on the number of nodes employed.

941 We varied the model size by modifying the hidden dimension of the transformer, resulting in sizes
 942 of 13M, 51M, 115M, 203M, 813M, 1.83B parameters, while keeping the depth fixed at 12 layers.
 943 This capacity adjustment leverages the benefits of μ parameterization for stable training across
 944 different model sizes. DIVER-1 was implemented on the Python 3.12.3 and Pytorch 2.6.0 + cuda
 945 version 12.4. To enhance training efficiency, we employed DeepSpeed ZeRO Stage 2, BF16 pre-
 946 cision. Optimization was performed using a custom implementation of the DeepSpeed’s MuAdam
 947 optimizer (Yang et al., 2022) with utilizing DeepSpeed’s FusedAdam backend (Rasley et al., 2020)
 948 for computational efficiency and learning rate calibration. A cosine annealing learning rate scheduler
 949 with warm-up restarts was applied, with cycle length matching the total training steps and minimum
 950 learning rate set to 0.01 \times the initial rate.

951 B.5 DIVER ARCHITECTURE AND PRETEXT TASK HYPERPARAMTER SETTING

952 **Architecture setting** Table 4 lists the detailed architectural hyperparameter settings used for
 953 DIVER-1 pretraining.

954 **FFT, STFT setting** For the FFT, we used a window size of 500 time points with a sampling fre-
 955 quency of 500 Hz. A cutoff frequency of 200 Hz was applied, and the FFT amplitudes were con-
 956 verted to absolute values, normalized, and then compressed using a $\log(1 + x)$ transform. For the
 957 STFT, we employed a multi-resolution approach with window sizes of 200 and 100 time points,
 958 respectively. Each window was shifted with 50% overlap and tapered with a Hann window func-
 959 tion. Consistent with the FFT settings, a cutoff frequency of 200 Hz was applied, and the STFT
 960 amplitudes were converted to absolute values, normalized, and compressed using the $\log(1 + x)$
 961 transform.

962 B.6 PRETRAINING HYPERPARAMETER SEARCH USING μ -PARAMETERIZATION (μ P) AND 963 μ TRANSFER

964 We employed a two-stage hyperparameter optimization approach to determine optimal learning rate
 965 (lr) and weight decay (wd) values; grid search followed by optuna optimization. The search was
 966 conducted using a 50M parameter model, a 12-layer architecture with 512-dimensional attention
 967 layers trained for different modalities: iEEG, EEG, and TUEG and iEEG; DIVER_{Small/I/1s},
 968 DIVER_{Small/E/1s}, DIVER_{Small/IE/1s}. All hyperparameter searches were performed over 2 epochs
 969 to balance computational efficiency with reliable performance estimation.

972
 973 Table 4: **Hyperparameters for DIVER-1 pretraining.** Two model variants were trained for inputs
 974 with 1s and 0.1s patch size respectively. The 1s and 0.1s models share all settings except for patch
 975 size, patchwise CNN embedding settings, and SSL weights. Some hyperparameters are defined as a
 976 function of d_{model} , which we vary across {256, 512, 768, 1024, 2048, 3072}.

	Hyperparameters	Settings
Input & Masking	Patch size	500 (1s) 50 (0.1s)
	Mask ratio	0.5
	Masking type	Patch random
Patch Encoder (CNN)	Intermediate channel (C_{inter})	$d_{\text{model}}/8$ (1s) $d_{\text{model}}/16$ (0.1s)
	Input dimension	{1, C_{inter} , C_{inter} }
	Output dimension	{ C_{inter} , C_{inter} , C_{inter} }
	Stride	{64, 3, 3} (1s) {4, 3, 3} (0.1s)
	Kernel size	{63, 3, 3}
	Padding	{31, 1, 1}
	Depth	3
Patch Encoder (Spectral)	Spectral FFT size	$d_{\text{model}}/2 + 1$
	Spectral dropout	0.1
STCPE	STCPE dimension	$d_{\text{model}}/8$
	STCPE layers	1
	STCPE heads	$d_{\text{model}}/256$
	STCPE d_{ff}	$d_{\text{model}}/2$
	Time window size	7
Positional Embedding	Channel type dimension	$d_{\text{model}}/4$
	Embedding style	CPE (Learnable)
	Temperature	2000
	Scale	1/256
Transformer	Model dimension	d_{model}
	Layers	12
	Heads	$d_{\text{model}}/32$
	Feed-forward dimension	$4 * d_{\text{model}}$
	Activation	SiLU
	Attention type	Flash attention
	Dropout	0.1
SSL Head	Domain	Time, FFT, STFT
	Loss weight (λ_{Time})	1.0
	Loss weight (λ_{FFT})	0.1 (1s) / 1.0 (0.1s)
	Loss weight (λ_{STFT})	1.0 (1s) / 0.0 (0.1s)
Training	Parameterization	μP

1013
 1014 **Stage1: Grid search** We conducted an extensive grid search across learning rate and weight decay
 1015 combinations, systematically exploring the hyperparameter space.

1016

1017

- 1018 a) Initial Learning Rate Exploration (wd=1e-2): Learning rates: 1e-5, 1e-4, 1e-3, 1e-2
- 1019 b) Weight Decay Exploration (lr=1e-3): Weight decay values: 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
- 1020 c) Refined Learning Rate Search: Based on initial results, we refined the learning rate search
 1021 between 1e-4 and 1e-2, testing: 2e-4, 3e-4, 5e-4, 8e-4, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3
- 1022 d) Cross-combinations: Additional combinations around promising regions, including
 1023 lr=6e-3 with various weight decay values: 1e-6, 1e-5, 1e-4, 1e-3, 1e-1

1026

1027

Table 5: Stage 1: Grid search hyperparameter exploration.

1028

1029

1030

1031

1032

1033

The grid search evaluated 30 distinct learning rate and weight decay combinations, revealing optimal configurations of $lr=6.0e-3$ with $wd=1.0e-06$ for $DIVER_{Small/I/1s}$ and $lr=1.0e-03$ with $wd=2.0e-01$ for $DIVER_{Small/IE/1s}$ when pretrained on the TUEG dataset (our largest EEG dataset).

1034

1035

For subsequent Optuna optimization of $DIVER_{Small/IE/1s}$, we used the geometric mean between the $DIVER_{Small/I/1s}$ Optuna results ($lr=2.30e-03$, $wd=2.17e-07$) and the TUEG-pretrained model’s grid search results ($lr=1.0e-03$, $wd=2.0e-01$) as the starting point, yielding $lr=1.51e-03$ and $wd=2.09e-04$.

1036

1037

Stage2: Optuna Optimization We further refined the hyperparameters using Optuna(Akiba et al., 2019) or bayesian hyperparameter optimization. The search space was defined as ± 1 order of magnitude around the best grid search configurations (range: $\times 0.1$ to $\times 10$), with 50 trials conducted to systematically explore this refined hyperparameter space. The optimal hyperparameter settings identified through Optuna optimization are presented in Table 6.

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

Table 6: Optimal learning rate and weight decay by model configuration.

1048

1049

1050

1051

1052

Models	Modality	Granularity	Learning Rate	Weight Decay
$DIVER_{Small/I/1s}$	iEEG	1s	2.30e-03	2.17e-07
$DIVER_{Small/I/0.1s}$	iEEG	0.1s	4.91e-03	3.75e-06
$DIVER_{Small/E/1s}$	EEG	1s	7.70e-03	2.14e-07
$DIVER_{Small/IE/1s}$	iEEG+TUEG	1s	2.61e-03	1.36e-03

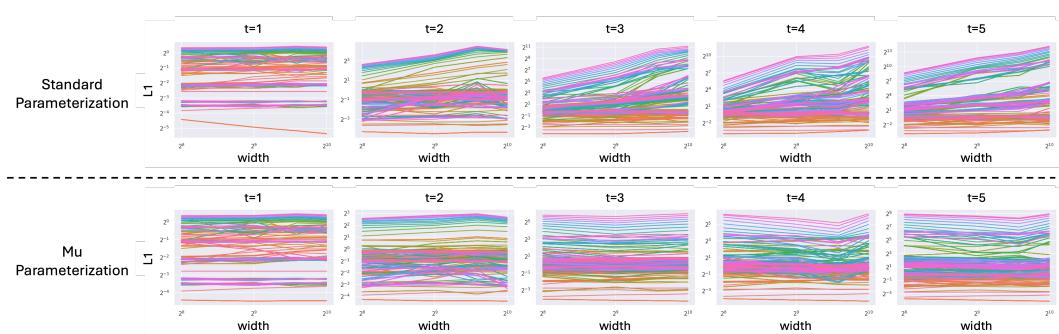
1053

1054

B.7 μ -PARAMETERIZATION (μP)

1055

1056



1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

Figure 3: **Verification of the μP implementation.** The L1 norm of activation vectors (y-axis) is plotted against model width (x-axis) for five training timesteps ($t=1$ to $t=5$) across four different widths (256, 512, 768, 1024). (**Top Row**) With standard parameterization, activation norms are unstable and diverge as model width increases. (**Bottom Row**) In contrast, our μP implementation yields stable activation norms that are independent of model width. This confirms the model is correctly parameterized, a critical prerequisite for successful hyperparameter transfer via μ Transfer.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

The stable initialization shown in the **Figure 3** translates directly to stable training dynamics. We confirmed this by tracking the training loss while **varying the model width** across the same four **configurations**. With μP enabled, the training loss remained low and stable for all model sizes. In stark contrast, training without μP led to severe instability; the loss diverged rapidly as the model grew, with values exploding to over 100 for the largest width. This empirical result demonstrates that our use of μP was essential for reliably training larger models in our scaling experiments.

1080 B.8 FINETUNING SETUP
1081

1082 For **Neuroprobe (iEEG task)**, DIVER-1 was finetuned at $lr = 2e-3$ and $wd = 1e-2$, batch size 32, with
1083 AdamW for both frozen and full-finetuning. For the **MAYO (iEEG)** task, frozen models were fine-
1084 tuned using the same learning rate and weight decay as above, whereas full fine-tuning employed
1085 separate hyperparameters for each model size ($lr = 1.19e-3$, $wd = 6.18e-1$ for 256; $lr = 4.19e-3$, wd
1086 = $1.45e-2$ for 512; $lr = 7.14e-4$, $wd = 2.84e-1$ for 768; $lr = 1.40e-4$, $wd = 3.44e-2$ for 1024; lr
1087 = $8.65e-4$, $wd = 9.90e-2$ for 2048; selected via a learning-rate and weight-decay search based on the
1088 validation set of subject 1, fold 1).

1089 Unlike Neuroprobe, for which PopT and BrainBERT baselines are provided as benchmarks (Za-
1090 horodnii et al., 2025), the MAYO seizure dataset is an extended dataset that we constructed to match
1091 Brant’s minimum input length, and therefore required training on the baseline models. BrainBERT
1092 was set at $lr = 1e-3$ for the classifier with AdamW, as in the original paper (Wang et al., 2023), with
1093 batch size 32. The features in time [l-5:l+5] were concatenated along the channel dimension. Brant
1094 was set at $lr = 1e-4$ for the classifier and $1e-7$ for encoder layers, with $\text{betas}=(0.9, 0.999)$, $\text{eps}=1e-8$,
1095 batch size 4 and Adam, same as their publicly released code. We could not evaluate PopT on MAYO
1096 because LPI coordinates are not available. Brant was pretrained with a 6 s patch and a total of 15
1097 patches (90 s), so we were therefore unable to evaluate it on the neuroprobe (1 s), and there is a
1098 mismatch with the original pretrained context in MAYO (6 s).

1099 All models were trained for 40 epochs with a CosineAnnealing scheduler. The same validation splits
1100 were applied to the training set for each model, and we early-stopped if the validation AUROC did
1101 not increase for 10 epochs.

1102 For all EEG downstream tasks, we use the same optimizer (AdamW) and learning rate scheduler
1103 (cosine annealing) as described in the iEEG finetuning configuration. The base learning rate is set to
1104 $2.00e-4$, weight decay to $3.00e-1$, and batch size to 64. We perform full finetuning without employing
1105 multi-lr strategies, applying the same learning rate to both the backbone and classifier. The classifier
1106 consists of a 3-layer MLP with ELU activation functions, where the first hidden layer has width
1107 $T \times 200$ (T is the sample duration in seconds), the second hidden layer has width 200, and the
1108 output layer dimension matches the number of classes. Dropout rate is set to 0.1, label smoothing to
1109 0.1, and gradient clipping value to 1.0. All models are trained for 50 epochs without early stopping.
1110 For model selection, we use the epoch that achieves the best validation performance (AUROC for
1111 binary classification, F1 score for multi-class classification), which is then evaluated on the test
1112 set. All results are reported as mean \pm standard deviation across 5 random seeds (41, 42, 43, 44,
1113 45). For the one-to-one comparison experiments with CBraMod (Table 24), we use task-specific
1114 hyperparameters to match CBraMod’s training conditions: on Mumtaz2016 (Mumtaz, 2016), linear
1115 probing uses learning rate $5.00e-6$ and weight decay $6.25e-6$, while multi-lr and linear classifier
1116 configurations use learning rate $6.25e-5$ and weight decay $6.25e-6$.

1117

1118 C SCALING LAW
11191120 C.1 SCALING LAW EXPERIMENT DETAILS
1121

1122 Pretraining loss curves for the trained models are presented in Figure 4 for the DIVER- $_{/1/1s}$ model
1123 family, Figure 5 for the DIVER- $_{/1/0.1s}$ model family and Figure 6 for the DIVER- $_{/E/1s}$ model fam-
1124 ily. For the iEEG models, we trained separate instances for each epoch to obtain the correspond-
1125 ing loss curves. In contrast, for EEG models, we trained all models with a fixed maximum of 32 epochs
1126 and extracted test loss values at the relevant epoch checkpoints for scaling analysis. This differ-
1127 ence in training procedure was necessitated by computational constraints, as EEG model training
1128 requires substantially longer wall-clock time. Consequently, the iEEG plots display epoch-specific
1129 loss curves (4 and 5), while the EEG plot presents all scaling curves within a single figure (Figure 6).
1130 Importantly, this methodological difference affects the learning rate schedule: we employed cosine
1131 annealing with warmup, where the decay schedule depends on the total number of training epochs.
1132 Therefore, extracting the loss at epoch 2 from a model trained for 32 epochs differs from the loss
1133 at epoch 2 of a model trained for only 2 epochs, as the learning rate trajectories diverge under these
1134 configurations.

