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Abstract

For many years, it has been shown how much exploiting equivariances can be beneficial
when solving image analysis tasks. For example, the superiority of convolutional neural
networks (CNNs) compared to dense networks mainly comes from an elegant exploitation
of the translation equivariance. Patterns can appear at arbitrary positions and convolutions
take this into account to achieve translation invariant operations through weight sharing.
Nevertheless, images often involve other symmetries that can also be exploited. It is the case
of rotations and reflections that have drawn particular attention and led to the development
of multiple equivariant CNN architectures. Among all these methods, Bessel-convolutional
neural networks (B-CNNs) exploit a particular decomposition based on Bessel functions to
modify the key operation between images and filters and make it by design equivariant to
all the continuous set of planar rotations. In this work, the mathematical developments
of B-CNNs are presented along with several improvements, including the incorporation
of reflection and multi-scale equivariances. Extensive study is carried out to assess the
performances of B-CNNs compared to other methods. Finally, we emphasize the theoretical
advantages of B-CNNs by giving more insights and in-depth mathematical details.

1 Introduction

For years now, convolutional neural networks (CNNs) are known to be the most powerful tool that we have for
image analysis. Their efficiency compared to classic multi-layers perceptrons (MLPs) mainly comes from an
elegant exploitation of the translation equivariance involved in image analysis tasks. Indeed, CNNs exploit
the fact that patterns can arise at different positions in images by sharing the weights over translations
thanks to convolutions. The translation equivariance can be seen as a particular form of prior knowledge
and weights can be saved compared to an MLP architecture with similar performances.

By building on the success of exploiting translation equivariance in image analysis, we advocate here that
generalizing this to other types of appropriate symmetries can also be useful. For example, in biomedical
or satellite imaging, objects of interest can appear at arbitrary positions with arbitrary orientations. To
illustrate this, Figure 1 shows four versions of the exact same galaxy that are equally plausible images that
could occur in the data set. If the task is to determine the morphology of the galaxy, it is relevant to
want these images to be processed in the exact same way. Therefore, introducing rotation equivariance will
lead to a more optimal use of the weights and to a better overall efficiency of the models. Being able to
guarantee rotation equivariance is also useful to put more trust into models. For instance, experts would be
more confident in models that extract the exact same latent features for an object, no matter its particular
orientation (of course, depending on the application).

Still, introducing other types of equivariance in an efficient way in CNNs is not straightforward. On the
one hand, many works propose brute-force solutions like (i) considerably increasing the training set (data
augmentation), or (ii) artificially multiplying the number of filters by directly applying the desired symmetries
onto them. In practice, these solutions will lead both to an increase of the training time and the size of
the models. Furthermore, most of these methods do not provide any mathematical guarantee regarding the
equivariance. On the other hand, a few works propose solutions to efficiently bring more general equivariances
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Figure 1: Four rotated versions of the same galaxy image, retrieved from the Galaxy Zoo data set by Willett
et al. (2013). This data set contains images of galaxies as well as their morphologies, according to experts.
For this application, the orientation is arbitrary and does not contain any information.

in CNNs while providing mathematical guarantees. Bessel-convolutional neural networks (B-CNNs) are one
of those, and rely on a particular representation of images that is more convenient to deal with rotations
and reflections.

In this work, improvements of B-CNNs compared to the prior work of Delchevalerie et al. (2021) are presented,
which are mainly an extension to O(2) equivariance and an optimal choice for the initial vyax and Jmax
meta-parameters based on the Nyquist sampling theorem. Also, we present how multi-scale equivariance
can easily be achieved in B-CNNs. Finally, a more extensive study is performed to assess the performances
of B-CNNs compared to other state-of-the-art methods on different data sets. To do so, we present the full
mathematical developments of B-CNNs and we give more detailed explanations. The advantage of using
B-CNNs regarding both the size of the model and the training set is highlighted, along with theoretical and
experimental evidence of the equivariance. Our implementation is available online at (remowved for double-
blind review, an anonymized version is available as supplementary materials for the reviewers) along with
the scripts used to reproduce the experiments.

2 Background and Definition of Invariance and Equivariance

Invariance and equivariance are two different notions that need to be clearly defined for the next sections.
Let ¥ (z,y) be an image where z and y represent the pixel coordinates, K (z,y) be an arbitrary filter
and G be a set of transformations that can be applied on the image. The operation defined by * is G-
invariant if (g¥) (x,y) * K (x,y) = ¥ (z,y) * K (z,y),Vg € G, and G-equivariant if (¢¥) (z,y) * K (z,y) =
g (U K)(z,y),¥g € G. In other words, invariance means that the results will be exactly the same for all
transformations g of the input image, while equivariance means that the results will be also transformed by
the action of g.

Convolutional Neural Networks (CNNs) work by applying a succession of convolutions between an input
image ¥ (x,y) and some filters. If K (z,y) is one of those particular filters, convolutions are expressed by

R R
‘I/(a?,y)*K(w,y)=/ / U (x—a,y—y)K (2, y)da'dy,
-RJ-R

where R defines the size of the filter. One can now show that CNNs exhibit a translation equivariance (that
is, patterns are detected the same way regardless of their particular positions). Indeed, if 7, , is a translation
operator such that it translates the image by an amount of pixels (u,v)

Tuw¥ (2,y) =¥ (v +u,y +v),
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one can show that

U((x—2)+u(y—vy)+v) K@, y)dd'dy

Tun¥ (x — 2"y —y') K (2, y") da'dy’

0= [ )0

:/R /R\If r+u) -2, (y+v) —y) K (@, y')da'dy’
//
L)

which matches the definition of G-equivariance defined earlier, and therefore proves the translation equivari-
ance of CNNs. Figure 2 illustrates this equivariance.

Input Feature map Input Feature map

2z 97

(a) Initial case (b) After translating objects

Figure 2: Tllustration of the translation equivariance in CNNs. Both (a) and (b) are made of the same
objects, but at different positions. Nevertheless, CNNs process objects the same way independently of their
particular absolute positions.

However, regarding other types of transformations, the equivariance in CNNs is generally not achieved. One
can for example consider rotations, by defining R, as an operator that applies a rotation of an angle «, such
that

R,V (z,y) =V (zcosa —ysina,xsina + ycosa) .

By applying a similar development, it clearly appears that
Ro (¥ K) (z,y) # (R V) (z,y) * K (2,y) .

This is expected as convolution can be seen as element-wise multiplications with a sliding window, and the
result of element-wise multiplications depend on the particular orientation of the matrices. This lack of
rotation equivariance will be illustrated in Figure 8a.

3 Related Works

Many techniques propose to bring more general equivariance in convolutional neural networks (CNNs). A
particular interest was taken in satisfying SO(2) and O(2) equivariance as it is an interesting prior for many
applications in image recognition; see for example Chidester et al. (2019) for medical imaging, Dieleman
et al. (2015) for astronomical imaging, Li et al. (2020) for satellite imaging and Marcos et al. (2016) for
texture recognition. SO(2) is called the special orthogonal group and contains the continuous set of planar
rotations, while O(2) is called the orthogonal group and also add all the planar reflections. The different
proposed methods can be categorized in different groups: (i) methods that only increase robustness to
planar transformations without mathematical guarantees of equivariance, (ii) methods that bring some
mathematical guarantees but only for a discrete set of planar transformations (as for example, cyclic C),
and dihedral D,, groups), and (iii) methods that bring mathematical guarantees for the continuous set of
transformations.

The most famous technique from the first category is data augmentation (Quiroga et al., 2018). While
robustness can be considerably increased with data augmentation, it still requires for the model to learn the
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equivariance, as it is not used as an explicit constraint. No theoretical guarantees can then be provided,
and extracted features will generally not be the same for rotated versions of a particular object. Next
to data augmentation, one can also cite spatial transformer networks by Jaderberg et al. (2015), rotation
invariant and Fisher discriminative CNNs by Cheng et al. (2016), deformable CNNs by Dai et al. (2017), and
SIFT-CNNs by Kumar et al. (2018). The main drawback of such methods lies in the fact that, as models
still learn the equivariance by themselves, many parameters are used to encode redundant information.
Therefore, it leads to methods of category (ii) that aim to make models equivariant to discrete groups like
Cp, or D,. One can for example cite Group-CNNs by Cohen & Welling (2016), deep symmetry networks
by Gens & Domingos (2014), steerable CNNs by Cohen & Welling (2017), steerable filter CNNs by Weiler
et al. (2018), dense steerable filter CNNs by Graham et al. (2020), spherical CNNs by Cohen et al. (2018)
and Deformation Robust Roto-Scale-Translation Equivariant CNNs by Gao et al. (2021). Compared to
category (i), equivariance to a finite number of planar transformations is generally obtained by tying the
weights for several transformed versions of the filter. Nevertheless, even if guarantees are now obtained, it is
only for a finite set of transformations and it still involves computations with many parameters to encode the
equivariance (for example, 5 x 5 filters in a Dg-invariant convolutional layer will be made of 5 x5 x8x 2 = 400
parameters!). Finally, for the third category (iii), one can cite general E(2)-equivariant steerable CNNs
(E(2)-CNNs) by Weiler & Cesa (2019), where equivariance to continuous groups can be obtained by using
a finite number of irreducible representations, harmonic networks (HNets) by Worrall et al. (2017) that
use spherical harmonics to achieve a rotational equivariance by maintaining a disentanglement of rotation
orders in the network, and Finzi et al. (2020) who generalize equivariance to arbitrary transformations
from Lie groups. However, authors of E(2)-CNNs highlight that approximating SO(2) (resp, O(2)) by
using C,, (resp, D,) groups instead of using a finite number of irreducible representations leads to better
results. It follows that F(2)-equivariant CNNs are most of the time equivalent to methods of category (ii).
Regarding HNets, they are only SO(2) equivariant and involve complex values in the network that are poorly
compatible with many already existing tools (for example, activation functions and batch normalization layers
should be adapted, saliency maps cannot be easily computed, etc.). Finally, Esteves et al. (2018) introduce
Polar Transformer Networks that use a log-polar representation of images. In this representation, rotations
around the origin become vertical shifts and dilations become horizontal shifts. Therefore, the translation
equivariance of CNNs is converted to a rotation and scaling one. However, this approach only handles global
rotation equivariance (not a local one at the scale of the kernel) and requires to have a global origin for the
rotations, which makes this technique quite different from the other ones.

Recently, another type of equivariant CNNs also emerged. While symmetries can be seen as a user constraint
for all the previously mentioned techniques, these new equivariant CNNs architectures find by themselves
during the training phase the symmetries that should be considered. One can for example cite the work
of Dehmamy et al. (2021) in this direction. This is particularly useful when users do not know and have no
insight about the symmetries that can be involved in data, or when symmetries are unexpected. However, the
aim of such methods differs from the previous ones because symmetries are no longer applied as constraints.
Therefore, those methods rely more on the training data, and are useful in a different context of applications.
A discussion about the strengths and weaknesses of these methods compared to others is provided at the
end of the paper, in Section 8.

