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ABSTRACT

Electrophysiology signals such as EEG and iEEG are central to neuroscience,
brain–computer interfaces, and clinical applications, yet existing foundation mod-
els remain limited in scale despite clear evidence that scaling improves perfor-
mance. We introduce DIVER-1, a family of EEG and iEEG foundation models
trained on the largest and most diverse corpus to date—5.3k hours of iEEG and
54k hours of EEG (1.6M channel-hours from over 17.7k subjects)—and scaled
up to 1.82B parameters. We present the first systematic scaling law analysis for
this domain, showing that they follow data-constrained scaling laws: for a given
amount of data and compute, smaller models trained for extended epochs consis-
tently outperform larger models trained briefly. This behavior contrasts with prior
electrophysiology foundation models that emphasized model size over training
duration. To achieve strong performance, we also design architectural innovations
including any-variate attention, sliding temporal conditional positional encoding,
and multi-domain reconstruction. DIVER-1 iEEG and EEG models each achieve
state-of-the-art performance on their respective benchmarks, establishing a con-
crete guidelines for efficient scaling and resource allocation in electrophysiology
foundation model development.1

1 INTRODUCTION

Scaling has been a fundamental driver of progress in artificial intelligence, from early perceptrons to
modern large language models. Systematic increases in data, compute, and model size have yielded
reliable performance gains across language and vision, motivating principled investigations of neural
scaling laws (Kaplan et al., 2020; Zhai et al., 2022).

Electrophysiology (Ephys)–including intracranial (iEEG) and scalp EEG–presents a distinct op-
portunity for foundation modeling in neuroscience, BCI, and clinical applications. The domain is
marked by heterogeneity across subjects, recording sessions, montages, and neural states (Ebadi
et al., 2025). Recent EEG foundation models (EFMs)2 leverage self-supervised pretraining over
large unlabeled corpora and have reported consistent improvements on downstream decoding tasks
(Jiang et al., 2024; Zhang et al., 2023; Wang et al., 2024c).

Despite rapid progress, two gaps remain. First, no research has scaled EFMs beyond the levels nec-
essary to fully exploit this potential—previous efforts have been limited by computational resources
and dataset availability. Second, no systematic, quantitative analysis of EFM scaling behavior
has been conducted, leaving fundamental questions unanswered about optimal resource allocation
and scaling strategies for neural data—in particular, how to allocate a fixed compute budget across
model size and number of training epochs.

We address these gaps of limited scale exploration and the lack of quantitative scaling analysis by
conducting the first systematic investigation of scaling laws in EFMs while pushing the bound-
aries of scale across all dimensions. Specifically, we expand across: (1) Data—assembling pre-
training corpora with more than 77× more than the previous iEEG state-of-the-art model Chau et al.
(2025) and 1.2× the channel-hours of iEEG data compared to Zhang et al. (2023), plus about 10×

1Code available at: https://anonymous.4open.science/r/DIVER-1
2Although other terms such as large brain models (LBM) exist, we use EFM as it explicitly ties our setting

to EEG (both iEEG and scalp EEG) and emphasizes that it is a foundation, not necessarily a large, model.
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more EEG data than existing state-of-the-art (Wang et al., 2024c); (2) Compute—utilizing substan-
tially more computational resources than previous EFM studies; and (3) Model size—systematically
evaluating architectures ranging from 13M to 1.82B parameters, 3× the size of the largest open-
source iEEG foundation model (Zhang et al., 2023)

Through this comprehensive scaling effort, we make a key discovery: EFMs precisely follow the
data-constrained scaling laws of Muennighoff et al. (2023). Unlike classical Kaplan-style scaling
(Kaplan et al., 2020; Hoffmann et al., 2022)—which assumes unlimited data and thus optimizes
for one-epoch training—Ephys is inherently data-limited and requires multi-epoch training. The
data-constrained framework of Muennighoff et al. (2023) generalizes Kaplan-style scaling to this
setting, and our empirical scaling curves quantitatively align with its predicted isoFLOPs trade-offs
and exponents. This constraint fundamentally alters the optimal scaling strategy—we find that for
a fixed data and compute budget, large models (≥1B parameters) trained for only a few epochs
underperform smaller models trained for extended epochs, as additional training passes enable more
effective utilization of the limited data.

Building on these insights, our experiments yield DIVER-1, a family of EEG and iEEG EFMs
that achieves state-of-the-art performance across diverse neural decoding tasks. To maximize per-
formance, the models incorporate architectural adaptations tailored for Ephys signals. The model
employs sliding temporal conditional positional encoding for context-aware positioning while pre-
serving channel-permutation equivariance, and any-variate attention mechanisms to handle variable
electrode configurations with full spatio-temporal awareness. Additionally, spatiotemporal register
tokens provide dedicated computational space without interfering with signal representations, while
multi-domain reconstruction heads enable robust learning across temporal and spectral views with-
out altering the encoder backbone.

The contributions of this work are fourfold:

• DIVER-1 model family: We introduce a family of Ephys foundation models (EFMs) for
both iEEG and EEG that achieve state-of-the-art performance in their respective modalities
by leveraging our scaling insights and architectural innovations.

• First systematic scaling law analysis for EFMs: We provide the first quantitative char-
acterization of how EFMs scale with data, compute, and model size, revealing that EFMs
follow data-constrained scaling laws (Muennighoff et al., 2023) due to the inherent scarcity
of Ephys data. Building on this analysis, we show that under a fixed data and compute bud-
get, smaller models trained for more epochs consistently outperform larger models trained
briefly—offering clear guidance on how to allocate compute between model size and train-
ing epochs for efficient EFM development.

• Unprecedented scale demonstration: We scale EFM pretraining to previously unattained
levels across data volume, model size, and compute.

• Novel architectural innovations for Ephys: We develop specialized components includ-
ing any-variate attention mechanisms, sliding temporal conditional positional encoding
(STCPE), register tokens, and multihead prediction architectures—enabling effective scal-
ing analysis and performance gains.

Importantly, our findings show that prior approaches emphasizing model size as the primary axis of
scaling are not well aligned with the realities of Ephys data (Appendix G). A more effective path
under limited compute budgets is to prioritize training duration and subject diversity, a perspective
that reframes how future EFMs should be developed.

2 ARCHITECTURE

DIVER-1 uses an architecture custom-designed for multimodal EEG data that enables effective
self-supervised pretraining through masked patch reconstruction, as described in Figure 1. This ar-
chitecture consists of four main components: (1) patch encoding, (2) embedding enhancement, (3) a
stack of MOIRAI blocks (Woo et al., 2024), and (4) multi-output projection. During pretraining, we
randomly mask 50% of the input patches. The model then reconstructs missing information across
multiple signal domains through the projection layer. The details of pretraining and architectural
hyperparameters can be found in Appendix B.5.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Overview of DIVER-1 architecture and pretraining. DIVER-1 is pretrained on a large
EEG and iEEG data corpus. After preprocessing, input patches are randomly masked and enhanced
by adding modality, spectral, and CNN-based patch embeddings, along with STCPE. The enhanced
patches are processed through MOIRAI blocks and trained to reconstruct missing patches across
multiple signal domains (time series, spectrum, spectrogram). The pretrained model is then applied
to diverse downstream tasks.

2.1 STRUCTURE OVERVIEW

Patch encoding converts the raw signal into patch representations and extracts temporal features.
Given an input time series Y ∈ RC×T , where C is the number of channels (variables) and T is
the sequence length, we patchify Y into 1 or 0.1 second patches, each containing P ∈ {500, 50}
timepoints (at 500Hz sampling rate). During pretraining, 50% of the patches are randomly masked
with zero, and the remaining patches are passed through a three layer patch-wise convolutional
neural network (CNN) to extract temporal features. This results in a basic representation YCNN ∈
RC×N×dmodel , where N = T/P is the number of patches and dmodel is the embedding dimension.

Embedding enhancement augments the patch representations with signal and channel informa-
tion through two mechanisms. First, spectral embeddings inject patch-wise frequency domain in-
formation, and channel position and modality embeddings jointly encode spatial electrode locations
and electrode characteristics. Second, spatio-temporal conditional positional embedding (STCPE)
is applied via a sliding window mechanism to capture both spatial channel relationships and local
temporal information across the electrode array. The final transformer input is computed as:

X = YCNN +Espectral + [Eposition,Emodality] +ESTCPE (1)

where [·, ·] denotes concatenation, and each embedding component E· ∈ RC×N×dmodel maintains the
same dimensional structure to ensure consistent element-wise addition.

MOIRAI blocks form the computational backbone of DIVER-1, adapted from MOIRAI (Woo
et al., 2024) to model spatio-temporal dependencies in Ephys data. Our implementation incorpo-

3
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rates three components: (1) Any-Variate Attention for improved multivariate attention, (2) Gated
Linear Units (GLU) (Shazeer, 2020) for improved expressivity through gating mechanisms, and (3)
Spatio-Temporal Register Tokens (our novel addition) for dedicated computational space without
interfering with EEG signal representations, inspired by Darcet et al. (2023). The enhanced embed-
ding X ∈ RC×N×dmodel is processed through stacked MOIRAI blocks that preserve input dimensions
while progressively refining spatio-temporal representations.

Multi-output projection enables simultaneous reconstruction across multiple signal domains dur-
ing pretraining. Refined spatio-temporal representations are linearly projected to reconstruct patches
in three complementary domains: raw time series, FFT, and STFT. This multi-domain reconstruction
objective encourages comprehensive learning of temporal and spectral properties.

2.2 KEY COMPONENT DETAILS

Embedding enhancement components

Spectral embeddings Espectral inject patch-wise frequency information by applying FFT to each patch
and projecting the features to dmodel dimensions via a learnable linear layer.

Channel position and modality embeddings jointly encode spatial electrode locations and electrode
modality to handle heterogeneous recording setups. While EEG follows standardized montages,
iEEG channels are implanted in specific brain regions based on individual clinical needs. To ad-
dress this heterogeneity, we encode both channel position embeddings Eposition using the 3D spatial
coordinates (registered to MNI space) and modality embeddings Emodality to distinguish between
different electrode types. We then define the combined position–modality embedding term as:

[Eposition,Emodality] =
[
PE(x)(x), PE(y)(y), PE(z)(z), Etype

modality +Esubtype
modality

]
(2)

where electrode coordinates (x, y, z) are in centimeters and:

PE
(j)
2i = sin

(
j/256

20002i/dj

)
, PE

(j)
2i+1 = cos

(
j/256

20002i/dj

)
(3)

for j ∈ {x, y, z} and dx = dy = dz = dmodel/4, following PopT (Chau et al., 2025). If the
coordinates x,y,z for a given channel are not available, the positional embedding for that channel is
set to zero. The modality embedding Emodality is computed as Etype

modality + Esubtype
modality, where Etype

modality

distinguishes between EEG and iEEG channels, and Esubtype
modality encodes electrode subtypes (grid, strip,

or depth for iEEG electrodes) through learnable embedding vectors shared across all patches within
the same category.

Spatio-Temporal Conditional Positional Embedding (STCPE) addresses the need for dynamic po-
sitional encodings that can adapt to heterogeneous electrode configurations. Transformers require
positional information because self-attention is inherently permutation-invariant. While vision trans-
formers typically rely on fixed positional encodings, Conditional Positional Encoding (CPE) (Chu
et al., 2021) applied lightweight convolutions over local neighborhoods, allowing positional infor-
mation to adapt to the structure present in each input.

Building on this encoding scheme, Asymmetric Conditional Positional Encoding (ACPE) (Wang
et al., 2024c) applied asymmetric convolutions across channels and time for EEG, but these convo-
lutions operate along fixed channel axes and hence does not maintain channel permutation equivari-
ance—the learned spatial relationships depend on the training-time channel order. This is a critical
limitation for Ephys, where models must be invariant to arbitrary electrode reorderings to generalize
across heterogeneous montages, recording systems, and channel counts.

To address this, STCPE replaces convolution with a sliding-window MOIRAI transformer block
that computes channel-permutation-equivariant positional encodings. After patch encoding, embed-
dings are first projected to a reduced dimension using P↓ : Rdmodel → Rdmodel/8 for computational
efficiency. A temporal window of width w (stride 1) is then applied to the projected sequence. Let
m = (w − 1)/2. For each window centered at index t′, MOIRAI receives the spatiotemporal slice
X[:, t′−m:t′+m,:] ∈ RC×w×(dmodel/8) and produces w outputs—one per relative temporal offset:

Ht′ = MOIRAI
(
X[:, t′−m:t′+m,:]

)
∈ RC×w×(dmodel/8).
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The STCPE embedding at absolute time t aggregates contributions from all overlapping windows,
and the original dimension is restored with P↑, yielding the final STCPE embedding:

ESTCPE[:, t, :] = P↑

(
m∑

k=−m

Ht+k[:, k +m, :]

)
∈ RC×w×(dmodel), t = 1, . . . , N. (4)

STCPE thus provides input-dependent positional information while maintaining both temporal
translation equivariance (via temporal sliding windows) and channel permutation equivariance
(via MOIRAI blocks)—properties that ACPE lacks.

MOIRAI block components

Any-variate attention (Woo et al., 2024) enables adaptive spatial modeling across heterogeneous
electrode configurations while maintaining full spatio-temporal attention capabilities. Unlike vanilla
attention mechanisms that rely solely on input embeddings to differentiate between tokens and
model their relationships, any-variate attention directly embeds spatio-temporal information into
the attention computation itself through two main components: Rotary Position Embedding (RoPE)
(Su et al., 2024) and binary attention bias.

Given input X ∈ RC×N×dmodel , the attention score between the (i,m)-th query (where i denotes
the patch index and m denotes the channel index) and the (j, n)-th key is computed as Aij,mn =

exp{Eij,mn}∑
k,o exp{Eik,mo} , where Eik,mo is computed as (we omit layer and attention head indices as well as

scaling factors for clarity):

Eij,mn = (WQxi,m)TRi−j(W
Kxj,n) + u1 · 1{m=n} + u2 · 1{m ̸=n} (5)

where WQxi,m,WKxj,n ∈ Rdh are the query and key vectors, Ri−j ∈ Rdh×dh is the rotary
projection matrix encoding temporal relationships, u1, u2 ∈ R are learnable scalars that can differ
across attention heads, and 1{cond} = 1 if the condition is true and 0 otherwise.

Spatio-temporal register tokens are inspired by register tokens in vision transformers Darcet et al.
(2023). They consist of three types of learnable tokens each for channel, temporal, and combined
spatio-temporal information, transforming input shape from C×N ×dmodel to (C+1)× (N +1)×
dmodel. This transformation provides dedicated computational space to perform auxiliary computa-
tions without corrupting the primary Ephys signal representations.

3 TRAINING AND EXPERIMENTAL SETUP

3.1 PRETRAINING

DIVER-1 employs self-supervised pretraining based on masked patch reconstruction to learn robust
representations of Ephys signals.

Multi-domain reconstruction objective. Rather than reconstructing only raw time series, DIVER-
1 utilizes a multi-output projection architecture that maps each learned patch representation hc,n ∈
Rdmodel to three complementary signal domains through parallel linear transformations. For each
patch (c, n), the representation is projected to: (1) raw time series ŷraw

c,n ∈ RP to reconstruct temporal
dynamics, (2) FFT coefficients ŷFFT

c,n ∈ RP/2+1 to capture frequency domain characteristics, and (3)
STFT spectrogram ŷSTFT

c,n ∈ RF×Ts to model time-frequency relationships, with specific FFT and
STFT parameters detailed in the implementation section in Appendix B.5.

The total pretraining loss aggregates reconstruction errors across all masked patches and all signal
domains:

Ltotal =
∑

(c,n)∈M

[
λ1LMSE(y

raw
c,n, ŷ

raw
c,n) + λ2LMSE(y

FFT
c,n , ŷ

FFT
c,n ) + λ3LMSE(y

STFT
c,n , ŷSTFT

c,n )
]

(6)

where M denotes the set of masked patch indices. We used (λ1,2,3) = (1, 0.1, 1) for P = 500 (1 s
patches) and (1, 1, 0) for P = 50 (0.1 s patches). These coefficients were chosen so that the different
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reconstruction losses operated on comparable numerical scales; for P = 50, the window is too short
for a meaningful STFT, so only the FFT term was used. This multi-domain approach encourages
the model to learn comprehensive representations that capture both temporal dynamics and spectral
features essential for robust Ephys understanding.

Input resampling. To train the model to handle heterogeneous channel layouts and variable se-
quence lengths, we feed only a randomly resampled subset of each 30 s training segment. A
30 s window yields N=30 patches for 1 s granularity and N=300 for 0.1 s. We then sample
C ′ ≤ min(C, 32) channels and N ′ ≤ 30 temporal patches, with both C ′ and N ′ drawn from a
scaled Beta(3, 1) distribution that favors larger subsets. Capping N ′ at 30 prevents the 0.1 s model
from processing the full 300-patch sequence, keeping its effective context comparable to the 1 s
model and avoiding excessive compute. This stochastic subsampling exposes the model to diverse
channel sets and window lengths across epochs.