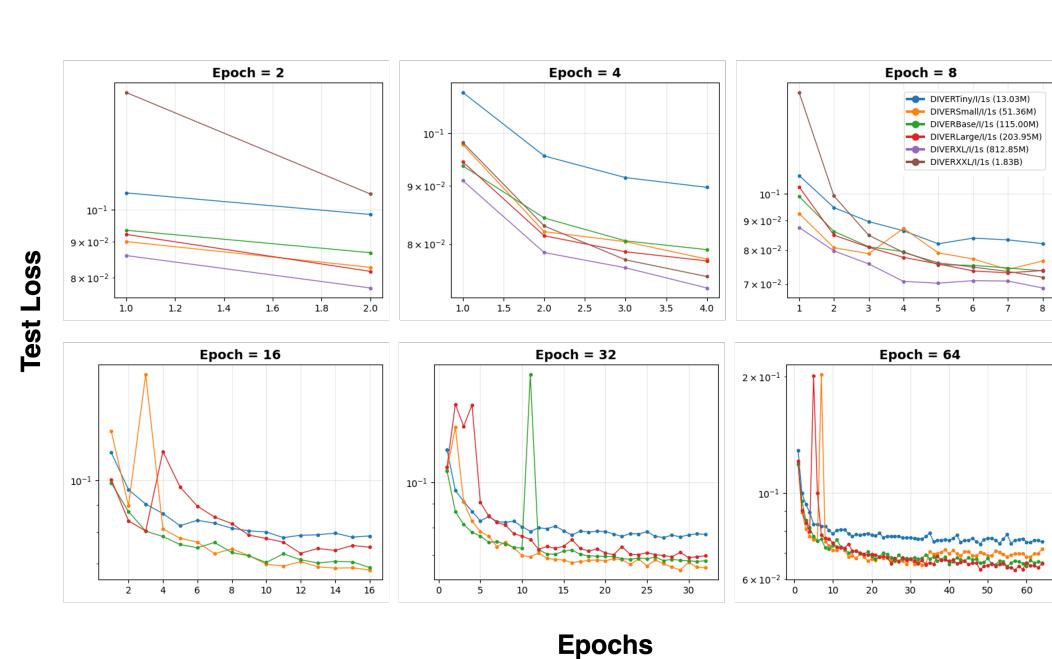


Figure 4: Loss curves of the DIVER-1/1s model family. Test loss across epochs is shown.

Figure 5: Loss curves of the DIVER-1/0.1s model family. Test loss across epochs is shown.

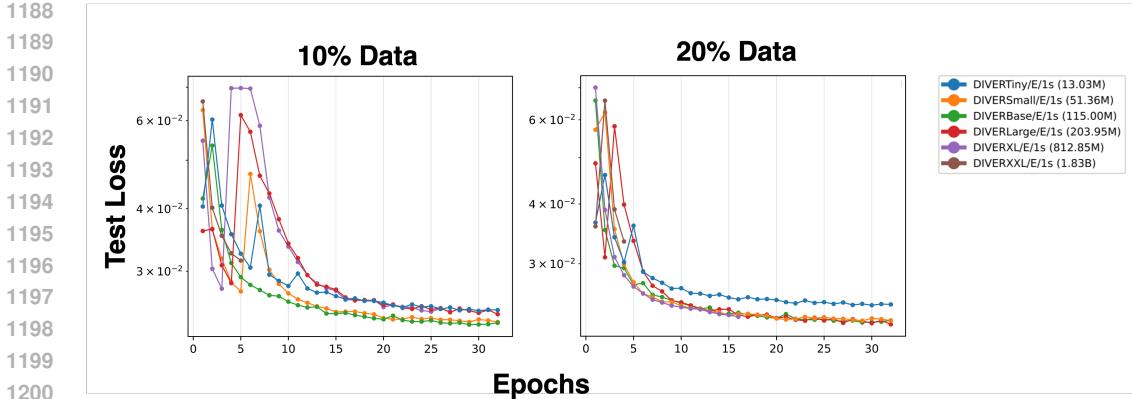


Figure 6: Loss curves of the DIVER_/_E/1s model family for each dataset size. Test loss across epochs is shown. Unlike the iEEG experiments, where separate models were trained for each epoch, all EEG models were trained for a fixed 32-epoch schedule. Early-epoch losses were extracted from intermediate checkpoints of these longer runs. Consequently, each dataset size yields five loss curves, one for each model scale trained within the 32-epoch run.

Unique number of tokens First of all, the estimated total number of unique tokens is $U_D = \text{number of data sample} \times \text{number of tokens per sample}$. The number of tokens per sample can be expressed as $\text{number of channels} \times \text{number of timestamps} \times \text{proportion of unmasked patches}$.

For iEEG, the total number of data samples is 636,480. Since we randomly sampled from a 32 channel x 30 timestamp token grid using Beta(3,1) distribution for both axis, we estimate the number of tokens per sample as $32 \times 30 \times 0.75 \times 0.75 = 540$ tokens. Thus, we get $U_D = 636,480 \times 540$ for iEEG.

In the case of EEG, the approximated total number of data samples is 1,960,800, and the number of tokens per sample is same as iEEG. Therefore, the $U_D = 1,960,800 \times 540$ for EEG.

Compute To investigate compute scaling properties, we conducted systematic pretraining experiments across different epoch counts for the 1-second granularity models. For shorter training regimes (1, 2, 4, and 8 epochs), we pretrained all six model variants: DIVER_{Tiny/1/1s}, DIVER_{Small/1/1s}, DIVER_{Base/1/1s}, DIVER_{Large/1/1s}, DIVER_{XL/1/1s}, and DIVER_{XXL/1/1s}. For longer training regimes (16, 32, and 64 epochs), computational constraints limited our experiments to the four smaller model variants: DIVER_{Tiny/1/1s}, DIVER_{Small/1/1s}, DIVER_{Base/1/1s}, and DIVER_{Large/1/1s}.

For the DIVER_/_1/0.1s model family with 0.1-second granularity models, we followed a similar training protocol. We trained six model variant for epochs 2, 8 and five model variants for epochs 32, excluding DIVER_{Base/1/0.1s} and three model variants for epochs 64, excluding DIVER_{Base/1/0.1s}, DIVER_{Large/1/0.1s} and DIVER_{XXL/1/0.1s}.

For the DIVER_/_E/1s model family on EEG data, we adopted a different training approach due to the substantially longer training time required for EEG models. We trained all model variants with a fixed maximum of 32 epochs and extracted test loss values at epochs 2, 4, 8, 16, and 32 for scaling analysis. We conducted experiments on 10% and 20% of the EEG dataset. For the 10% subset, we trained five model variants up to 32 epochs, while for the 20% subset, computational constraints allowed us to train four variants: DIVER_{Tiny/E/1s}, DIVER_{Small/E/1s}, DIVER_{Base/E/1s}, DIVER_{Large/E/1s}. DIVER_{XL/E/1s} was trained up to 16 epochs in 20% data and DIVER_{XXL/E/1s} was trained up to 4 epochs in both 10% and 20% dataset setting.

Data Size For iEEG, data size scaling was done in 1, 3, 9, 24, 50, 90, 100% of data on DIVER_{Small/1/1s} for 2 epochs with hyperparameters fixed as $lr = 6.0e - 03$, $wd = 1.0e - 06$. For EEG, data size scaling was done in 1, 3, 9, 10, 24, 50, 100% of data on DIVER_{Small/E/1s} for 2 epochs with hyperparameters fixed as $lr = 7.70 \times 10^{-3}$, $wd = 2.14 \times 10^{-7}$. Number of token =

1242 number of data sample \times number of tokens per sample, while the total number of data samples was
 1243 636,480 for iEEG and 1,960,800 for EEG. Number of tokens per sample estimated as 540, given that
 1244 we randomly sampled from a 32×30 token grid using Beta(3,1) distribution. A detailed explanation
 1245 can be found in the aforementioned Unique number of tokens section.

1246 **Model Size** We fixed the number of epochs to 2. The models varied by their width, number of layers,
 1247 and patch size. The detailed experiment conditions are on table 1. We observed that the models with
 1248 different number of layers or patch size show different scaling behavior, so we fitted them separately.
 1249

1250 **Number of Subjects** Subject scaling experiments were done only for iEEG, with datasets
 1251 containing 2, 4, 5, 8, 10, 15, 16 subjects respectively, while maintaining a constant dataset
 1252 size. DIVER_{Small/I/0.1s} trained for 2 epochs, due to compute constraint.

1253 **Data-constrained Scaling Law** We trained a total of 31 models with varying parameter counts
 1254 and numbers of training epochs, while keeping the dataset fixed. The hidden dimension was fixed
 1255 to 12 layers. Since different granularity led to different scaling behavior, we experimented on two
 1256 granularity conditions and fitted them separately. The empirical isoLoss contours in Figure 2(j) show
 1257 less smoothness compared to the original scaling law paper (Muennighoff et al., 2023), primarily due
 1258 to sampling density. While the original study used 93 model configurations with dense sampling
 1259 across all loss ranges, we evaluated 30 configurations. Despite this visual difference, our empirical
 1260 isoLoss contours (Figure 2(j) and Figure 7, left panel) align well with the predicted contours (Figure
 1261 2(j) and Figure 7, right panel), demonstrating that data-constrained scaling laws generalize to neural
 1262 data.

1263 C.2 EXTENDED KAPLAN (KAPLAN ET AL., 2020) SCALING LAW RESULTS FOR iEEG

1264 We tested models at the 1-second and 0.1-second granularity. For 1-second granularity models, all
 1265 six models listed in Table 1 as DIVER_{-/1/1s} were tested for epochs 2, 4, 8. At epochs 16, 32,
 1266 and 64, evaluation was conducted on the following four models: DIVER_{Tiny/1/1s}, DIVER_{Small/I/1s},
 1267 DIVER_{Base/I/1s}, and DIVER_{Large/I/1s}. At earlier epochs (2, 4, and 8), the general trend showed
 1268 decreasing loss as model size increased. However, as observed in DIVER_{XXL/I/1s}, larger models
 1269 exhibited substantially higher loss when trained with only a few epochs. This confirms what was
 1270 also suggested by the data-constrained scaling isoplot: training very large models with insufficient
 1271 updates is ineffective. Another possibility is that the aspect ratio of DIVER_{XXL/I/1s} (256) places it
 1272 outside the region where loss remains stable. Future work should therefore evaluate larger models
 1273 within the aspect-ratio regime where stable loss behavior is maintained.

1274 C.3 DATA-CONSTRAINED SCALING LAW FITTING RESULTS FOR iEEG

1275
 1276 Table 7: Fitted data-constrained scaling law parameters for DIVER_{-/1/1s} and DIVER_{-/1/0.1s}
 1277 model families.

	DIVER _{-/1/1s}	DIVER _{-/1/0.1s}
A	19.217	101.52
B	57.065	1.1550
E	0.0092	0.0030
α	0.3773	0.5248
β	0.3504	0.1246
R_D^*	9.5372	19.705
R_N^*	3.3850	0.7191
R^2 (linear)	0.7858	0.7575
R^2 (log)	0.8152	0.7718

1278
 1279 Table C.3 shows fitted data-constrained scaling law parameters. A and B describe the relative in-
 1280 fluence of parameters and dataset size on loss. In our setting, we obtain larger A than B in both
 1281 granularity, suggesting that model size plays a more critical role than dataset size. In particular, the
 1282 0.1s patch model yields a comparatively small value of B (0.3925), suggesting that variations in
 1283 dataset size exert only a minor effect on the loss in this setting.

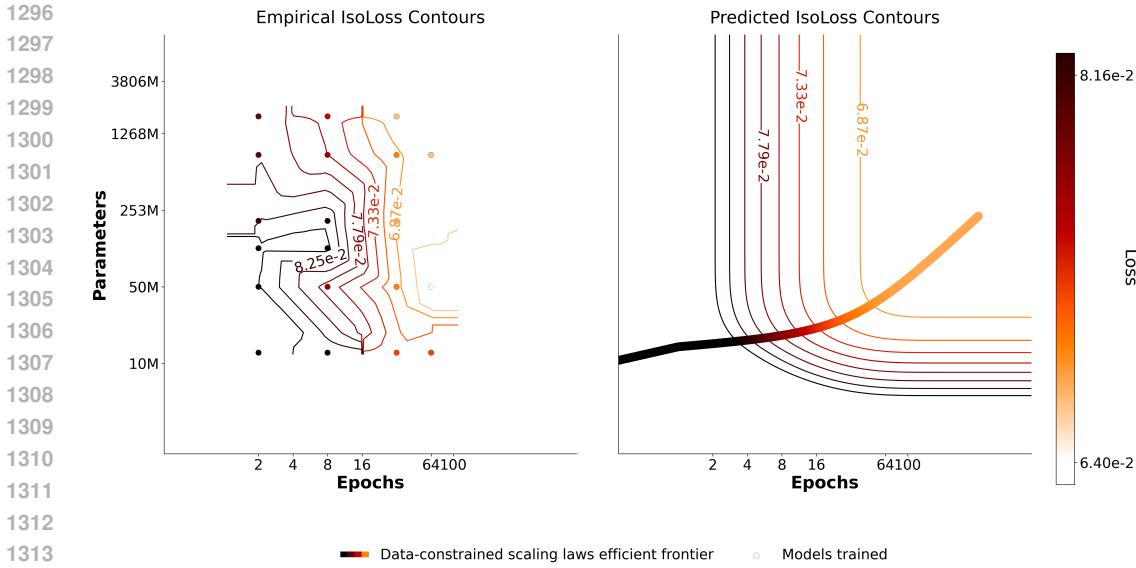


Figure 7: **IsoLoss contours for DIVER-1/0.1s model family:** (Left) Twenty models with 0.1s patches were trained across varying epochs and parameter counts. Iso-loss contours are obtained by linear interpolation between measured data points. (Right) Corresponding contours predicted by the fitted scaling law. The fading line denotes the minimum-loss configuration for each compute budget.

The exponents α and β govern the marginal benefit of scaling parameters and data, respectively. Our values ($\alpha = 0.377$, $\beta = 0.350$) indicate that increasing model size and adding data yield comparable contributions to overall performance improvements. Compared to prior results in language domain ($\alpha = 0.348$, $\beta = 0.366$; (Hoffmann et al., 2022)), our fitted exponents show similar values.

Importantly, the characteristic half-lives $R_D^* = 8.9$ and $R_N^* = 3.3$ quantify diminishing returns under repeated data and excessive parameters. The relatively larger R_D^* implies that repeated data remains useful for many epochs before saturation, whereas the smaller R_N^* suggests that the benefit of adding parameters decays more quickly. Together, these results suggest that gains are most effectively pursued by scaling model size while maintaining moderate dataset repetition, rather than prioritizing further data collection.