Our work is a direct follow-up of the prior work of Delchevalerie et al. (2021), which built on the use of
Bessel functions in order to propose a new method that belongs to the third category. One should also cite
the work of Cheng et al. (2019) who propose to use a Fourier-Bessel decomposition of the filters to both
reduce model size and introduce group equivariance. Compared to the state of the art, Bessel-convolutional
neural networks (B-CNNs) initially proposed a new original technique to bring SO(2) equivariance, while
being easy to use with already existing frameworks. Indeed, B-CNNs involve real-valued feature maps and
can be expressed in terms of vanilla convolutions. In this work, we emphasize the theoretical advantages of
B-CNNs by giving more mathematical details. Also, further improvements compared to the prior work of
B-CNN s are presented, as for example by making them O(2) and multi-scale equivariant, and automatically
inferring optimal choices for some meta-parameters. Finally, a more extensive comparative study is also
carried out to highlight the strengths and weaknesses of different methods.

1However, note that only 5 X 5 = 25 parameters are learnable as the other ones are just transformed versions of the initial
filter.
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4 Using Bessel Functions in Image Analysis

In Bessel-convolutional neural networks (B-CNNs), Bessel coefficients are used instead of the raw pixel
values conventionally used in vanilla convolutional neural networks (CNNs). This section describes the
Bessel functions, and how they can be used to compute these Bessel coefficients. Also, some particular
properties of Bessel functions and Bessel coefficients are presented. The aim of this section is to give more
insights about the reasons that motivate the use of Bessel functions to achieve different kind of equivariance
in CNNs. Compared to the work of Delchevalerie et al. (2021), additional mathematical details are provided
as well as a discussion on how to perform an optimal choice for the initial meta-parameters vyax and jmax,
and how Bessel coefficients can also be used to express reflections.

4.1 Bessel Functions and Bessel Coefficients

Bessel functions are particular solutions of the differential equation

Py dy
2 2 2
Tt @ =)y =0,

which is known as the Bessel’s equation. The solution of this equation can be written as
y(z) = AJ, (z) + BY, (2),

where A and B are two constants, and J, (z) and Y,, (z) are called the Bessel functions of the first and second
kind, respectively. It has to be noted that these functions are well-defined for orders v € R in general. In
B-CNNs, only the Bessel functions of the first kind are used since Y, () diverges for x = 0. Indeed, Bessel
functions will be used to express images that can take arbitrary values, including at the origin. Examples of
Bessel functions of the first kind for different integer orders v can be seen in Figure 3a.

v=0

0.4+

0.0+

—0.2

—0.4+

—0.6
T T T T T T
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0

(a) Ju (z) for v € {0,1,2,3} (b) %I(x) =J, (z) for v € {0,1,2,3}
Figure 3: Bessel functions of the first kind are presented along with their derivatives for several integer orders
v e€{0,1,2,3}.

From a mathematical point of view, Bessel’s equation arises when solving Laplace’s or Helmholtz’s equation
in cylindrical or spherical coordinates. Bessel functions are thus particularly well-known in physics as they
appear naturally when solving many important problems, mainly when dealing with wave propagation in
cylindrical or spherical coordinates (Riley et al., 2006). Since Bessel functions naturally arise when modeling
different problems with circular symmetries in physics, these functions are particularly useful to express
more conveniently problems with circular symmetries in other domains. This ascertainment motivated the
prior work of Delchevalerie et al. (2021) to express images in a particular basis made of Bessel functions of
the first kind.
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Bessel functions of the first kind can be used to build a particular basis

R
{Nu,jJu (ku’jp) eiyavvyvj € N}? where NVJ = 1/\/27T/ pJE (kl/,jp) dp, (4'1)
0

for the representation of images defined in a circular domain of radius R, where p and 6 are the polar
coordinates (the Euclidean distance from the origin and the angle with the horizontal axis, respectively).
By carefully choosing k, ;, this basis can be made orthonormal for all squared-integrable functions f such
that f: D? C R? — R (where the domain D? is a disk in R?). To do so, one can choose k, ; such that
J}, (kv ;R) = 0. The proof for the orthonormality of the basis in this case is presented in Appendix A. Another
common choice that also leads to orthonormality is to use J, (k, ;R) = 0. Indeed, these two constraints are
suitable since a property of the Bessel functions is that J}, (z) = 1 (J,_1 (z) — J,+1 (2)). Therefore, applying
the constraint on J, (x) or on J), (x) are both valid solutions that bring orthonormality. However, in our
particular case, we choose to apply the constraint on .J/, () because it makes it more convenient to represent
arbitrary functions, as shown by Mayer & Vigneron (1999). The reason is that it exists a solution &, ; = 0
for v = 0 such that J, (k, ;R) = 0, which would not be the case with the constraint based on J, (z) (see
Figure 3). Therefore, the first element in the basis No0Jo (koop) €’ will be equal to Npg. As the result
is constant and does not depend on p and 6, this element can be used to describe an arbitrary constant
intensity in f. Figure 4 presents some elements of the basis, including the first one. Also, one can point out
that when the order v increases, the angular frequency (the number of zeros along the 6-polar-coordinate) of
the basis element increases. On the other side, when the order j increases, the radial frequency (the number
of zeros along the p-polar-coordinate) increases.

—i— —j—
. . .') (.0) D) ((») - - ~ ~ 2
! | - - = S :
- . h .
L 6% 0% 0 @) @) | #% @&d 4N 7z 7
- hd - — = LT 4 N\l Y 7
“ ™ AN S N Z - — - = =
. ] l.. .Ol 1:..00 1.0::0 (15%) ATNA N ':':\ r:v:\ D
«»r "L S S Z SZ .’ Wa¥ Wa®/ O e
(a) {Ny,j Jy (kv jp) cos (v8) } (b) {N,,,j Jo (ku,jp) sin (v0) }

Figure 4: Real (a) and imaginary (b) parts of the basis described by Equation (4.1) for different v and j.
Red and blue correspond to positive and negative values, respectively. One can see that v is linked to an
angular frequency, and j to a radial frequency. Note as for v = 0, there is no imaginary part.

An arbitrary function in polar coordinates W (p,f) : D?> C R? — R can be represented in the basis presented
in Equation (4.1) as

V(p,0)= > > v Nujdy (kujp)e™, (4.2)

v=—0o0 j=0

where ¢, ; € C are the Bessel coefficients of ¥ (p, #). These ¢, ; are the mathematical projection of ¥ (p, 0)
on the Bessel basis. Therefore, they are obtained by

2 R
g = /0 /O p [Nui Ty (k) &%) (. 0) dpdd, (4.3)
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where the element inside the brackets corresponds to the element (v,j) in the Bessel basis. By integrating
on D2, it computes the representation of ¥ (p, ) in this basis.

In B-CNNs, images are represented by a set of those Bessel coefficients instead of directly using the raw
pixel values. Further motivations about this will be given later. However, one can already point out that
Equation (4.2) needs in principle an infinite number of Bessel coefficients in order to faithfully represent the
initial function ¥ (p, #). From a numerical point of view, these two infinite summations need to be truncated.
First of all, one can show that it is not necessary to compute ¢, ; when v is a negative integer, since ¢, ;
and ¢_,, ; are not independent. Indeed, if v € N, J, (z) and J_,, (x) are linked by the relation

J_,(x)=(-1)"J, (z). (4.4)
Furthermore, Bessel functions also satisfy
Jo(=2) = (1) J, (@), (4.5)

which means that J, is an even function if v is even, and an odd function otherwise. By injecting Equa-
tions (4.4) and (4.5) in Equation (4.3), one can show that (proof can be found in Appendix B)

{%(@m) = (=1)" R (pv) (4.6)

S (p—vy) = (1) S (pny).-

The infinite summation for v in Equation (4.2) can be decomposed in two summations, one for v €
{=o0,...,—1} and another one for v € {0,...,00}. By exploiting the link between ¢, ; and ¢_, ;, the
infinite summation for v € {—o0, ..., 00} can then be reduced to a summation for v € {0,..., 00}, and it is
not necessary to compute Bessel coefficients for negative v orders. Finally, in order to truncate the infinite
summations, two meta-parameters vpax and jmax are defined, and the Bessel coefficients are only computed
for v (resp. j) in {0,...,Vmax (reSp. jmax)}. Nonetheless, it is difficult to make a good choice for these
meta-parameters and this may be rather automated by constraining &, ; with an upper limit. This is clearly
supported by Figure 4, as it shows that high v (j, respectively) orders correspond to basis elements with
an high angular (radial, respectively) frequency. Therefore, as images are sampled on a discrete Cartesian
grid, information about frequencies higher than an upper limit cannot be conserved. This upper limit can be
determined by the Nyquist frequency, as done by Zhao & Singer (2013), in order to both minimize the alias-
ing effect and maximize the amount of information preserved by the Bessel coefficients. The aliasing effect
occurs when frequencies are numerically mismatched to another frequency information due to an unfortunate
sampling. The aliasing effect is illustrated in Figure 5.

To avoid such issues, one should not sample at a frequency higher than the maximal frequency that can
theoretically be contained in the image. From now, let us suppose that the radius R of an image is arbitrarily
set to 1. If the image is made up of 2n x 2n pixels sampled on a Cartesian grid, it leads to a resolution of
1/n. Hence, the sampling rate is n and the associated Nyquist frequency (the band-limit) is n/2. Therefore,
it is optimal to use only the ¢, ; that satisfy the constraint

k,,j n
iz < 77
2r T 2

because those are the only ones that carry information really contained on the finite Cartesian grid. We
then define?

ky j <
2T

. (4.7)

Kmax = n;a_x ky; s.t.

|3

One of the consequences of this constraint is that, for larger v orders, a smaller number of Bessel coefficients
will be computed, as k, ; will reach kyax more rapidly. Indeed, the zeros of J, (z) (that are the k, ;’s if
R=1) are shifted toward higher = values (see the shifting toward the right for .J; () when v increases in

2Tt is interesting to mention that this constraint is also a common choice in numerical physics, where £ = %, A being the

wavelength. It is meaningless to use larger values for k, as it corresponds to wavelengths smaller than the resolution of space.
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Figure 5: Illustration of the aliasing effect. From a numerical point of view, both analog signals in the upper
part can be interpreted in the same way if the sampling rate (indicated by the red dashed lines) is fixed
without considering it.

Figure 3b). To conclude this section, the function ¥ (p, ) will be represented by a matrix with the general
form

0,0 P05 P0dmax
<)01/70 .« .. (py,j e O 5
Oomans0 " 0 ... 0

where each non-zero element corresponds to values for v and j that satisfy k, ; < kmax. Figure 6 presents an
example where U (p, 6) is an arbitrary image. Bessel coefficients are computed in this particular case with
Equation (4.3), and the inverse transformation described by Equation (4.2) is also performed for different
thresholds (k, ; < %kmax, ky; < kmax and k, ; < %kmax) to check how much information is preserved by
the Bessel coefficients and how the thresholds modify the information content. It also illustrates the aliasing
effect that appears when considering high-frequency information that may not be initially present in the

image.