Pretraining dataset. DIVER was pretrained on, to our knowledge, the largest and most diverse
collection of Ephys datasets compared to previous EFMs. Our pretraining data encompasses diverse
recording conditions including task-based experiments, resting-state recordings, and sleep studies,
ensuring robust representation learning across different brain states. The pretraining datasets are
summarized in Table 2 with further details in Appendix F.1.

All data underwent QAQC, minimal preprocessing, and resampling with the goal of preserving as
much of the original signal as possible. QAQC applied conservative amplitude clipping, removing
electrodes only when > 3.33% of samples exceeded the clipping threshold and discarding whole
segments only when > 50% of channels were affected, ensuring minimal data loss while preventing
extreme values from destabilizing training. Preprocessing then normalized EEG and iEEG ampli-
tudes (100 µV and 200 µV scales, respectively), applied minimal filtering (0.3–0.5 Hz high-pass,
60 Hz notch, no low-pass), and resampled all data to 500 Hz before segmenting into 30-second
windows. Please refer to Appendix F.3 for more details.

Scaling. As DIVER-1 extends the scale of EFMs, we require methods to transfer optimal hyperpa-
rameters across different model sizes. In standard parameterizations, optimal hyperparameters are
highly dependent on model width. Maximal Update Parametrization (µP ) (Yang et al., 2022), by
carefully scaling initializations and learning rates, ensures consistent weight update magnitudes as
model width increases. This enables µTransfer, where optimal hyperparameters from small models
can be directly transferred to large models, precluding expensive hyperparameter tuning.

DIVER-1 was pretrained on either 128, 48, 32 NVIDIA A100 GPUs or 32, 24, 16 H200 GPUs,
depending on the experimental configuration. We tested models varying in number of parameters,
from 12.72M to 1.83B as in Table 1. Additional training details are provided in Appendix sec-
tion B.4. We conducted comprehensive scaling law experiments across four dimensions: compute
(training epochs 1-64), model size (varying width, depth, and patch size), dataset size (1-100% of
available data), and subject diversity (2-16 subjects with fixed dataset size). Detailed experimental
configurations and scaling behaviors for each dimension are provided in the Appendix Table 1.

3.2 FINETUNING

Benchmark datasets. For iEEG downstream evaluation, we use Neuroprobe (Zahorodnii et al.,
2025), which provides 15 auditory, visual, and language decoding tasks from naturalistic movie-
watching iEEG, and MAYO dataset (Bbrinkm & Cukierski, 2014)(seizure detection). For EEG
evaluation, we use: FACED (Chen et al., 2023) (emotion decoding), PhysioNet-MI (Goldberger
et al., 2000) (motor-imagery classification), and MentalArithmetic (Zyma et al., 2019) (cognitive-
workload decoding). Refer to Appendix F.2 for more detail.

Baseline models. We evaluate DIVER-1 against state-of-the-art foundation models across both
modalities: LaBraM (Jiang et al., 2024) and CBraMod (Wang et al., 2024c) for EEG, and Brain-
BERT (Wang et al., 2023), Population Transformer (PopT) (Chau et al., 2025) and Brant (Zhang
et al., 2023) for iEEG. These transformer-based models employ self-supervised pretraining strate-
gies; LaBraM, CBraMod, BrainBERT and Brant use masked patch reconstruction objectives while
PopT applies discriminative self-supervised learning on BrainBERT embeddings.

Finetuning method. For iEEG downstream tasks, we evaluate both linear probing and full finetun-
ing using a linear classifier head on the flattened token representations. Linear probing freezes the

6
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encoder and trains only the classifier, providing a clean measure of representation quality. Full fine-
tuning updates all encoder parameters together with the linear head. Details are in Appendix B.8.
For EEG downstream tasks, we follow CBraMod’s finetuning protocol (Wang et al., 2024c), jointly
training the encoder and a three-layer MLP classifier. This MLP generally outperforms a linear head
on EEG benchmarks, and depth-dependent results are provided in Appendix Table 22.

4 RESULTS AND DISCUSSION

4.1 SCALING LAW

We systematically investigate scaling laws across multiple dimensions to understand how EFMs
scale with computational resources and data. Our analysis evaluates performance on (1) pretext
task loss (reconstruction loss during self-supervised pretraining) and (2) downstream task per-
formance across diverse neural decoding benchmarks. We vary traditional scaling axes (compute
budget, dataset size, model size) and EFM-specific factors (training epochs, subject diversity).

Overall scaling law validation. Both iEEG and EEG EFMs exhibit precise neural scaling behavior
consistent with established Kaplan scaling laws (Kaplan et al., 2020), as shown in Figure 2 (a-c,
e-g). We fit our results to the data-constrained scaling law framework (Muennighoff et al., 2023)
(see Appendix Section A.2 for detailed scaling law background), providing the first quantitative ev-
idence that scaling EFMs across compute, dataset size, model parameters, and training epochs – a
dimension largely unexplored in EFM scaling – predictably and logarithmically improves perfor-
mance. The scaling relationships exhibit strong log-log fits in iEEG EFMs, with R² values of 0.8152
for patch size 1 second models and 0.7718 for patch size 0.1 second models (Appendix Table C.3),
confirming the validity of the power-law scaling framework. The additional scaling result on EEG
EFMs can be found at Appendix C.5.

Our empirical results follow the data-constrained scaling law (Muennighoff et al., 2023):

L(N,D) =
A

(N ′)α
+

B

(D′)β
+ E (7)

where N ′ and D′ account for diminishing returns with more epochs:

D′ = UD + UDR∗
D

(
1− e

−RD

R∗
D

)
, N ′ = UN + UNR∗

N

(
1− e

−RN

R∗
N

)
(8)

where UD , RD, and R∗
D each corresponds to unique data tokens, repetitions (epochs−1), and the

“half-life” of repeated data. The fitted parameters are detailed in Appendix C.3.

Standard scaling axes (model, data, compute). We observe in Figure 2 (a-c, e-g) expected power-
law relationships across standard dimensions. Model size, dataset size, and compute budget scaling
logarithmically reduces loss, following Kaplan et al. (2020), though Ephys data limitations necessi-
tate data-constrained formulation.

EFM-specific scaling axes (epoch, subject number). Beyond the traditional dimensions of model
size, dataset size, and compute budget, we identify two novel scaling dimensions relevant to Ephys.

Epoch scaling in Figure 2 (d,h) shows increasing epochs improves performance across all model
sizes, and larger models achieve lower loss when given sufficient repetitions. However, overly large
models (e.g., XXL in Figure 2 (d) and Large in 2 (h)) perform worse at very small epoch counts, only
surpassing smaller models after many more epochs—consistent with the data-constrained scaling
law, where repeated passes increase the effective dataset size D′ required for large-capacity models.

Subject diversity scaling in Figure 2 (i) shows that under constant total training data volume, there
exists an optimal balance between the number of subjects and data per subject.

IsoLoss Analysis. While increases in model size and training epochs both improve performance,
they also raise compute cost, making it necessary to balance the two. To study this trade-off under
fixed compute, we use the empirical IsoLoss landscape with IsoCompute curves (Figure 2(p), left),
which map parameter–epoch pairs to equal FLOPs. The contours reveal a clear trend: at any fixed
compute level, smaller and mid-sized models achieve lower loss than larger models. Thus, within
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realistic compute budgets, allocating resources toward training smaller models longer is more ef-
fective than briefly training very large models. We revisit this in the Practical Implications section
using predicted IsoLoss contours (Figure 2(p), right).

Data Constrained Scaling Law Fitting. Our fitted data-constrained scaling law parameters re-
veal important domain-specific characteristics (Appendix Table C.3). Most notably, EFMs exhibit
smaller R∗

N values (3.39 and 0.72 for 1s and 0.1s patch sizes, respectively) compared to language
models (5.30) (Muennighoff et al., 2023). This indicates that increasing model parameters yields
diminishing returns more rapidly in Ephys modeling than in language modeling, consistent with our
finding that smaller models often suffice for EFM tasks.

The R∗
D values exhibit interesting patch-size dependence: 8.91 for 1s patches versus 20.09 for 0.1s

patches, compared to 15.38 for language models. This suggests that while 1s models experience
faster diminishing returns from repeated epochs than language models, 0.1s models retain efficacy
from additional epochs for longer durations. This behavior aligns with our data sampling strat-
egy—0.1s models sample up to 3s context windows from original 30s segments, creating genuine
”multiple views” of the underlying data compared to 1s models.

Downstream performance scaling. Following pretraining loss scaling, downstream performance
(Figure 2 (i-o)) also scales across most dimensions. However, model size scaling exhibits different
behavior across modalities: on iEEG tasks, larger models achieve similar performance to smaller
models, while on EEG tasks, performance improves up to 813M parameters. The limited effect of
model size on iEEG performance may reflect the simplicity of the binary classification tasks used in
this benchmark, though comprehensive analysis are needed to fully characterize this behavior.

Practical implications. These findings have direct consequences for resource allocation in EFM.
Because the domain is data-constrained, the optimal compute strategy differs from that of language
or vision: smaller models trained for more epochs outperform larger models trained briefly under
fixed compute budgets. The IsoLoss and IsoCompute structure in Figure 2(p) (left) indicates that
large models are compute-inefficient at realistic epoch counts. Building on this observation, Fig-
ure 2(p) (right) defines a clear “compute-optimal frontier” that specifies the most efficient combina-
tions of model size and training duration. Prior EFMs tend to fall outside this frontier, often empha-
sizing increased model size over additional training repetitions (estimation details in Appendix G).
Our scaling framework therefore provides a principled tool for selecting compute-optimal configu-
rations before launching expensive pretraining runs.

It should be noted, however, that when the goal is to achieve the highest possible performance for a
given model size, training beyond the compute-optimal frontier is still beneficial. This was the case
for our Small iEEG model, and also appears to have been the case for CBraMod (Wang et al., 2024c)
and BIOT (Yang et al., 2023), which also trained substantially past their compute-optimal points.

4.2 DECODING PERFORMANCE

As shown in Figure 2(q,r,s,t), DIVER-1 iEEG and EEG each achieve state-of-the-art decoding
performance across iEEG and EEG benchmarks. On the iEEG downstream dataset, our 13M-
parameter model surpasses nearly all prior approaches—including BrainBERT (43M) (Wang et al.,
2023), PopT (63M)(Chau et al., 2025), and Brant (506M) (Zhang et al., 2023)—across nearly all
15 tasks in Neuroprobe binaray-label and by a large margin in MAYO. For Neuroprobe Multi-label,
our model still surpasses the linear STFT laplacian, which surpasses other models except ours in
binary-label. On EEG downstream tasks, DIVER-1 also establishes new SOTA results, outperform-
ing CBraMod (Wang et al., 2024c) and LaBraM (Jiang et al., 2024) on FACED emotion recognition
(Chen et al., 2023), PhysioNet-MI motor imagery (Goldberger et al., 2000), and MentalArithmetic
workload decoding (Zyma et al., 2019). Full task-level values for all benchmark results are pro-
vided in Appendix Section D.1. We also evaluated DIVER-1 on additional EEG downstream tasks,
where we identified a methodological (reproduction) problem. To ensure fair comparison and facili-
tate reproduction, we conducted a controlled investigation by standardizing the finetuning procedure
across models and compring performance over seven different finetuning methods. We find that un-
der controlled finetuning settings, DIVER-1 also achieves comparable or superior performance to
the other baseline models (Appendix Table 24). Detailed experimental procedures and results are
provided in Appendix Section E

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The strong performance of NeuroProbe results is particularly notable given the pretrain-
ing–finetuning distribution shift under which DIVER-1 was trained. Unlike PopT or BrainBERT,
DIVER-1 was pretrained on different datasets than those used for finetuning, on adult data rather
than pediatrics, and using both ECoG and SEEG modalities rather than exclusively SEEG data.
Moreover, DIVER-1 is much smaller (13M) than the other models (BrainBERT : 43M, PopT : 63M).
This highlights the robustness of our representations across dataset shifts and recording modalities.

Interestingly, linear probing outperforms full fine-tuning on Neuroprobe. The limited sample size
(-1750 for each fold) may be causing overfitting during full fine-tuning. Another possibility is the
relatively low difficulty of the task. However, given that linear probing also outperforms in the multi-
label, more challenging targets may be needed (e.g., regression to GPT-derived embeddings).

4.3 ABLATION STUDIES

Because our performance gains reflect both architectural innovations and a much larger pretraining
dataset, we disentangle these factors through architecture ablations and comparisons against baseline
models trained on the same data.

Architecture ablations (Tables 17, 18) show that most components—any-variate attention, RoPE,
STCPE, and the multi-domain reconstruction objective—generally improve performance across
modalities. For iEEG specifically, several channel-wise embedding components (modality/subtype
in some tasks and 3D position) produced slight improvements when removed, whereas in EEG these
components typically boosted performance. This modality-dependent behavior suggests that future
work may benefit from exploring architectures specialized for iEEG versus EEG.

To isolate architectural effects from data scale, we additionally compare models pretrained on the
same dataset as existing baselines (Table 19). When pretrained on the BrainTreebank dataset used
by BrainBERT and PopT, DIVER still achieves higher downstream performance, indicating that the
architectural design itself yields stronger representations independent of data volume.

Further ablations and interpretability analysis are in Appendix D due to space constraints.

5 CONCLUSION

This work presents the first systematic investigation of scaling laws for Ephys foundation models
(EFMs), introducing DIVER-1, a family of EEG/iEEG foundation models ranging from 13M to
1.82B parameters. Our analysis reveals that EFMs follow data-constrained scaling laws with critical
domain-specific characteristics that fundamentally differ from language domains.

Through unprecedented scaling across data volume, model capacity, and computational resources,
DIVER-1 achieves state-of-the-art performance on various iEEG and EEG tasks. Our novel archi-
tectural innovations including any-variate attention mechanisms, sliding temporal conditional posi-
tional encoding, and multi-domain reconstruction heads further enhance model performance.

DIVER also exhibits strong generality. It offers patch-size variants to accommodate different tem-
poral scales across downstream tasks. Importantly, while it can exploit spatial location features, it
is designed to function robustly even in the absence of some channel position. Unlike PoPT, Brain-
BERT, and Brant, which are trained exclusively on SEEG, DIVER is pretrained on both ECoG and
SEEG while distinguish them by subtype embedding, and can therefore be applied to both. This
versatility makes it a robust foundation model for a wide range of downstream applications.

Also, to better leverage the potential of large EFMs, future work should develop more sophisticated
finetuning methodologies, including cross-subject learning frameworks that can handle heteroge-
neous electrode configurations across subjects, and data-efficient approaches such as LoRA that can
effectively adapt large models without overfitting to limited subject-specific data.

Looking forward, these findings establish the foundation for a new generation of neuroscience AI
applications by demonstrating that Ephys requires tailored scaling strategies rather than direct ap-
plication of scaling laws from other domains. While the specific scaling law parameters and optimal
ratios we derived are tied to our particular architectural choices and pretext task, the fundamen-
tal insight that data-constrained scaling necessitates prioritizing training duration over model size
represents a broadly applicable principle for EFM development.
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Figure 2: Scaling laws and downstream performance of DIVER-1. (a-h) Scaling law valida-
tion: DIVER-1 follows data-constrained scaling laws across four dimensions for iEEG (a-d) and
EEG (e-h) modalities. Loss decreases predictably with increased (a,e) compute (training FLOPs),
(b,f) dataset size (number of tokens), (c,g) model size (parameters), and (d,h) training epochs, with
strong log-log fits. iEEG experiments (a-d) used 100% of the dataset, while EEG experiments
used 20% of the dataset for (e,h) and 100% for (f,g). (q-t) Downstream performance: Perfor-
mance for iEEG (i-l) and EEG (m-o) across increasing (i) number of subjects while keeping dataset
size identical, (j,m) dataset size (k,n) model sizes and (l,o) epochs. (p) Compute-Optimal Fron-
tier (IsoLoss analysis): Comparison between empirical isolation loss contours and predicted iso-
lation loss contours, with model configurations plotted to show the relationship between training
epochs and model parameters under fixed compute budgets. (q) Neuroprobe benchmark results
Comprehensive performance (AUROC) comparison across multiple neural decoding tasks, with
DIVERTiny/I/0.1s achieving state-of-the-art or competitive results on most tasks. DIVERTiny/I/0.1s
with dmodel = 256 and patch size 0.1s was pretrained on iEEG dataset for 32 epochs, past the com-
pute optimal frontier for best performance. Performance with linear probing (red) and full finetuning
(blue) are shown. (r, s) iEEG downstream performance (r) Neuroprobe multi-label classification
results using DIVERSmall/I/0.1s. (s) MAYO(seizure detection task) results using DIVERSmall/I/1s
(t). EEG downstream performance: DIVER-1 showed competitive performance compared to other
EEG foundation models (CBraMod and LaBraM-base) on the FACED, PhysioNet-MI, and Menta-
lArithmetic datasets. Results shown are obtained using full finetuning. The DIVER model refers to
DIVERSmall/IE/1s with dmodel = 512 and patch size 1s pretrained on iEEG and EEG datasets for
16 epochs. Other baseline results are replicated using their official code. Performance values for
CBraMod and LaBraM are reported from their original publications.
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A RELATED WORKS

A.1 EPHYS DATA FOUNDATION MODELS

Ephys decoding has progressed from pipelines that coupled hand-crafted features with classical clas-
sifiers to end-to-end deep architectures that learn task-relevant representations directly from raw sig-
nals. Early EEG studies relied on feature engineering (e.g., band-power, CSP) paired with SVMs or
LDA; subsequent work introduced convolutional backbones and sequence models that absorb spec-
tral–temporal patterns with minimal preprocessing. Building on advances in self-supervised learning
(SSL) and “foundation” paradigms, recent efforts pretrain large models on heterogeneous, weakly
labeled or unlabeled EEG/iEEG corpora and adapt them to diverse downstream tasks (e.g., event de-
tection, cognitive state decoding, BCI control). Representative lines include large-scale EEG trans-
formers and montage-aware encoders (e.g., EEGFormer(Chen et al., 2024), NEURO-GPT(Cui et al.,
2024), LaBraM(Jiang et al., 2024)), intracranial representation learners (e.g., BrainBERT(Wang
et al., 2023), foundation models for intracranial neural signals), and broader neuro-sequence back-
bones emphasizing transfer and robustness (e.g., CBraMod(Wang et al., 2024c)).