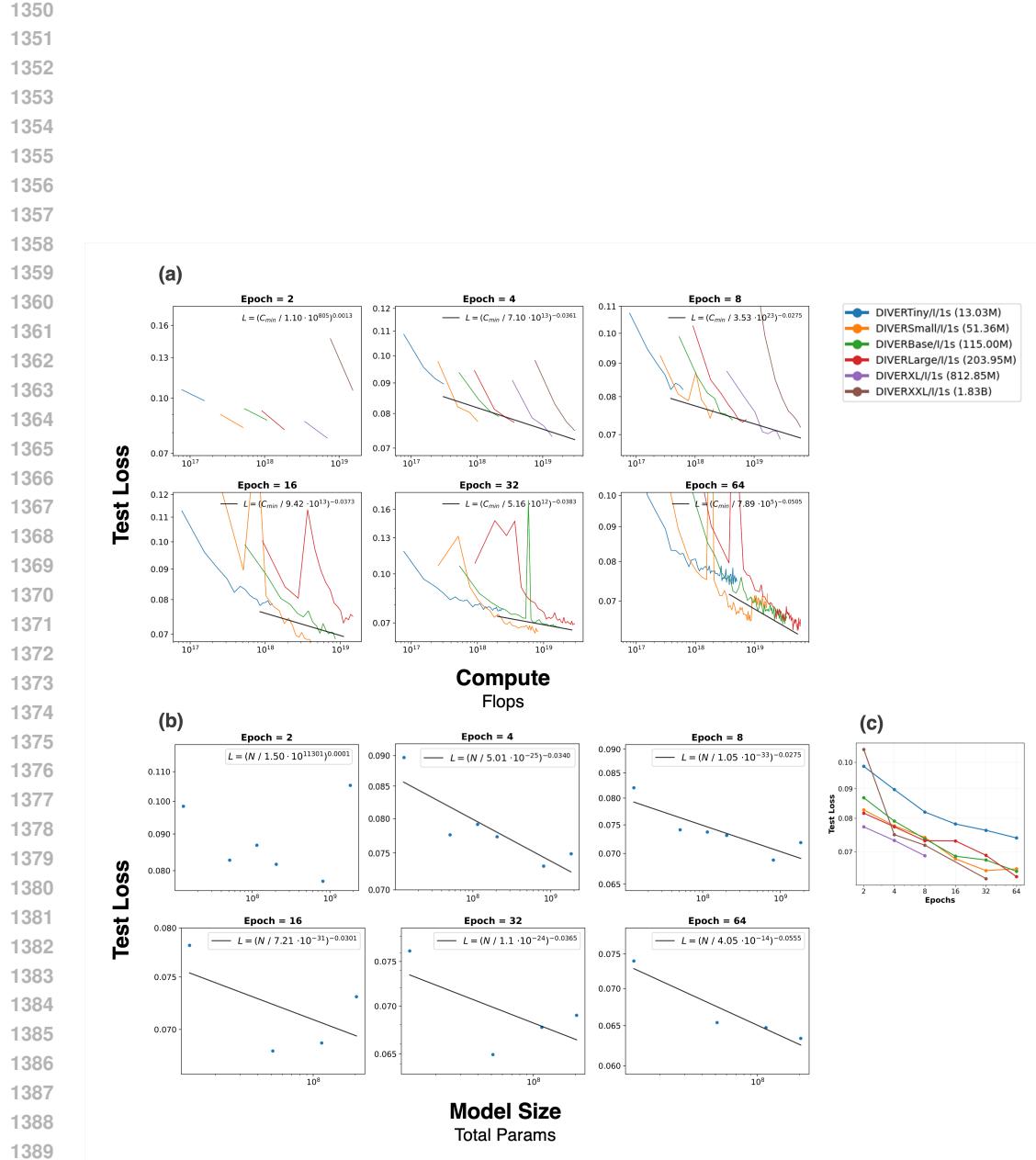


Figure 8: Scaling law extended results for the DIVER- $/1/1s$ family. Compute scaling and model size scaling plots are given for models trained for 2, 4, 8, 16, 32, and 64 epochs. (a) Compute scaling and (b) model size scaling plots are given for models trained for 2, 8, 32, and 64 epochs. (c) Epoch scaling plot of the models reported in Fig. 2 (d). The same training runs are reused, with losses re-plotted against parameters and dataset size in log-log scale.

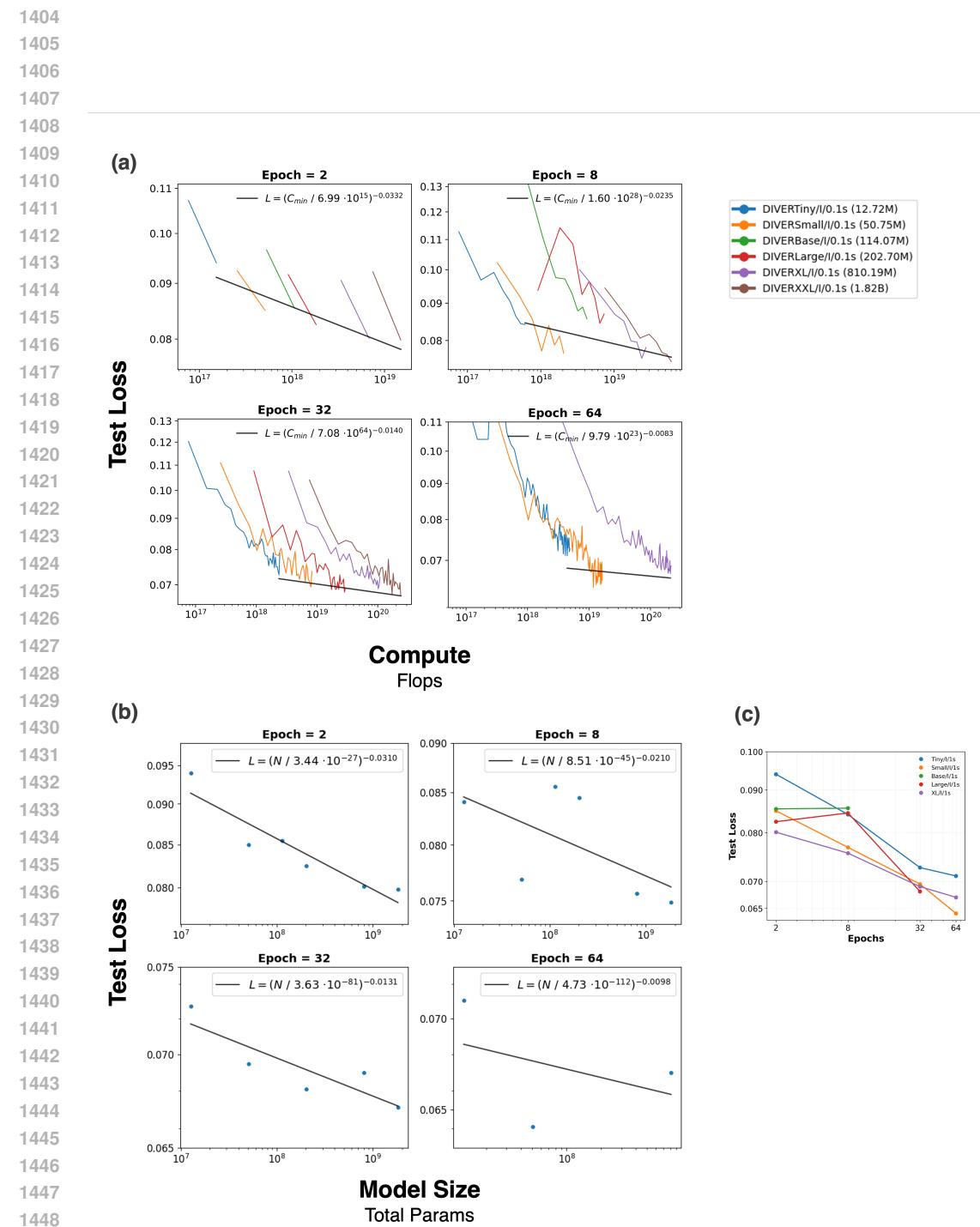


Figure 9: Scaling law extended results for the DIVER- $/0.1s$ family. (a) Compute scaling and (b) model size scaling plots are given for models trained for 2, 8, 32, and 64 epochs. (c) Epoch scaling plot of the models reported in Fig. 7. The same training runs are reused, with losses re-plotted against parameters and dataset size in log-log scale.

1458 C.4 EXTENDED KAPLAN (KAPLAN ET AL., 2020) SCALING LAW RESULTS FOR EEG
1459

1460 We tested DIVER_{./E/1s} model family trained on 10% and 20% of the EEG dataset. Use of par-
1461 tial dataset was due to computational constraints. Overall, the scaling behavior across compute and
1462 model size demonstrates reasonable fit to the power law. However, notable deviations were observed
1463 for the 10% data subset at epochs 16 and 32, where the power law fit was inadequate. This is primar-
1464 ily attributable to instabilities in DIVER_{XL/E/1s}, whose loss curve exhibits sudden upward spikes
1465 and irregular behavior (Figure 6). Furthermore, when trained for shorter durations, larger models ex-
1466 hibit overfitting tendencies; consequently, fitting the power law across all model sizes fails to capture
1467 the expected scaling behavior in these regimes. For cases where the fitted slope approached zero, we
1468 omit the fitted line from the visualization. Additionally, it is important to note that the suboptimal
1469 learning rate schedule—arising from our use of a single training instance with fixed maximum epoch
1470 as 32 for EEG models—may contribute to these deviations from ideal scaling behavior.

1471 C.5 DATA-CONSTRAINED SCALING LAW FITTING RESULTS FOR EEG
1472

1473 We included models trained on 10% and 20% of the full dataset, as in the Kaplan scaling law
1474 experiment setup in C.4.

1475
1476 Table 8: **Fitted data-constrained scaling law parameters for DIVER_{./E/1s} model family.**
1477

DIVER _{./E/1s}	
A	0.5983
B	2.0633
E	0.0004
α	3.4480
β	0.2059
R_D^*	23.860
R_N^*	3.2903
R^2 (linear)	0.5019
R^2 (log)	0.6012

1488 The most notable difference in the EEG scaling results appears in the model-size exponent. For
1489 EEG, we obtain an unusually large $\alpha = 3.29$, whereas the iEEG experiments produced a much
1490 smaller value of $\alpha = 0.3773$. Such a steep exponent suggests that, within the range of model
1491 sizes we explored, performance changed very little with additional capacity. A plausible explanation
1492 is the behavior of the XXL model: its loss is higher than that of the smaller models, probably due to
1493 overfitting. Similar behavior has been reported in very large models trained on fixed data in the Data-
1494 constrained scaling law literature (Muennighoff et al., 2023). In addition, we observed that losses
1495 often rise around epochs 4–8; because our analysis used the midpoint checkpoint of the 32-epoch
1496 runs, this choice may also have distorted the fit.

1497 This instability is also reflected in the overall goodness-of-fit. The EEG scaling law yields an R^2 of
1498 0.5019, substantially lower than the 0.8152 observed for iEEG, indicating that EEG does not follow
1499 the expected power-law pattern nearly as well. Some of this gap may arise from fundamental dif-
1500 ferences between EEG and iEEG: EEG has lower signal quality and greater trial-to-trial variability,
1501 which can obscure systematic trends. At the same time, aspects of our experimental design may also
1502 have contributed. In particular, training all models for a fixed 32 epochs and sampling intermediate
1503 losses, rather than evaluating models at comparable levels of convergence, may have introduced
1504 additional noise into the fit.

1505 This interpretation is reinforced by the estimate of the irreducible-loss term E , which drops to an
1506 unusually small value ($E = 0.0004$) for EEG, far below the iEEG estimate of $E = 0.0092$. Such
1507 a low value is difficult to justify on theoretical grounds and likely reflects a compensatory effect of
1508 the fitting procedure rather than a meaningful property of the data. Even so, the EEG models follow
1509 the general direction of the expected scaling behavior, albeit in a much noisier and less stable form
1510 than iEEG.

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

Figure 10: Scaling law extended results for the DIVER_{./E/1s} family on 10% of EEG dataset. (a) Compute scaling and (b) model size scaling plots are given for test loss values extracted at epochs 2, 4, 8, 16, and 32 from models trained with a maximum of 32 epochs. For epochs 16 and 32, the fitted slope was effectively zero, so the corresponding fitted lines were omitted from the visualization. (c) Epoch scaling plot of the models in log-log scale.