4.2 Effect of Rotations

To understand why using Bessel coefficients is more convenient than using raw pixel values, one can determine
the consequence of a rotation of ¥ (p, #) on ¢, ;. Let ¥ (p, ) be the rotated version of ¥ (p, ) for an angle
a € [0, 2x[, that is, U™ (p,0) = ¥ (p,0 — ). Its Bessel coefficients are given by

27 R
Prg = / / p [Ny iy (Kuip) €] W (p, 0) dpds.
o Jo
By defining ¢’ = 6 — « it leads to

2 R * . .
oy = /0 /0 P [Nuidy (hugp) €| W (p,0) e dpdt) = oy e (4.8)
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=4 kl/,j S kmaX =4

Figure 6: Decomposition and recomposition of an arbitrary image in the Bessel-Fourier domain. The middle
part of the image illustrates the Bessel coefficients that are considered for three different reconstruction of
the image (each square is a complex-valued Bessel coeflicient ¢, ;). For the upper part, all the coefficients
st. kyj < Lkmax (sub-optimal) are considered (W), resulting in a loss of high frequency information. For
the lower part, all the coefficients s.t. k,; < %kmax (over-optimal) are considered (E+HE+ ), resulting in
a reconstruction incorporating misleading high frequencies (aliasing effect). Finally, the optimal choice is
presented on the right (E-+H).
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Therefore, a rotation of an arbitrary function by an angle o only modifies its Bessel coeflicients by a mul-
tiplication factor e~*®. This motivated the development of B-CNNs as it makes rotations conveniently
expressed in the Fourier-Bessel transform domain (analogously to how the Fourier transform maps transla-
tions to multiplications by complex exponentials). The upper part of Figure 7 illustrates this property (the
image is rotated by 7 after multiplying its Bessel coefficients by e D).

4.3 Effect of Reflections

In addition to rotations, Bessel coefficients are also particularly useful when it comes to express reflections.
To check this, let U™ (p, §) be the reflected version of ¥ (p, §) along the vertical axis®. The Bessel coefficients
of W (p,§) = W (p, ™ — ) are given by

27 R
¢f§=/o / P [Nuidu (ki) ") W™ (p,0) dpdb.

Similarly to what is done for arbitrary rotations, one can define 8’ = w — 6. This leads to

- R .
oL = / / p [Nu,jJu (kv.jp) ei”(”*‘))] U (p,0') dpde'.
T 0

It is shown in Appendix B that N, ; = N_, ; and that k_, ; = k, ;. By exploiting this along with Equa-
tion (4.4) and the fact that e=*™ = cos (v7) = (—1)", one can show that

27 R N .
Spyrf? = / / p [Nf,,’j (_1)11 J, (kfy,jp) e~ iv0 } e~ Ty (p7 9/) dpd@l
0 0

2 R T
— [ [ o [N Gy ] .07 dpat
0 0
= P-vj- (4.9)

Therefore, performing a reflection of the image only switches the Bessel coefficients ¢, ; to ¢_, ;. Thanks to
Equations (4.6), it is equivalent to changing the sign of the real (resp. imaginary) part of the Bessel coefficient
if v is odd (resp. even). Therefore, in addition to rotations, Bessel coefficients are also really convenient to
express reflections. This is illustrated in the lower part of Figure 7, where the image is reflected vertically
after switching each ¢, ; with ¢_, ;.

5 Designing Operations with Bessel Coefficients

In CNNs, the main mathematical operation is a convolutional product between the different filters and the
image (or feature maps if deeper in the network). Each filter sweeps the image locally and the weights are
multiplied with the raw pixel values. However, in B-CNNs, the aim is to use Bessel coefficients instead of
raw pixel values to benefit from the properties described in the previous sections. Yet, the key operation
between the parameters of the network (filters) and the images needs to be adapted. This section first
presents the mathematical operation used to achieve equivariance under rotation. After that, the initial
work of Delchevalerie et al. (2021) is extended to also achieve equivariance under reflection.

5.1 A Rotation Equivariant Operation

The convolution performed in CNNs between an arbitrary image ¥ (z,y) and a particular kernel K (z,y)
defined for (z,y) € [-R, R] X [-R, R] can be written

R R
Ve K= [ [ we-ay-) K@) ady.

3The reflection along the horizontal axis is not needed, since it can be decomposed as a vertical reflection and a rotation of
7 radians. By composition, reflection equivariance along the horizontal axis is automatically achieved if the layer is equivariant
to rotations and reflections along the vertical axis.

10
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Figure 7: Decomposition of an arbitrary image in some of its Bessel coefficients. Those Bessel coefficients
constitute a particular representation of the image and can be used to recover it thanks to Equation (4.2)
(middle part). It also illustrates how Bessel coefficients can be conveniently used to apply rotations (upper
part) and reflections (lower part).
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By defining U(®¥) (2/,y/) = ¥ (x — 2,y —9') and converting the integration from Cartesian to polar coor-
dinates, it leads to

27T R
W (2,) * K (2,y) = / / T (5,0) K (p,0) ppdo. (5.1)

Now, in order to obtain a result that is invariant to the particular orientation of ¥(*¥) (p,#), one can
decompose it in its Bessel coefficients @ijy) and use Equation (4.8) to implement arbitrary rotations. Next,
the idea is to combine this with an integration over « in order to equally consider all the possible orientations
of the original image while multiplying it with the kernel, resulting in a rotation invariance. We introduce

thus a new rotation invariant convolutional operation a (z,y) = ¥ (x,y) * K (z,y) described by

27 27
a(x,y):— |/ / Z ) e=ivaN, o7, (kyjp) €K (p,0) pdpdd|*da

1 T —iva 2 " —ivf]*
= |Zw£j’ L] s )] K (0.0) pdpa o

1 x —zl/(x *
o ). |Z ) e=ivar | da, (5.2)

where £, ; refers to the Bessel coefficients of the kernel K (p,6). Thanks to the integration over « from 0 to
27 and the multiplication of cp( :Y) by e~ to describe the effect of rotations, the operation with the kernel
is performed for all continuous rotations U(@) (p,0 — a) of the original image, where o € [0, 27[. Therefore,
a (z,y) should not depend on the particular initial orientation anymore. This idea to achieve a rotation
invariance through an integration over an angular dimension has already been explored in non-Euclidean
CNNg, like for example in the work of Masci et al. (2015). The operation is still a convolution-like operation
as the filters still sweep the input image to progressively construct the feature maps. Therefore, feature
maps will be obtained in both a translation and rotation equivariant way. Feature maps in B-CNNs are
equivariant because they are obtained by a succession of local invariances (in other words, the key operation
between the image and the filter in Equation 5.2 is rotation invariant, but as it is successively performed for
local parts of the input, it leads to a global rotation equivariance).

In Equation (5.2), a squared modulus | - |? is introduced in our operation since without it, one obtains
0 y) o Aoy — y)
[L’ * —_ [L’ *
Z v / v Z $o5 oo

and only the subset of coefficients {@éﬁy),‘v‘j } will contribute to a (z,y). This subset alone, however, does
not constitute a faithful representation of the image. The operation without the squared modulus would
therefore inevitably lead to an important loss of information. The factor % was introduced finally for
normalization purpose.

Computing Equation (5.2) seems not straightforward as it requires to perform a numerical integration.
However, one can develop it further in order to obtain an analytical solution, which will be much more
convenient to implement in practice. To do so, one can first develop the squared modulus given that

k
0,12
| D ailzile
i=1

= Z?R(am) R (a;) ’zmzj‘ cos (0 — 0;)
m,j

+Z S (o)) |2mz5| cos (B — 6;)

-2 Z R (o) ’zmzj‘ sin (0, — 60;) , (5.3)
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where a; € C and z; = |zi|ei9i € C. By re-writing the complex valued Bessel coefficients gp(mjy) as

v,
|<p(:m/ "3 it leads to

1 2m .. "
a(z,y) :%/ Z%(K;])%(K" , ‘(pV’Jy)go(V,’;’,) cos (0, — 0 jy —a(v—"1"))da

0 u/,j
v',5
1 o * x, a:,
or fy 23 g) ) |es el cos (Bug = Bur o — (v =) da
v
2m
TS 00 R ) [ S s (0 g — v =)
0 v,j
V’,j/

In this equation, only the trigonometric functions are a-dependent. Calculating the remaining integrals leads

to
2w . /
7 ¢ (Bys — Oy 1) if v =
| 560y = 00y =t —vyda = 2750 Oy = Ory) i = (5.4)
0 ’ ’ 0 otherwise,

where sc can represent the cosine or the sine function. Therefore,

Z [Z% i) R (k5 0) [0l el | cos (6,5 — 0,
+Z w50) | cos (8,5 — Bu0)
—2) S (k) R (k7 50) |<p(“’ oy sin (8,5 — Ou,50) | (5.5)
4.3’

and by using once again Equation (5.3), Equation (5.2) finally leads to
Z | Z K5 0|, (5.6)

Thanks to the use of Bessel coefficients instead of raw pixel values, the classic convolution has been mod-
ified into Equation (5.6) in order to achieve rotation equivariance. Nevertheless, by introducing reduction
mechanisms in the models to make the feature maps in the final layer of size 1 x 1 (by using pooling layers
or avoiding padding), the global equivariance can lead to global invariance. Figure 8 presents an example
where the equivariance of B-CNNs is compared to vanilla CNNs, and it also presents how a succession of
equivariant feature maps leads in this case to a global invariance of the model.

Finally, one can point out that a (z,y) € R (even if s, ; € C and ¢, (@) ¢ C). This is an important property
as it allows this operation to be compatible with existing deep learnlng frameworks (for example, classic
activation functions and batch normalization can be used), as opposed to the work of Worrall et al. (2017)
that uses values in the complex domain. It is also worth to mention that this operation is pseudo-injective,
meaning that different images will lead to different values of a (pseudo makes reference to the exception
when an image is compared to a rotated version of itself). The proof for the pseudo-injectivity is presented
in Appendix C.

5.2 Adding the Reflection Equivariance

In order to make B-CNNs also equivariant to reflections, and thus O(2) equivariant, one can check how
Equation (5.6) behaves for an image and its reflection. To do so, let us compute the quantity

2 2
— * . * ref
6= 1> wienil =D 1D mnsenils

v J v J
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Input 1

11 x 11 conv.

!
]
1
!
1

Equivariance

i

9 x 9 conv.

(a) Vanilla CNN

(b) B-CNN

Figure 8: Feature maps obtained with 4 vanilla (a) and Bessel (b) convolutional layers on a sample drown
from the MNIST data set (LeCun et al., 1998). Input 2 is the exact same image as Input 1, except for a 7
rotation. Inputs are of size 29 x 29, and no padding is used such that the size of feature maps is progressively
reduced until it reaches the final size of 1 x 1. One can observe that no equivariance is obtained in the feature
maps for the vanilla CNN, leading to different final results. However, B-CNN provides equivariance for the

feature maps, leading to a final result that is invariant to the orientation of the image. Indeed, for B-CNN,

feature maps for Input 2 are rigorously identical up to a 7 rotation, which is not the case for vanilla CNN.