A.2 NEURAL SCALING LAW

Kaplan (Kaplan et al., 2020) scaling law provides a principled framework for predicting model
performance as a function of model size and dataset size for large language models. They demon-
strated that language model cross-entropy loss follows smooth power-law relationships with respect
to model parameters (N ) and training data (D). Concretely, they proposed a relation of the form

L(N,D) =
A

Nα
+

B

Dβ
+ E (9)

where A,B,E are constants, and α, β > 0 are scaling exponents. This formulation implies that
increasing the number of parameters or training data yields a predictable reduction in loss, enabling
systematic optimization of compute allocation across model size and training duration.

Data-constrained scaling law. In scientific domains, including Ephys, unique high-quality data
are inherently limited. To address this, Muennighoff et al. (2023) extended the scaling framework
to data-constrained regimes, where models must repeatedly train on the same corpus for multiple
epochs. They proposed a modified law

L(N,D) =
A

(N ′)α
+

B

(D′)β
+ E (10)

where the effective number of parameters N ′ and effective tokens D′ account for diminishing re-
turns: repeated tokens are progressively less valuable, and excessively large models are less sample-
efficient. They further define

D′ = UD + UDR∗
D

(
1− e

−RD

R∗
D

)
(11)

N ′ = UN + UNR∗
N

(
1− e

−RN

R∗
N

)
(12)

where UD is the number of unique tokens, RD is the number of repetitions (epochs−1), and R∗
D is a

learned constant describing the “half-life” of repeated data. Analogously, UN is the compute-optimal
parameter count for UD, and R∗

N governs diminishing returns beyond that point. Empirical results
suggest that up to ∼4 epochs, repeated data is almost as useful as new data, but returns decrease
sharply thereafter.

Compared to the Chinchilla law (Hoffmann et al., 2022), which assumes abundant data and one
training epoch, this formulation makes epoch count itself a central axis of scaling. This perspective
is crucial for domains constrained by limited samples, such as EEG and iEEG, and it guides how
compute should be allocated between model size and additional training passes.

Finally, the data-constrained scaling law also connects scaling analysis to more fundamental theory.
Recent work has suggested that the exponents governing power-law scaling, such as α and β, are
intimately connected to the intrinsic dimension of the underlying data manifold (Sharma & Kaplan,
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2022). In particular, it has been argued that the data exponent β can be interpreted in terms of an
effective dimension d via an approximate inverse relation of the form:

β ≈ 2

d
. (13)

From this view, estimating β provides not only a measure of how data volume translates into per-
formance but also an insight into the intrinsic dimensionality of Ephys signals, where scarcity and
structural complexity are defining features.

B EXPERIMENTAL SETUP DETAILS

B.1 TESTED MODELS

We adopt a systematic naming convention for all DIVER model variants:
DIVERSize/Modality/Granularity. The Size component indicates model size (Tiny: 256, Small:
512, Base: 768, Large: 1024, XL: 2048, XXL: 3072 hidden dimensions). The Modality specifies
input data types (I: iEEG-only, IE: iEEG+EEG). The Granularity indicates temporal resolution
(0.1s or 1s window). For example, DIVERBase/I/1s represents a base-sized model trained on
iEEG-only data with 1s temporal windows.

Table 1: Model configurations with measured parameters and total FLOPs per epoch.
Models # Parameters Modality Granularity Hidden Dimension (dmodel) total FLOPs / epoch

DIVERTiny/I/0.1s 12.72M iEEG 0.1s 256 76.34P
DIVERSmall/I/0.1s 50.75M iEEG 0.1s 512 253.96P
DIVERBase/I/0.1s 114.07M iEEG 0.1s 768 532.77P
DIVERLarge/I/0.1s 202.70M iEEG 0.1s 1024 912.83P
DIVERXL/I/0.1s 810.19M iEEG 0.1s 2048 3.40E
DIVERXXL/I/0.1s 1.82B iEEG 0.1s 3072 7.50E

DIVERTiny/I/1s 13.03M iEEG 1s 256 77.52P
DIVERSmall/I/1s 51.36M iEEG 1s 512 256.44P
DIVERBase/I/1s 115.00M iEEG 1s 768 536.82P
DIVERLarge/I/1s 203.95M iEEG 1s 1024 918.56P
DIVERXL/I/1s 812.85M iEEG 1s 2048 3.46E
DIVERXXL/I/1s 1.83B iEEG 1s 3072 7.64E

DIVERTiny/E/1s 13.03M EEG 1s 256 238.83P
DIVERSmall/E/1s 51.36M EEG 1s 512 790.01P
DIVERBase/E/1s 115.00M EEG 1s 768 1.65E
DIVERLarge/E/1s 203.95M EEG 1s 1024 2.83E
DIVERXL/E/1s 812.85M EEG 1s 2048 10.65E

DIVERTiny/IE/1s 13.03M iEEG+EEG 1s 256 316.35P
DIVERSmall/IE/1s 51.36M iEEG+EEG 1s 512 1.05E
DIVERLarge/IE/1s 203.95M iEEG+EEG 1s 1024 2.19E
DIVERXL/IE/1s 812.85M iEEG+EEG 1s 2048 3.75E

B.2 PRETRAINING DATASET

DIVER-1 was pretrained on the largest and most diverse Ephys corpus to date, with DIVER-/I/-
trained on 352k channel-hours from 37 subjects using iEEG data (ECoG/sEEG), DIVER-/IE/-
trained on 1.66M channel-hours from 17,718 subjects combining both iEEG and EEG modalities
across multiple datasets. Pretraining dataset description is given in Table 2.
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Table 2: Summary of DIVER-1 pretraining datasets. The datasets are categorized by modality:
iEEG (including ECoG and sEEG) and EEG. DIVERI was pretrained on iEEG, DIVERE on EEG,
and DIVERIE utilized both. Note that for the self-collected iEEG dataset in DIVERIE, we applied
stricter QAQC criteria (3.33% threshold) compared to DIVERI (50% threshold) for consistency with
EEG criteria.

Datasets Data Type # Subj. Volume (channel-hours) Duration (hours) Sampling Rate (Hz)

iEEG (Used in DIVERI & DIVERIE)
AJILE12 (Peterson et al., 2022) ECoG 12 124,423 1,282 1,000
Self-collected iEEG (DIVERI) ECoG/sEEG 25 227,612 4,028 2,000
Self-collected iEEG (DIVERIE) ECoG/sEEG 25 144,634 2,844 2,000

EEG (Used in DIVERE & DIVERIE)
TUEG (Obeid & Picone, 2016) EEG 10,874 422,036 23,178 250–512
HBN (Shirazi et al., 2024) EEG 2,782 61,703 572 500
NCHSDB (Lee et al., 2022) EEG 3,673 163,146 26,055 256–512
PEERS (Kahana et al., 2023) EEG 364 870,447 6,964 500

Total (DIVERI) iEEG 37 352,035 5,310 —
Total (DIVERE) EEG 17,693 1,517,332 56,769 —
Total (DIVERIE) iEEG + EEG 17,718 1,661,966 59,613 —

B.3 DOWNSTREAM TASK AND DATASET OVERVIEW

Table 3 provides a comprehensive overview of all downstream tasks and datasets used in our eval-
uation. Our evaluation spans two modalities (iEEG and EEG) and covers diverse neural decoding
objectives across visual, auditory, and language domains.

iEEG tasks. We evaluated on 15 tasks from the Neuroprobe (LITE) benchmark (Zahorodnii et al.,
2025), including visual perception (frame brightness, optical flow, face detection), auditory pro-
cessing (volume, pitch, delta volume), and language processing (speech decoding, word prediction,
onset detection, part-of-speech tagging). The Neuroprobe dataset contains depth electrode record-
ings from 6 subjects with 109-120 channels per subject, originally sampled at 2048Hz and was
resampled to 500Hz to match our pretraining configuration. There are both binary-label and multi-
label task options for Neuroprobe. 3 In the multi-label configuration, the speech, onset, and head
word position tasks remain binary, the part-of-speech task uses 6 labels, and the remaining tasks use
3 labels. Throughout this paper, unless explicitly stated otherwise as multi-label, all reported Neu-
roprobe results correspond to the binary-label setting. Also, we evalauted on the seizure detection
test on MAYO dataset (modified the dataset in kaggle challenge (Bbrinkm & Cukierski, 2014)). The
original dataset consists of 1 s samples, but to match the minimum patch length of Brant, one of the
baseline models, we concatenated samples in temporal order to create 6 s samples. We evaluated the
model separately for each of the 8 participants. To address the issue of having more test data than
training data, we swapped the train and test sets for each participant.

EEG tasks. We evaluated on three EEG benchmarks: FACED (emotion recognition from 32-channel
EEG, 9-class classification, 123 subjects)(Chen et al., 2023), PhysioNet-MI (motor imagery with
64 channels, 4-class classification, 109 subjects)(Goldberger et al., 2000), and MentalArithmetic
(mental stress detection with 20 channels reduced to 19, 2-class classification, 36 subjects)(Zyma
et al., 2019). Sampling rates were standardized to 500Hz across all datasets to ensure consistency
with our pretraining setup.

B.4 PRETRAINING SETUP AND MODEL SCALING

Training experiments were conducted across two high-performance computing configurations. The
primary server consisted of nodes each equipped with a single 2.8 GHz AMD EPYC Milan 7543P
32-core CPU and four NVIDIA A100 GPUs, which was more heavily utilized throughout the train-
ing process. For large model variants, we additionally employed a secondary server equipped with
dual Intel Xeon Platinum 8480+ processors (112 cores total) and eight NVIDIA H200 GPUs with
144GB memory each. Training experiments were conducted using either 128, 32, 8 A100 GPUs or
32, 24, 16 H200 GPUs depending on the experimental configuration. We maintained a fixed global

3The multi-label setting is currently available only in the released code and has not yet been documented in
the paper.
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Table 3: Overview of downstream tasks and datasets. Sampling rates were adjusted to 500Hz
across all datasets to match the pretraining configuration. Arrows (→) indicate resampling or channel
selection from the original dataset.

Modality Task Name Datasets Sampling Rate # Ch. # Subj. Label

iEEG

frame brightness (visual)

Neuroprobe
(LITE)

2048 → 500Hz
Var.

(109–120) 6
2-class

(2-6 in mulilabel)

global flow (visual)
local flow (visual)
face num (visual)
volume (auditory)
pitch (auditory)
delta volume (auditory)
speech (language)
onset (language)
gpt2 surprisal (language)
word length (language)
word gap (language)
word index (language)
word head pos (language)
word part speech (language)

Seizure Detection MAYO 5000 → 500Hz Var.(16–72) 8 2-class

EEG
Emotion Recognition FACED 250 → 500Hz 32 123 9-class
Motor Imagery PhysioNet-MI 160 → 500Hz 64 109 4-class
Mental Stress Detection MentalArithmetic 500Hz 20 → 19 36 2-class

batch size of 192 across all training runs, with the per-GPU batch size adjusted dynamically based
on the number of nodes employed.

We varied the model size by modifying the hidden dimension of the transformer, resulting in sizes
of 13M, 51M, 115M, 203M, 813M, 1.83B parameters, while keeping the depth fixed at 12 lay-
ers. This capacity adjustment leverages the benefits of µ parameterization for stable training across
different model sizes. DIVER-1 was implemented on the Python 3.12.3 and Pytorch 2.6.0 + cuda
version 12.4. To enhance training efficiency, we employed DeepSpeed ZeRO Stage 2, BF16 pre-
cision. Optimization was performed using a custom implementation of the DeepSpeed’s MuAdam
optimizer (Yang et al., 2022) with utilizing DeepSpeed’s FusedAdam backend (Rasley et al., 2020)
for computational efficiency and learning rate calibration. A cosine annealing learning rate scheduler
with warm-up restarts was applied, with cycle length matching the total training steps and minimum
learning rate set to 0.01× the initial rate.

B.5 DIVER ARCHITECTURE AND PRETEXT TASK HYPERPARAMTER SETTING

Architecture setting Table 4 lists the detailed architectural hyperparameter settings used for
DIVER-1 pretraining.

FFT, STFT setting For the FFT, we used a window size of 500 time points with a sampling fre-
quency of 500 Hz. A cutoff frequency of 200 Hz was applied, and the FFT amplitudes were con-
verted to absolute values, normalized, and then compressed using a log(1 + x) transform. For the
STFT, we employed a multi-resolution approach with window sizes of 200 and 100 time points,
respectively. Each window was shifted with 50% overlap and tapered with a Hann window func-
tion. Consistent with the FFT settings, a cutoff frequency of 200 Hz was applied, and the STFT
amplitudes were converted to absolute values, normalized, and compressed using the log(1 + x)
transform.

B.6 PRETRAINING HYPERPARAMETER SEARCH USING µ-PARAMETERIZATION (µP) AND
µTRANSFER

We employed a two-stage hyperparameter optimization approach to determine optimal learning rate
(lr) and weight decay (wd) values; grid search followed by optuna optimization. The search was
conducted using a 50M parameter model, a 12-layer architecture with 512-dimensional attention
layers trained for different modalities: iEEG, EEG, and TUEG and iEEG; DIVERSmall/I/1s,
DIVERSmall/E/1s, DIVERSmall/IE/1s. All hyperparameter searches were performed over 2 epochs
to balance computational efficiency with reliable performance estimation.
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Table 4: Hyperparameters for DIVER-1 pretraining. Two model variants were trained for inputs
with 1s and 0.1s patch size respectively. The 1s and 0.1s models share all settings except for patch
size, patchwise CNN embedding settings, and SSL weights. Some hyperparameters are defined as a
function of dmodel, which we vary across {256, 512, 768, 1024, 2048, 3072}.

Hyperparameters Settings

Input & Masking

Patch size 500 (1s)
50 (0.1s)

Mask ratio 0.5
Masking type Patch random

Patch Encoder
(CNN)

Intermediate channel dmodel/8 (1s)
(Cinter) dmodel/16 (0.1s)

Input dimension {1, Cinter, Cinter}
Output dimension {Cinter, Cinter, Cinter}

Stride {64, 3, 3} (1s)
{4, 3, 3} (0.1s)

Kernel size {63, 3, 3}
Padding {31, 1, 1}
Depth 3

Patch Encoder
(Spectral)

Spectral FFT size dmodel/2 + 1
Spectral dropout 0.1

STCPE

STCPE dimension dmodel/8
STCPE layers 1
STCPE heads dmodel/256
STCPE dff dmodel/2

Time window size 7

Positional
Embedding

Channel type dimension dmodel/4
Embedding style CPE (Learnable)

Temperature 2000
Scale 1/256

Transformer

Model dimension dmodel
Layers 12
Heads dmodel/32

Feed-forward dimension 4 ∗ dmodel
Activation SiLU

Attention type Flash attention
Dropout 0.1

SSL Head

Domain Time, FFT, STFT
Loss weight (λTime) 1.0
Loss weight (λFFT) 0.1 (1s) / 1.0 (0.1s)
Loss weight (λSTFT) 1.0 (1s) / 0.0 (0.1s)

Training Parameterization µP

Stage1: Grid search We conducted an extensive grid search across learning rate and weight decay
combinations, systematically exploring the hyperparameter space.

• a) Initial Learning Rate Exploration (wd=1e-2): Learning rates: 1e-5, 1e-4, 1e-3, 1e-2

• b) Weight Decay Exploration (lr=1e-3): Weight decay values: 1e-7, 1e-6, 1e-5, 1e-4, 1e-3,
1e-2, 1e-1

• c) Refined Learning Rate Search: Based on initial results, we refined the learning rate search
between 1e-4 and 1e-2, testing: 2e-4, 3e-4, 5e-4, 8e-4, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3

• e) Cross-combinations: Additional combinations around promising regions, including
lr=6e-3 with various weight decay values: 1e-6, 1e-5, 1e-4, 1e-3, 1e-1
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Table 5: Stage 1: Grid search hyperparameter exploration.
Search Step Hyperparameter Values
Initial Learning Rate Exploration Learning rate: {1e-5, 1e-4, 1e-3, 1e-2} (wd=1e-2)
Weight Decay Exploration Weight decay: {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1} (lr=1e-3)
Refined Learning Rate Search Learning rate: {2e-4, 3e-4, 5e-4, 8e-4, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3}
Cross-combinations lr=6e-3 with wd: {1e-6, 1e-5, 1e-4, 1e-3, 1e-1}

The grid search evaluated 30 distinct learning rate and weight decay combinations, revealing optimal
configurations of lr=6.0e-03 with wd=1.0e-06 for DIVERSmall/I/1s and lr=1.0e-03 with wd=2.0e-01
for DIVERSmall/IE/1s when pretrained on the TUEG dataset (our largest EEG dataset).