1559

1560

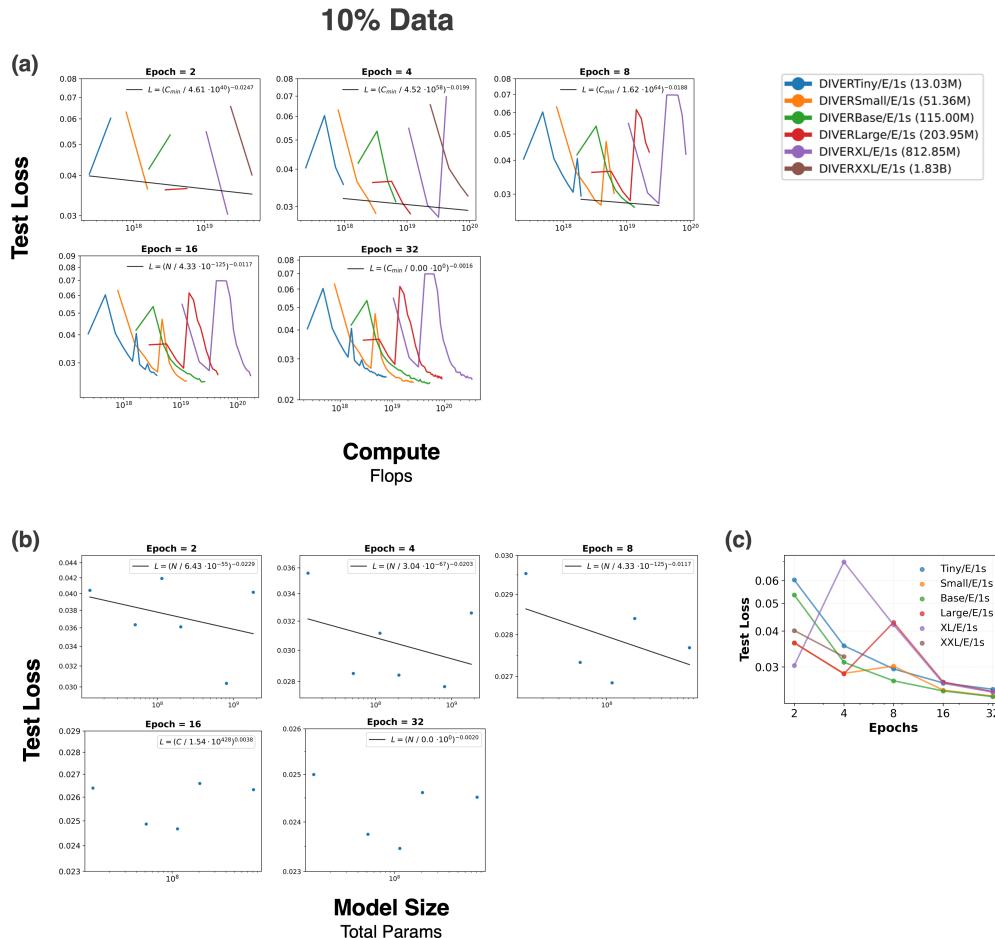
1561

1562

1563

1564

1565



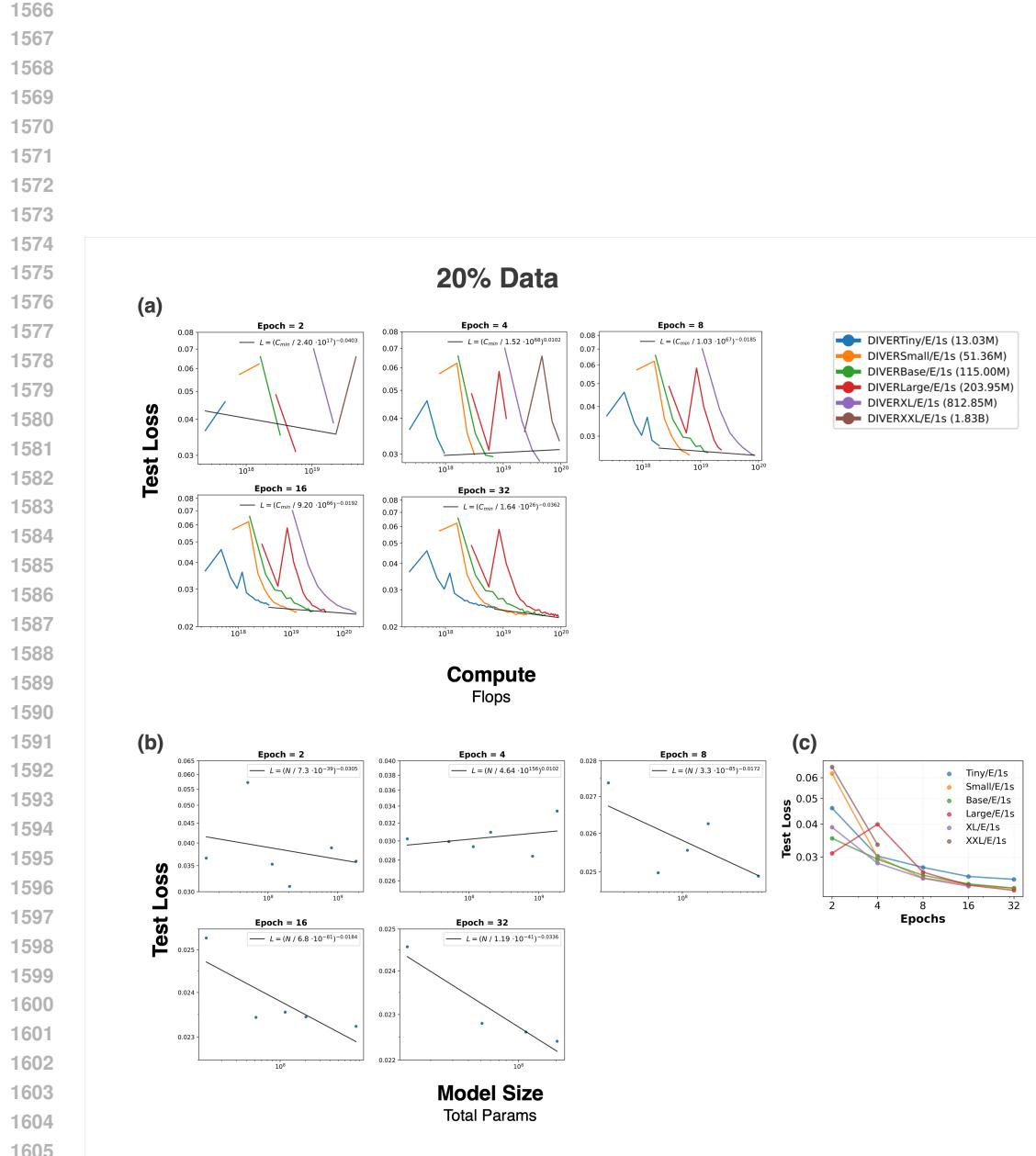


Figure 11: Scaling law extended results for the DIVER_{./E/1s} family on 20% of EEG dataset. (a) Compute scaling and (b) model size scaling plots are given for test loss values extracted at epochs 2, 4, 8, 16, and 32 from models trained with a maximum of 32 epochs. (c) Epoch scaling plot of the models reported in reported in Fig. 2(h). The same training runs are reused, with losses re-plotted against parameters and dataset size in log-log scale.

1620 C.6 EXTENDED EEG DOWNSTREAM SCALING RESULTS
1621

1622 **Data size scaling (Table 9).** We evaluate how pretraining data size affects downstream performance
1623 by training DIVER_{Small/E/1s} with $d_{model} = 512$ for 2 epochs on varying fractions of the EEG pre-
1624 training dataset (1%, 3%, 9%, 24%, 50%, and 100%). Performance generally improves as more
1625 pretraining data is used for FACED dataset. While the performance peaked at 24% of the pretraining
1626 dataset for PhysioNet-MI, this difference is not significant when considering the standard deviation;
1627 performance at 100% is comparable. Overall, larger pretraining datasets lead to better downstream
1628 task performance. The improvements are most pronounced when scaling from small fractions (1-
1629 10%) to larger portions of the dataset, with diminishing but still positive returns at the largest scales.

1630 **Model size scaling (Table 10).** We examine the effect of model capacity by evaluating the
1631 DIVER_{-/E/1s} model family with varying hidden dimensions: $d_{model} \in \{256, 512, 768, 1024, 2048\}$
1632 (corresponding to 12M, 48M, 114M, 204M, and 813M parameters respectively). All models were
1633 pretrained for 2 epochs on the full EEG dataset. Performance generally improves with model size,
1634 though not always monotonically. The DIVER_{XL/E/1s} ($d_{model} = 2048$) achieves the best perfor-
1635 mance for PhysioNet-MI dataset while DIVER_{Small/E/1s} ($d_{model} = 512$) achieved best perfor-
1636 mance for FACED dataset. This could be possible due to the limited number of epochs used to
1637 pretrain the model, but further work is needed to clarify this.

1638 **Epoch scaling (Table 11).** We investigate how pretraining epochs affects downstream performance
1639 by training models across different sizes ($d_{model} \in \{256, 512, 768, 1024, 2048\}$) for varying num-
1640 bers of epochs (2, 4, 8, 16, 32). All models were pretrained on 10% of the EEG dataset due to
1641 computational constraints. Performance generally improves with more training epochs, though the
1642 optimal number of epochs varies by model size. Larger models tend to benefit more from extended
1643 training, while smaller models may plateau earlier. These results demonstrate that both model size
1644 and training duration are important factors in achieving optimal downstream performance.

1645 Together, these scaling experiments demonstrate that EEG foundation model performance improves
1646 predictably across multiple dimensions—data size, model size, and training duration—providing
1647 practical guidance for efficient model development.

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
 1675
 1676
 1677
 1678
 1679 Table 9: **Data size scaling on EEG downstream tasks.** DIVER_{Small/E/1s} with $d_{\text{model}} = 512$ was
 1680 trained for 2 epochs on a different fraction (1%, 3%, 9%, ..., 100%) of the EEG pretraining dataset.
 1681

Pretraining Fraction	FACED			PhysioNet-MI		
	ACC	kappa	F1	ACC	kappa	F1
1%	0.111 \pm 0.000	0.000 \pm 0.000	0.036 \pm 0.000	0.581 \pm 0.007	0.441 \pm 0.009	0.582 \pm 0.006
3%	0.467 \pm 0.012	0.400 \pm 0.013	0.474 \pm 0.012	0.624 \pm 0.005	0.498 \pm 0.007	0.626 \pm 0.005
9%	0.451 \pm 0.017	0.380 \pm 0.020	0.456 \pm 0.017	0.600 \pm 0.005	0.467 \pm 0.007	0.601 \pm 0.005
10%	0.509 \pm 0.013	0.448 \pm 0.014	0.520 \pm 0.012	0.640 \pm 0.006	0.519 \pm 0.009	0.641 \pm 0.006
24%	0.525 \pm 0.007	0.464 \pm 0.008	0.529 \pm 0.006	0.650 \pm 0.004	0.533 \pm 0.005	0.651 \pm 0.004
50%	0.493 \pm 0.007	0.426 \pm 0.007	0.491 \pm 0.006	0.628 \pm 0.006	0.504 \pm 0.008	0.628 \pm 0.006
100%	0.568 \pm 0.011	0.513 \pm 0.013	0.579 \pm 0.009	0.647 \pm 0.006	0.529 \pm 0.008	0.649 \pm 0.006

Pretraining Fraction	MentalArithmetic		
	ACC	AUC-PR	AUROC
1%	0.500 \pm 0.000	0.625 \pm 0.000	0.500 \pm 0.000
3%	0.597 \pm 0.090	0.350 \pm 0.053	0.611 \pm 0.069
9%	0.626 \pm 0.058	0.520 \pm 0.087	0.690 \pm 0.065
10%	0.635 \pm 0.041	0.547 \pm 0.045	0.765 \pm 0.020
24%	0.617 \pm 0.067	0.370 \pm 0.054	0.701 \pm 0.033
50%	0.572 \pm 0.088	0.563 \pm 0.234	0.752 \pm 0.115
100%	0.619 \pm 0.046	0.490 \pm 0.069	0.765 \pm 0.049

1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707 Table 10: **Model size scaling on EEG downstream tasks.** DIVER_{-/E/1s} model family across
 1708 different model sizes were evaluated. All models were pretrained for 2 epochs using the EEG dataset.
 1709

d_{model} (Params)	FACED			PhysioNet-MI		
	ACC	kappa	F1	ACC	kappa	F1
256 (13M)	0.488 \pm 0.006	0.421 \pm 0.006	0.485 \pm 0.005	0.630 \pm 0.006	0.506 \pm 0.008	0.631 \pm 0.007
512 (51M)	0.568 \pm 0.011	0.513 \pm 0.013	0.579 \pm 0.009	0.647 \pm 0.006	0.529 \pm 0.008	0.649 \pm 0.006
768 (114M)	0.477 \pm 0.006	0.411 \pm 0.006	0.477 \pm 0.006	0.659 \pm 0.005	0.546 \pm 0.007	0.660 \pm 0.005
1024 (204M)	0.524 \pm 0.005	0.462 \pm 0.005	0.523 \pm 0.005	0.691 \pm 0.006	0.588 \pm 0.008	0.692 \pm 0.006
2048 (813M)	0.525 \pm 0.012	0.462 \pm 0.012	0.524 \pm 0.010	0.669 \pm 0.011	0.560 \pm 0.014	0.672 \pm 0.010

d_{model} (Params)	MentalArithmetic		
	ACC	AUC-PR	AUROC
256 (13M)	0.626 \pm 0.032	0.480 \pm 0.072	0.751 \pm 0.036
512 (51M)	0.619 \pm 0.046	0.490 \pm 0.069	0.765 \pm 0.049
768 (114M)	0.697 \pm 0.012	0.631 \pm 0.045	0.800 \pm 0.029
1024 (204M)	0.722 \pm 0.028	0.657 \pm 0.063	0.806 \pm 0.033
2048 (813M)	0.674 \pm 0.031	0.601 \pm 0.053	0.780 \pm 0.031

1725
 1726
 1727

1728
1729
1730
1731
1732

1733 Table 11: **Epoch scaling on EEG downstream tasks.** We evaluate the DIVER_{-/E/1s} model family
1734 across different model sizes, each pretrained for varying numbers of epochs. All models were pre-
1735 trained using 10% of the EEG dataset.

d_{model}	Epochs	FACED			PhysioNet-MI		
		ACC	kappa	F1	ACC	kappa	F1
256	2	0.153 ± 0.007	0.050 ± 0.007	0.103 ± 0.015	0.580 ± 0.006	0.440 ± 0.007	0.582 ± 0.006
	4	0.463 ± 0.013	0.392 ± 0.015	0.461 ± 0.014	0.604 ± 0.008	0.472 ± 0.011	0.605 ± 0.008
	8	0.484 ± 0.005	0.417 ± 0.006	0.484 ± 0.006	0.614 ± 0.003	0.485 ± 0.004	0.614 ± 0.003
	16	0.447 ± 0.003	0.375 ± 0.003	0.443 ± 0.002	0.609 ± 0.004	0.479 ± 0.005	0.610 ± 0.004
512	32	0.488 ± 0.006	0.421 ± 0.006	0.485 ± 0.005	0.615 ± 0.003	0.487 ± 0.005	0.615 ± 0.004
	2	0.510 ± 0.012	0.448 ± 0.013	0.517 ± 0.012	0.624 ± 0.005	0.498 ± 0.007	0.625 ± 0.005
	4	0.539 ± 0.012	0.479 ± 0.013	0.543 ± 0.010	0.654 ± 0.005	0.538 ± 0.007	0.655 ± 0.005
	8	0.445 ± 0.008	0.373 ± 0.008	0.444 ± 0.008	0.619 ± 0.004	0.491 ± 0.005	0.619 ± 0.004
768	16	0.476 ± 0.004	0.410 ± 0.004	0.477 ± 0.004	0.668 ± 0.002	0.557 ± 0.003	0.669 ± 0.002
	32	0.493 ± 0.005	0.429 ± 0.005	0.495 ± 0.005	0.680 ± 0.004	0.573 ± 0.006	0.681 ± 0.004
	2	0.387 ± 0.024	0.309 ± 0.027	0.386 ± 0.025	0.605 ± 0.004	0.473 ± 0.005	0.606 ± 0.003
	4	0.511 ± 0.009	0.448 ± 0.010	0.516 ± 0.010	0.636 ± 0.005	0.515 ± 0.006	0.638 ± 0.005
1024	8	0.531 ± 0.004	0.470 ± 0.005	0.534 ± 0.005	0.663 ± 0.004	0.550 ± 0.006	0.664 ± 0.004
	16	0.519 ± 0.011	0.458 ± 0.012	0.518 ± 0.012	0.682 ± 0.004	0.576 ± 0.005	0.683 ± 0.004
	32	0.526 ± 0.005	0.467 ± 0.006	0.527 ± 0.005	0.690 ± 0.002	0.587 ± 0.002	0.691 ± 0.002
	2	0.510 ± 0.010	0.449 ± 0.010	0.518 ± 0.008	0.638 ± 0.005	0.518 ± 0.007	0.640 ± 0.005
2048	4	0.544 ± 0.011	0.486 ± 0.013	0.554 ± 0.010	0.656 ± 0.004	0.542 ± 0.005	0.658 ± 0.004
	8	0.462 ± 0.012	0.393 ± 0.013	0.464 ± 0.012	0.591 ± 0.006	0.454 ± 0.008	0.592 ± 0.007
	16	0.461 ± 0.007	0.390 ± 0.008	0.458 ± 0.007	0.630 ± 0.008	0.507 ± 0.011	0.632 ± 0.008
	32	0.451 ± 0.030	0.380 ± 0.033	0.449 ± 0.030	0.644 ± 0.016	0.526 ± 0.022	0.646 ± 0.016

1757	d_{model}	Epochs	MentalArithmetic		
			ACC	AUC-PR	AUROC
256	2	0.530 ± 0.071	0.325 ± 0.079	0.625 ± 0.078	
	4	0.537 ± 0.066	0.333 ± 0.051	0.620 ± 0.046	
	8	0.710 ± 0.086	0.620 ± 0.103	0.811 ± 0.054	
	16	0.567 ± 0.063	0.516 ± 0.102	0.767 ± 0.042	
512	32	0.647 ± 0.025	0.504 ± 0.069	0.734 ± 0.033	
	2	0.586 ± 0.051	0.457 ± 0.069	0.700 ± 0.042	
	4	0.623 ± 0.043	0.505 ± 0.061	0.766 ± 0.022	
	8	0.639 ± 0.057	0.466 ± 0.149	0.728 ± 0.074	
768	16	0.712 ± 0.014	0.643 ± 0.049	0.803 ± 0.019	
	32	0.728 ± 0.030	0.672 ± 0.030	0.805 ± 0.028	
	2	0.569 ± 0.033	0.367 ± 0.067	0.610 ± 0.044	
	4	0.577 ± 0.063	0.433 ± 0.052	0.693 ± 0.032	
1024	8	0.738 ± 0.034	0.615 ± 0.046	0.811 ± 0.027	
	16	0.692 ± 0.033	0.709 ± 0.025	0.819 ± 0.019	
	32	0.710 ± 0.025	0.705 ± 0.040	0.824 ± 0.029	
	2	0.576 ± 0.032	0.393 ± 0.065	0.648 ± 0.053	
2048	4	0.704 ± 0.044	0.601 ± 0.064	0.800 ± 0.031	
	8	0.574 ± 0.016	0.395 ± 0.017	0.660 ± 0.020	
	16	0.626 ± 0.032	0.470 ± 0.066	0.770 ± 0.050	
	32	0.693 ± 0.020	0.561 ± 0.034	0.792 ± 0.015	

1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 **D EXTENDED RESULTS**
17831784 **D.1 COMPREHENSIVE DIVER DOWNSTREAM TASK RESULTS**
1785

1786 We present the detailed numerical values. The EEG performance table is provided in Table 14. The
1787 iEEG performance table is provided in Table 12 and Table 13. For Neuroprobe binary-label (iEEG
1788 task), we evaluated DIVER_{Tiny/I/0.1s} (with $d_{\text{model}} = 256$ and patch size 0.1s, pretrained on iEEG
1789 for 32 epochs) in both frozen (linear probing, red) and fine-tuned (blue) configurations against Lin-
1790 ear Laplacian STFT, BrainBERT and PopT baselines on Figure 2. Table 13 presents comprehensive
1791 results comparing DIVER with baseline models across all 15 Neuroprobe tasks. For Neuroprobe
1792 multi-label, our model are still overperform the linear baseline. Results are reported as mean AU-
1793 ROC \pm SEM across subjects, trials, and cross-validation folds. DIVER consistently outperformed
1794 baseline models across the majority of tasks in both evaluation settings. The model demonstrated
1795 particularly strong performance on language-related tasks (speech decoding, word prediction, onset
1796 detection) and auditory tasks (volume, pitch), with finetuning providing additional gains over frozen
1797 features. These results validate that self-supervised pretraining on iEEG data produces representa-
1798 tions that transfer effectively to diverse downstream neural decoding tasks. In the multi-label setting,
1799 DIVER again outperformed the linear baseline for both frozen and fully fine-tuned models.⁴

1800 For MAYO (iEEG task), we evaluated DIVER_{Tiny/I/1s} (with $d_{\text{model}} = 256$ and 1 s patch size,
1801 pretrained on iEEG for 32 epochs) in both frozen (linear probing) and full-finetuning settings.
1802 We could not evaluate PopT because the dataset does not contain any coordinates. By contrast,
1803 although our model is trained with 3D positional embeddings, it can handle missing position infor-
1804 mation by replacing the positional embedding with a zero vector for electrodes with unknown lo-
1805 cation. Among the different baselines (BrainBERT frozen, Brant frozen, and Brant full-finetuning),
1806 DIVER_{Tiny/I/1s} achieved the best performance. Brant exhibited a substantial performance drop
1807 under full finetuning, likely because we deviated from its original pretraining configuration by us-
1808 ing only a single patch, which can impair optimization when updating all parameters with original
1809 context windows (90s), whereas the frozen setting simply uses the fixed embedding.