It has to be noted that in this example, equivariance/invariance are rigorously achieved because § rotations
are well-defined on Cartesian grids.
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where goreg are the Bessel coefficients of a reflected version of ¥ (p, 8). For the operation to be invariant under
reflection, ¢ should therefore be equal to 0. Thanks to Equation (4.9) and Equation (4.6), we can write

0= 2N sl = NS () o) 41" )
v

ST IR SR
v j v j

2 2
_ * . _ * *
= Z | Z m,j%,g! ‘ Z “v,j%,j\
v j J

By using again the development that led to Equation (5.5), one can show that

§=—4> S(rp ) R(K550) o

v,5,5'

(0,5 — Oujr) -

It means that § may be different from 0 and an O(2) equivariance will in general not be achieved. The
objective is now to slightly modify Equation (5.6) in order to obtain § = 0. To do so, one can see that the
terms that do not vanish are those that involve & (n;j) R (n;j/). By avoiding such crossed terms between
the real and imaginary parts of &, ;, one can obtain 6 = 0 and therefore a reflection equivariance, while still

keeping the rotation equivariance. This can be achieved by using

= IR0 AL 109 ) 0T (57)
v

To conclude, B-CNNs can be made SO(2) equivariant (that is, equivariant to all the continuous planar
rotations) by using Equation (5.6) as operation between the filters and the images, or O(2) equivariant (that
is, equivariant to all the continuous planar rotations and reflections) by using Equation (5.7) instead. Users
can decide, based on the application, which equivariance is required.

6 Bessel-Convolutional Neural Networks

This section constitutes a sum up and gives more intuition about the global working of B-CNNs. It also
presents an efficient way for implementing the previous developments in convolutional neural networks ar-
chitectures. It is finally shown how bringing multi-scale equivariance is straightforward with this imple-
mentation. Multi-scale equivariance means that patterns can be detected even if they appear at slightly
different scales in the images. Developments in this section are presented in the particular case of SO(2)
equivariance. We will hence consider Equation (5.6) instead of Equation (5.7). However, developments can
easily be adapted for this second case.

6.1 B-CNNs From a Practical Point of View

The key modification in B-CNNs compared to vanilla CNNs is to replace the element-wise multiplication
between raw pixel values and the filters by the mathematical operation described by Equation (5.6). Filters,
which are described by their Bessel coefficients {k, ;}, sweep locally the image and the Bessel coefficients for

the sub-region of the image {ap } are computed. Equation (5.6) is then used to progressively build feature
maps. This process is summarlzed in Figure 9. However, implementing B-CNNs by using this straightforward
strategy requires to perform many Bessel coefficients decompositions, which are really expensive.

15



Under review as submission to TMLR
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— {1 — a(0,0)
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Figure 9: Illustration of how feature maps are obtained in B-CNNs. One can see that B-CNNs still work in
a convolutional fashion, but the key operation between the filters and the image is modified.

A more efficient implementation can be obtained by developing Equation (5.6) with Equation (4.3). Indeed,
it gives

2t rR
a(z,y) = Z | Z Hz,j /(; /0 p [Nu,j‘]u (kv.jp) ew&] Tylew (p,0) dpd9|2
v

2 R
- Z | /0 /0 @) (p,9) ZP [N,y (kujp) e“’e]* n;jdpde}z,
v j

and, by converting to Cartesian coordinates thanks to 6 = 6 (x,y) = arctan £ and p=p(x,y) =22+ 12,
it leads to

R R N *
a(x,y) = Z | /R/qu(m,y) ',y Z {Nu,jju (kwj;) eil’@] H;jdw’dy’|2, (6.1)
v - - J

where 31/ (kv ;p) is defined as
Ju (ku,jp) ifp<R
0 otherwise.

T, (kyip) = {

This definition of J, is required to compensate for the fact that we are now integrating over the square
domain [—R, R] x [~R, R] instead of the circular domain D? of radius R. By defining

~ ~

Tl/,j (Jf,y) = Nl/,jJU (ku,];> 6_“/0; (62)
one can finally obtain

alz,y) = [V (xy)«Y Ty s,
p 7

? (6.3)

=> "W (z,y) * F, (x,y)
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where

F, (z,y) = ZT,,J (z,y) K} ;- (6.4)

From a numerical point of view, there are two main advantages in using Equation (6.3) instead of directly
implementing Equation (5.6) as presented in Figure 9. Firstly, this equation directly involves the input
VU (z,y) instead of its Bessel coefficients. Secondly, T}, ; (x,y) does not depend on the input or the weights
of the model. Therefore, it can be computed only once at the initialization of the model. After discretizing
space, T, ; (x,y) can be seen as a transformation matrix that maps the weights of the model from the
Fourier-Bessel transform domain (the Bessel coefficients of the filters {«, ;}) to a set of filters in the direct
space {F, (z,y)}. The feature maps can then be obtained by applying classic convolutions between the
input and these filters. Also note that the vy, convolutions that need to be performed can be wrapped with
the output channel dimension to only perform one call to the convolution function. Algorithm 1 presents
how to efficiently implement a B-CNN layer in practice, including the initialization step and the forward
propagation.

Algorithm 1: Implementation of a B-CNN layer

/* Initialization (performed only one time) */
Input: The size of the filters (2n 4 1); the number of output channels C,,;

Compute kpax = 2”; L7 Viax and jmax (Equation 4.7)

Let K be a randomly-initialized trainable tensor with shape [Vmax; Jmax, Cin X Cout]
forall (v, j) s.t. kuj > kmax do
L /* Parameters s.t. k,; > knax are set to 0 */
K[y, j,:]=0
Let T be a zero-initialized tensor with shape [Vmax, 2n 4+ 1,20 + 1, jmax]

forall (v, j) s.t. kuj < kmax do
forall (z,y) € {-1,-1+ 1 .. 1-L1 1} x{-1,-1+1 .. 1-11}do

n’

L T[Va T, y7]] = ND,jJD (ky,j V x? + y2> efiz/(arctan g) (Equation 62)

Reshape T into [Vmax, (2n+ 1) X (2n 4+ 1), jmax]

/* Forward propagation */
Input : A tensor I of N images of size [N, W, H, C,]
Output: The tensor A with the corresponding feature maps

Let F be a tensor with shape [Vmax, (2n+1) X (2n+ 1), Cip X Cout]
for v =0; v < Vmax; v=v+1)do

/* F can be computed thanks to Vy,x matrix multiplications */
Flv,:,:] = matmul (T[v,:,:],K][v,:,:]) (Equation 6.4)

Reshape F into [(2n + 1), (2n + 1), Cin, VmaxCout)

/* Wyyt and Hyy depend on the padding and the stride */

Z = conv2d (I, F)
ReShape Z into [N7 Wouta Houtv Couta Vmax]

Let A be a zero-initialized tensor with shape [N, Wout, Hout, Cout]
for v =0; v < Vmax; v=v+1)do
L A += |Z[:, ST 1/]|2 (Equation 6.3)

return A
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6.2 Numerical Complexity of B-CNNs

Regarding the computational complexity, if the input of a vanilla CNN layer is of size [W x H x C;,] and if
it implements Cy,,; filters of size [2n x 2n|, the number of mathematical operations to perform for a forward
pass (assuming that padding is used along with unitary strides) is

Nop = WH [4n*Cyp, + (4n*Cin — 1)] Cout
= 8WH7LQCinCout - WHCout-

Indeed, C,,; filters made of 2n x 2n x C;,, parameters will sweep W H local parts of the input image. For each
local part, 4n2Cj, multiplications are then performed as well as 4n?C;, — 1 additions. Therefore, it leads to
a computational complexity of O (WH n2C’mC’out). Compared to vanilla CNNs, B-CNNs need to perform
more operations as it is required (i) to compute F, (z,y), (ii) to perform 2up,,, times more convolutions and
(iii) to compute squared modulus and a sum over v. Step (i) consists of vpax matrix multiplications, which
involve for each element in the final matrix jyax scalar multiplications and jmax — 1 additions. Step (ii) is
the same that for vanilla CNNs, except that one should perform this for each v and both for the real and
imaginary parts of F, (z,y). Finally, the squared modulus in step (iii) involves 2W HC,,,; multiplications
and WHC,,; additions, and the final summation over v involves vy, — 1 additions. At the end, the final
numbers of operations to perform for each step are

N‘SZZ)) = Vmax [jmax + (jmax - 1)] 4n20incout;
Né;f) =WH [4n201n + (4n201n - 1)] QCouthax;
N (g;“) = 3WHCutVmax + (Vmax — 1) WHC\ys.

However, by looking at Figure 10, one can see that both vy,.x and jmax scale linearly with n, thanks to the
constraint expressed by Equation (4.7). It follows that

Nop X n4cincout + WHn3CinCout + WHnCout7

resulting in a computational complexity of O (WH nBC’mC’OUt) for a forward pass in a B-CNN layer. Since
generally n < min (W, H, Cy;,, Cout), the increase in computational time compared to vanilla CNNs is rea-
sonable with respect to the positive impact of the equivariance. Furthermore, the computational complexity
of F(2)-equivariant models (Weiler & Cesa, 2019) for a symmetry group G is O (WH nszCout‘gD as Cout
is artificially increased by the number of discrete operations in G. Therefore, if n < |g| (which is generally
the case asn = 5,7 or 9, and G = Cs, C14, Dg or Dig leading to |g| = 8,16, 16 or 32, respectively), B-CNNs
are therefore more efficient from a computational point of view.

Vinax

Jmaz

15+

Figure 10: Relation between n and Vmax/jmax thanks to Equation (4.7).
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6.3 Rotation Equivariance From a Numerical Point of View

As opposed to most of the state-of-the-art methods, B-CNNs do not rely on a particular discretization of
the continuous (S-)O(2) group. The equivariance is automatically guaranteed by processing the input image
thanks to an (S-)O(2) equivariant mathematical operation, which replaces the simple convolution in the
direct space. It follows that B-CNNs directly provide theoretical guarantees regarding the equivariance to
the continuous set of rotation angles [0,27[. Indeed, as the Bessel coefficients of the filter {x, ;} are not
computed but defined as the learnable parameters of the model, it does not involve any numerical error.
Furthermore, Equation (5.6) is rotation invariant regardless of the number of Bessel coefficients used (that is,
independently of kmax). However, one should mention that, from a numerical point of view, exact (S-)O(2)
equivariance is rarely possible due to the discrete nature of numerical images. Indeed, ¥ (z,y) is only known
on a finite Cartesian grid, and rotations of angles in [0,27[ \ {0, F,, 37’7} are not well defined, and will
result in numerical errors. The only source of errors in B-CNNs regarding the (S-)O(2) equivariance lies
in the discretization of W(@¥) (2’ y') on an [2n x 2n] Cartesian grid, which is involved by Equation (6.1).
Therefore, numerical errors may be reduced by increasing n, that is, the size of the filters.

6.4 Adding a Multi-Scale Equivariance

Previous sections focus on achieving SO(2) and O(2) equivariance. However, for particular applications,
patterns of interest may also vary in scale. To illustrate this, see for example biomedical applications where
tumors may be of different sizes. Prior works (Xu et al., 2014; Li et al., 2019; Ghosh & Gupta, 2019) already
show that a multi-scale equivariance can be incorporated into CNNs, leading to better performances for such
applications. The aim of this section is to present how these prior works can be easily transposed to the
particular case of B-CNNss.