For subsequent Optuna optimization of DIVERSmall/IE/1s, we used the geometric mean between the
DIVERSmall/I/1s Optuna results (lr=2.30e-03, wd=2.17e-07) and the TUEG-pretrained model’s grid
search results (lr=1.0e-03, wd=2.0e-01) as the starting point, yielding lr=1.51e-03 and wd=2.09e-04.

Stage2: Optuna Optimization We further refined the hyperparameters using Optuna(Akiba et al.,
2019) or bayesian hyperparameter optimization. The search space was defined as ±1 order of mag-
nitude around the best grid search configurations (range: ×0.1 to ×10), with 50 trials conducted
to systematically explore this refined hyperparameter space. The optimal hyperparameter settings
identified through Optuna optimization are presented in Table 6.

Table 6: Optimal learning rate and weight decay by model configuration.
Models Modality Granularity Learning Rate Weight Decay
DIVERSmall/I/1s iEEG 1s 2.30e-03 2.17e-07
DIVERSmall/I/0.1s iEEG 0.1s 4.91e-03 3.75e-06
DIVERSmall/E/1s EEG 1s 7.70e-03 2.14e-07
DIVERSmall/IE/1s iEEG+TUEG 1s 2.61e-03 1.36e-03

B.7 µ-PARAMETERIZATION (µP )

Figure 3: Verification of the µP implementation. The L1 norm of activation vectors (y-axis) is
plotted against model width (x-axis) for five training timesteps (t=1 to t=5) across four different
widths (256, 512, 768, 1024). (Top Row) With standard parameterization, activation norms are un-
stable and diverge as model width increases. (Bottom Row) In contrast, our µP implementation
yields stable activation norms that are independent of model width. This confirms the model is cor-
rectly parameterized, a critical prerequisite for successful hyperparameter transfer via µTransfer.

The stable initialization shown in the Figure 3 translates directly to stable training dynamics. We
confirmed this by tracking the training loss while varying the model width across the same four
configurations. With µP enabled, the training loss remained low and stable for all model sizes. In
stark contrast, training without µP led to severe instability; the loss diverged rapidly as the model
grew, with values exploding to over 100 for the largest width. This empirical result demonstrates
that our use of µP was essential for reliably training larger models in our scaling experiments.
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B.8 FINETUNING SETUP

For Neuroprobe (iEEG task), DIVER-1 was finetuned at lr = 2e-3 and wd = 1e-2, batch size 32, with
AdamW for both frozen and full-finetuning. For the MAYO (iEEG) task, frozen models were fine-
tuned using the same learning rate and weight decay as above, whereas full fine-tuning employed
separate hyperparameters for each model size (lr = 1.19e-3, wd = 6.18e-1 for 256; lr = 4.19e-3, wd
= 1.45e-2 for 512; lr = 7.14e-4, wd = 2.84e-1 for 768; lr = 1.40e-4, wd = 3.44e-2 for 1024; lr =
8.65e-4, wd = 9.90e-2 for 2048; selected via a learning-rate and weight-decay search based on the
validation set of subject 1, fold 1).

Unlike Neuroprobe, for which PopT and BrainBERT baselines are provided as benchmarks (Za-
horodnii et al., 2025), the MAYO seizure dataset is an extended dataset that we constructed to match
Brant’s minimum input length, and therefore required training on the baseline models.BrainBERT
was set at lr = 1e-3 for the classifier with AdamW, as in the original paper (Wang et al., 2023), with
batch size 32. The features in time [l-5:l+5] were concatenated along the channel dimension. Brant
was set at lr = 1e-4 for the classifier and 1e-7 for encoder layers, with betas=(0.9, 0.999), eps=1e-8,
batch size 4 and Adam, same as their publicly released code. We could not evaluate PopT on MAYO
because LPI coordinates are not available. Brant was pretrained with a 6 s patch and a total of 15
patches (90 s), so we were therefore unable to evaluate it on the neuroprobe (1 s), and there is a
mismatch with the original pretrained context in MAYO (6 s).

All models were trained for 40 epochs with a CosineAnnealing scheduler. The same validation splits
were applied to the training set for each model, and we early-stopped if the validation AUROC did
not increase for 10 epochs.

For all EEG downstream tasks, we use the same optimizer (AdamW) and learning rate scheduler
(cosine annealing) as described in the iEEG finetuning configuration. The base learning rate is set to
2.00e-4, weight decay to 3.00e-1, and batch size to 64. We perform full finetuning without employing
multi-lr strategies, applying the same learning rate to both the backbone and classifier. The classifier
consists of a 3-layer MLP with ELU activation functions, where the first hidden layer has width
T × 200 (T is the sample duration in seconds), the second hidden layer has width 200, and the
output layer dimension matches the number of classes. Dropout rate is set to 0.1, label smoothing to
0.1, and gradient clipping value to 1.0. All models are trained for 50 epochs without early stopping.
For model selection, we use the epoch that achieves the best validation performance (AUROC for
binary classification, F1 score for multi-class classification), which is then evaluated on the test
set. All results are reported as mean ± standard deviation across 5 random seeds (41, 42, 43, 44,
45). For the one-to-one comparison experiments with CBraMod (Table 24), we use task-specific
hyperparameters to match CBraMod’s training conditions: on Mumtaz2016(Mumtaz, 2016), linear
probing uses learning rate 5.00e-6 and weight decay 6.25e-6, while multi-lr and linear classifier
configurations use learning rate 6.25e-5 and weight decay 6.25e-6.

C SCALING LAW

C.1 SCALING LAW EXPERIMENT DETAILS

Pretraining loss curves for the trained models are presented in Figure 4 for the DIVER-/I/1s model
family, Figure 5 for the DIVER-/I/0.1s model family and Figure 6 for the DIVER-/E/1s model fam-
ily. For the iEEG models, we trained separate instances for each epoch to obtain the corresponding
loss curves. In contrast, for EEG models, we trained all models with a fixed maximum of 32 epochs
and extracted test loss values at the relevant epoch checkpoints for scaling analysis. This differ-
ence in training procedure was necessitated by computational constraints, as EEG model training
requires substantially longer wall-clock time. Consequently, the iEEG plots display epoch-specific
loss curves(4 and 5), while the EEG plot presents all scaling curves within a single figure(Figure 6).
Importantly, this methodological difference affects the learning rate schedule: we employed cosine
annealing with warmup, where the decay schedule depends on the total number of training epochs.
Therefore, extracting the loss at epoch 2 from a model trained for 32 epochs differs from the loss
at epoch 2 of a model trained for only 2 epochs, as the learning rate trajectories diverge under these
configurations.
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Figure 4: Loss curves of the DIVER-/I/1s model family. Test loss across epochs is shown.

Figure 5: Loss curves of the DIVER-/I/0.1s model family. Test loss across epochs is shown.
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Figure 6: Loss curves of the DIVER-/E/1s model family for each dataset size. Test loss across epochs
is shown. Unlike the iEEG experiments, where separate models were trained for each epoch, all EEG
models were trained for a fixed 32-epoch schedule. Early-epoch losses were extracted from interme-
diate checkpoints of these longer runs. Consequently, each dataset size yields five loss curves, one
for each model scale trained within the 32-epoch run.

Unique number of tokens First of all, the estimated total number of unique tokens is UD =
number of data sample × number of tokens per sample. The number of tokens per sample can be
expressed as number of channels × number of timestamps × proportion of unmasked patches.

For iEEG, the total number of data samples is 636,480. Since we randomly sampled from a 32
channel x 30 timestamp token grid using Beta(3,1) distribution for both axis, we estimate the number
of tokens per sample as 32 × 30 × 0.75 × 0.75 = 540 tokens. Thus, we get UD = 636, 480 × 540
for iEEG.

In the case of EEG, the approximated total number of data samples is 1,960,800, and the number of
tokens per sample is same as iEEG. Therefore, the UD = 1, 960, 800× 540 for EEG.

Compute To investigate compute scaling properties, we conducted systematic pretraining ex-
periments across different epoch counts for the 1-second granularity models. For shorter train-
ing regimes (1, 2, 4, and 8 epochs), we pretrained all six model variants: DIVERTiny/I/1s,
DIVERSmall/I/1s, DIVERBase/I/1s, DIVERLarge/I/1s, DIVERXL/I/1s, and DIVERXXL/I/1s. For
longer training regimes (16, 32, and 64 epochs), computational constraints limited our experi-
ments to the four smaller model variants: DIVERTiny/I/1s, DIVERSmall/I/1s, DIVERBase/I/1s, and
DIVERLarge/I/1s.

For the DIVER-/I/0.1s model family with 0.1-second granularity models, we followed a similar
training protocol. We trained six model variant for epochs 2, 8 and five model variants for epochs 32,
excluding DIVERBase/I/0.1s and three model variants for epochs 64, excluding DIVERBase/I/0.1s,
DIVERLarge/I/0.1s and DIVERXXL/I/0.1s.

For the DIVER-/E/1s model family on EEG data, we adopted a different training approach due
to the substantially longer training time required for EEG models. We trained all model variants
with a fixed maximum of 32 epochs and extracted test loss values at epochs 2, 4, 8, 16, and 32
for scaling analysis. We conducted experiments on 10% and 20% of the EEG dataset. For the 10%
subset, we trained five model variants up to 32 epochs, while for the 20% subset, computational
constraints allowed us to train four variants: DIVERTiny/E/1s , DIVERSmall/E/1s , DIVERBase/E/1s
, DIVERLarge/E/1s. DIVERXL/E/1s was trained up to 16 epochs in 20% data and DIVERXXL/E/1s
was trained up to 4 epochs in both 10% and 20% dataset setting.

Data Size For iEEG, data size scaling was done in 1, 3, 9, 24, 50, 90, 100% of data on
DIVERSmall/I/1s for 2 epochs with hyperparameters fixed as lr = 6.0e − 03, wd = 1.0e − 06.
For EEG, data size scaling was done in 1, 3, 9, 10, 24, 50, 100% of data on DIVERSmall/E/1s for 2
epochs with hyperparameters fixed as lr = 7.70 × 10−3, wd = 2.14 × 10−7. Number of token =
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number of data sample × number of tokens per sample, while the total number of data samples was
636,480 for iEEG and 1,960,800 for EEG. Number of tokens per sample estimated as 540, given that
we randomly sampled from a 32×30 token grid using Beta(3,1) distribution. A detailed explanation
can be found in the aforementioned Unique number of tokens section.

Model Size We fixed the number of epochs to 2. The models varied by their width, number of layers,
and patch size. The detailed experiment conditions are on table 1. We observed that the models with
different number of layers or patch size show different scaling behavior, so we fitted them separately.

Number of Subjects Subject scaling experiments were done only for iEEG, with datasets
containing 2, 4, 5, 8, 10, 15, 16 subjects respectively, while maintaining a constant dataset
size.DIVERSmall/I/0.1s trained for 2 epochs, due to compute constraint.

Data-constrained Scaling Law We trained a total of 31 models with varying parameter counts
and numbers of training epochs, while keeping the dataset fixed. The hidden dimension was fixed
to 12 layers. Since different granularity led to different scaling behavior, we experimented on two
granularity conditions and fitted them separately. The empirical isoLoss contours in Figure 2(j) show
less smoothness compared to the original scaling law paper(Muennighoff et al., 2023), primarily due
to sampling density. While the original study used 93 model configurations with dense sampling
across all loss ranges, we evaluated 30 configurations. Despite this visual difference, our empirical
isoLoss contours (Figure 2(j) and Figure 7, left panel) align well with the predicted contours (Figure
2(j) and Figure 7, right panel), demonstrating that data-constrained scaling laws generalize to neural
data.

C.2 EXTENDED KAPLAN (KAPLAN ET AL., 2020) SCALING LAW RESULTS FOR IEEG

We tested models at the 1-second and 0.1-second granularity. For 1-second granularity models, all
six models listed in Table 1 as DIVER-/I/1s were tested for epochs 2, 4, 8. At epochs 16, 32,
and 64, evaluation was conducted on the following four models: DIVERTiny/I/1s, DIVERSmall/I/1s,
DIVERBase/I/1s, and DIVERLarge/I/1s. At earlier epochs (2, 4, and 8), the general trend showed
decreasing loss as model size increased. However, as observed in DIVERXXL/I/1s, larger models
exhibited substantially higher loss when trained with only a few epochs. This confirms what was
also suggested by the data-constrained scaling isoplots: training very large models with insufficient
updates is ineffective. Another possibility is that the aspect ratio of DIVERXXL/I/1s (256) places it
outside the region where loss remains stable. Future work should therefore evaluate larger models
within the aspect-ratio regime where stable loss behavior is maintained.

C.3 DATA-CONSTRAINED SCALING LAW FITTING RESULTS FOR IEEG

Table 7: Fitted data-constrained scaling law parameters for DIVER-/I/1s and DIVER-/I/0.1s
model families.

DIVER-/I/1s DIVER-/I/0.1s

A 19.217 101.52
B 57.065 1.1550
E 0.0092 0.0030
α 0.3773 0.5248
β 0.3504 0.1246
R∗

D 9.5372 19.705
R∗

N 3.3850 0.7191

R2 (linear) 0.7858 0.7575
R2 (log) 0.8152 0.7718

Table C.3 shows fitted data-constrained scaling law parameters. A and B describe the relative in-
fluence of parameters and dataset size on loss. In our setting, we obtain larger A than B in both
granularity, suggesting that model size plays a more critical role than dataset size. In particular, the
0.1s patch model yields a comparatively small value of B (0.3925), suggesting that variations in
dataset size exert only a minor effect on the loss in this setting.
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Figure 7: IsoLoss contours for DIVER-/I/0.1s model family: (Left) Twenty models with 0.1s
patches were trained across varying epochs and parameter counts. Iso-loss contours are obtained by
linear interpolation between measured data points. (Right) Corresponding contours predicted by the
fitted scaling law. The fading line denotes the minimum-loss configuration for each compute budget.

The exponents α and β govern the marginal benefit of scaling parameters and data, respectively. Our
values (α = 0.377, β = 0.350) indicate that increasing model size and adding data yield comparable
contributions to overall performance improvements. Compared to prior results in language domain
(α = 0.348, β = 0.366; (Hoffmann et al., 2022)), our fitted exponents show similar values.

Importantly, the characteristic half-lives R∗
D = 8.9 and R∗

N = 3.3 quantify diminishing returns
under repeated data and excessive parameters. The relatively larger R∗

D implies that repeated data
remains useful for many epochs before saturation, whereas the smaller R∗

N suggests that the ben-
efit of adding parameters decays more quickly. Together, these results suggest that gains are most
effectively pursued by scaling model size while maintaining moderate dataset repetition, rather than
prioritizing further data collection.
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Figure 8: Scaling law extended results for the DIVER-/I/1s family. Compute scaling and model size
scaling plots are given for models trained for 2, 4, 8, 16, 32, and 64 epochs.(a) Compute scaling
and (b) model size scaling plots are given for models trained for 2, 8, 32, and 64 epochs. (c) Epoch
scaling plot of the models reported in Fig. 2 (d). The same training runs are reused, with losses
re-plotted against parameters and dataset size in log-log scale.
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Figure 9: Scaling law extended results for the DIVER-/I/0.1s family. (a) Compute scaling and (b)
model size scaling plots are given for models trained for 2, 8, 32, and 64 epochs. (c) Epoch scaling
plot of the models reported in Fig. 7. The same training runs are reused, with losses re-plotted against
parameters and dataset size in log-log scale.
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C.4 EXTENDED KAPLAN (KAPLAN ET AL., 2020) SCALING LAW RESULTS FOR EEG

We tested DIVER-/E/1s model family trained on 10% and 20% of the EEG dataset. Use of par-
tial dataset was due to computational constraints. Overall, the scaling behavior across compute and
model size demonstrates reasonable fit to the power law. However, notable deviations were observed
for the 10% data subset at epochs 16 and 32, where the power law fit was inadequate. This is primar-
ily attributable to instabilities in DIVERXL/E/1s, whose loss curve exhibits sudden upward spikes
and irregular behavior(Figure 6). Furthermore, when trained for shorter durations, larger models ex-
hibit overfitting tendencies; consequently, fitting the power law across all model sizes fails to capture
the expected scaling behavior in these regimes. For cases where the fitted slope approached zero, we
omit the fitted line from the visualization. Additionally, it is important to note that the suboptimal
learning rate schedule—arising from our use of a single training instance with fixed maximum epoch
as 32 for EEG models—may contribute to these deviations from ideal scaling behavior.