1810 **Table 12: Comparison of the DIVER-1 iEEG model with other baseline models.** We evaluated
1811 DIVER_{Tiny/I} models that were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.
1812 For Neuroprobe (1 s), we compare DIVER_{Tiny/I/0.1} with other baselines using an overall score
1813 defined as the mean AUROC averaged over all 15 tasks, subjects, trials, and folds. For MAYO (6 s),
1814 we compare DIVER_{Tiny/I/1s} with Brant and BrainBERT; scores are reported as mean AUROC \pm
1815 SEM across 8 subjects and 3 folds.

	Neuroprobe (overall)		MAYO
	binary-label	multi-label	
linear (stft-laplacian)	0.660 ± 0.005	0.617 ± 0.007	-
PopT	0.545 ± 0.006	-	-
BrainBERT (frozen)	0.586 ± 0.004	-	0.748 ± 0.038
Brant	-	-	0.551 ± 0.023
Brant (frozen)	-	-	0.757 ± 0.042
DIVER _{Tiny/I/0.1or1s}	0.662 ± 0.008	0.621 ± 0.007	0.961 ± 0.011
DIVER _{Tiny/I/0.1or1s} (frozen)	0.676 ± 0.007	0.631 ± 0.007	0.935 ± 0.012

1826
1827
1828
1829
1830
1831
1832
1833
1834 ⁴A multi-label option is available in the most recent release of the Neuroprobe code, but it has not yet been
1835 documented in the paper. Consequently, we compare only against the linear (STFT–Laplacian) baseline, which
can be easily compute by running their released code.

1836
1837 Table 13: **Downstream performance of each task in Neuroprobe.** We compare DIVER with exist-
1838 ing models on comprehensive iEEG downstream tasks. We evaluated both the fine-tuned and frozen
1839 configurations of DIVER_{Tiny/I/0.1s} (pretrained on iEEG for 32 epochs) against Linear Laplacian
1840 STFT, BrainBERT, and popT. Results are reported as mean AUROC \pm SEM across subjects, trials,
1841 and folds. Overall, DIVER consistently outperformed baselines across the majority of tasks.

Models	Overall	Sentence Onset	Speech	Volume
Linear Laplacian STFT	0.660 \pm 0.005	0.891 \pm 0.018	0.883 \pm 0.018	0.717 \pm 0.032
BrainBERT (frozen)	0.586 \pm 0.004	0.757 \pm 0.027	0.611 \pm 0.022	0.583 \pm 0.010
PopT	0.545 \pm 0.006	0.689 \pm 0.050	0.677 \pm 0.044	0.576 \pm 0.018
DIVER _{Tiny/I/0.1s}	0.662 \pm 0.008	0.924 \pm 0.009	0.900 \pm 0.011	0.699 \pm 0.020
DIVER _{Tiny/I/0.1s} (frozen)	0.676 \pm 0.007	0.930 \pm 0.008	0.896 \pm 0.012	0.717 \pm 0.018

Models	Delta Volume	Voice Pitch	Word position	Inter-word Gap
Linear Laplacian STFT	0.762 \pm 0.026	0.578 \pm 0.016	0.740 \pm 0.028	0.612 \pm 0.014
BrainBERT (frozen)	0.706 \pm 0.021	0.524 \pm 0.007	0.685 \pm 0.027	0.584 \pm 0.017
PopT	0.628 \pm 0.025	0.509 \pm 0.008	0.519 \pm 0.023	0.509 \pm 0.009
DIVER _{Tiny/I/0.1s}	0.812 \pm 0.017	0.563 \pm 0.007	0.777 \pm 0.016	0.623 \pm 0.014
DIVER _{Tiny/I/0.1s} (frozen)	0.809 \pm 0.016	0.589 \pm 0.007	0.791 \pm 0.014	0.628 \pm 0.011

Models	GPT-2 Surprisal	Head Word Pos	Part of Speech	Word Length
Linear Laplacian STFT	0.613 \pm 0.017	0.602 \pm 0.012	0.605 \pm 0.012	0.618 \pm 0.015
BrainBERT (frozen)	0.580 \pm 0.015	0.585 \pm 0.013	0.556 \pm 0.012	0.571 \pm 0.012
PopT	0.523 \pm 0.014	0.519 \pm 0.008	0.513 \pm 0.004	0.505 \pm 0.005
DIVER _{Tiny/I/0.1s}	0.617 \pm 0.009	0.613 \pm 0.009	0.597 \pm 0.011	0.638 \pm 0.011
DIVER _{Tiny/I/0.1s} (frozen)	0.628 \pm 0.009	0.622 \pm 0.009	0.624 \pm 0.011	0.642 \pm 0.013

Models	Global Flow	Local Flow	Frame Brightness	Num of Faces
Linear Laplacian STFT	0.625 \pm 0.054	0.607 \pm 0.017	0.521 \pm 0.025	0.530 \pm 0.014
BrainBERT (frozen)	0.521 \pm 0.006	0.525 \pm 0.003	0.508 \pm 0.012	0.503 \pm 0.007
PopT	0.509 \pm 0.008	0.508 \pm 0.014	0.499 \pm 0.019	0.492 \pm 0.010
DIVER _{Tiny/I/0.1s}	0.587 \pm 0.010	0.586 \pm 0.012	0.492 \pm 0.015	0.509 \pm 0.007
DIVER _{Tiny/I/0.1s} (frozen)	0.620 \pm 0.009	0.614 \pm 0.012	0.502 \pm 0.012	0.523 \pm 0.010

1863
1864
1865 Table 14: **Comparison of DIVER-1 EEG model with other baseline models.** We compare DIVER
1866 with existing state-of-the-art models on three EEG downstream tasks using their reported values
1867 from the original papers. DIVER consistently outperformed baseline models across all metrics.

Models	FACED (9-class)		
	ACC	kappa	F1
LaBraM	0.527 \pm 0.011	0.470 \pm 0.019	0.529 \pm 0.010
CBraMod	0.551 \pm 0.009	0.504 \pm 0.012	0.562 \pm 0.009
DIVER (Ours)	0.601 \pm 0.008	0.550 \pm 0.009	0.607 \pm 0.009

Models	PhysioNet-MI (4-class)		
	ACC	kappa	F1
LaBraM	0.617 \pm 0.012	0.491 \pm 0.019	0.618 \pm 0.014
CBraMod	0.642 \pm 0.009	0.522 \pm 0.017	0.643 \pm 0.010
DIVER (Ours)	0.676 \pm 0.003	0.567 \pm 0.004	0.678 \pm 0.004

Models	MentalArithmetic (2-class)		
	ACC	AUC-PR	AUROC
LaBraM	0.691 \pm 0.013	0.600 \pm 0.016	0.772 \pm 0.009
CBraMod	0.726 \pm 0.013	0.627 \pm 0.010	0.791 \pm 0.007
DIVER (Ours)	0.727 \pm 0.018	0.676 \pm 0.046	0.814 \pm 0.026

1886 D.2 PERFORMANCE EVALUATION ACROSS DIVER-1 MODEL CONFIGURATIONS

1887
1888 We first evaluated DIVER_{Tiny/I/}.'s performance in Neuroprobe, based on different model config-
1889 urations including the patch size, Laplacian re-referencing and training settings. The 0.1s model
outperformed the 1s model (Table 15) in 4 tasks in Neuroprobe. Considering that the Neuroprobe

1890 dataset consists of 1-second samples and its tasks require classifying short-timescale features such
 1891 as speech and onset, the effectiveness of 0.1s model may be explained. Additionally, the model with-
 1892 out Laplacian re-referencing generally showed degraded performance, indicating the effectiveness of
 1893 the pre-processing method. Further, we examined the effect of pretraining by comparing the perfor-
 1894 mance of DIVER_{Tiny/I/0.1s} with diverse training settings. The model trained from scratch showed
 1895 significantly degraded performance than the full-finetuned and backbone-frozen models. Such re-
 1896 sults indicate the efficacy of pretraining. Specifically, the model with a frozen backbone showed the
 1897 highest performance, except for the speech task.

1898

1899 Table 15: **Performance evaluation between various DIVER model configurations in Neu-**
 1900 **roprobe (iEEG tasks).** We first compare DIVER_{Tiny/I} models by patch size, Laplacian re-
 1901 referencing, and training settings. The model from scratch was trained on only four tasks (speech,
 1902 onset, volume, pitch) due to computational constraints, consequently; model evaluation is limited to
 1903 these four tasks. For the backbone-frozen models, 0.1s variants with different sizes were trained on
 1904 four tasks, whereas the tiny model was trained on all Neuroprobe tasks. The results are reported as
 1905 mean AUROC \pm SEM across multiple subjects, trials, and folds. All models, except the one trained
 1906 from scratch, were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.

	speech	onset	volume	pitch	neuroprobe total
<i>Tiny/I/1s</i>	0.828 \pm 0.016	0.885 \pm 0.012	0.634 \pm 0.018	0.551 \pm 0.009	0.645 \pm 0.007
<i>Tiny/I/0.1s</i>	0.900 \pm 0.011	0.924 \pm 0.009	0.699 \pm 0.020	0.563 \pm 0.007	0.662 \pm 0.008
<i>Tiny/I/0.1s</i> (w.o. laplacian)	0.862 \pm 0.018	0.901 \pm 0.013	0.662 \pm 0.018	0.533 \pm 0.004	0.642 \pm 0.007
<i>Tiny/I/0.1s</i> (from scratch)	0.832 \pm 0.014	0.872 \pm 0.010	0.622 \pm 0.016	0.554 \pm 0.006	-
<i>Tiny/I/0.1s</i> (frozen)	0.896 \pm 0.012	0.930 \pm 0.008	0.717 \pm 0.018	0.589 \pm 0.007	0.676 \pm 0.007
<i>Small/I/0.1s</i> (frozen)	0.888 \pm 0.012	0.926 \pm 0.009	0.705 \pm 0.016	0.578 \pm 0.006	-
<i>Large/I/0.1s</i> (frozen)	0.890 \pm 0.0126	0.928 \pm 0.009	0.710 \pm 0.017	0.581 \pm 0.007	-
<i>XL/I/0.1s</i> (frozen)	0.893 \pm 0.012	0.930 \pm 0.009	0.713 \pm 0.017	0.582 \pm 0.007	-

1913

1914

1915

1916 And for MAYO (seizure detection), we chose only 1 sec model, because MAYO has 6 s window
 1917 that is too long for 0.1 s model’s context. We compared the frozen and full finetuning model in
 1918 each model size in Table 16. In contrast to the Neuroprobe results, we found that full fine-tuning
 1919 outperformed the frozen for the Tiny, Small and XL model, even though it was slightly worse for the
 1920 Large and Base models. Since our preprocessing clips signal amplitudes above a certain threshold
 1921 (200 μ V), so pretrained-dataset’s distribution can differ from seizure data, which contains spikes
 1922 with much larger amplitudes; under this distribution shift, fully fine-tuned models may therefore
 1923 tend to achieve better performance. For the linear baseline, the highest performance was obtained
 1924 with the Large model, whereas under full-finetuning the Tiny model achieved the best performance.

1925

1926

1927 Table 16: **Performance evaluation between various DIVER model configurations in MAYO**
 1928 **(iEEG task).** DIVER 1 s models were trained for each model size, and we compared the frozen and
 1929 full fine-tuning variants. The results are reported as mean AUROC \pm SEM across multiple subjects
 1930 and folds. All models, except were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.

	Tiny	Small	Base	Large	XL
frozen	0.935 \pm 0.012	0.904 \pm 0.019	0.911 \pm 0.017	0.937 \pm 0.015	0.914 \pm 0.018
full-finetuned	0.961 \pm 0.011	0.927 \pm 0.020	0.905 \pm 0.026	0.934 \pm 0.014	0.947 \pm 0.019

1933

1934

1935

D.3 ABLATIONS

1936

1937

1938 **Input ablations** Previously in Table 15 we confirmed that the iEEG models’ downstream perfor-
 1939 mance improve when Laplacian re-referencing is used. PopT and BrainBERT were pretrained on
 1940 Laplacian re-referenced signals, and their downstream performances were also derived under that
 1941 setting. Even though our model was trained on raw signals (not referenced), it was better with Lapla-
 1942 cian referencing (Table 15). Therefore, we use Laplacian re-referencing as the default setting for
 1943 finetuning on iEEG downstream tasks.