As the size of the filter in the direct space is determined by the discretization of T, ; (x,y), it is easy in
B-CNNs to implement already-existing scaling invariance techniques. To do so, we only need to pre-compute
multiple versions of T}, ; (z,y) for different kernel sizes, and only keep the one with the highest response.
More formally, the idea is to define multiple transformation matrices 77", (x,y) that act on circular domains
of different size n. Those matrices can be pre-computed at initialization. They can then be used to project
the filters in the Fourier-Bessel transform domain to filters of different sizes in the direct space. One can
then consider keeping only the most active feature maps. The process is summarized in Figure 11.

7 Experiments

This section presents the details of all the experiments performed to assess and to compare the equivariance
obtained with B-CNNs with other state-of-the-art methods. The data sets used are presented, as well as the
experimental setup. After that, quantitative results are presented for each data set.

7.1 Data sets

Three data sets are used to assess the performances in different practical situations:

o The MNIST (LeCun et al., 1998) data set is a classical baseline for image classification. This data
set is made of 28 x 28 grayscale images of handwritten digits that belong therefore to one out of 10
different classes. More precisely, four variants of this data set are considered: (i) MNIST, (ii) MNIST-
rot, (iii) MNIST-back and (iv) MNIST-rot-back®. In the rot variants, images are randomly rotated
by an angle a € [0,2x]. In the back variants, a patch from a black and white image was used as
the background for the digit image. This adds useless information that can be disturbing for some
architectures. All these MNIST data sets are perfectly balanced.

o The Galaxyl0 DECals data set is a subset of the original Galaxy Zoo data set (Willett et al., 2013).
This data set is initially made of 256 x 256 RGB images of galaxies that belong to one out of 10

4All these variants are generated from the initial MNIST data set, and can be found at https://sites.google.com/a/lisa.
iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
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Figure 11: This figure presents how B-CNNs can handle multi-scale equivariance. In this case, a single filter
represented by its Bessel coefficients {k, ;} is projected in the direct space thanks to different transformation
matrices. The filter is mapped to v filters of size 7 x 7, 9 x 9 and 11 x 11. Max pooling is then used to only
keep the most responding feature maps. Note that only the real parts of the projected filters are represented
here, for convenience.

roughly balanced classes, representing different possible morphologies according to experts. Images
are resized to 128 x 128 in our work for computational resources purpose.

e The Malaria (Yu et al., 2020) data set is made of 64 x 64 RGB microscope images of blood films.
Those images belong to two perfectly balanced classes highlighting the presence or not of the parasites
responsible for Malaria.

An overview for all those three data sets is presented in Table 1, along with visual examples.

7.2 Experimental Setup

In order to perform this empirical study, (i) E(2)-equivariant CNNs from Weiler & Cesa (2019) (E(2)-
CNNs), (ii) Harmonic Networks from Worrall et al. (2017) (HNets) as well as (iii) vanilla CNNs are considered
along with B-CNNs. This choice is motivated by the fact that E(2)-CNN and HNets constitute the state
of the art for constraining CNNs with known symmetry groups. Each technique is tested in different setups
(mainly, for different symmetry groups or different representations of the same group). The different setups
for each method are described below:

« For E(2)-CNNs, we consider the discrete Cy ({n§};_, rotations), Cs ({nZ}5_; rotations) and Cie
({n%};%, rotations) symmetry groups using a regular representation, as well as the continuous one,
SO(2) (all the continuous rotations) and O(2) (all the continuous rotations and the reflections along
vertical and horizontal axes), using irreducible representations. Those setups are a subset of all the
setups tested by the authors of F(2)-CNNs. More details about this and how F(2)-CNNs work can
be found in the work of Weiler & Cesa (2019). Furthermore, the authors provide an implementation
for F(2)-CNN that has been used in this work.
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Table 1: Overview of the data sets. N is the total number of available data, and C' is the number of classes.

Data set N C Task Resolution Examples

MNIST

-rot

62,000 | 10 | Multi-class o0 og 1

classification

-back

-rot-back

Galaxy10 Multi-class

DECals 17,736 | 10 classification 128 > 128 >3

. Binary

Malaria 27,558 | 2 . . 64 x 64 x 3

classification &

o For HNets, similarly to what the authors did in their work, two different setups to achieve SO(2)
invariance are tested using an approximation to the first and second order. In this work, we use
again the implementation provided by the authors of F(2)-CNNs, who re-implement HNets in their
own framework, for convenience.

o Regarding B-CNNs, four setups are considered to achieve SO(2) or O(2), with or without scale
invariance (denoted by the presence or not of “+" in our tables and figures), with the computation
of kmax as described by Equation (4.7). Another setup for SO(2) invariance with a lower cutoff
frequency, which corresponds to half the initial k.« is also considered. This last setup is motivated
by the empirical observation that it often leads to better performances. Indeed, removing some
meaningless high frequency information sometimes have a positive impact on the networks. There
is also a similar idea in the work of Weiler & Cesa (2019) for E(2)-CNNs, by applying a Gaussian
blur when pooling the images. This idea was therefore also used as presented in their work for
E(2)-CNNs.

e Finally, a vanilla CNN with the same architecture as for the other methods, as well as a ResNet-
18 (He et al., 2016) are also trained for reference.

The architectures are strongly inspired from the work of Weiler & Cesa (2019) and are presented in a generic
fashion in Table 2. Note that the size of the filters is larger than conventional sizes in CNNs. This is also
the case in the related works, and a justification for this is presented in Section 6.3. The same template
architecture is used for all the methods (except for the ResNet-18 architecture that is kept unmodified)
and data sets. Nonetheless, minor modifications are sometimes performed. Firstly, the number of filters
in each convolutional layer should be adapted from one method to another, in order to keep the same

21



Under review as submission to TMLR

number of trainable parameters. To do so, a parameter A is introduced to manually scale the number
of filters and guarantee the same number of trainable parameters for all the methods. To give an idea,
A is arbitrarily set to 1 for B-CNNs with the high cutoff frequency policy (kmax), and the corresponding
number of trainable parameters is close to 115,000. Secondly, E(2)-CNNs require a particular operation
called invariant projection before applying the dense layer. This specific operation is not performed for
the other methods. Thirdly, each convolutional layer is followed by a batch-normalization and a ReLU
activation function, except for B-CNNs. Indeed, we empirically observed that both the batch-normalization
and the ReL U activation function generally decrease convergence for B-CNNs, while this is not the case for
the other methods. Therefore, we do not consider any batch-normalization layer for B-CNNs and we use
Tanh activation functions, which seems to perform better in our case. Note that we are still not able to
really understand why classic batch-normalization and ReLU activation functions reduce the performances
of B-CNNs. Yet, we clearly observed empirically that using batch-normalization makes the convergence of
B-CNNs much slower, and using ReL U can hurt the optimization process to a point where the model is only
marginally better than random predictions. Regarding the ReLU activation function, a possibility could
be the fact that B-CNNs involve a real and positive representation (due to the use of a square modulus).
Therefore, using a ReLU activation function is equivalent to not using any activation function (as ReLU is
linear for z >=0). Nonetheless, the introduction of a bias makes it theoretically possible to arbitrarily shift
the representation to negative values, and the real reason why ReLU is not working with B-CNNs is still
partially unknown. Finally, the padding and the final layer are adapted according to the considered data
set, as they involve different tasks and image sizes.

Table 2: Generic architecture used for the different data sets. Conv layer can either be vanilla-conv, B-conv,
E(2)-conv or HNet-conv. After each Conv layer, a batch-normalization as well as an activation function are
applied (Tanh for B-conv, ReLU for others), except for B-conv that does not use any batch-normalization.
The Invariant projection is only required in E(2)-CNNs. As the number of parameters in a filter may differ
between the different methods, a parameter A is introduced. This parameter is fixed for each method in
order to tweak the number of filters (# C) so that the total numbers of trainable parameters are as close as
possible to each others.

Layer # C | MNIST(-rot)(-back) | Galaxyl0 DECals | Malaria
Conv layer 9 x 9 8A pad 4 pad 0 pad 4
Conv layer 7Tx 7 16X pad 3 pad 0 pad 3
Av. pool. 2 x 2 - pad 0 pad 0 pad 0
Conv layer 7x 7 24X pad 3 pad 0 pad 3
Conv layer 7T x 7 24\ pad 3 pad 0 pad 0
Av. pool. 2 x 2 - pad 0 pad 0 pad 0
Conv layer 7x 7 32X\ pad 3 pad 0 pad 0
Conv layer 7x 7 40X pad 0 pad 0 pad 0
(Inv. projection) - - - -
Global av. pool. - - - -
Dense layer — 10, softmazx 10, softmazx 2, softmazx

As it is expected that constraining CNNs with symmetry groups becomes more useful when less data are
available (as CNNs should no more learn the invariances by themselves), experiments are performed in
(i) High, (ii) Intermediate and (iii) Low data settings for each data set, while considering the use of data
augmentation strategies or not. A last setup is also considered for the MNIST variants for which models are
trained on the original MNIST data sets (no rotations are provided during training) and tested on rotated
versions of the test images. The different data settings correspond to different sizes for the training sets.
Attention is paid to keep the same percentage of samples of each target class, in order to avoid biases.

For the MNIST data sets, those settings correspond to the use of (i) 20%, (ii) 2% and (iii) 0.2% of the total
number of available data for training. On top of this, three different data augmentation policies are tested.
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Firstly, models are trained on MNIST-rot(-back) using online data augmentation (by performing random
rotation before being given as input). Secondly, models are still trained on MNIST-rot(-back) but without
further data augmentation (the same image is always seen by the model in the same orientation). Thirdly,
models are trained on MNIST(-back) while being tested on random rotated versions of the test images.
Those setups allow us to see how the amount of data impact the performance of the models, and how much
the models still rely on the training phase to achieve the desired invariances.

For the other data sets, the different data settings correspond to the use of (i) 80%, (ii) 8% and (iii) 0.8%
of the total number of available training data, respectively. As for the MNIST data sets, models are again
trained with and without using data augmentation. However, in this case, the data augmentation also
performs random planar reflections (not pertinent for MNIST). Also note that only two data augmentation
policies are possible, because it is meaningless to think of non-rotated version of images for Galaxy10 DECals
and Malaria (as opposed to MNIST where digits have a well-defined orientation, a priori). In other words,
the last setup cannot be considered for those last two data sets.

For the High and Intermediate data setting experiments, models are trained using the Adam optimizer
through 50 epochs. A warm-up cosine decay scheduler that progressively increases the learning rate from
0 to 0.001 during the first 10 epochs before slowly decreasing it to 0 following a cosine function during
the remaining epochs is used. For the low data setting experiments, 150 epochs are performed, with the
warm-up phase during the first 30 epochs. Each experiment is performed on the exact same hardware (using
Nvidia A100, 40 GB) through 5 independent runs. To ensure fair comparison of computational time, all the
implementations use the same PyTorch version.