C.5 DATA-CONSTRAINED SCALING LAW FITTING RESULTS FOR EEG

We included models trained on 10% and 20% of the full dataset, as in the Kaplan scaling law
experiment setup in C.4.

Table 8: Fitted data-constrained scaling law parameters for DIVER-/E/1s model family.
DIVER-/E/1s

A 0.5983
B 2.0633
E 0.0004
α 3.4480
β 0.2059
R∗

D 23.860
R∗

N 3.2903

R2 (linear) 0.5019
R2 (log) 0.6012

The most notable difference in the EEG scaling results appears in the model-size exponent. For
EEG, we obtain an unusually large α = 3.29, whereas the iEEG experiments produced a much
smaller and value of α = 0.3773. Such a steep exponent suggests that, within the range of model
sizes we explored, performance changed very little with additional capacity. A plausible explanation
is the behavior of the XXL model: its loss is higher than that of the smaller models, probably due to
overfitting. Similar behavior has been reported in very large models trained on fixed data in the Data-
constrained scaling law literature(Muennighoff et al., 2023). In addition, we observed that losses
often rise around epochs 4–8; because our analysis used the midpoint checkpoint of the 32-epoch
runs, this choice may also have distorted the fit.

This instability is also reflected in the overall goodness-of-fit. The EEG scaling law yields an R2 of
0.5019, substantially lower than the 0.8152 observed for iEEG, indicating that EEG does not follow
the expected power-law pattern nearly as well. Some of this gap may arise from fundamental dif-
ferences between EEG and iEEG: EEG has lower signal quality and greater trial-to-trial variability,
which can obscure systematic trends. At the same time, aspects of our experimental design may also
have contributed. In particular, training all models for a fixed 32 epochs and sampling intermedi-
ate losses, rather than evaluating models at comparable levels of convergence, may have introduced
additional noise into the fit.

This interpretation is reinforced by the estimate of the irreducible-loss term E, which drops to an
unusually small value (E = 0.0004) for EEG, far below the iEEG estimate of E = 0.0092. Such
a low value is difficult to justify on theoretical grounds and likely reflects a compensatory effect of
the fitting procedure rather than a meaningful property of the data. Even so, the EEG models follow
the general direction of the expected scaling behavior, albeit in a much noisier and less stable form
than iEEG.
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Figure 10: Scaling law extended results for the DIVER-/E/1s family on 10% of EEG dataset. (a)
Compute scaling and (b) model size scaling plots are given for test loss values extracted at epochs 2,
4, 8, 16, and 32 from models trained with a maximum of 32 epochs. For epochs 16 and 32, the fitted
slope was effectively zero, so the corresponding fitted lines were omitted from the visualization. (c)
Epoch scaling plot of the models in log-log scale.
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Figure 11: Scaling law extended results for the DIVER-/E/1s family on 20% of EEG dataset. (a)
Compute scaling and (b) model size scaling plots are given for test loss values extracted at epochs
2, 4, 8, 16, and 32 from models trained with a maximum of 32 epochs. (c) Epoch scaling plot of the
models reported in reported in Fig. 2(h). The same training runs are reused, with losses re-plotted
against parameters and dataset size in log-log scale.
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C.6 EXTENDED EEG DOWNSTREAM SCALING RESULTS

Data size scaling (Table 9). We evaluate how pretraining data size affects downstream performance
by training DIVERSmall/E/1s with dmodel = 512 for 2 epochs on varying fractions of the EEG pre-
training dataset (1%, 3%, 9%, 24%, 50%, and 100%). Performance generally improves as more
pretraining data is used for FACED dataset. While the performance peaked at 24% of the pretraining
dataset for PhysioNet-MI, this difference is not significant when considering the standard deviation;
performance at 100% is comparable. Overall, larger pretraining datasets lead to better downstream
task performance. The improvements are most pronounced when scaling from small fractions (1-
10%) to larger portions of the dataset, with diminishing but still positive returns at the largest scales.

Model size scaling (Table 10). We examine the effect of model capacity by evaluating the
DIVER−/E/1s model family with varying hidden dimensions: dmodel ∈ {256, 512, 768, 1024, 2048}
(corresponding to 12M, 48M, 114M, 204M, and 813M parameters respectively). All models were
pretrained for 2 epochs on the full EEG dataset. Performance generally improves with model size,
though not always monotonically. The DIVERXL/E/1s(dmodel = 2048) achieves the best perfor-
mance for PhysioNet-MI dataset while DIVERSmall/E/1s (dmodel = 512) achieved best perfor-
mance for FACED dataset. This could be possible due to the limited number of epochs used to
pretrain the model, but further work is needed to clarify this.

Epoch scaling (Table 11). We investigate how pretraining epochs affects downstream performance
by training models across different sizes (dmodel ∈ {256, 512, 768, 1024, 2048}) for varying num-
bers of epochs (2, 4, 8, 16, 32). All models were pretrained on 10% of the EEG dataset due to
computational constraints. Performance generally improves with more training epochs, though the
optimal number of epochs varies by model size. Larger models tend to benefit more from extended
training, while smaller models may plateau earlier. These results demonstrate that both model size
and training duration are important factors in achieving optimal downstream performance.

Together, these scaling experiments demonstrate that EEG foundation model performance improves
predictably across multiple dimensions—data size, model size, and training duration—providing
practical guidance for efficient model development.
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Table 9: Data size scaling on EEG downstream tasks. DIVERSmall/E/1s with dmodel = 512 was
trained for 2 epochs on a different fraction (1%, 3%, 9%, ..., 100%) of the EEG pretraining dataset.

Pretraining Fraction FACED PhysioNet-MI

ACC kappa F1 ACC kappa F1

1% 0.111 ± 0.000 0.000 ± 0.000 0.036 ± 0.000 0.581 ± 0.007 0.441 ± 0.009 0.582 ± 0.006

3% 0.467 ± 0.012 0.400 ± 0.013 0.474 ± 0.012 0.624 ± 0.005 0.498 ± 0.007 0.626 ± 0.005

9% 0.451 ± 0.017 0.380 ± 0.020 0.456 ± 0.017 0.600 ± 0.005 0.467 ± 0.007 0.601 ± 0.005

10% 0.509 ± 0.013 0.448 ± 0.014 0.520 ± 0.012 0.640 ± 0.006 0.519 ± 0.009 0.641 ± 0.006

24% 0.525 ± 0.007 0.464 ± 0.008 0.529 ± 0.006 0.650 ± 0.004 0.533 ± 0.005 0.651 ± 0.004

50% 0.493 ± 0.007 0.426 ± 0.007 0.491 ± 0.006 0.628 ± 0.006 0.504 ± 0.008 0.628 ± 0.006

100% 0.568 ± 0.011 0.513 ± 0.013 0.579 ± 0.009 0.647 ± 0.006 0.529 ± 0.008 0.649 ± 0.006

Pretraining Fraction MentalArithmetic

ACC AUC-PR AUROC

1% 0.500 ± 0.000 0.625 ± 0.000 0.500 ± 0.000

3% 0.597 ± 0.090 0.350 ± 0.053 0.611 ± 0.069

9% 0.626 ± 0.058 0.520 ± 0.087 0.690 ± 0.065

10% 0.635 ± 0.041 0.547 ± 0.045 0.765 ± 0.020

24% 0.617 ± 0.067 0.370 ± 0.054 0.701 ± 0.033

50% 0.572 ± 0.088 0.563 ± 0.234 0.752 ± 0.115

100% 0.619 ± 0.046 0.490 ± 0.069 0.765 ± 0.049

Table 10: Model size scaling on EEG downstream tasks. DIVER−/E/1s model family across
different model sizes were evaluated. All models were pretrained for 2 epochs using the EEG dataset.
dmodel (Params) FACED PhysioNet-MI

ACC kappa F1 ACC kappa F1

256 (13M) 0.488 ± 0.006 0.421 ± 0.006 0.485 ± 0.005 0.630 ± 0.006 0.506 ± 0.008 0.631 ± 0.007

512 (51M) 0.568 ± 0.011 0.513 ± 0.013 0.579 ± 0.009 0.647 ± 0.006 0.529 ± 0.008 0.649 ± 0.006

768 (114M) 0.477 ± 0.006 0.411 ± 0.006 0.477 ± 0.006 0.659 ± 0.005 0.546 ± 0.007 0.660 ± 0.005

1024 (204M) 0.524 ± 0.005 0.462 ± 0.005 0.523 ± 0.005 0.691 ± 0.006 0.588 ± 0.008 0.692 ± 0.006

2048 (813M) 0.525 ± 0.012 0.462 ± 0.012 0.524 ± 0.010 0.669 ± 0.011 0.560 ± 0.014 0.672 ± 0.010

dmodel (Params) MentalArithmetic

ACC AUC-PR AUROC

256 (13M) 0.626 ± 0.032 0.480 ± 0.072 0.751 ± 0.036

512 (51M) 0.619 ± 0.046 0.490 ± 0.069 0.765 ± 0.049

768 (114M) 0.697 ± 0.012 0.631 ± 0.045 0.800 ± 0.029

1024 (204M) 0.722 ± 0.028 0.657 ± 0.063 0.806 ± 0.033

2048 (813M) 0.674 ± 0.031 0.601 ± 0.053 0.780 ± 0.031
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Table 11: Epoch scaling on EEG downstream tasks. We evaluate the DIVER−/E/1s model family
across different model sizes, each pretrained for varying numbers of epochs. All models were pre-
trained using 10% of the EEG dataset.
dmodel Epochs FACED PhysioNet-MI

ACC kappa F1 ACC kappa F1

256 2 0.153 ± 0.007 0.050 ± 0.007 0.103 ± 0.015 0.580 ± 0.006 0.440 ± 0.007 0.582 ± 0.006
4 0.463 ± 0.013 0.392 ± 0.015 0.461 ± 0.014 0.604 ± 0.008 0.472 ± 0.011 0.605 ± 0.008
8 0.484 ± 0.005 0.417 ± 0.006 0.484 ± 0.006 0.614 ± 0.003 0.485 ± 0.004 0.614 ± 0.003
16 0.447 ± 0.003 0.375 ± 0.003 0.443 ± 0.002 0.609 ± 0.004 0.479 ± 0.005 0.610 ± 0.004
32 0.488 ± 0.006 0.421 ± 0.006 0.485 ± 0.005 0.615 ± 0.003 0.487 ± 0.005 0.615 ± 0.004

512 2 0.510 ± 0.012 0.448 ± 0.013 0.517 ± 0.012 0.624 ± 0.005 0.498 ± 0.007 0.625 ± 0.005
4 0.539 ± 0.012 0.479 ± 0.013 0.543 ± 0.010 0.654 ± 0.005 0.538 ± 0.007 0.655 ± 0.005
8 0.445 ± 0.008 0.373 ± 0.008 0.444 ± 0.008 0.619 ± 0.004 0.491 ± 0.005 0.619 ± 0.004
16 0.476 ± 0.004 0.410 ± 0.004 0.477 ± 0.004 0.668 ± 0.002 0.557 ± 0.003 0.669 ± 0.002
32 0.493 ± 0.005 0.429 ± 0.005 0.495 ± 0.005 0.680 ± 0.004 0.573 ± 0.006 0.681 ± 0.004

768 2 0.387 ± 0.024 0.309 ± 0.027 0.386 ± 0.025 0.605 ± 0.004 0.473 ± 0.005 0.606 ± 0.003
4 0.511 ± 0.009 0.448 ± 0.010 0.516 ± 0.010 0.636 ± 0.005 0.515 ± 0.006 0.638 ± 0.005
8 0.531 ± 0.004 0.470 ± 0.005 0.534 ± 0.005 0.663 ± 0.004 0.550 ± 0.006 0.664 ± 0.004
16 0.519 ± 0.011 0.458 ± 0.012 0.518 ± 0.012 0.682 ± 0.004 0.576 ± 0.005 0.683 ± 0.004
32 0.526 ± 0.005 0.467 ± 0.006 0.527 ± 0.005 0.690 ± 0.002 0.587 ± 0.002 0.691 ± 0.002

1024 2 0.510 ± 0.010 0.449 ± 0.010 0.518 ± 0.008 0.638 ± 0.005 0.518 ± 0.007 0.640 ± 0.005
4 0.544 ± 0.011 0.486 ± 0.013 0.554 ± 0.010 0.656 ± 0.004 0.542 ± 0.005 0.658 ± 0.004
8 0.462 ± 0.012 0.393 ± 0.013 0.464 ± 0.012 0.591 ± 0.006 0.454 ± 0.008 0.592 ± 0.007

16 0.461 ± 0.007 0.390 ± 0.008 0.458 ± 0.007 0.630 ± 0.008 0.507 ± 0.011 0.632 ± 0.008
32 0.451 ± 0.030 0.380 ± 0.033 0.449 ± 0.030 0.644 ± 0.016 0.526 ± 0.022 0.646 ± 0.016

2048 2 0.380 ± 0.220 0.301 ± 0.246 0.355 ± 0.261 0.620 ± 0.016 0.495 ± 0.014 0.624 ± 0.009
4 0.111 ± 0.000 0.000 ± 0.000 0.036 ± 0.000 0.512 ± 0.131 0.351 ± 0.176 0.485 ± 0.193
8 0.450 ± 0.018 0.379 ± 0.021 0.450 ± 0.019 0.620 ± 0.006 0.495 ± 0.007 0.623 ± 0.005
16 0.514 ± 0.008 0.449 ± 0.008 0.512 ± 0.007 0.658 ± 0.004 0.547 ± 0.005 0.662 ± 0.004
32 0.531 ± 0.014 0.470 ± 0.015 0.514 ± 0.013 0.661 ± 0.009 0.550 ± 0.012 0.665 ± 0.009

dmodel Epochs MentalArithmetic

ACC AUC-PR AUROC

256 2 0.530 ± 0.071 0.325 ± 0.079 0.625 ± 0.078
4 0.537 ± 0.066 0.333 ± 0.051 0.620 ± 0.046
8 0.710 ± 0.086 0.620 ± 0.103 0.811 ± 0.054
16 0.567 ± 0.063 0.516 ± 0.102 0.767 ± 0.042
32 0.647 ± 0.025 0.504 ± 0.069 0.734 ± 0.033

512 2 0.586 ± 0.051 0.457 ± 0.069 0.700 ± 0.042
4 0.623 ± 0.043 0.505 ± 0.061 0.766 ± 0.022
8 0.639 ± 0.057 0.466 ± 0.149 0.728 ± 0.074
16 0.712 ± 0.014 0.643 ± 0.049 0.803 ± 0.019
32 0.728 ± 0.030 0.672 ± 0.030 0.805 ± 0.028

768 2 0.569 ± 0.033 0.367 ± 0.067 0.610 ± 0.044
4 0.577 ± 0.063 0.433 ± 0.052 0.693 ± 0.032
8 0.738 ± 0.034 0.615 ± 0.046 0.811 ± 0.027
16 0.692 ± 0.033 0.709 ± 0.025 0.819 ± 0.019
32 0.710 ± 0.025 0.705 ± 0.040 0.824 ± 0.029

1024 2 0.576 ± 0.032 0.393 ± 0.065 0.648 ± 0.053
4 0.704 ± 0.044 0.601 ± 0.064 0.800 ± 0.031
8 0.574 ± 0.016 0.395 ± 0.017 0.660 ± 0.020
16 0.626 ± 0.032 0.470 ± 0.066 0.770 ± 0.050
32 0.693 ± 0.020 0.561 ± 0.034 0.792 ± 0.015

2048 2 0.630 ± 0.076 0.610 ± 0.073 0.848 ± 0.028
4 0.500 ± 0.000 0.596 ± 0.065 0.501 ± 0.003
8 0.554 ± 0.008 0.352 ± 0.057 0.621 ± 0.047

16 0.717 ± 0.038 0.618 ± 0.073 0.816 ± 0.028
32 0.690 ± 0.025 0.644 ± 0.059 0.795 ± 0.028
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D EXTENDED RESULTS

D.1 COMPREHENSIVE DIVER DOWNSTREAM TASK RESULTS

We present the detailed numerical values. The EEG performance table is provided in Table 14. The
iEEG performance table is provided in Table 12 and Table 13. For Neuroprobe binary-label (iEEG
task), we evaluated DIVERTiny/I/0.1s (with dmodel = 256 and patch size 0.1s, pretrained on iEEG
for 32 epochs) in both frozen (linear probing, red) and fine-tuned (blue) configurations against Lin-
ear Laplacian STFT, BrainBERT and PopT baselines on Figure 2. Table 13 presents comprehensive
results comparing DIVER with baseline models across all 15 Neuroprobe tasks. For Neuroprobe
multi-label, our model are still overperform the linear baseline. Results are reported as mean AU-
ROC ± SEM across subjects, trials, and cross-validation folds. DIVER consistently outperformed
baseline models across the majority of tasks in both evaluation settings. The model demonstrated
particularly strong performance on language-related tasks (speech decoding, word prediction, onset
detection) and auditory tasks (volume, pitch), with finetuning providing additional gains over frozen
features. These results validate that self-supervised pretraining on iEEG data produces representa-
tions that transfer effectively to diverse downstream neural decoding tasks. In the multi-label setting,
DIVER again outperformed the linear baseline for both frozen and fully fine-tuned models.4

For MAYO (iEEG task), we evaluated DIVERTiny/I/1s (with dmodel = 256 and 1 s patch size,
pretrained on iEEG for 32 epochs) in both frozen (linear probing) and full-finetuning settings.
We could not evaluate PopT because the dataset does not contain any coordinates. By contrast,
although our model is trained with 3D positional embeddings, it can handle missing position infor-
mation by replacing the positional embedding with a zero vector for electrodes with unknown lo-
cation. Among the different baselines (BrainBERT frozen, Brant frozen, and Brant full-finetuning),
DIVERTiny/I/1s achieved the best performance. Brant exhibited a substantial performance drop
under full finetuning, likely because we deviated from its original pretraining configuration by us-
ing only a single patch, which can impair optimization when updating all parameters with original
context windows (90s), whereas the frozen setting simply uses the fixed embedding.