1944

1945

1946 **Architecture ablations** To assess whether encoder components (RoPE and any variate attention),
 1947 embedding components, and multi-domain reconstruction task are effective, we removed each ele-

1944
1945 Table 17: **Architecture ablation for iEEG downstream tasks.** Tasks include speech decoding,
1946 onset detection, volume prediction, and pitch estimation tasks. DIVER_{Tiny/I/0.1s} (bottom row)
1947 represents the full model with all components. Each row indicates the model’s performance when
1948 removing a specific component. All models use 12 layers with $d_{\text{model}} = 256$ and were pretrained for 8
1949 epochs. Results are reported as mean AUROC \pm SEM across multiple subjects, trials and folds.

	speech	onset	volume	pitch
1950 w.o. RoPE	0.886 \pm 0.013	0.916 \pm 0.011	0.693 \pm 0.019	0.579 \pm 0.008
1951 w.o anyV attention	0.889 \pm 0.013	0.919 \pm 0.009	0.699 \pm 0.018	0.579 \pm 0.007
1952 w.o RoPE and anyV attention	0.870 \pm 0.014	0.898 \pm 0.012	0.669 \pm 0.018	0.560 \pm 0.006
1953 w.o. STCPE	0.879 \pm 0.014	0.911 \pm 0.013	0.686 \pm 0.019	0.572 \pm 0.007
1954 w.o Channel modality + subtype emb.	0.892 \pm 0.011	0.919 \pm 0.009	0.690 \pm 0.017	0.577 \pm 0.006
1955 w.o Channel 3d position emb.	0.900 \pm 0.011	0.927 \pm 0.009	0.710 \pm 0.018	0.584 \pm 0.009
1956 w.o Spectral feature emb.	0.885 \pm 0.013	0.919 \pm 0.010	0.694 \pm 0.019	0.571 \pm 0.010
1957 w.o Multi-domain reconstruction (only raw)	0.875 \pm 0.014	0.916 \pm 0.010	0.680 \pm 0.017	0.569 \pm 0.006
1958 DIVER _{Tiny/I/0.1s}	0.890 \pm 0.013	0.922 \pm 0.009	0.698 \pm 0.018	0.572 \pm 0.008

1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
ment and evaluated the corresponding performance. **Ablation** studies on iEEG were conducted on DIVER_{Tiny/I/0.1s} trained for 8 epochs with full pretraining dataset, and for EEG, DIVER_{Tiny/E/1s} trained for 2 epochs with 10% of the data were used, due to computational constraints and time limitations. Architecture ablation results for iEEG are given in Table 17. When each encoder component was removed individually, the performance varied across tasks, but dropped noticeably when both were excluded. An ablation of STCPE and multi-domain reconstruction task each induced performance degradation, whereas the ablation of other embedding components did not yield significant changes. Since the Neuroprobe dataset includes only depth electrodes (SEEG), the effect of channel modality and subtype embedding may be minimal. Moreover, as the dataset utilizes only child and adolescent subjects, whose brain volumes differ by age, the effect of the channel 3D positional embedding may be attenuated.

For EEG downstream tasks, detailed results are described in Table 18. The ablation of encoder components yielded a significant performance decline in both EEG tasks, indicating that the encoder components are crucial contributors to overall performance. Removing the multi-domain reconstruction task, STCPE and spectral feature embedding resulted in a notable performance degradation as well. Ablation of channel-wise patch embedding components induced inconsistent results across tasks; for FACED, performance dropped while for PhysioNet-MI, performance slightly improved.

Incorporating encoder components and multi-domain reconstruction task significantly improved the model’s performance in both iEEG and EEG downstream tasks. Specifically, in multi-domain reconstruction, removing each component for STFT and FFT also degrades performance, which shows that each element of multi-domain reconstruction is important. Channel-wise embedding components however differed in their effects depending on the modality and the type of downstream tasks. Since informative features in Ephys signals can vary across modalities and tasks, holding these various components may help improve generalization across a range of tasks.

Dataset ablations and dataset size-based comparisons The other iEEG models (PopT (Chau et al., 2025) and BrainBERT (Wang et al., 2023)) are pretrained on the BrainTreebank (BTB) (Wang et al., 2024a) datasets—the precursor to Neuroprobe. Therefore, we compare downstream performance when we use BTB exclusively (Figure 12). We trained DIVER_{Tiny/I/0.1s} models with BTB and size-variations of our self-collected iEEG datasets. For the model trained on our self-collected data of the same size as BTB, the linear-probing results were lower than those trained with BTB only. However, when we increased the size of the self-collected dataset (approximately $\times 16$ and $\times 64$ size of BTB), performance surpassed the BTB-only setting. This shows that, with sufficient data, it is possible to achieve higher performance even if the distribution of the pretraining dataset differs from that of the downstream tasks.

Comparison of DIVER-1 iEEG model with other baseline models on a shared dataset Since the pretraining dataset between iEEG baseline models and our model differentiated, we additionally trained the DIVER model on the pretraining dataset of the baseline models. The corresponding results are shown in Table 19. The model trained under our own early-stopping strategy is denoted as “ours.” Given the same pretraining dataset, the DIVER model achieved the highest performance compared to the two baseline models.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012 Table 18: **Architecture ablation for EEG downstream tasks.** Tasks include FACED and
2013 PhysioNet-MI dataset. $\text{DIVER}_{\text{Tiny}/E/1s}$ represents the full model with all components. Each
2014 row shows performance when removing a specific component. All models use 12 layers with
2015 $d_{\text{model}} = 256$ and were pretrained for 2 epochs. Results are reported as mean \pm standard deviation
2016 across 5 random seeds.

	FACED (9-class)			
	ACC	kappa	F1	
2017				
2018				
2019	w.o. RoPE	0.408 ± 0.025	0.333 ± 0.027	0.414 ± 0.024
2020	w.o anyV attention	0.414 ± 0.012	0.339 ± 0.014	0.417 ± 0.012
2021	w.o RoPE and anyV attention	0.446 ± 0.007	0.376 ± 0.007	0.450 ± 0.005
2022	w.o. STCPE	0.463 ± 0.024	0.395 ± 0.027	0.471 ± 0.026
2023	w.o Channel modality + subtype emb.	0.474 ± 0.018	0.406 ± 0.021	0.482 ± 0.019
2024	w.o Channel 3d position emb.	0.481 ± 0.016	0.415 ± 0.018	0.487 ± 0.016
2025	w.o Spectral feature emb.	0.454 ± 0.015	0.386 ± 0.016	0.462 ± 0.013
2026	w.o Multi-domain reconstruction (only raw)	0.435 ± 0.008	0.364 ± 0.009	0.437 ± 0.006
2027	w.o FFT reconstruction (raw and stft)	0.468 ± 0.007	0.401 ± 0.008	0.479 ± 0.008
	w.o STFT reconstruction (raw and fft)	0.485 ± 0.014	0.418 ± 0.015	0.487 ± 0.013
	$\text{DIVER}_{\text{Tiny}/E/1s}$	0.491 ± 0.023	0.428 ± 0.025	0.502 ± 0.023
	PhysioNet-MI (4-class)			
2028				
2029				
2030	w.o. RoPE	0.614 ± 0.005	0.485 ± 0.006	0.615 ± 0.005
2031	w.o anyV attention	0.611 ± 0.003	0.481 ± 0.004	0.612 ± 0.004
2032	w.o RoPE and anyV attention	0.591 ± 0.005	0.454 ± 0.006	0.593 ± 0.005
2033	w.o. STCPE	0.626 ± 0.006	0.502 ± 0.008	0.627 ± 0.006
2034	w.o Channel modality + subtype emb.	0.629 ± 0.006	0.505 ± 0.007	0.632 ± 0.005
2035	w.o Channel 3d position emb.	0.629 ± 0.008	0.506 ± 0.010	0.631 ± 0.007
2036	w.o Spectral feature emb.	0.626 ± 0.005	0.501 ± 0.006	0.627 ± 0.004
2037	w.o Multi-domain reconstruction (only raw)	0.614 ± 0.005	0.485 ± 0.006	0.616 ± 0.004
2038	w.o FFT reconstruction (raw and stft)	0.626 ± 0.006	0.502 ± 0.008	0.628 ± 0.006
	w.o STFT reconstruction (raw and fft)	0.615 ± 0.005	0.487 ± 0.007	0.617 ± 0.005
	$\text{DIVER}_{\text{Tiny}/E/1s}$	0.628 ± 0.005	0.504 ± 0.007	0.630 ± 0.005

2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

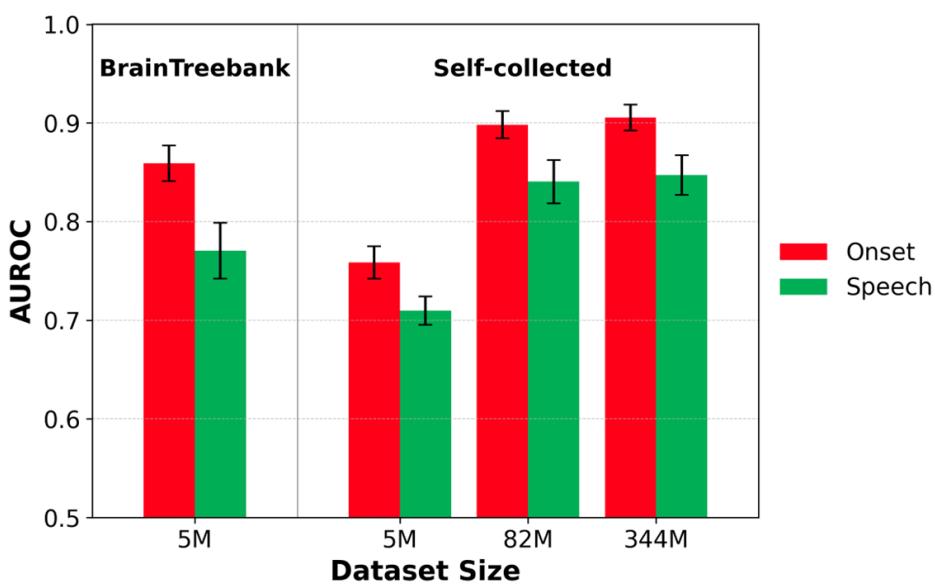


Figure 12: Pretraining dataset and size effects on performance: BrainTreebank vs. Self-Collected

Table 19: **Model comparison with a shared pretraining dataset.** Each row indicates a model architecture with its pretraining dataset in parentheses. Models pretrained on the same BTB dataset are compared to isolate architectural effects. The results are reported as mean AUROC \pm SEM across multiple subjects, trials and folds. The DIVER model was pretrained for 32 epochs.

	speech	onset
BrainBERT (frozen) ((Zahorodnii et al., 2025))	0.611 ± 0.022	0.757 ± 0.027
BrainBERT (our training code)	0.575 ± 0.018	0.659 ± 0.026
PopT (our training code)	0.702 ± 0.029	0.780 ± 0.025
PopT ((Zahorodnii et al., 2025))	0.677 ± 0.044	0.689 ± 0.050
DIVER _{Tiny/I/0.1s} (frozen)	0.770 ± 0.028	0.859 ± 0.018

D.4 ANALYSIS OF JOINT MODALITY (INTRACRANIAL/SCALP-EEG) PRETRAINING

We examined the effects of joint training on both iEEG and EEG downstream tasks, with detailed results presented in Table 20. Joint training showed contrasting effects on the two modalities: it decreased performance on iEEG benchmarks but improved performance on EEG tasks.

This difference may stem from the signal quality disparity between the two modalities. Since EEG signals are inherently noisier than iEEG signals, incorporating EEG data during joint training may introduce noise that degrades the model’s ability to process high-quality iEEG signals. Conversely, for EEG tasks, joint training provides EEG specific information that iEEG cannot provide. Additionally, the data imbalance between modalities may contribute to these results. Since EEG data outnumbers iEEG data, the model may become biased toward EEG-specific patterns during joint training. **As detailed in Table 20, training exclusively on curated EEG datasets achieves the best performance on EEG downstream tasks, outperforming models that include iEEG data.**

2106
2107 Table 20: **Joint pretraining results on downstream tasks.** Performance compared between
2108 $\text{DIVER}_{\text{Tiny}/I/1s}$ (trained on iEEG only) and $\text{DIVER}_{\text{Tiny}/IE/1s}$ (trained on iEEG and EEG), both
2109 with $d_{\text{model}} = 256$. Performance across iEEG tasks (speech and onset, measured by AUROC) and
2110 EEG task (FACED, measured by ACC) are shown. Joint training with EEG data improves performance
2111 on EEG tasks but slightly decreases performance on iEEG tasks.
2112

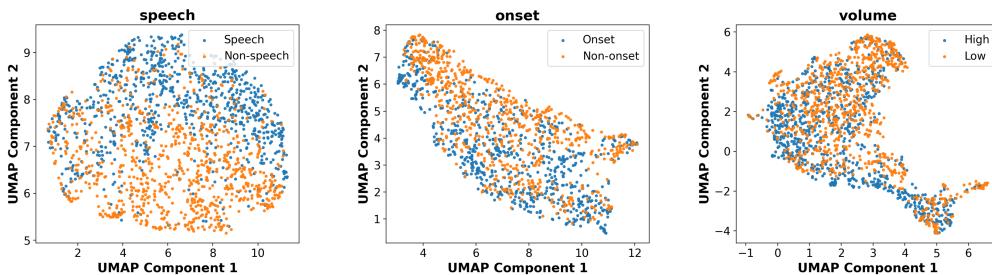
	speech (iEEG, AUROC)	onset (iEEG, AUROC)	FACED (EEG, ACC)
$\text{Tiny}/I/1s$ (frozen)	0.854 ± 0.011	0.906 ± 0.008	0.328 ± 0.003
$\text{Tiny}/IE/1s$ (frozen)	0.817 ± 0.018	0.891 ± 0.012	0.359 ± 0.004

2113
2114
2115
2116 Table 21: **Ablation on pretraining data composition for EEG downstream tasks.** We evaluated how different pretraining dataset combinations affect performance on EEG downstream tasks.
2117 We compared models pretrained on: TUEG (Obeid & Picone, 2016)-only (largest single EEG
2118 dataset), TUEG+iEEG, all EEG datasets, and EEG+iEEG (all available data). All models use
2119 $\text{DIVER}_{\text{Small}/E/1s}$ architecture with $d_{\text{model}} = 512$, pretrained for 2 epochs. The model trained exclusively on curated EEG datasets achieves the best performance, outperforming models that include
2120 iEEG data.
2121

Pretraining Data	FACED (9-class)			PhysioNet-MI (4-class)		
	ACC	kappa	F1	ACC	kappa	F1
TUEG-only	0.519 ± 0.004	0.456 ± 0.005	0.518 ± 0.005	0.623 ± 0.010	0.497 ± 0.013	0.625 ± 0.009
TUEG + iEEG	0.461 ± 0.011	0.394 ± 0.013	0.471 ± 0.012	0.599 ± 0.008	0.465 ± 0.010	0.600 ± 0.008
EEG + iEEG	0.540 ± 0.013	0.482 ± 0.015	0.550 ± 0.014	0.638 ± 0.005	0.517 ± 0.006	0.639 ± 0.004
EEG	0.570 ± 0.009	0.515 ± 0.010	0.579 ± 0.008	0.644 ± 0.005	0.526 ± 0.006	0.646 ± 0.005

2130 D.5 INTERPRETATION RESULTS

2131
2132 Figure 13 shows a visualization of representation analysis on downstream datasets using
2133 UMAP (McInnes et al., 2018). We examine the embeddings obtained from the pretrained
2134 $\text{DIVER}_{\text{Tiny}/I/0.1s}$ model on the test set of speech, onset, and volume tasks in neuroprobe dataset
2135 without any finetuning. The results indicate that DIVER learned meaningful iEEG representations
2136 from pretraining, thereby capturing label-relevant structure in downstream datasets even in the ab-
2137 sence of finetuning.



2138
2139 Figure 13: Visualizations of representations on neuroprobe downstream tasks. Each plot shows test
2140 set embeddings from one fold of a single trial from a single subject.
2141
2142
2143
2144
2145
2146
2147

2160
 2161 Table 22: **Comparison of finetuning architectures in EEG downstream tasks.** Deeper heads gen-
 2162 erally improve performance up to 3-4 layers.