7.3 Results on MNIST(-rot)

Table 3 presents the results obtained on the MNIST(-rot) data sets. For the sake of completeness, Figure 12
and 13 also present all the corresponding training curves with respect to the epoch and the wall time,
respectively.

From a general point of view, one can observe that a proper use of F(2)-CNNs, HNets and B-CNNs can lead
to better performances than vanilla CNNs, even if the number of parameters is much smaller in the case of
equivariant models (115,000 parameters against =11, 000, 000 for ResNet-18). Vanilla CNNs techniques are
only able to compete with equivariant models in high data settings, and when performing data augmentation
(first column). This clearly highlights the fact that vanilla CNNs are sensitive to the quality and the amount
of data in order to learn the invariances. Furthermore, even in the most favorable situation for vanilla CNNs,
convergence is much slower than for equivariant models.

Next, by taking a closer look at the equivariant models, it appears that the E(2)-CNNs that use the straight-
forward discrete groups Cy, Cs or Cig perform quite well, and are even the best performing models when
used along with data augmentation (first 3 columns). However, performances fall a little on the MNIST-rot
data set without data augmentation (middle 3 columns), and becomes really bad compared to the (S—)O(2)
equivariant models when trained on the MNIST data set, when they cannot see rotated versions of the digits
(last 3 columns). Even if those models are better than vanilla CNNs; it also appears that they still rely on
training to learn really continuous rotation invariance, which is something expected. It is also interesting to
mention that using a symmetry group that is not appropriate may be worse than not using any symmetry
group at all. For example, in high data setting with data augmentation, vanilla CNNs perform better than
O(2)-based models.

Interestingly, almost all the (S—)O(2) equivariant models seem to achieve very similar performances on
MNIST-rot, with and without data augmentation. Nonetheless, one can observe that the SO(2) B-CNNs with
the low cutoff policy (kmax/2) is most of the time in the top-3 performing models, and achieve significantly
better results than all the other models when only trained on MNIST (last 3 columns). This highlights
the fact that the SO(2) invariance achieved by design in the B-CNNs is stronger than the one achieved by
other models, allowing generalization to rotated versions of digits, even if none of those are observed during
training.
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Table 3: Classification accuracy obtained for the different methods on the MNIST-rot and MNIST data sets, with and without data augmentation.
For the last columns (MNIST, no rotation during training), models are trained on the standard MNIST data set and tested on rotated versions of
digits to assess how models can generalize to orientations that are not observed during training. The High, Inter. and Low data regimes correspond
to 12,000, 1,200 and 120 images for the training set (same percentage of samples of each target class), respectively. For each column, bold is used to
highlight the top-3 performing models. Accuracy and standard deviation are assessed using 5 independent runs. The corresponding training curves
are presented in Figure 12 and 13.

MNIST-rot MNIST
With data aug. Without data aug. No rotation during training
Method Group High Inter. Low High Inter. Low High Inter. Low
Vanilla CNN {e} 98.31 +£0.03 | 94.70 £0.13 | 84.16 = 0.60 95.87+0.18 | 80.87+0.38 | 44.45+2.44 | 43.43£0.55 | 37.40+£1.87 | 29.444+0.17
ResNet-18 {e} 98.66 £0.05 | 94.68+0.21 | 80.16 £ 0.20 96.54+0.04 | 76.19+9.01 | 36.92+£0.07 | 43.24+£0.16 | 35.85+1.88 | 28.29+1.62
Cy 99.07 £0.03 | 96.81 +£0.19 | 88.98 £ 0.57 || 98.42+£0.05 | 94.18 £0.12 | 69.22 £ 0.69 68.94+1.43 | 65.28 £1.14 | 56.45+1.98
E(2)-CNN (regular) | Cs 99.18 £0.03 | 97.01 £0.12 | 89.68 £ 1.15 || 98.71 £0.05 | 94.60+£0.30 | 72.81 +£2.87 || 68.524+0.74 | 70.40 £2.05 | 62.19£2.74
Cie 99.09 £0.04 | 96.61 +£0.12 | 87.10 £1.22 98.53+0.06 | 94.05+0.50 | 62.46 £5.53 68.79£2.23 | 69.34+£4.28 | 57.07 £1.06
I WNM\V\Q\ZW\Q\\M < 1) SO(2) ] 98.86+£0.04 | 95.78+0.15 | 84.71+£0.24 || 98.62+0.06 | 95.30£0.34 | 79.80 £ 1.15 | 97.66 £0.17 | 94.12+0.30 | 76.94 £0.85 |
= 0(2) 97.07+£0.05 | 90.39+0.09 | 73.77 £1.31 96.30 +0.02 | 88.62+0.70 | 68.95+1.73 92.36 £0.19 | 86.21+£0.23 | 66.58 £+ 3.77
I W@mwwwﬂwﬁm - 3) SO(2) | 98.76£0.07 | 95.01+0.23 | 80.14+£0.96 | 98.34£0.06 | 90.98+0.50 | 72.84+£0.97 | 96.11£0.09 | 89.14+0.08 | 68.69 +1.50 |
- 0(2) 96.85£0.05 | 90.25+0.15 | 73.31 £1.66 95.46 +0.08 | 85.34 £0.90 | 60.19 £ 3.93 91.03£0.37 | 83.23+1.07 | 59.40 £1.18
HNets (1st order) SO(2) 98.87£0.02 | 96.20+0.20 | 85.03 £1.07 | 98.75+0.05 | 95.70 £0.12 | 82.81 £1.22 || 97.61 £0.12 | 94.88 £0.06 | 79.99 + 1.84
| HNets (2nd order) || SO(2) | 98.93+£0.08 | 96.304+0.06 | 84.25+1.26 | 98.74+0.01 | 94.60+0.18 | 76.64 +1.45 || 97.55+0.08 | 93.34+0.65 | 76.71 +1.98 |
SO(2) 98.90 £0.03 | 96.20+0.23 | 86.12+1.23 98.64 £0.05 | 95.57+0.34 | 82.58 £0.33 97.14£0.16 | 94.66 +£0.22 | 79.54 £ 2.04
B-ONNs (ko) 0(2) 97.82+£0.05 | 92.97+0.30 | 77.36 £ 2.06 97.19+£0.05 | 92.30+0.52 | 73.15£2.23 9346 £0.49 | 89.63+0.39 | 68.06 £0.45
max SO(2)+ || 99.00+£0.01 | 96.53£0.21 | 87.18 +0.81 98.88 £0.04 | 96.41 +£0.22 | 84.95+2.29 | 97.60 £0.27 | 95.45+£0.23 | 84.85+1.83
0(2)+ 97.91+0.01 | 94.14£0.08 | 77.69 +1.75 97.63+£0.03 | 93.35+0.09 | 77.09 £0.81 94.62+£0.36 | 91.79+0.08 | 76.71 £2.85
| B-CNNs (kmax/2) || SO(2) | 98.98£0.01 | 96.51+0.21 | 87.28 +1.25 || 98.89+0.04 | 96.44 +0.34 | 86.48 +1.01 || 98.16 +0.11 | 96.06 +0.09 | 86.29 4 2.92 |
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Figure 12: Learning curves obtained for the different methods on the MNIST-rot and MNIST data sets with
respect to the epoch. Those learning curves are averaged over 5 independent runs. The legend is the same
for all the graphs. The symbols *, T and * refer to the use of E(2)-CNNs, HNets and B-CNNs, respectively.

Top-3 and worst-3 models are highlighted using full opacity.
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Figure 13: Learning curves obtained for the different methods on the MNIST-rot and MNIST data sets with
respect to the wall time (in seconds). Those learning curves are averaged over 5 independent runs. The
legend is the same for all the graphs. The symbols x, { and  refer to the use of F(2)-CNNs, HNets and
B-CNNgs, respectively. Top-3 and worst-3 models are highlighted using full opacity.
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Figure 14: Mean Sum of Squared Differences (SSD) for each image of the MNIST-rot data set. The SSD is
computed between the feature maps obtained for the initial images, and all the rotated versions of the same
image between 0° to 360° (after being properly re-aligned to allow for pixel-wise comparisons). The symbols
%, T and * refer to the use of F(2)-CNNs, HNets and B-CNNs, respectively.

Finally, one can observe in Figure 13 that B-CNNs are also a good choice in terms of convergence speed and
computational resources, as they are often able to achieve the best performances with a computation time
that can be smaller than other methods.

Equivariance of the feature maps For the MNIST-rot data set, a complementary and more qualitative
experiment has been conducted in parallel to the previous one. The aim of this experiment is to investigate
the global rotation equivariance of the convolutional operation provided by the different methods. To do
so, a simple convolutional layer with one feature map for different methods among vanilla CNNs, E(2)-
CNNs, HNets and B-CNNs have been tested on the whole MNIST-rot data set (without considering any
training, only to assess the mathematical equivariance of the operations). For each image, 128 rotated
versions between 0° and 360° are considered and forward propagated in the different layers. For each layer,
the obtained feature maps are extracted and realigned to the original orientation. By doing so, the Sum of
Squared Differences (SSD) can be computed to assess the numerical distance between the feature maps of
the original image, and the ones obtained from the rotated versions of the same image.

The results of this additional experiment are presented in Figure 14. On this Figure, one can observe that
the rotation equivariance of B-CNNs (and more particularly the SO(2) version with kpax) is the best one.
It is also really close to the one obtained with the use of F(2)-CNNs. For all the different techniques,
the equivariance is always significantly better than the one for vanilla CNNs. Nonetheless, one should also
mention that interpolations due to the rotations of the feature maps also have an impact on the final SSD.

7.4 Results on MNIST(-rot)-back

Table 4 presents the results obtained on the MNIST(-rot)-back data sets, which are variants of the MNIST
data set with randomly rotated digits and black and white images as background. For the sake of complete-
ness, Figure 15 and 16 also present all the corresponding training curves with respect to the epoch and the
wall time, respectively.

For vanilla CNNs, the conclusions are the same as for MNIST(-rot). Performances quickly drop when using
a smaller amount of data, or when data augmentation is not performed properly.
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Table 4: Classification accuracy obtained for the different methods on the MNIST-rot-back and MNIST-back data sets, with and without using data
augmentation. The High, Inter. and Low data regimes correspond to 12,000, 1,200 and 120 images for the training set (same percentage of samples
of each target class), respectively. For each column, bold is used to highlight the top-3 performing models. Accuracy and standard deviation are
assessed using 5 independent runs. The corresponding training curves are presented in Figure 15 and 16.