Table 12: Comparison of the DIVER-1 iEEG model with other baseline models. We evaluated
DIVERTiny/I models that were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.
For Neuroprobe (1 s), we compare DIVERTiny/I/0.1 with other baselines using an overall score
defined as the mean AUROC averaged over all 15 tasks, subjects, trials, and folds. For MAYO (6 s),
we compare DIVERTiny/I/1s with Brant and BrainBERT; scores are reported as mean AUROC ±
SEM across 8 subjects and 3 folds.

Neuroprobe (overall) MAYO

binary-label multi-label

linear (stft-laplacian) 0.660± 0.005 0.617± 0.007 -
PopT 0.545± 0.006 - -
BrainBERT (frozen) 0.586± 0.004 - 0.748± 0.038
Brant - - 0.551± 0.023
Brant (frozen) - - 0.757± 0.042

DIVERTiny/I/0.1or1s 0.662± 0.008 0.621± 0.007 0.961± 0.011
DIVERTiny/I/0.1or1s (frozen) 0.676± 0.007 0.631± 0.007 0.935± 0.012

4A multi-label option is available in the most recent release of the Neuroprobe code, but it has not yet been
documented in the paper. Consequently, we compare only against the linear (STFT–Laplacian) baseline, witch
can be easily compute by running their released code.
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Table 13: Downstream performance of each task in Neuroprobe. We compare DIVER with exist-
ing models on comprehensive iEEG downstream tasks. We evaluated both the fine-tuned and frozen
configurations of DIVERTiny/I/0.1s (pretrained on iEEG for 32 epochs) against Linear Laplacian
STFT, BrainBERT, and popT. Results are reported as mean AUROC ± SEM across subjects, trials,
and folds. Overall, DIVER consistently outperformed baselines across the majority of tasks.

Models Overall Sentence Onset Speech Volume

Linear Laplacian STFT 0.660 ± 0.005 0.891 ± 0.018 0.883 ± 0.018 0.717 ± 0.032
BrainBERT (frozen) 0.586 ± 0.004 0.757 ± 0.027 0.611 ± 0.022 0.583 ± 0.010
PopT 0.545 ± 0.006 0.689 ± 0.050 0.677 ± 0.044 0.576 ± 0.018
DIVERTiny/I/0.1s 0.662 ± 0.008 0.924 ± 0.009 0.900 ± 0.011 0.699 ± 0.020
DIVERTiny/I/0.1s(frozen) 0.676 ± 0.007 0.930 ± 0.008 0.896 ± 0.012 0.717 ± 0.018

Models Delta Volume Voice Pitch Word position Inter-word Gap

Linear Laplacian STFT 0.762 ± 0.026 0.578 ± 0.016 0.740 ± 0.028 0.612 ± 0.014
BrainBERT (frozen) 0.706 ± 0.021 0.524 ± 0.007 0.685 ± 0.027 0.584 ± 0.017
PopT 0.628 ± 0.025 0.509 ± 0.008 0.519 ± 0.023 0.509 ± 0.009
DIVERTiny/I/0.1s 0.812 ± 0.017 0.563 ± 0.007 0.777 ± 0.016 0.623 ± 0.014
DIVERTiny/I/0.1s (frozen) 0.809 ± 0.016 0.589 ± 0.007 0.791 ± 0.014 0.628 ± 0.011

Models GPT-2 Surprisal Head Word Pos Part of Speech Word Length

Linear Laplacian STFT 0.613 ± 0.017 0.602 ± 0.012 0.605 ± 0.012 0.618 ± 0.015
BrainBERT (frozen) 0.580 ± 0.015 0.585 ± 0.013 0.556 ± 0.012 0.571 ± 0.012
PopT 0.523 ± 0.014 0.519 ± 0.008 0.513 ± 0.004 0.505 ± 0.005
DIVERTiny/I/0.1s 0.617 ± 0.009 0.613 ± 0.009 0.597 ± 0.011 0.638 ± 0.011
DIVERTiny/I/0.1s (frozen) 0.628 ± 0.009 0.622 ± 0.009 0.624 ± 0.011 0.642 ± 0.013

Models Global Flow Local Flow Frame Brightness Num of Faces

Linear Laplacian STFT 0.625 ± 0.054 0.607 ± 0.017 0.521 ± 0.025 0.530 ± 0.014
BrainBERT (frozen) 0.521 ± 0.006 0.525 ± 0.003 0.508 ± 0.012 0.503 ± 0.007
PopT 0.509 ± 0.008 0.508 ± 0.014 0.499 ± 0.019 0.492 ± 0.010
DIVERTiny/I/0.1s 0.587 ± 0.010 0.586 ± 0.012 0.492 ± 0.015 0.509 ± 0.007
DIVERTiny/I/0.1s (frozen) 0.620 ± 0.009 0.614 ± 0.012 0.502 ± 0.012 0.523 ± 0.010

Table 14: Comparison of DIVER-1 EEG model with other baseline models. We compare DIVER
with existing state-of-the-art models on three EEG downstream tasks using their reported values
from the original papers. DIVER consistently outperformed baseline models across all metrics.

Models FACED (9-class)

ACC kappa F1

LaBraM 0.527 ± 0.011 0.470 ± 0.019 0.529 ± 0.010
CBraMod 0.551 ± 0.009 0.504 ± 0.012 0.562 ± 0.009

DIVER (Ours) 0.601 ± 0.008 0.550 ± 0.009 0.607 ± 0.009

Models PhysioNet-MI (4-class)

ACC kappa F1

LaBraM 0.617 ± 0.012 0.491 ± 0.019 0.618 ± 0.014
CBraMod 0.642 ± 0.009 0.522 ± 0.017 0.643 ± 0.010

DIVER (Ours) 0.676 ± 0.003 0.567 ± 0.004 0.678 ± 0.004

Models MentalArithmetic (2-class)

ACC AUC-PR AUROC

LaBraM 0.691 ± 0.013 0.600 ± 0.016 0.772 ± 0.009
CBraMod 0.726 ± 0.013 0.627 ± 0.010 0.791 ± 0.007

DIVER (Ours) 0.727 ± 0.018 0.676 ± 0.046 0.814 ± 0.026

D.2 PERFORMANCE EVALUATION ACROSS DIVER-1 MODEL CONFIGURATIONS

We first evaluated DIVERTiny/I/.’s performance in Neuroprobe, based on different model config-
urations including the patch size, Laplacian re-referencing and training settings. The 0.1s model
outperformed the 1s model (Table 15) in 4 tasks in Neuroprobe. Considering that the Neuroprobe
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dataset consists of 1-second samples and its tasks require classifying short-timescale features such
as speech and onset, the effectiveness of 0.1s model may be explained. Additionally, the model with-
out Laplacian re-referencing generally showed degraded performance, indicating the effectiveness of
the pre-processing method . Further, we examined the effect of pretraining by comparing the perfor-
mance of DIVERTiny/I/0.1s with diverse training settings. The model trained from scratch showed
significantly degraded performance than the full-finetuned and backbone-frozen models. Such re-
sults indicate the efficacy of pretraining. Specifically, the model with a frozen backbone showed the
highest performance, except for the speech task.

Table 15: Performance evaluation between various DIVER model configurations in Neu-
roprobe (iEEG tasks). We first compare DIVERTiny/I models by patch size, Laplacian re-
referencing, and training settings. The model from scratch was trained on only four tasks (speech,
onset, volume, pitch) due to computational constraints, consequently; model evaluation is limited to
these four tasks. For the backbone-frozen models, 0.1s variants with different sizes were trained on
four tasks, whereas the tiny model was trained on all Neuroprobe tasks. The results are reported as
mean AUROC ± SEM across multiple subjects, trials, and folds. All models, except the one trained
from scratch, were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.

speech onset volume pitch neuroprobe total

Tiny/I/1s 0.828 ± 0.016 0.885 ± 0.012 0.634 ± 0.018 0.551 ± 0.009 0.645 ± 0.007

Tiny/I/0.1s 0.900 ± 0.011 0.924 ± 0.009 0.699 ± 0.020 0.563 ± 0.007 0.662 ± 0.008

Tiny/I/0.1s (w.o. laplacian) 0.862 ± 0.018 0.901 ± 0.013 0.662 ± 0.018 0.533 ± 0.004 0.642 ± 0.007

Tiny/I/0.1s (from scratch) 0.832 ± 0.014 0.872 ± 0.010 0.622 ± 0.016 0.554 ± 0.006 -

Tiny/I/0.1s (frozen) 0.896 ± 0.012 0.930 ± 0.008 0.717 ± 0.018 0.589 ± 0.007 0.676 ± 0.007
Small/I/0.1s (frozen) 0.888 ± 0.012 0.926 ± 0.009 0.705 ± 0.016 0.578 ± 0.006 -

Large/I/0.1s (frozen) 0.890 ± 0.0126 0.928 ± 0.009 0.710 ± 0.017 0.581 ± 0.007 -

XL/I/0.1s (frozen) 0.893 ± 0.012 0.930 ± 0.009 0.713 ± 0.017 0.582 ± 0.007 -

And for MAYO (seizure detection), we chosed only 1 sec model, because MAYO has 6 s window
that is too long for 0.1 s model’s context. We compared the frozen and full finetuning model in
each model size in Table 16. In contrast to the Neuroprobe results, we found that full fine-tuning
outperformed the frozen for the Tiny, Small and XL model, even though it was slightly worse for the
Large and Base models. Since our preprocessing clips signal amplitudes above a certain threshold
(200 μV), so pretrained-dataset’s distribution can differ from seizure data, which contains spikes
with much larger amplitudes; under this distribution shift, fully fine-tuned models may therefore
tend to achieve better performance. For the linear baseline, the highest performance was obtained
with the Large model, whereas under full-finetuning the Tiny model achieved the best performance.

Table 16: Performance evaluation between various DIVER model configurations in MAYO
(iEEG task). DIVER 1 s models were trained for each model size, and we compared the frozen and
full fine-tuning variants. The results are reported as mean AUROC ± SEM across multiple subjects
and folds. All models, except were pretrained for 32 epochs on 100% of the iEEG pretraining dataset.

Tiny Small Base Large XL

frozen 0.935± 0.012 0.904± 0.019 0.911± 0.017 0.937± 0.015 0.914± 0.018
full-finetuned 0.961± 0.011 0.927± 0.020 0.905± 0.026 0.934± 0.014 0.947± 0.019

D.3 ABLATIONS

Input ablations Previously in Table15we confirmed that the iEEG models’ downstream perfor-
mance improve when Laplacian re-referencing is used. PopT and BrainBERT were pretrained on
Laplacian re-referenced signals, and their downstream performances were also derived under that
setting. Even though our model was trained on raw signals (not referenced), it was better with Lapla-
cian referencing (Table 15). Therefore, we use Laplacian re-referencing as the default setting for
finetuning on iEEG downstream tasks.

Architecture ablations To assess whether encoder components (RoPE and any variate attention),
embedding components, and multi-domain reconstruction task are effective, we removed each ele-
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Table 17: Architecture ablation for iEEG downstream tasks. Tasks include speech decoding, on-
set detection, volume prediction, and pitch estimation tasks. DIVERTiny/I/0.1s (bottom row) rep-
resents the full model with all components. Each row indicates the model’s performance when re-
moving a specific component. All models use 12 layers with dmodel = 256 and were pretrained for 8
epochs. Results are reported as mean AUROC ± SEM across multiple subjects, trials and folds.

speech onset volume pitch

w.o. RoPE 0.886 ± 0.013 0.916 ± 0.011 0.693 ± 0.019 0.579 ± 0.008
w.o anyV attention 0.889 ± 0.013 0.919 ± 0.009 0.699 ± 0.018 0.579 ± 0.007
w.o RoPE and anyV attention 0.870 ± 0.014 0.898 ± 0.012 0.669 ± 0.018 0.560 ± 0.006

w.o. STCPE 0.879 ± 0.014 0.911 ± 0.013 0.686 ± 0.019 0.572 ± 0.007
w.o Channel modality + subtype emb. 0.892 ± 0.011 0.919 ± 0.009 0.690 ± 0.017 0.577 ± 0.006
w.o Channel 3d position emb. 0.900 ± 0.011 0.927 ± 0.009 0.710 ± 0.018 0.584 ± 0.009
w.o Spectral feature emb. 0.885 ± 0.013 0.919 ± 0.010 0.694 ± 0.019 0.571 ± 0.010
w.o Multi-domain reconstruction (only raw) 0.875 ± 0.014 0.916 ± 0.010 0.680 ± 0.017 0.569 ± 0.006

DIVERTiny/I/0.1s 0.890 ± 0.013 0.922 ± 0.009 0.698 ± 0.018 0.572 ± 0.008

ment and evaluated the corresponding performance. Ablation studies on iEEG were conducted on
DIVERTiny/I/0.1s trained for 8 epochs with full pretraining dataset, and for EEG, DIVERTiny/E/1s

trained for 2 epochs with 10% of the data were used, due to computational constraints and time limi-
tations. Architecture ablation results for iEEG are given in Table 17. When each encoder component
was removed individually, the performance varied across tasks, but dropped noticeably when both
were excluded. An ablation of STCPE and multi-domain reconstruction task each induced perfor-
mance degradation, whereas the ablation of other embedding components did not yield significant
changes. Since the Neuroprobe dataset includes only depth electrodes (SEEG), the effect of chan-
nel modality and subtype embedding may be minimal. Moreover, as the dataset utilizes only child
and adolescent subjects, whose brain volumes differ by age, the effect of the channel 3D positional
embedding may be attenuated.

For EEG downstream tasks, detailed results are described in Table 18. The ablation of encoder com-
ponents yielded a significant performance decline in both EEG tasks, indicating that the encoder
components are crucial contributors to overall performance. Removing the multi-domain reconstruc-
tion task, STCPE and spectral feature embedding resulted in a notable performance degradation as
well. Ablation of channel-wise patch embedding components induced inconsistent results across
tasks; for FACED, performance dropped while for PhysioNet-MI, performance slightly improved.

Incorporating encoder components and multi-domain reconstruction task significantly improved the
model’s performance in both iEEG and EEG downstream tasks. Specifically, in multi-domain recon-
struction, removing each component for STFT and FFT also degrades performance, which shows
that each element of multi-domain reconstruction is important. Channel-wise embedding compo-
nents however differed in their effects depending on the modality and the type of downstream tasks.
Since informative features in Ephys signals can vary across modalities and tasks, holding these var-
ious components may help improve generalization across a range of tasks.

Dataset ablations and dataset size-based comparisons The other iEEG models (PopT (Chau et al.,
2025) and BrainBERT (Wang et al., 2023)) are pretrained on the BrainTreebank (BTB) (Wang et al.,
2024a) datasets—the precursor to Neuroprobe. Therefore, we compare downstream performance
when we use BTB exclusively (Figure 12). We trained DIVERTiny/I/0.1s models with BTB and
size-variations of our self-collected iEEG datasets. For the model trained on our self-collected data
of the same size as BTB, the linear-probing results were lower than those trained with BTB only.
However, when we increased the size of the self-collected dataset (approximately ×16 and ×64 size
of BTB), performance surpassed the BTB-only setting. This shows that, with sufficient data, it is
possible to achieve higher performance even if the distribution of the pretraining dataset differs
from that of the downstream tasks.

Comparison of DIVER-1 iEEG model with other baseline models on a shared dataset Since
the pretraining dataset between iEEG baseline models and our model differentiated, we additionally
trained the DIVER model on the pretraining dataset of the baseline models. The corresponding
results are shown in Table 19. The model trained under our own early-stopping strategy is denoted
as “ours.” Given the same pretraining dataset, the DIVER model achieved the highest performance
compared to the two baseline models.
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Table 18: Architecture ablation for EEG downstream tasks. Tasks include FACED and
PhysioNet-MI dataset. DIVERTiny/E/1s represents the full model with all components. Each
row shows performance when removing a specific component. All models use 12 layers with
dmodel = 256 and were pretrained for 2 epochs. Results are reported as mean ± standard devia-
tion across 5 random seeds.