Head Depth	FACED (9-class)			PhysioNet-MI (4-class)		
	ACC	kappa	F1	ACC	kappa	F1
Linear	0.523 \pm 0.018	0.461 \pm 0.020	0.521 \pm 0.018	0.653 \pm 0.013	0.538 \pm 0.017	0.654 \pm 0.013
2-Layer	0.584 \pm 0.005	0.530 \pm 0.005	0.584 \pm 0.005	0.674 \pm 0.003	0.565 \pm 0.004	0.676 \pm 0.003
3-Layer	0.601 \pm 0.008	0.550 \pm 0.009	0.607 \pm 0.009	0.676 \pm 0.003	0.567 \pm 0.004	0.678 \pm 0.004
4-Layer	0.603 \pm 0.007	0.552 \pm 0.008	0.609 \pm 0.007	0.672 \pm 0.008	0.573 \pm 0.011	0.674 \pm 0.008
5-Layer	0.594 \pm 0.021	0.543 \pm 0.023	0.601 \pm 0.019	0.660 \pm 0.007	0.547 \pm 0.009	0.662 \pm 0.006

E EXPLORATION OF FINETUNING METHOD

E.1 OVERVIEW:IMPACT OF FINETUNING METHODOLOGY ON EEG DOWNSTREAM TASK PERFORMANCE

We conduct comprehensive experiments to investigate the impact of different finetuning methods on downstream task performance. Our analysis includes: (1) systematic exploration of MLP classifier depth for DIVER(appendix subsection E.2), (2) reproduction of CBraMod (Wang et al., 2024c) performance using publicly available code and weights(appendix subsection E.3), and (3) comparative analysis of various finetuning configurations across both models E.4. These experiments reveal that finetuning methodology significantly affects model performance, and optimal configurations vary across tasks and models. Importantly, **when comparing DIVER and CBraMod under identical finetuning configurations (one-to-one comparison), DIVER demonstrates competitive or superior performance to CBraMod across multiple tasks, achieving overall state-of-the-art results despite CBraMod’s higher reported in-paper performance on some tasks.**

E.2 IMPACT OF MLP CLASSIFIER DEPTH ON DIVER PERFORMANCE

Initially, we employed a linear classifier head for finetuning but observed suboptimal performance. Upon examining the publicly available code of CBraMod (Wang et al., 2024c), the previous state-of-the-art model, we found that it uses an MLP classifier head. To ensure fair comparison, we replaced the linear head with an MLP classifier, which resulted in substantial performance improvements for DIVER-1. This motivated us to conduct systematic experiments investigating how MLP depth affects performance. Table 22 compares the performance across the depths of MLP classifier for downstream EEG tasks. The original 3-layer MLP classifier is varied between 1 to 5 layers. For both FACED and PhysioNet-MI tasks, performance improved with the increase of MLP depth, achieving peak performance at 4-layer for FACED (balanced accuracy of 0.603) and 3-layer for PhysioNet-MI (balanced accuracy of 0.676). Beyond the optimal depth, we observed performance saturation or slight degradation, particularly notable in the 5-layer MLP for both datasets. These results indicate that a moderate depth (3-4 layers) suffices model’s effectiveness across different EEG downstream tasks.

E.3 CHALLENGES IN REPRODUCING CBRA MOD BASELINE PERFORMANCE

While we found that finetuning method significantly impacts downstream task performance, the CBraMod paper does not specify which finetuning methods were used for each downstream task. Therefore, we conducted experiments to reproduce CBraMod’s performance using the default configuration from their publicly released code and weights. To ensure faithful reproduction, we used CBraMod’s preprocessing pipeline, pretrained weights, and finetuning code without modification.

The experimental results revealed substantial performance gaps on several tasks (Table 23). On MentalArithmetic(Zyma et al., 2019), reproduced accuracy (0.619) fell short of reported performance (0.726); on TUEV(Obeid & Picone, 2016), accuracy decreased from 0.667 to 0.605; on Mumtaz2016(Zyma et al., 2019), from 0.956 to 0.882. Only FACED(Chen et al., 2023) and PhysioNet-MI(Goldberger et al., 2000; Schalk et al., 2004) showed relatively successful reproduction. Notably, similar reproduction difficulties with CBraMod have been reported in recent work (Wang et al.,

2214
 2215 Table 23: **Comparison of DIVER-1 EEG model with CBraMod.** CBraMod (in paper) refers to
 2216 the performance reported in the original CBraMod paper, while CBraMod (reproduction) represents
 2217 our reproduction using the default configuration from their publicly released code and weights.

Models	FACED (9-class)		
	ACC	kappa	F1
CBraMod(in paper)	0.551 ± 0.009	0.504 ± 0.012	0.562 ± 0.009
CBraMod(reproduction)	0.570 ± 0.005	0.514 ± 0.006	0.574 ± 0.006
DIVER (Ours)	0.601 ± 0.008	0.550 ± 0.009	0.607 ± 0.009

Models	PhysioNet-MI (4-class)		
	ACC	kappa	F1
CBraMod(in paper)	0.642 ± 0.009	0.522 ± 0.017	0.643 ± 0.010
CBraMod(reproduction)	0.621 ± 0.002	0.495 ± 0.003	0.622 ± 0.003
DIVER (Ours)	0.676 ± 0.003	0.567 ± 0.004	0.678 ± 0.004

Models	MentalArithmetic (2-class)		
	ACC	AUC-PR	AUROC
CBraMod(in paper)	0.726 ± 0.013	0.627 ± 0.010	0.791 ± 0.007
CBraMod(reproduction)	0.619 ± 0.035	0.533 ± 0.064	0.749 ± 0.031
DIVER (Ours)	0.727 ± 0.018	0.676 ± 0.046	0.814 ± 0.026

Models	Mumtaz2016 (2-class)		
	ACC	AUC-PR	AUROC
CBraMod(in paper)	0.956 ± 0.006	0.992 ± 0.003	0.992 ± 0.003
CBraMod(reproduction)	0.882 ± 0.019	0.976 ± 0.007	0.974 ± 0.009
DIVER (Ours)	0.894 ± 0.006	0.971 ± 0.003	0.968 ± 0.005

Models	TUEV (6-class)		
	ACC	kappa	F1
CBraMod(in paper)	0.667 ± 0.011	0.677 ± 0.010	0.834 ± 0.006
CBraMod(reproduction)	0.605 ± 0.024	0.623 ± 0.016	0.802 ± 0.009
DIVER (Ours)	0.630 ± 0.029	0.527 ± 0.039	0.747 ± 0.019

2247 2025), which also observed performance gaps between reported and reproduced results on certain
 2248 tasks.

2249 These reproduction challenges highlight the sensitivity of EEG foundation models to finetuning con-
 2250 figurations. When comparing DIVER to the reproduced CBraMod baselines, the performance gaps
 2251 narrow considerably: on TUEV, DIVER achieves 0.630 compared to reproduced CBraMod’s 0.605;
 2252 on MentalArithmetic, 0.727 vs 0.619. This underscores the importance of transparent reporting of
 2253 finetuning protocols for fair model comparison.

2254 E.4 TASK-SPECIFIC OPTIMAL FINETUNING CONFIGURATIONS FOR CBRA MOD AND DIVER

2255 As mentioned above, the default configuration from CBraMod’s public code was insufficient to fully
 2256 reproduce their reported performance. To maximize performance recovery, we experimented with
 2257 various finetuning methods available in their codebase. We systematically explored five different
 2258 configurations: (1) *no multi lr*: using a single learning rate for both backbone and head, (2) *multi*
 2259 *lr multiplier 3/7*: setting the head learning rate to 3× or 7× the backbone learning rate, (3) *linear*
 2260 *classifier*: full finetuning with a 1-layer linear head, (4) *linear probing*: freezing the backbone while
 2261 training only a 1-layer linear head, and (5) *CBraMod finetuning method*: using a 3-layer MLP head
 2262 with 5× learning rate multiplier as the default configuration.

2263 2264 As shown in Table 24, the optimal finetuning method for CBraMod varied across tasks. Specifically,
 2265 for Mumtaz2016, the “no multi lr” configuration achieved the best performance (ACC: 0.920), while
 2266 for TUEV, the “linear classifier” method performed best (ACC: 0.635). For MentalArithmetic, both
 2267 “no multi lr” and the default CBraMod method showed comparable performance.

2268 **Table 24: One-to-One Comparison between CBraMod and DIVER using fixed finetuning**
 2269 **method.** Both models evaluated with identical finetuning configurations. CBraMod uses publicly
 2270 released weights and code. DIVER model uses 12 layers with $d_{\text{model}} = 512$ and were pretrained for
 2271 32 epochs. Results are reported as mean \pm standard deviation across 5 random seeds.

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299	2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299			2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299		
Mumtaz2016 (2-class)	DIVER			CBraMod		
	ACC	AUC-PR	AUROC	ACC	AUC-PR	AUROC
no multi lr	0.894 \pm 0.006	0.971 \pm 0.003	0.968 \pm 0.005	0.920 \pm 0.027	0.985 \pm 0.010	0.984 \pm 0.012
multi lr multiplier 3	0.896 \pm 0.003	0.980 \pm 0.001	0.979 \pm 0.002	0.892 \pm 0.010	0.977 \pm 0.006	0.974 \pm 0.008
multi lr multiplier 7	0.882 \pm 0.044	0.981 \pm 0.008	0.980 \pm 0.007	0.888 \pm 0.012	0.977 \pm 0.007	0.975 \pm 0.008
linear classifier	0.902 \pm 0.004	0.986 \pm 0.005	0.985 \pm 0.006	0.872 \pm 0.059	0.975 \pm 0.012	0.973 \pm 0.014
linear probing	0.944 \pm 0.003	0.990 \pm 0.000	0.990 \pm 0.000	0.515 \pm 0.003	0.962 \pm 0.003	0.972 \pm 0.001
CBraMod finetuning method*	0.901 \pm 0.011	0.985 \pm 0.006	0.985 \pm 0.006	0.882 \pm 0.019	0.976 \pm 0.007	0.974 \pm 0.009
<hr/>						
TUEV (6-class)	DIVER			CBraMod		
	ACC	kappa	F1	ACC	kappa	F1
no multi lr	0.630 \pm 0.029	0.527 \pm 0.039	0.747 \pm 0.019	0.609 \pm 0.021	0.618 \pm 0.023	0.801 \pm 0.012
multi lr multiplier 3	0.649 \pm 0.030	0.563 \pm 0.026	0.765 \pm 0.018	0.611 \pm 0.021	0.628 \pm 0.027	0.805 \pm 0.013
multi lr multiplier 7	0.648 \pm 0.036	0.555 \pm 0.050	0.761 \pm 0.025	0.602 \pm 0.057	0.624 \pm 0.031	0.802 \pm 0.017
linear classifier	0.611 \pm 0.024	0.524 \pm 0.031	0.753 \pm 0.016	0.635 \pm 0.024	0.625 \pm 0.047	0.804 \pm 0.024
linear probing	0.559 \pm 0.025	0.397 \pm 0.037	0.624 \pm 0.041	0.314 \pm 0.011	0.307 \pm 0.014	0.574 \pm 0.012
CBraMod finetuning method*	0.612 \pm 0.014	0.414 \pm 0.021	0.644 \pm 0.017	0.605 \pm 0.024	0.623 \pm 0.016	0.802 \pm 0.009
<hr/>						
MentalArithmetic (2-class)	DIVER			CBraMod		
	ACC	AUC-PR	AUROC	ACC	AUC-PR	AUROC
no multi lr	0.727 \pm 0.018	0.676 \pm 0.046	0.814 \pm 0.026	0.637 \pm 0.038	0.494 \pm 0.022	0.747 \pm 0.031
multi lr multiplier 3	0.654 \pm 0.091	0.666 \pm 0.070	0.815 \pm 0.027	0.629 \pm 0.035	0.493 \pm 0.042	0.734 \pm 0.025
multi lr multiplier 7	0.669 \pm 0.120	0.710 \pm 0.113	0.852 \pm 0.052	0.584 \pm 0.030	0.459 \pm 0.051	0.704 \pm 0.033
linear classifier	0.724 \pm 0.040	0.705 \pm 0.035	0.855 \pm 0.021	0.621 \pm 0.084	0.453 \pm 0.079	0.720 \pm 0.072
linear probing	0.608 \pm 0.037	0.667 \pm 0.021	0.791 \pm 0.011	0.515 \pm 0.008	0.522 \pm 0.017	0.668 \pm 0.008
CBraMod finetuning method*	0.735 \pm 0.045	0.707 \pm 0.069	0.839 \pm 0.022	0.619 \pm 0.035	0.533 \pm 0.064	0.749 \pm 0.031

* Finetuning methods: (1) *no multi lr*: single LR for backbone and head (2) *multi lr multiplier X*: head LR = $X \times$ backbone LR (3) *linear classifier*: full finetuning with 1-layer head (4) *linear probing*: frozen backbone, trainable 1-layer head (5) *CBraMod finetuning method*: 3-layer MLP head, multi lr multiplier 5.

Interestingly, when applying the same finetuning methods to DIVER, different configurations yielded superior performance compared to what worked best for CBraMod. For instance, on Mumtaz2016, DIVER achieved its best performance with "linear probing" (ACC: 0.944), which performed poorly for CBraMod (ACC: 0.515). On TUEV, DIVER performed best with "multi lr multiplier 3" (ACC: 0.649), whereas CBraMod favored the "linear classifier" approach.

Crucially, when comparing both models under identical finetuning configurations (one-to-one comparison), DIVER demonstrates competitive performance across tasks. DIVER achieves superior performance on multiple configurations for Mumtaz2016 and TUEV, and shows strong results on MentalArithmetic. This head-to-head comparison under controlled conditions reveals that DIVER achieves overall state-of-the-art performance when evaluation methodology is held constant, even though CBraMod's reported in-paper results appear higher on some tasks.

These findings underscore that finetuning methodology is critical for evaluating EFM, and optimal configurations can be model-dependent. Given this importance, we provide detailed specifications of the finetuning methods used for DIVER (Appendix B.8) to promote transparency and reproducibility in the EFM research community. We hope this contributes positively to establishing standardized evaluation protocols for electrophysiology foundation models.

2322 F DATA DETAILS
23232324 F.1 PRETRAINING DATASET DESCRIPTION
23252326 The following datasets were utilized for the pretraining of our DIVER models. The total pretraining
2327 time for the DIVER_I dataset is 5,310 hours, and for the DIVER_{IE} dataset, it is 59,613 hours.
2328

- 2329 • **AJILE12 (Annotated Joints in Long-term Electrocorticography)** (Peterson et al.,
2330 2022): An ECoG dataset from 12 epilepsy patients, recorded semi-continuously over 55
2331 days. Signals were collected from ≥ 64 electrodes at 1 kHz sampling rate and paired
2332 with synchronized video-based 3D human pose estimation and annotated wrist-movement
2333 events.
- 2334 • **Self-collected iEEG dataset**: An intracranial EEG dataset from 25 drug-resistant epilepsy
2335 patients (~ 7 days, ~ 168 h per subject) with long-term ECoG and sEEG recordings (mean
2336 56.4 ± 3.38 channels, sampled at 2 kHz) during naturalistic hospital behaviors.
- 2337 • **TUEG (Temple University Hospital EEG Corpus)** (Obeid & Picone, 2016): A large-
2338 scale clinical EEG dataset comprising 16,986 recording sessions from 10,874 subjects with
2339 heterogeneous diagnoses. EEG signals were recorded using 20–31+ channels, predom-
2340 inantly at sampling rate between 250–512 Hz, and are linked with de-identified clinical re-
2341 ports.
- 2342 • **HBN-EEG (Healthy Brain Network)** (Shirazi et al., 2024): An developmental EEG
2343 dataset from 2,782 participants aged 5–21. Each participant underwent approximately 60
2344 minutes of high-density (128-channel) EEG and eye-tracking recordings across six distinct
2345 tasks, including resting-state and movie watching.
- 2346 • **NCHSDB (Nationwide Children’s Hospital Sleep DataBank)** (Lee et al., 2022): An pe-
2347 diatric sleep EEG dataset of 3,673 patients. Each record includes 8–12 hours of EEG data
2348 (26–29 channels, sampled at 256–512 Hz) manually scored for sleep stages and events.
2349 While the dataset contains multimodal PSG signals (EOG, EMG, ECG, respiration, etc.),
2350 we used only the EEG channels.
- 2351 • **PEERS (Penn Electrophysiology of Encoding and Retrieval Study)** (Kahana et al.,
2352 2023): An EEG dataset from 364 subjects who participated in multiple sessions of free
2353 recall, recognition and distractor tasks. EEG signals were recorded with 125 channels at
2354 500 Hz sampling rate.