MNIST-rot-back MNIST-back
With data aug. Without data aug. No rotation during training
Method Group High Inter. Low High Inter. Low High Inter. Low
Vanilla CNN {e} 89.78 £0.19 | 75.39+0.48 | 41.11+1.36 78.74+0.10 | 38.62+0.73 | 20.65+ 1.68 35.67£0.13 | 26.92+0.90 | 18.63+0.73
ResNet-18 {e} 90.05+£0.03 | 72.64+0.94 | 33.39+1.56 78.86+0.12 | 41.02+0.35 | 16.62+0.89 36.16 +£0.26 | 29.35+0.89 | 17.13+£0.81
Cy 89.74+0.25 | 76.18 £0.69 | 34.95+ 1.56 84.42+0.21 | 56.25+1.90 | 23.01 £0.14 45.11+1.12 | 39.60 £3.02 | 21.78 £ 0.65
E(2)-CNN (regular) Cg 90.30 £0.11 | 78.46 £0.92 | 36.32 £ 1.41 86.92 £0.32 | 58.73 £0.27 | 22.10+0.93 45.76 +£1.47 | 43.53 +£1.14 | 23.91 £2.31
Cis 89.81+£0.09 | 76.67+1.46 | 36.20 %+ 3.02 85.32+0.31 | 47.86 £5.64 | 19.61 £1.16 44.21 +£1.22 | 40.73 £4.05 | 21.43+£2.22
I Wmmwwowém \G.M.q.\ < 1) | SO®2) | 84.63+0.33 | 63.09+£0.67 | 27.45+1.68 || 79.58£0.47 | 56.90 £0.64 | 26.17+1.33 || 78.994£0.26 | 59.39+0.89 | 27.09 £ 1.41 |
= 0(2) 77.17+£1.06 | 52.64£0.74 | 23.43+£0.84 69.47+1.53 | 45.544+1.20 | 21.35£1.41 69.25 +0.17 | 48.37£0.95 | 23.85+0.92
I meww@wém \?.wq.\ < 3) | SO®2) | 84.47+0.81 | 65.47+£0.68 | 34.09+1.05 || 79.35+0.95 | 53.89 £2.11 [ 26.25+1.76 || 77.24+£0.83 | 53.78 £ 0.71 | 28.08 £ 1.27 |
= 0(2) 79.39 £ 1.11 | 56.14 £0.42 | 26.96 +2.15 71.36 £1.38 | 42.24£0.72 | 19.34+1.84 69.28 +£0.65 | 44.28 £0.30 | 21.34 £1.17
HNets (Ist order) SO(2) 84.80 £0.43 | 64.24 £1.44 | 26.25+0.64 81.92+0.10 | 59.92+1.00 | 23.76 £1.36 80.35+£0.98 | 60.33+£2.13 | 25.70 £1.57
| HNets (2nd order) | SO(2) | 85.724+0.02 | 65.61£0.75 | 29.34 +3.98 |/ 80.93+0.75 | 55.38 +£2.21 | 25.22+0.56 | 80.49 £0.24 | 56.75+0.48 | 25.84 +2.87 |
SO(2) 90.99 £0.09 | 80.69 £0.35 | 39.43 £2.00 || 89.00+0.24 | 78.83 £0.62 | 33.98 £6.53 | 88.43 +0.54 | 81.12+0.88 | 35.38 +£4.03
B-CNNs (ko) 0(2) 88.25+0.21 | 76.51 £0.38 | 40.02+1.30 || 86.18 £0.10 | 73.86 +0.32 | 32.65 £ 7.76 83.16 +£0.15 | 73.23 £1.43 | 38.62£3.87
max SO(2)+ | 90.37+0.19 | 81.24 +0.07 | 30.33 +8.13 89.35 £0.09 | 80.08 +0.48 | 28.63 +6.19 88.17 £0.65 | 80.16 £0.27 | 35.10 +6.25
O2)+ 87.88+0.19 | 75.99 £1.06 | 30.92+1.30 86.59 £0.04 | 74.50+0.29 | 32.84 £1.18 || 84.48+0.25 | 75.08+1.19 | 32.71+3.81
| B-CNNs (kmax/2) || SO(2) | 87.53+0.16 | 77.35+0.46 | 37.04£2.76 || 86.50+0.15 | 76.21+£0.29 | 33.65+ 1.83 || 85.73 £0.18 | 78.95+0.29 | 31.06 £3.71 |
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Figure 15: Learning curves obtained for the different methods on the MNIST-back and MNIST-rot-back data
sets with respect to the epoch. Those learning curves are averaged over 5 independent runs. The legend is
the same for all the graphs. The symbols *, { and * refer to the use of E(2)-CNNs, HNets and B-CNNs,

respectively. Top-3 and worst-3 models are highlighted using full opacity.
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Figure 16: Learning curves obtained for the different methods on the MNIST-back and MNIST-rot-back
data sets with respect to the wall time (in seconds). Those learning curves are averaged over 5 independent
runs. The legend is the same for all the graphs. The symbols *, T and x refer to the use of E(2)-CNNs,
HNets and B-CNNs, respectively. Top-3 and worst-3 models are highlighted using full opacity.
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Now, by opposition to the observation for the MNIST(-rot) data set, it appears that B-CNNs are from a
general point of view significantly better than other equivariant models, in each setup. For the high data
setting on MNIST-back (without seeing rotated images during training), Figure 15 clearly reveals several
groups of plateau corresponding to vanilla CNNs; discrete E(2)-CNNs, O(2) E(2)-CNNs, SO(2) E(2)-CNNs
and HNets, and finally all the B-CNNs models with the SO(2) ones being in top of them. Again, in addition
to the better performances, one should also highlight a faster convergence for the B-CNNs. B-CNNs are able
to achieve better performances, in a computation time that is equivalent or even slightly better.

7.5 Results on Galaxyl0 DECals

Table 5 presents the results obtained on the Galaxyl0 DECals data set. For the sake of completeness,
Figure 17 and 18 also present all the corresponding training curves with respect to the epoch and the wall
time, respectively.
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Figure 17: Learning curves obtained for the different methods on the Galaxy10 DECals data set with respect
to the epoch. Those learning curves are averaged over 5 independent runs. The legend is the same for all
the graphs. The symbols *, f and % refer to the use of F(2)-CNNs, HNets and B-CNNs, respectively. Top-3
and worst-3 models are highlighted using full opacity.
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Table 5: Classification accuracy obtained for the different methods on the Galaxyl0 DECals data set, with and without using data augmentation.
The High, Inter. and Low data regimes correspond to 14,188, 1,418 and 141 images for the training set (same percentage of samples of each target
class), respectively. For each column, bold is used to highlight the top-3 performing models. Accuracy and standard deviation are assessed using 5
independent runs. The corresponding training curves are presented in Figure 17 and 18.

Galaxy10 DECals
With data aug. Without data aug.
Method Group High Inter. Low High Inter. Low
Vanilla CNN {e} 82.98 £0.57 | 71.67£0.62 | 46.75 4 2.87 77.33+0.44 | 68.32£0.08 | 41.47+1.51
ResNet-18 {e} 85.70 £0.41 | 74.45+£0.39 | 44.22£1.26 73.76 £0.10 | 42.15+£0.85 | 31.37 £0.47
Cy 87.32+£0.40 | 80.32+0.39 | 55.70 +1.89 || 83.86 £0.24 | 76.28 £0.26 | 52.68 £ 0.78
E(2)-CNN (regular) Cg 87.46 £0.63 | 80.51 +0.49 | 60.50 + 3.46 || 84.54 £0.23 | 78.02£0.09 | 59.18 £1.05
Cis 86.66 +0.32 | 80.64 +0.39 | 58.82 £2.72 || 84.70+0.49 | 78.57 +0.59 | 57.23 £+ 6.58
. mmmw.v.omém .s.wﬁ. - 1) | SO(2) | 85124051 | 73.32+£0.34 | 42.48£0.67 || 83.81+0.06 | 71.42+0.37 | 41.89 £1.53 |
T 0(2) 84.78 £0.23 | 72.13£0.17 | 48.61 £2.54 || 82.97+£0.67 | 69.53 +0.33 | 43.41 £1.27
. Mmmmw.oméw .s.w%.. - 3) | SO(2) | 85.144£0.19 | 72.82+0.66 | 39.37£2.64 | 82.21+0.54 | 66.56 £0.94 | 26.62+1.04 |
- 0(2) 83.99£0.87 | 71.54£1.10 | 43.73 £4.08 82.30£0.22 | 65.58 £1.54 | 25.14+0.80
HNets (1st order) SO(2) 85.37+£0.48 | 73.20£0.34 | 46.58 +2.49 83.91+£0.32 | 71.49+0.31 | 45.77 £ 1.82
| HNets (2nd order) || SO(2) | 84.914+0.67 | 72.77+0.16 | 44.53+0.12 || 82.58 £0.44 | 69.494+0.79 | 34.81 +£3.17 |
SO(2) 85.46 £0.54 | 76.02£0.59 | 52.89 £ 2.56 83.46 £0.12 | 74.46 £0.71 | 52.29 + 3.33
B-CNNs (k) 0(2) 85.14 +£0.38 | 76.41 £0.17 | 49.75 +0.63 84.13+0.21 | 76.02£0.62 | 54.39 £3.87
e SO(2)+ | 85.20+£0.38 | 75.63+0.76 | 51.73+1.60 83.53 £0.18 | 74.38 £0.11 | 52.28 +2.21
O(2)+ 84.39 £ 0.77 | 75.62£0.43 | 52.81 £0.85 84.42+£0.15 | 75.37£0.81 | 53.32+2.34
| B-CNNS (kmax/2) || SO(2) | 85.654+0.27 | 77.734+0.50 | 54.31 +2.47 || 84.94+0.32 | 76.53+1.04 | 54.76 + 3.16 |
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Figure 18: Learning curves obtained for the different methods on the Galaxy10 DECals data set with respect
to the wall time (in seconds). Those learning curves are averaged over 5 independent runs. The legend is
the same for all the graphs. The symbols *, { and * refer to the use of E(2)-CNNs, HNets and B-CNNs,

respectively. Top-3 and worst-3 models are highlighted using full opacity.
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From those results, one can see again that using the symmetry group Cy4, Cs or Ci¢ already allow F(2)-CNNs
to achieve very good results. For Galaxyl0 DECals, this observation stands for each setup, even without
using data augmentation.

SO(2)-based B-CNNs with the low cutoff policy (kmax/2) is again one of the best performing model when
used without data augmentation.

It is interesting to see that using the O(2) group does not always lead to better performances compared to
results obtained using SO(2), despite the fact planar reflections are meaningful for this application.

7.6 Results on Malaria

Table 6 presents the results obtained on the Malaria data set. For the sake of completeness, Figure 19 and 20
also present all the corresponding training curves with respect to the epoch and the wall time, respectively.
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(b) Malaria without augmentation

Figure 19: Learning curves obtained for the different methods on the Malaria data set with respect to the
epoch. Those learning curves are averaged over 5 independent runs. The legend is the same for all the
graphs. The symbols *, } and x refer to the use of F(2)-CNNs, HNets and B-CNNs; respectively. Top-3 and
worst-3 models are highlighted using full opacity.

Interestingly, for this data set, B-CNNs seem to perform slightly worse than other methods. With the use
of data augmentation, E(2)-CNNs and HNets are the best performing models. B-CNNs are only able to be
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Table 6: Classification accuracy obtained for the different methods on the Malaria data set, with and without using data augmentation. The
High, Inter. and Low data regimes correspond to 22,046, 2,204 and 220 images for the training set (same percentage of samples of each target
class), respectively. For each column, bold is used to highlight the top-3 performing models. Accuracy and standard deviation are assessed using 5
independent runs. The corresponding training curves are presented in Figure 19 and 20.