FACED (9-class)

ACC kappa F1

w.o. RoPE 0.408 ± 0.025 0.333 ± 0.027 0.414 ± 0.024
w.o anyV attention 0.414 ± 0.012 0.339 ± 0.014 0.417 ± 0.012
w.o RoPE and anyV attention 0.446 ± 0.007 0.376 ± 0.007 0.450 ± 0.005

w.o. STCPE 0.463 ± 0.024 0.395 ± 0.027 0.471 ± 0.026
w.o Channel modality + subtype emb. 0.474 ± 0.018 0.406 ± 0.021 0.482 ± 0.019
w.o Channel 3d position emb. 0.481 ± 0.016 0.415 ± 0.018 0.487 ± 0.016
w.o Spectral feature emb. 0.454 ± 0.015 0.386 ± 0.016 0.462 ± 0.013
w.o Multi-domain reconstruction (only raw) 0.435 ± 0.008 0.364 ± 0.009 0.437 ± 0.006
w.o FFT reconstruction (raw and stft) 0.468 ± 0.007 0.401 ± 0.008 0.479 ± 0.008
w.o STFT reconstruction (raw and fft) 0.485 ± 0.014 0.418 ± 0.015 0.487 ± 0.013

DIVERTiny/E/1s 0.491 ± 0.023 0.428 ± 0.025 0.502 ± 0.023

PhysioNet-MI (4-class)

ACC kappa F1

w.o. RoPE 0.614 ± 0.005 0.485 ± 0.006 0.615 ± 0.005
w.o anyV attention 0.611 ± 0.003 0.481 ± 0.004 0.612 ± 0.004
w.o RoPE and anyV attention 0.591 ± 0.005 0.454 ± 0.006 0.593 ± 0.005

w.o. STCPE 0.626 ± 0.006 0.502 ± 0.008 0.627 ± 0.006
w.o Channel modality + subtype emb. 0.629 ± 0.006 0.505 ± 0.007 0.632 ± 0.005
w.o Channel 3d position emb. 0.629 ± 0.008 0.506 ± 0.010 0.631 ± 0.007
w.o Spectral feature emb. 0.626 ± 0.005 0.501 ± 0.006 0.627 ± 0.004
w.o Multi-domain reconstruction (only raw) 0.614 ± 0.005 0.485 ± 0.006 0.616 ± 0.004
w.o FFT reconstruction (raw and stft) 0.626 ± 0.006 0.502 ± 0.008 0.628 ± 0.006
w.o STFT reconstruction (raw and fft) 0.615 ± 0.005 0.487 ± 0.007 0.617 ± 0.005

DIVERTiny/E/1s 0.628 ± 0.005 0.504 ± 0.007 0.630 ± 0.005
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Figure 12: Pretraining dataset and size effects on performance: BrainTreebank vs. Self-Collected

Table 19: Model comparison with a shared pretraining dataset. Each row indicates a model
architecture with its pretraining dataset in parentheses. Models pretrained on the same BTB dataset
are compared to isolate architectural effects. The results are reported as mean AUROC ± SEM across
multiple subjects, trials and folds. The DIVER model was pretrained for 32 epochs.

speech onset
BrainBERT (frozen) ((Zahorodnii et al., 2025) 0.611± 0.022 0.757± 0.027
BrainBERT (our training code) 0.575± 0.018 0.659± 0.026
PopT (our training code) 0.702± 0.029 0.780± 0.025
PopT ((Zahorodnii et al., 2025) 0.677± 0.044 0.689± 0.050
DIVERTiny/I/0.1s (frozen) 0.770± 0.028 0.859± 0.018

D.4 ANALYSIS OF JOINT MODALITY (INTRACRANIAL/SCALP-EEG) PRETRAINING

We examined the effects of joint training on both iEEG and EEG downstream tasks, with detailed
results presented in Table 20. Joint training showed contrasting effects on the two modalities: it
decreased performance on iEEG benchmarks but improved performance on EEG tasks.

This difference may stem from the signal quality disparity between the two modalities. Since EEG
signals are inherently noisier than iEEG signals, incorporating EEG data during joint training may
introduce noise that degrades the model’s ability to process high-quality iEEG signals. Conversely,
for EEG tasks, joint training provides EEG specific information that iEEG cannot provide. Addi-
tionally, the data imbalance between modalities may contribute to these results. Since EEG data
outnumbers iEEG data, the model may become biased toward EEG-specific patterns during joint
training. As detailed in Table 20, training exclusively on curated EEG datasets achieves the best
performance on EEG downstream tasks, outperforming models that include iEEG data.
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Table 20: Joint pretraining results on downstream tasks.Performance compared between
DIVERTiny/I/1s (trained on iEEG only) and DIVERTiny/IE/1s(trained on iEEG and EEG),both
with dmodel = 256. Performance across iEEG tasks (speech and onset, measured by AUROC) and
EEG task (FACED, measured by ACC) are shown. Joint training with EEG data improves perfor-
mance on EEG tasks but slightly decreases performance on iEEG tasks.

speech (iEEG, AUROC) onset (iEEG, AUROC) FACED (EEG, ACC)

Tiny/I/1s (frozen) 0.854 ± 0.011 0.906 ± 0.008 0.328± 0.003

Tiny/IE/1s (frozen) 0.817± 0.018 0.891± 0.012 0.359 ± 0.004

Table 21: Ablation on pretraining data composition for EEG downstream tasks. We evalu-
ated how different pretraining dataset combinations affect performance on EEG downstream tasks.
We compared models pretrained on: TUEG (Obeid & Picone, 2016)-only (largest single EEG
dataset), TUEG+iEEG, all EEG datasets, and EEG+iEEG (all available data). All models use
DIVERSmall/E/1s architecture with dmodel = 512, pretrained for 2 epochs. The model trained ex-
clusively on curated EEG datasets achieves the best performance, outperforming models that include
iEEG data.

Pretraining Data FACED (9-class) PhysioNet-MI (4-class)

ACC kappa F1 ACC kappa F1

TUEG-only 0.519 ± 0.004 0.456 ± 0.005 0.518 ± 0.005 0.623 ± 0.010 0.497 ± 0.013 0.625 ± 0.009

TUEG + iEEG 0.461 ± 0.011 0.394 ± 0.013 0.471 ± 0.012 0.599 ± 0.008 0.465 ± 0.010 0.600 ± 0.008

EEG + iEEG 0.540 ± 0.013 0.482 ± 0.015 0.550 ± 0.014 0.638 ± 0.005 0.517 ± 0.006 0.639 ± 0.004

EEG 0.570 ± 0.009 0.515 ± 0.010 0.579 ± 0.008 0.644 ± 0.005 0.526 ± 0.006 0.646 ± 0.005

D.5 INTERPRETATION RESULTS

Figure 13 shows a visualization of representation analysis on downstream datasets using
UMAP (McInnes et al., 2018). We examine the embeddings obtained from the pretrained
DIVERTiny/I/0.1s model on the test set of speech, onset, and volume tasks in neuroprobe dataset
without any finetuning. The results indicate that DIVER learned meaningful iEEG representations
from pretraining, thereby capturing label-relevant structure in downstream datasets even in the ab-
sence of finetuning.

Figure 13: Visualizations of representations on neuroprobe downstream tasks. Each plot shows test
set embeddings from one fold of a single trial from a single subject.
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Table 22: Comparison of finetuning architectures in EEG downstream tasks. Deeper heads gen-
erally improve performance up to 3-4 layers.

Head Depth FACED (9-class) PhysioNet-MI (4-class)

ACC kappa F1 ACC kappa F1

Linear 0.523 ± 0.018 0.461 ± 0.020 0.521 ± 0.018 0.653 ± 0.013 0.538 ± 0.017 0.654 ± 0.013

2-Layer 0.584 ± 0.005 0.530 ± 0.005 0.584 ± 0.005 0.674 ± 0.003 0.565 ± 0.004 0.676 ± 0.003

3-Layer 0.601 ± 0.008 0.550 ± 0.009 0.607 ± 0.009 0.676 ± 0.003 0.567 ± 0.004 0.678 ± 0.004

4-Layer 0.603 ± 0.007 0.552 ± 0.008 0.609 ± 0.007 0.672 ± 0.008 0.573 ± 0.011 0.674 ± 0.008

5-Layer 0.594 ± 0.021 0.543 ± 0.023 0.601 ± 0.019 0.660 ± 0.007 0.547 ± 0.009 0.662 ± 0.006

E EXPLORATION OF FINETUNING METHOD

E.1 OVERVIEW:IMPACT OF FINETUNING METHODOLOGY ON EEG DOWNSTREAM TASK
PERFORMANCE

We conduct comprehensive experiments to investigate the impact of different finetuning methods on
downstream task performance. Our analysis includes: (1) systematic exploration of MLP classifier
depth for DIVER(appendix subsection E.2), (2) reproduction of CBraMod (Wang et al., 2024c) per-
formance using publicly available code and weights(appendix subsection E.3), and (3) comparative
analysis of various finetuning configurations across both models E.4. These experiments reveal that
finetuning methodology significantly affects model performance, and optimal configurations vary
across tasks and models. Importantly, when comparing DIVER and CBraMod under identical
finetuning configurations (one-to-one comparison), DIVER demonstrates competitive or supe-
rior performance to CBraMod across multiple tasks, achieving overall state-of-the-art results
despite CBraMod’s higher reported in-paper performance on some tasks.

E.2 IMPACT OF MLP CLASSIFIER DEPTH ON DIVER PERFORMANCE

Initially, we employed a linear classifier head for finetuning but observed suboptimal performance.
Upon examining the publicly available code of CBraMod (Wang et al., 2024c), the previous state-of-
the-art model, we found that it uses an MLP classifier head. To ensure fair comparison, we replaced
the linear head with an MLP classifier, which resulted in substantial performance improvements
for DIVER-1. This motivated us to conduct systematic experiments investigating how MLP depth
affects performance. Table 22 compares the performance across the depths of MLP classifier for
downstream EEG tasks. The original 3-layer MLP classifier is varied between 1 to 5 layers. For both
FACED and PhysioNet-MI tasks, performance improved with the increase of MLP depth, achieving
peak performance at 4-layer for FACED (balanced accuracy of 0.603) and 3-layer for PhysioNet-MI
(balanced accuracy of 0.676). Beyond the optimal depth, we observed performance saturation or
slight degradation, particularly notable in the 5-layer MLP for both datasets. These results indicate
that a moderate depth (3-4 layers) suffices model’s effectiveness across different EEG downstream
tasks.

E.3 CHALLENGES IN REPRODUCING CBRAMOD BASELINE PERFORMANCE

While we found that finetuning method significantly impacts downstream task performance, the
CBraMod paper does not specify which finetuning methods were used for each downstream task.
Therefore, we conducted experiments to reproduce CBraMod’s performance using the default con-
figuration from their publicly released code and weights. To ensure faithful reproduction, we used
CBraMod’s preprocessing pipeline, pretrained weights, and finetuning code without modification.

The experimental results revealed substantial performance gaps on several tasks (Table 23). On Men-
talArithmetic(Zyma et al., 2019), reproduced accuracy (0.619) fell short of reported performance
(0.726); on TUEV(Obeid & Picone, 2016), accuracy decreased from 0.667 to 0.605; on Mum-
taz2016(Zyma et al., 2019), from 0.956 to 0.882. Only FACED(Chen et al., 2023) and PhysioNet-
MI(Goldberger et al., 2000; Schalk et al., 2004) showed relatively successful reproduction. Notably,
similar reproduction difficulties with CBraMod have been reported in recent work (Wang et al.,
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Table 23: Comparison of DIVER-1 EEG model with CBraMod. CBraMod (in paper) refers to
the performance reported in the original CBraMod paper, while CBraMod (reproduction) represents
our reproduction using the default configuration from their publicly released code and weights.

Models FACED (9-class)

ACC kappa F1

CBraMod(in paper) 0.551 ± 0.009 0.504 ± 0.012 0.562 ± 0.009
CBraMod(reproduction) 0.570 ± 0.005 0.514 ± 0.006 0.574 ± 0.006

DIVER (Ours) 0.601 ± 0.008 0.550 ± 0.009 0.607 ± 0.009

Models PhysioNet-MI (4-class)

ACC kappa F1

CBraMod(in paper) 0.642 ± 0.009 0.522 ± 0.017 0.643 ± 0.010
CBraMod(reproduction) 0.621 ± 0.002 0.495 ± 0.003 0.622 ± 0.003

DIVER (Ours) 0.676 ± 0.003 0.567 ± 0.004 0.678 ± 0.004

Models MentalArithmetic (2-class)

ACC AUC-PR AUROC

CBraMod(in paper) 0.726 ± 0.013 0.627 ± 0.010 0.791 ± 0.007
CBraMod(reproduction) 0.619 ± 0.035 0.533 ± 0.064 0.749 ± 0.031

DIVER (Ours) 0.727 ± 0.018 0.676 ± 0.046 0.814 ± 0.026

Models Mumtaz2016 (2-class)

ACC AUC-PR AUROC

CBraMod(in paper) 0.956 ± 0.006 0.992 ± 0.003 0.992 ± 0.003
CBraMod(reproduction) 0.882 ± 0.019 0.976 ± 0.007 0.974 ± 0.009

DIVER (Ours) 0.894 ± 0.006 0.971 ± 0.003 0.968 ± 0.005

Models TUEV (6-class)

ACC kappa F1

CBraMod(in paper) 0.667 ± 0.011 0.677 ± 0.010 0.834 ± 0.006
CBraMod(reproduction) 0.605 ± 0.024 0.623 ± 0.016 0.802 ± 0.009

DIVER (Ours) 0.630 ± 0.029 0.527 ± 0.039 0.747 ± 0.019

2025), which also observed performance gaps between reported and reproduced results on certain
tasks.

These reproduction challenges highlight the sensitivity of EEG foundation models to finetuning con-
figurations. When comparing DIVER to the reproduced CBraMod baselines, the performance gaps
narrow considerably: on TUEV, DIVER achieves 0.630 compared to reproduced CBraMod’s 0.605;
on MentalArithmetic, 0.727 vs 0.619. This underscores the importance of transparent reporting of
finetuning protocols for fair model comparison.

E.4 TASK-SPECIFIC OPTIMAL FINETUNING CONFIGURATIONS FOR CBRAMOD AND DIVER

As mentioned above, the default configuration from CBraMod’s public code was insufficient to fully
reproduce their reported performance. To maximize performance recovery, we experimented with
various finetuning methods available in their codebase. We systematically explored five different
configurations: (1) no multi lr: using a single learning rate for both backbone and head, (2) multi
lr multiplier 3/7: setting the head learning rate to 3× or 7× the backbone learning rate, (3) linear
classifier: full finetuning with a 1-layer linear head, (4) linear probing: freezing the backbone while
training only a 1-layer linear head, and (5) CBraMod finetuning method: using a 3-layer MLP head
with 5× learning rate multiplier as the default configuration.

As shown in Table 24, the optimal finetuning method for CBraMod varied across tasks. Specifically,
for Mumtaz2016, the ”no multi lr” configuration achieved the best performance (ACC: 0.920), while
for TUEV, the ”linear classifier” method performed best (ACC: 0.635). For MentalArithmetic, both
”no multi lr” and the default CBraMod method showed comparable performance.
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Table 24: One-to-One Comparison between CBraMod and DIVER using fixed finetuning
method. Both models evaluated with identical finetuning configurations. CBraMod uses publicly
released weights and code. DIVER model uses 12 layers with dmodel = 512 and were pretrained for
32 epochs. Results are reported as mean ± standard deviation across 5 random seeds.