2355 F.2 FINETUNING DATASET DESCRIPTION
23562357 The following datasets were utilized for the downstream evaluation of our DIVER models, compris-
2358 ing a comprehensive set of benchmarks across both iEEG and EEG modalities. An overview of the
2359 dataset specifications and task definitions is provided in Table 3.2360 **Neuroprobe** Neuroprobe (Zahorodnii et al., 2025) is a large scale iEEG benchmarks with natu-
2361 ralistic labels during movie watching. 10 subjects watch 25 movies, age from 6 to 19. There are
2362 3 types of evaluation in neuroprobe; single subject-single movie (WithinSession) (splits within
2363 the movies), single subject-different movie(CrossSession) (splits within subjects), different subject-
2364 different movie(CrossSubject). We evaluated the model in WithinSession. Additionally, Neuroprobe
2365 provides an option to subset subjects and trials. We used the LITE option (default configuration),
2366 which includes two movies per subject and a total of six subjects.⁵ Detailed description of each task
2367 is provided below (adapted from (Zahorodnii et al., 2025)):

- 2368 1. **frame_brightness (visual)**: The mean brightness computed as the average HSV value over
2369 all pixels. Low (percentiles 0%-25%) vs High (75%-100%)
- 2370 2. **global_flow (visual)**: A camera motion proxy. The maximal average dense optical flow
2371 vector magnitude. Same as above.

2373 ⁵PopT’s performance on the same task differs between its original paper and its evaluation in the neuroprobe
2374 benchmark because neuroprobe implemented proper train/test splits across time so that no temporal leakage
2375 occurs between training and test sets, whereas the original PopT evaluation used random sampling that can lead
to data contamination across temporal boundaries.

2376 3. **local_flow** (*visual*): A large displacement proxy. The maximal optical flow vector magni-
 2377 tude. Same as above.

2378 4. **face_num** (*visual*): The maximum number of faces per frame during the word. 0, or ≥ 1 .

2380 5. **volume** (*auditory*): Average root mean squared watts of the audio. Low (0%-25%) vs High
 2381 (75%-100%).

2382 6. **pitch** (*auditory*): Average pitch of the audio. Same as above.

2383 7. **delta_volume** (*auditory*): The difference in average RMS of the 500 ms windows pre- and
 2384 post-word onset. Same as above.

2386 8. **speech** (*language*): Whether any speech is present in the given time interval.

2387 9. **onset** (*language*): Whether a new sentence starts in the interval, or there is no speech at all.

2388 10. **gpt2_surprisal** (*language*): Negative-log transformed GPT-2 word probability (given pre-
 2389 ceding 20s of language context). Low (0%-25%) vs High (75%-100%).

2390 11. **word_length** (*language*): Word length (ms). Same as above.

2392 12. **word_gap** (*language*): Difference between previous word offset and current word onset
 2393 (ms). Same as above.

2394 13. **word_index** (*language*): The word index in its context sentence. The first word in the sen-
 2395 tence (0), or other (1).

2396 14. **word_head_pos** (*language*): The relative position (left/right) of the word’s dependency tree
 2397 head.

2398 15. **word_part_speech** (*language*): The word Universal Part-of-Speech (UPOS) tag. Verb (0),
 2399 or other (1).

2401 **EEG tasks** We evaluate our model on five publicly available EEG datasets spanning emotion recog-
 2402 nition, motor imagery, mental workload tasks and mental disorder diagnosis and event type clas-
 2403 sification. We adopted the preprocessing procedure from CBraMod with minimal modifications;
 2404 specifically, the resampling rate was adjusted to 500 Hz while all other steps remained consistent
 2405 with the original pipeline. Detailed description of each dataset is provided below:

2406 1. **FACED** (Chen et al., 2023): A large-scale EEG corpus for emotion recognition. It contains
 2407 recordings from 123 subjects with 32-channel EEG while watching 28 emotion-eliciting
 2408 video clips. Emotions are categorized into 9 discrete classes: amusement, inspiration, joy,
 2409 tenderness, anger, fear, disgust, sadness, and neutral. We evaluated the model with the 9-
 2410 class emotion classification task.

2412 2. **PhysioNet-MI** (Goldberger et al., 2000; Schalk et al., 2004): An EEG dataset for motor
 2413 imagery-based BCI tasks. It includes recordings from 109 subjects using a 64-channel
 2414 10–20 montage and contains four motor imagery classes: left fist, right fist, both fists, and
 2415 both feet.

2416 3. **MentalArithmetic** (Zyma et al., 2019): An EEG dataset for mental stress detection. It
 2417 contains recordings from 36 subjects using 20 channels. We used 19 channels in total,
 2418 excluding 1 reference channel. The dataset consists of recordings during mental arithmetic
 2419 tasks under two conditions: with mental stress and without mental stress.

2420 4. **Mumtaz2016** (Mumtaz, 2016): A clinical EEG dataset designed to distinguish major de-
 2421 pressive disorder patients from healthy individuals. This dataset comprises 64 subjects (34
 2422 with MDD, 30 healthy controls), with signals acquired from 19 scalp locations following
 2423 the standard 10-20 electrode placement system. We employed the resting-state conditions
 2424 for binary MDD classification.

2425 5. **TUEV** (Obeid & Picone, 2016): An EEG dataset for event type classification in clin-
 2426 ical neurophysiology. This corpus provides annotated EEG segments categorized into
 2427 six classes: spike and sharp wave (SPSW), generalized periodic epileptiform discharges
 2428 (GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), ar-
 2429 tifact (ARTF), and background (BCKG). We evaluated the model on this 6-class event
 classification task.

2430 F.3 QAQC AND PREPROCESSING
2431

2432 All data underwent quality assessment and control (QAQC) and preprocessing with a philosophy
2433 of minimal intervention to retain as much original signal information as possible. For QAQC, we
2434 normalized signals by dividing EEG by 100 μ V and iEEG by 200 μ V (the latter accounting for
2435 larger amplitudes in intracranial recordings). While Jiang et al. (2024) applied normalization without
2436 QAQC and Wang et al. (2024c) removed entire segments if even one timepoint exceeded 100 μ V, we
2437 adopted a more conservative clipping approach to prevent data loss. We clipped amplitude values
2438 exceeding these normalization thresholds, only discarding electrodes when more than 3.33% of
2439 samples required clipping and removing whole segments when more than 50% of channels were
2440 compromised. **This conservative strategy enabled us to preserve substantially more usable data:**
2441 **whereas CBaMod’s preprocessing yielded approximately 174.7k channel-hours of pretraining data**
2442 **on the same TUEG dataset (refer to Appendix Table 26), our QAQC pipeline retained 422k channel-**
2443 **hours, a 2.4x increase.**

2444 For preprocessing, we applied minimal filtering: a high-pass filter (0.5 Hz for private iEEG, 0.3
2445 Hz for other datasets) to remove low-frequency drift, a 60 Hz notch filter for power line noise
2446 suppression, and no low-pass filtering to preserve high-frequency components. All datasets were
2447 resampled to 500 Hz and segmented into 30-second non-overlapping windows.

2448 G COMPARISON WITH EXISTING EEG/iEEG FOUNDATION MODELS
2449

2450 A direct comparison of training epochs for prior EEG/iEEG foundation models is misleading due
2451 to varying dataset sizes (Table 25). To enable a fair assessment, we introduce the “Scaled Epochs
2452 on Our Data” metric. This normalizes the total data processed during training (channel-hours \times
2453 epochs) into an equivalent number of epochs on our dataset, allowing for a direct comparison of
2454 training epochs across all prior models and our own. For entries in Table 25 that use estimated
2455 values (marked with *), the corresponding estimation procedures are documented in Table 26.

2456
2457 Table 25: Comparison of prior EEG/iEEG foundation models

2459 Models	2460 Modality	2461 Model Size (Parameters)	2462 Volume (Channel-hours)	2463 Training Epochs	2464 Scaled Epochs on Our Data ^a
2462 BENDR (Kostas et al., 2021)	2463 EEG	2464 155M*	2465 N/A	2466 1	2467 N/A
2468 BrainBERT (Wang et al., 2023)	2469 SEEG	2470 43M*	2471 4.5k	2472 39*	2473 0.5
2475 Brant (Zhang et al., 2023)	2476 SEEG	2477 505.68M	2478 281k	2479 32*	2480 25.6
2482 BIOT (Yang et al., 2023)	2483 EEG	2484 3.3M	2485 312k	2486 100	2487 88.6
2489 Neuro-GPT (Cui et al., 2024)	2490 EEG	2491 90M*	2492 541k	2493 135	2494 207.6
2496 LaBraM (Jiang et al., 2024)	2497 EEG	2498 5.8M, 46M, 369M 0.4M, 0.5M, 1.6M, 6.4M, 19M, 25M, 76M, 101M 0.1M, 0.4M, 0.8M,	2499 76.8–83.7k	2500 50	2501 11.4
2504 EEGPT (Wang et al., 2024b)	2505 EEG	2506 11.1k*	2507 200	2508 6.8	
2511 CBaMod (Wang et al., 2024c)	2512 EEG	2513 1.2M, 1.5M, 2M, 3M, 4M	2514 175.7k*	2515 40	2516 20
2519 Ours (DIVER _I)	2520 ECoG+SEEG	2521 12.72M–1.83B	2522 352k	2523 64	
2527 Ours (DIVER _{IE})	2528 ECoG+SEEG+EEG	2529 13.03–812.85M	2530 1,662k	2531 1	

2532 ^a This metric normalizes the total training compute across studies to represent the equivalent number of training compute on our dataset. It
2533 is calculated as: Scaled Epochs = $\frac{\text{Source Dataset (channel-hours)} \times \text{Source Epochs}}{\text{Our Dataset (channel-hours)}}$, where our iEEG dataset = 352,035 channel-hours.

2534 * Values marked with an asterisk are our estimates, as they were not explicitly stated in the source paper; the estimation methods are
2535 summarized in Table 26.

2536
2537
2538
2539
2540
2541
2542
2543

2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498

2499 **Table 26: Estimation of model and training specifications.** We detail the assumptions and calcu-
 2500 tions used to derive model size, training epochs, and data volume (channel-hours) for prior models.
 2501 **Bold** values represent the final estimates derived from the reported configurations.

Models	Parameters	Est. Value	Justification / Method
BENDR	Model Size	155M	Assume $d=1536$, $r=3076$, $L=8$. Decompose $P = P_{\text{conv}} + P_{\text{pos}} + P_{\text{in}} + L P_{\ell}$. Here $P_{\text{conv}} = (3 \cdot 20 \cdot 512 + 512) + 5(2 \cdot 512 \cdot 512 + 512) + 6(2 \cdot 512)$, $P_{\text{pos}} = 25 \cdot (512/16) \cdot 512 + 512$, $P_{\text{in}} = 512 \cdot 1536 + 1536$, and $P_{\ell} \approx 4d^2 + 2dr + r + 9d$. Numerically $\approx 155\text{M}$.
BrainBERT	Model Size	43M	Assume $d=768$, $r=4d=3072$, $L=6$. Per layer $P_{\ell} \approx 4d^2 + 2dr + r + 9d \approx 7.08\text{M}$. Transformer total $L P_{\ell} \approx 42.5\text{M}$. Add 2-layer head $768 \rightarrow 768 \rightarrow 40$: $P_{\text{head}} \approx 0.6\text{M}$. Hence $P \approx 42.5 + 0.6 \approx 43\text{M}$.
	Training Epochs	39	Total hours $H=4,551$, segment $\tau=5\text{s}$. $N_{\text{samp}} = \frac{H \cdot 3600}{\tau} = \frac{4551 \cdot 3600}{5} = 3,276,720$. Steps/epoch $\approx N_{\text{samp}}/256 \approx 12,800$. With $U=500,000$ updates: epochs $\approx U/12,800 \approx 39$.
Brant	Training Epochs	32	Use epochs $= \frac{U \cdot (B \cdot A)}{N_{\text{samp}}}$. Reported $U=750,000$, $B=16$, $A=4 \Rightarrow 48\text{M}$ sample-passes. Dataset size $N_{\text{samp}} \approx 1.5\text{M} \Rightarrow$ epochs $\approx 48/1.5 \approx 32$.
Neuro-GPT	Model Size	90M	Assume GPT-2-like decoder with $d=1024$, $r=4096$, $L=6$. Per layer $P_{\ell} \approx 12.6\text{M} \Rightarrow P_{\text{GPT}} = L P_{\ell} \approx 75.6\text{M}$. Adding EEG encoder and a linear projector (P_0) yields $P = P_0 + P_{\text{GPT}} \approx 90\text{M}$ (projector $\sim 1.1\text{M}$; remainder in encoder).
EEGPT	Channel-hours	11.1k	Apply ch-hr $= \frac{(\#trials) \cdot (\#ch) \cdot (s)}{3600}$ per dataset and sum: PhysioMI ≈ 107 , HGD $\approx 1,991$, TSU ≈ 597 , SEED ≈ 116 , M3CV $\approx 8,267 \Rightarrow$ total $\approx 11,078$ ch-hr.
CBraMod	Channel-hours	175.7k	Common channels $c=19$, non-overlapping segment $\tau=30\text{s}$, kept segments $N=1,109,545$; ch-hr $= \frac{c \cdot N \cdot \tau}{3600} = \frac{19 \cdot 1,109,545 \cdot 30}{3600} \approx 175.7\text{k}$.
$P_{\ell} = \underbrace{4d^2}_{\text{Q,K,V,Out}} + \underbrace{2dr + r}_{\text{FFN}} + \underbrace{9d}_{2 \times \text{LN+biases}}$ $\approx 4d^2 + 2dr + r + 9d$. Total params: $P = P_0 + L P_{\ell}$ (non-Transformer parts P_0 separated when needed). Epochs: epochs $= \frac{U \cdot (B \cdot A)}{N_{\text{samp}}}$, with $N_{\text{samp}} = \frac{(\text{hours} \cdot 3600)}{\tau}$. Channel-hours: ch-hr $= \sum \frac{(\#trials) \cdot (\#channels) \cdot (\text{seconds})}{3600}$.			
2525			
2526			
2527			
2528			
2529			
2530			
2531			
2532			
2533			
2534			
2535			
2536			
2537			