Mumtaz2016
(2-class) DIVER CBraMod

ACC AUC-PR AUROC ACC AUC-PR AUROC

no multi lr 0.894 ± 0.006 0.971 ± 0.003 0.968 ± 0.005 0.920 ± 0.027 0.985 ± 0.010 0.984 ± 0.012
multi lr multiplier 3 0.896 ± 0.003 0.980 ± 0.001 0.979 ± 0.002 0.892 ± 0.010 0.977 ± 0.006 0.974 ± 0.008
multi lr multiplier 7 0.882 ± 0.044 0.981 ± 0.008 0.980 ± 0.007 0.888 ± 0.012 0.977 ± 0.007 0.975 ± 0.008

linear classifier 0.902 ± 0.004 0.986 ± 0.005 0.985 ± 0.006 0.872 ± 0.059 0.975 ± 0.012 0.973 ± 0.014
linear probing 0.944 ± 0.003 0.990 ± 0.000 0.990 ± 0.000 0.515 ± 0.003 0.962 ± 0.003 0.972 ± 0.001

CBraMod
finetuning method* 0.901 ± 0.011 0.985 ± 0.006 0.985 ± 0.006 0.882 ± 0.019 0.976 ± 0.007 0.974 ± 0.009

TUEV
(6-class) DIVER CBraMod

ACC kappa F1 ACC kappa F1

no multi lr 0.630 ± 0.029 0.527 ± 0.039 0.747 ± 0.019 0.609 ± 0.021 0.618 ± 0.023 0.801 ± 0.012
multi lr multiplier 3 0.649 ± 0.030 0.563 ± 0.026 0.765 ± 0.018 0.611 ± 0.021 0.628 ± 0.027 0.805 ± 0.013
multi lr multiplier 7 0.648 ± 0.036 0.555 ± 0.050 0.761 ± 0.025 0.602 ± 0.057 0.624 ± 0.031 0.802 ± 0.017

linear classifier 0.611 ± 0.024 0.524 ± 0.031 0.753 ± 0.016 0.635 ± 0.024 0.625 ± 0.047 0.804 ± 0.024
linear probing 0.559 ± 0.025 0.397 ± 0.037 0.624 ± 0.041 0.314 ± 0.011 0.307 ± 0.014 0.574 ± 0.012

CBraMod
finetuning method* 0.612 ± 0.014 0.414 ± 0.021 0.644 ± 0.017 0.605 ± 0.024 0.623 ± 0.016 0.802 ± 0.009

MentalArithmetic
(2-class) DIVER CBraMod

ACC AUC-PR AUROC ACC AUC-PR AUROC

no multi lr 0.727 ± 0.018 0.676 ± 0.046 0.814 ± 0.026 0.637 ± 0.038 0.494 ± 0.022 0.747 ± 0.031
multi lr multiplier 3 0.654 ± 0.091 0.666 ± 0.070 0.815 ± 0.027 0.629 ± 0.035 0.493 ± 0.042 0.734 ± 0.025
multi lr multiplier 7 0.669 ± 0.120 0.710 ± 0.113 0.852 ± 0.052 0.584 ± 0.030 0.459 ± 0.051 0.704 ± 0.033

linear classifier 0.724 ± 0.040 0.705 ± 0.035 0.855 ± 0.021 0.621 ± 0.084 0.453 ± 0.079 0.720 ± 0.072
linear probing 0.608 ± 0.037 0.667 ± 0.021 0.791 ± 0.011 0.515 ± 0.008 0.522 ± 0.017 0.668 ± 0.008

CBraMod
finetuning method* 0.735 ± 0.045 0.707 ± 0.069 0.839 ± 0.022 0.619 ± 0.035 0.533 ± 0.064 0.749 ± 0.031

* Finetuning methods: (1) no multi lr: single LR for backbone and head (2) multi lr multiplier X: head LR = X × backbone LR (3) linear
classifier: full finetuning with 1-layer head (4) linear probing: frozen backbone, trainable 1-layer head (5) CBraMod finetuning method:
3-layer MLP head, multi lr multiplier 5.

Interestingly, when applying the same finetuning methods to DIVER, different configurations
yielded superior performance compared to what worked best for CBraMod. For instance, on Mum-
taz2016, DIVER achieved its best performance with ”linear probing” (ACC: 0.944), which per-
formed poorly for CBraMod (ACC: 0.515). On TUEV, DIVER performed best with ”multi lr multi-
plier 3” (ACC: 0.649), whereas CBraMod favored the ”linear classifier” approach.

Crucially, when comparing both models under identical finetuning configurations (one-to-one com-
parison), DIVER demonstrates competitive performance across tasks. DIVER achieves superior
performance on multiple configurations for Mumtaz2016 and TUEV, and shows strong results on
MentalArithmetic. This head-to-head comparison under controlled conditions reveals that DIVER
achieves overall state-of-the-art performance when evaluation methodology is held constant, even
though CBraMod’s reported in-paper results appear higher on some tasks.

These findings underscore that finetuning methodology is critical for evaluating EFMs, and optimal
configurations can be model-dependent. Given this importance, we provide detailed specifications of
the finetuning methods used for DIVER (Appendix B.8) to promote transparency and reproducibility
in the EFM research community. We hope this contributes positively to establishing standardized
evaluation protocols for electrophysiology foundation models.
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F DATA DETAILS

F.1 PRETRAINING DATASET DESCRIPTION

The following datasets were utilized for the pretraining of our DIVER models. The total pretraining
time for the DIVERI dataset is 5,310 hours, and for the DIVERIE dataset, it is 59,613 hours.

• AJILE12 (Anootated Joints in Long-term Electrocorticography) (Peterson et al.,
2022): An ECoG dataset from 12 epilepsy patients, recorded semi-continuously over 55
days. Signals were collected from ≥ 64 electrodes at 1 kHz sampling rate and paired
with synchronized video-vased 3D human pose estimation and annotated wrist-movement
events.

• Self-collected iEEG dataset: An intracranial EEG dataset from 25 drug-resistant epilepsy
patients (∼7 days, ∼168 h per subject) with long-term ECoG and sEEG recordings (mean
56.4 ± 3.38 channels, sampled at 2 kHz) during naturalistic hospital behaviors.

• TUEG (Temple University Hospital EEG Corpus) (Obeid & Picone, 2016): A large-
scale clinical EEG dataset comprising 16,986 recording sessions from 10,874 subjects with
heterogeneous diagnoses. EEG signals were recorded using 20–31+ channels, predomi-
nanty at sampling rate between 250–512 Hz, and are linked with de-identified clinical re-
ports.

• HBN-EEG (Healthy Brain Network) (Shirazi et al., 2024): An developmental EEG
dataset from 2,782 participants aged 5–21. Each participant underwent approximately 60
minutes of high-density (128-channel) EEG and eye-tracking recordings across six distinct
tasks, including resting-state and movie watching.

• NCHSDB (Nationwide Children’s Hospital Sleep DataBank) (Lee et al., 2022): An pe-
diatric sleep EEG dataset of 3,673 patients. Each record includes 8–12 hours of EEG data
(26–29 channels, sampled at 256–512 Hz) manually scored for sleep stages and events.
While the dataset contains multimodal PSG signals (EOG, EMG, ECG, respiration, etc.),
we used only the EEG channels.

• PEERS (Penn Electrophysiology of Encoding and Retrieval Study) (Kahana et al.,
2023): An EEG dataset from 364 subjects who participated in multiple sessions of free
recall, recognitionm and distractor tasks. EEG signals were recorded with 125 channels at
500 Hz sampling rate.

F.2 FINETUNING DATASET DESCRIPTION

The following datasets were utilized for the downstream evaluation of our DIVER models, compris-
ing a comprehensive set of benchmarks across both iEEG and EEG modalities. An overview of the
dataset specifications and task definitions is provided in Table 3.

Neuroprobe Neuroprobe (Zahorodnii et al., 2025) is a large scale iEEG benchmarks with natu-
ralistic labels during movie watching. 10 subjects watch 25 movies, age from 6 to 19. There are
3 types of evaluation in neuroprobe; single subject-single movie (WithinSession) (splits within
the movies), single subject-different movie(CrossSession) (splits within subjects), different subject-
different movie(CrossSubject). We evaluated the model in WithinSession. Additionally, Neuroprobe
provides an option to subset subjects and trials. We used the LITE option (default configuration),
which includes two movies per subject and a total of six subjects. 5 Detailed description of each task
is provided below (adapted from (Zahorodnii et al., 2025):

1. frame brightness (visual): The mean brightness computed as the average HSV value over
all pixels. Low (percentiles 0%-25%) vs High (75%-100%)

2. global flow (visual): A camera motion proxy. The maximal average dense optical flow
vector magnitude. Same as above.

5PopT’s performance on the same task differs between its original paper and its evaluation in the neuroprobe
benchmark because neuroprobe implemented proper train/test splits across time so that no temporal leakage
occurs between training and test sets, whereas the original PopT evaluation used random sampling that can lead
to data contamination across temporal boundaries.
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3. local flow (visual): A large displacement proxy. The maximal optical flow vector magni-
tude. Same as above.

4. face num (visual): The maximum number of faces per frame during the word. 0, or ≥ 1.

5. volume (auditory): Average root mean squared watts of the audio. Low (0%-25%) vs High
(75%-100%).

6. pitch (auditory): Average pitch of the audio. Same as above.

7. delta volume (auditory): The difference in average RMS of the 500 ms windows pre- and
post-word onset. Same as above.

8. speech (language): Whether any speech is present in the given time interval.

9. onset (language): Whether a new sentence starts in the interval, or there is no speech at all.

10. gpt2 surprisal (language): Negative-log transformed GPT-2 word probability (given pre-
ceding 20s of language context). Low (0%-25%) vs High (75%-100%).

11. word length (language): Word length (ms). Same as above.

12. word gap (language): Difference between previous word offset and current word onset
(ms). Same as above.

13. word index (language): The word index in its context sentence. The first word in the sen-
tence (0), or other (1).

14. word head pos (language): The relative position (left/right) of the word’s dependency tree
head.

15. word part speech (language): The word Universal Part-of-Speech (UPOS) tag. Verb (0),
or other (1).

EEG tasks We evaluate our model on five publicly available EEG datasets spanning emotion recog-
nition, motor imagery, mental workload tasks and mental disorder diagnosis and event type clas-
sification. We adopted the preprocessing procedure from CBraMod with minimal modifications;
specifically, the resampling rate was adjusted to 500 Hz while all other steps remained consistent
with the original pipeline. Detailed description of each dataset is provided below:

1. FACED (Chen et al., 2023): A large-scale EEG corpus for emotion recognition. It contains
recordings from 123 subjects with 32-channel EEG while watching 28 emotion-eliciting
video clips. Emotions are categorized into 9 discrete classes: amusement, inspiration, joy,
tenderness, anger, fear, disgust, sadness, and neutral. We evaluated the model with the 9-
class emotion classification task.

2. PhysioNet-MI (Goldberger et al., 2000; Schalk et al., 2004): An EEG dataset for motor
imagery–based BCI tasks. It includes recordings from 109 subjects using a 64-channel
10–20 montage and contains four motor imagery classes: left fist, right fist, both fists, and
both feet.

3. MentalArithmetic (Zyma et al., 2019): An EEG dataset for mental stress detection. It
contains recordings from 36 subjects using 20 channels. We used 19 channels in total,
excluding 1 reference channel. The dataset consists of recordings during mental arithmetic
tasks under two conditions: with mental stress and without mental stress.

4. Mumtaz2016 (Mumtaz, 2016): A clinical EEG dataset designed to distinguish major de-
pressive disorder patients from healthy individuals. This dataset comprises 64 subjects (34
with MDD, 30 healthy controls), with signals acquired from 19 scalp locations following
the standard 10-20 electrode placement system. We employed the resting-state conditions
for binary MDD classification.

5. TUEV (Obeid & Picone, 2016): An EEG dataset for event type classification in clin-
ical neurophysiology. This corpus provides annotated EEG segments categorized into
six classes: spike and sharp wave (SPSW), generalized periodic epileptiform discharges
(GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), ar-
tifact (ARTF), and background (BCKG). We evaluated the model on this 6-class event
classification task.
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F.3 QAQC AND PREPROCESSING

All data underwent quality assessment and control (QAQC) and preprocessing with a philosophy
of minimal intervention to retain as much original signal information as possible. For QAQC, we
normalized signals by dividing EEG by 100 µV and iEEG by 200 µV (the latter accounting for
larger amplitudes in intracranial recordings). While Jiang et al. (2024) applied normalization without
QAQC and Wang et al. (2024c) removed entire segments if even one timepoint exceeded 100 µV, we
adopted a more conservative clipping approach to prevent data loss. We clipped amplitude values
exceeding these normalization thresholds, only discarding electrodes when more than 3.33% of
samples required clipping and removing whole segments when more than 50% of channels were
compromised. This conservative strategy enabled us to preserve substantially more usable data:
whereas CBRaMod’s preprocessing yielded approximately 174.7k channel-hours of pretraining data
on the same TUEG dataset (refer to Appendix Table 26), our QAQC pipeline retained 422k channel-
hours, a 2.4× increase.

For preprocessing, we applied minimal filtering: a high-pass filter (0.5 Hz for private iEEG, 0.3
Hz for other datasets) to remove low-frequency drift, a 60 Hz notch filter for power line noise
suppression, and no low-pass filtering to preserve high-frequency components. All datasets were
resampled to 500 Hz and segmented into 30-second non-overlapping windows.

G COMPARISON WITH EXISTING EEG/IEEG FOUNDATION MODELS

A direct comparison of training epochs for prior EEG/iEEG foundation models is misleading due
to varying dataset sizes (Table 25). To enable a fair assessment, we introduce the “Scaled Epochs
on Our Data” metric. This normalizes the total data processed during training (channel-hours ×
epochs) into an equivalent number of epochs on our dataset, allowing for a direct comparison of
training epochs across all prior models and our own. For entries in Table 25 that use estimated
values (marked with *), the corresponding estimation procedures are documented in Table 26.

Table 25: Comparison of prior EEG/iEEG foundation models

Models Modality Model Size
(Parameters)

Volume
(Channel-hours)

Training
Epochs

Scaled Epochs
on Our Dataa

BENDR (Kostas et al., 2021) EEG 155M* N/A 1 N/A

BrainBERT (Wang et al., 2023) SEEG 43M* 4.5k 39* 0.5

Brant (Zhang et al., 2023) SEEG 505.68M 281k 32* 25.6

BIOT (Yang et al., 2023) EEG 3.3M 312k 100 88.6

Neuro–GPT (Cui et al., 2024) EEG 90M* 541k 135 207.6

LaBraM (Jiang et al., 2024) EEG 5.8M, 46M, 369M 76.8–83.7k 50 11.4

EEGPT (Wang et al., 2024b) EEG
0.4M, 0.5M, 1.6M,
6.4M, 19M, 25M,
76M, 101M

11.1k* 200 6.8

CBraMod (Wang et al., 2024c) EEG
0.1M, 0.4M, 0.8M,
1.2M, 1.5M, 2M,
3M, 4M

175.7k* 40 20

Ours (DIVERI) ECoG+SEEG 12.72M–1.83B 352k 64

Ours (DIVERIE) ECoG+SEEG+EEG 13.03-812.85M 1,662k 1

a This metric normalizes the total training compute across studies to represent the equivalent number of training compute on our dataset. It

is calculated as: Scaled Epochs =
Source Dataset (channel-hours) × Source Epochs

Our Dataset (channel-hours)
, where our iEEG dataset = 352,035 channel-hours.

* Values marked with an asterisk are our estimates, as they were not explicitly stated in the source paper; the estimation methods are
summarized in Table 26.
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Table 26: Estimation of model and training specifications. We detail the assumptions and calcula-
tions used to derive model size, training epochs, and data volume (channel-hours) for prior models.
Bold values represent the final estimates derived from the reported configurations.

Models Parameters Est. Value Justification / Method

BENDR Model Size 155M Assume d=1536, r=3076, L=8. Decompose P = Pconv +Ppos +Pin +LPℓ.
Here Pconv = (3·20·512+512) + 5(2·512·512+512) + 6(2·512),
Ppos = 25·(512/16)·512 + 512, Pin = 512·1536 + 1536, and
Pℓ ≈ 4d2+2dr+r+9d. Numerically ≈ 155M.

BrainBERT Model Size 43M Assume d=768, r=4d=3072, L=6. Per layer
Pℓ ≈ 4d2+2dr+r+9d ≈ 7.08M. Transformer total LPℓ ≈ 42.5M. Add
2-layer head 768→768→40: Phead ≈ 0.6M. Hence P ≈ 42.5+0.6 ≈ 43M.

Training Epochs 39 Total hours H=4,551, segment τ=5s.
Nsamp = H·3600

τ = 4551·3600
5 = 3,276,720. Steps/epoch

≈ Nsamp/256 ≈ 12,800. With U=500,000 updates: epochs
≈ U/12,800 ≈ 39.

Brant Training Epochs 32 Use epochs =
U·(B·A)
Nsamp

. Reported U=750,000, B=16, A=4 ⇒ 48M

sample-passes. Dataset size Nsamp ≈ 1.5M ⇒ epochs ≈ 48/1.5 ≈ 32.

Neuro–GPT Model Size 90M Assume GPT-2-like decoder with d=1024, r=4096, L=6. Per layer
Pℓ ≈ 12.6M ⇒ PGPT = LPℓ ≈ 75.6M. Adding EEG encoder and a linear
projector (P0) yields P = P0 + PGPT ≈ 90M (projector ∼ 1.1M; remainder in
encoder).

EEGPT Channel-hours 11.1k Apply ch-hr = (#trials)·(#ch)·(s)
3600 per dataset and sum: PhysioMI ≈ 107, HGD

≈ 1,991, TSU ≈ 597, SEED ≈ 116, M3CV ≈ 8,267⇒ total ≈ 11,078 ch-hr.

CBraMod Channel-hours 175.7k Common channels c=19, non-overlapping segment τ=30s, kept segments
N=1,109,545: ch-hr = c·N·τ

3600 = 19·1,109,545·30
3600 ≈ 175.7k.

Conventions. Hidden size d, FFN expansion r, layers L, per-layer parameters Pℓ, total parameters P , segment length τ (sec-
onds), minibatch B, gradient accumulation A, updates U , number of samples Nsamp. Transformer block (per layer): Pℓ =

4d
2︸︷︷︸

Q,K,V,Out

+2dr + r︸ ︷︷ ︸
FFN

+ 9d︸︷︷︸
2×LN+biases

≈ 4d2 + 2dr + r + 9d. Total params: P = P0 + LPℓ (non-Transformer parts P0 separated

when needed). Epochs: epochs =
U·(B·A)
Nsamp

, with Nsamp =
(hours·3600)

τ . Channel-hours: ch-hr =
∑ (#trials)·(#channels)·(seconds)

3600 .
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