Malaria
With data aug. Without data aug.
Method Group High Inter. Low High Inter. Low

Vanilla CNN {e} 97.07£0.05 | 96.09 £0.06 | 93.36 +0.34 95.69 £ 0.15 | 94.47+0.09 | 73.36 + 2.63
ResNet-18 {e} 97.41+£0.13 | 96.05£0.11 | 93.294+0.24 95.99 £0.10 | 94.55+0.23 | 68.81 + 3.13
Cy 97.31+£0.19 | 96.05£0.24 | 91.96 +0.74 96.53 £0.11 | 94.81 £0.22 | 81.57 +2.16
E(2)-CNN (regular) Cg 97.22+0.15 | 95.87£0.16 | 92.43 +0.43 96.59 £ 0.20 | 95.08 £0.21 | 82.53 +1.86
Cis 96.86 +£ 0.03 | 95.64 £0.24 | 91.19 +0.46 96.63 + 0.08 | 94.92 +0.32 | 82.24 4+ 2.59

. mmmw.v.omém .s.wﬁ. <1 | SO(2) | 97.44+0.12 | 96.32+£0.13 | 94.44+0.38 || 96.76 +0.15 | 95.89 +0.12 | 94.21 +0.25 |

T 0(2) 97.25+£0.26 | 96.12£0.05 | 94.13 £0.37 || 96.68 £0.07 | 95.85 +0.20 | 94.12 £ 0.70

. Mmmmw.oméw .s.w%.. <3) | SO(2) |97.43+0.20 | 96.28 £0.06 | 93.95+0.49 | 96.56+0.11 | 95.53+0.12 | 93.08 £ 0.86 |
- 0(2) 97.27+£0.26 | 96.19£0.10 | 94.00 +0.73 96.47£0.22 | 95.56 £0.19 | 92.49 +1.26
HNets (1st order) SO(2) 97.43 +£0.16 | 96.41 £0.02 | 93.89 + 0.88 96.85 +0.16 | 96.13 £0.14 | 93.87 £0.61

| HNets (2nd order) || SO(2) | 97.43+0.20 | 96.43 £0.01 | 94.08 +0.33 || 96.76 £ 0.21 | 95.77+0.08 | 87.92 +4.11 |
SO(2) 96.81 £0.18 | 95.53 £0.23 | 88.80 +4.20 96.39 £0.16 | 95.16 £0.25 | 84.74 +2.95
B-CNNs (k) 0(2) 96.86 £ 0.06 | 95.54£0.21 | 88.70 & 1.52 96.33 £0.25 | 95.16 £0.39 | 88.07 + 3.69
max SO(2)+ | 96.97£0.21 | 95.91+£0.09 | 93.69 + 0.45 96.51 £0.08 | 95.48 £0.07 | 89.83 +2.16
O(2)+ 97.01 £0.04 | 95.79£0.24 | 93.69 £ 0.75 96.82 +0.23 | 95.78 £0.08 | 90.81 £ 0.51

| B-CNNs (kmax/2) || SO(2) [ 96.83+0.21 | 95.58 £0.28 | 92.19+0.87 || 96.71+£0.09 | 95.06 +0.11 | 91.65 £ 1.21 |
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Figure 20: Learning curves obtained for the different methods on the Malaria data set with respect to the
wall time (in seconds). Those learning curves are averaged over 5 independent runs. The legend is the same
for all the graphs. The symbols *, § and * refer to the use of E(2)-CNNs, HNets and B-CNNs, respectively.

Top-3 and worst-3 models are highlighted using full opacity.
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competitive without the use of data augmentation. This highlights the fact that (S—)O(2) invariance may
be less useful than for the other tested applications. Still, performances are most of the time very close to
each other.

8 Discussion

This section first provides a global discussion regarding the different experiments and results presented in
the previous section. Then, we discuss the choice of using models with automatic symmetry discovery, or
models as B-CNNs based on applying (strong) constraints to guarantee user-defined symmetry.

8.1 Global Discussion of the Results

From the experiments and the preliminary discussions in the previous section, several insights can be re-
trieved.

Equivariant models vs. vanilla CNNs In the particular case where many data are available, vanilla
CNNs do a very decent job by being only marginally below the top-accuracy. Thanks to data augmentation,
those models seem to be able to learn meaningful invariances. However, by taking a look at the training
curves, it appears clear that convergence is much slower. This is easily explained by the fact that vanilla
CNNs should learn the invariances, while it is not the case for equivariant models. Therefore, computation
time and energy may be saved by using instead an equivariant model with training through much less epochs.
Furthermore, this drawback is emphasized when vanilla CNNs should work with less data and/or without
data augmentation, up to leading to very poor performances in those cases.

Discrete vs. continuous groups As already spotted by Weiler & Cesa (2019), using discrete groups
already largely improve performances, and even sometimes constitute the best performing models. Nonethe-
less, experiments also highlight that it does not guarantee equivariance and often still requires a larger
amount of data as well as data augmentation.

B-CNNs vs. other equivariant models In our experiments, B-CNNs are most of the time at least able
to achieve state-of-the-art performances. In low data settings, they are often the best performing models. In
particular, B-CNNs with low cutoff policies (kmax/2) seem very efficient. They achieve top-1 accuracy in 7
setups and top-3 accuracy in 14 setups, among a total of 30 different setups (all the columns for all the data
sets). Now, by considering all the B-CNNs model at the same time, they achieve together top-1 accuracy
in 16 setups and top-3 accuracy in 20 setups. For comparison, it is better than E(2)-CNNs and HNets,
which achieve top-1 accuracy in 11 (11 for the discrete versions and 0 for the continuous groups) and 3
setups, and top-3 accuracy in 19 (12 for the discrete versions and 7 for the continuous groups) and 10 setups,
respectively. Also, from the experiments on MNIST and MNIST-back (no rotation during training), one can
see that the invariance achieved by design in B-CNNs is better than for other methods as performances for
example for the low cutoff policy are significantly above. Finally, we can observe that B-CNNs are able to
achieve good performances even without data augmentation, which is not/less the case for other methods.
As data augmentation increases the computational cost of training (because of the increase of the number of
training data and/or the number of training epochs), B-CNNs may therefore be a more favorable approach.

From a general point of view, an interesting conclusion of this work is also that using continuous equivariance
is not necessarily always the best performing approach in terms of accuracy. However, when it is not the
case, using SO(2) or O(2) equivariance could still be useful in terms of computational resources (convergence
can be faster, and less epoch are therefore required) or in order to apply constraints that are required by
the domain expert. On their side, B-CNNs have the advantage of being simple to use while being at least
competitive with the state-of-the-art performances.
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8.2 Automatic Symmetry Discovery vs. Constraints-based Models

This work focuses on constraint-based models that assume that users know a priori the appropriate symmetry
group(s) for the application at hand. However, it can sometimes be hard to obtain this prior knowledge as
it requires good understanding of the data/application. Methods like the one proposed by Dehmamy et al.
(2021) (L-CNNSs) therefore attempt to infer the invariance(s) that need to be enforced automatically during
training. Here, we advocate that the constraint-based approach remains relevant and often competitive.

Firstly, B-CNNs and other constraint-based methods can be adapted to handle symmetries in a data-driven
fashion. For example, one can consider a method similar to the one in Section 6.4 to let the model choose
meaningful symmetries. By designing the architecture with multiple networks in parallel that provide differ-
ent invariances (one could simultaneously consider SO(2), O(2), SO(2)+ and O(2)+), the model can benefit
from multiple views of the problem and use the features that are the most relevant. In a data-driven fashion,
the relevant part(s) of the network will be retained so as to enforce appropriate invariance(s). This approach
does not rely on the hypothetical ability of vanilla CNNs to learn specific types of invariance, but rather
builds on models that are designed for that.

Secondly, B-CNNs and other constraint-based methods have the advantage to guarantee specific invariances.
Instead of using data augmentation and relying on a proper learning of the invariances, mathematically sound
mechanisms are used, such as Bessel coefficients for B-CNNs. However, these mechanisms can only deal with
an invariance that can be described with reasonable mathematical complexity. Yet, handling symmetries
in a data-driven fashion (discovering useful symmetries during training, with vanilla CNNs or other more
adapted methods like L-CNNs) is not a one-fits-all solution and some invariances may be impossible to learn
without additional mechanisms.

Thirdly, the way constraints are enforced in B-CNNs allows them to exhibit an invariance that can even
not be present in the training data set. Hence, as shown in the above experiments, B-CNNs do not rely
on data augmentation that increases the computational cost®, nor do they require to see training data with
different orientations for the rotation invariance. This is a consequence of the mathematical soundness of
the approach used in B-CNNs.

To conclude, automatic symmetry discovery and constraints-based models are two paradigms that should
be used in different situations. While automatic symmetry discovery is useful when no prior knowledge is
available and the invariance may be complex to describe mathematically, it relies on a appropriate learning
of the invariances that may fail. On the other side, constraints-based models like B-CNNs require a prior
knowledge of the invariances involved in the applications, but can provide strong guarantees.

9 Conclusion and Future Work

This work provides a comprehensive explanation of B-CNNs, including their mathematical foundations
and key findings. Improvements are presented and compared to the prior work of Delchevalerie et al.
(2021), including making B-CNNs also equivariant to reflections and multi-scale. Furthermore, the previous
troublesome meta-parameters mpyax and jpax that were hard to fine-tune have been replaced with a single
meta-parameter ky.x for which an optimal choice can be computed using the Nyquist frequency.

An extensive empirical study has been conducted to assess the performance of B-CNNs compared to already
existing techniques. One can conclude that B-CNNs have, most of the time, better performances than the
other state-of-the-art methods, and achieve in the worst cases roughly the same performances. In low data
settings, they actually outperform other models most of the time. This is mainly due to the B-CNNs ability
to maintain robust invariances without resorting to data augmentation techniques, which is often not the
case for other models. Furthermore, we show that B-CNNs exhibit a more systematic and mathematically
rigorous equivariance, which can be meaningful for many applications. Finally, B-CNNs do not involve
particular, more exotic (such as complex-valued feature maps), representations for feature maps and are
therefore highly compatible with already existing deep learning techniques and frameworks.

5Data augmentation is considered as costly because it leads to (i) an increase of the number of training data, and/or (ii) an
increase of the required number of training epochs.
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Regarding future work, it could be interesting to tailor B-CNNs for segmentation tasks, given their relevance
in fields such as biomedical and satellite imaging. Such domains benefit greatly from rotation and reflection
equivariant models, making B-CNNs a promising candidate for these tasks. Next to that, it could also
be interesting to further study the impact of the model sizes on the final performances for the different
techniques. Indeed, as the different techniques bring the equivariance through different ideas, some of them
are maybe more suitable than others for very small network sizes. Finally, a major actual concern in deep
learning is the robustness regarding adversarial attacks or, more generally, small perturbations in the image.
It could be interesting to evaluate if the use of Bessel coefficients and the (S—)O(2) equivariant constraint
make B-CNNs more robust to those specific perturbations or not.
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A Appendix

In this Appendix we prove that the Bessel basis described in Section 4.1 can be used as an orthonormal basis
by carefully choosing k, ;.

Theorem 1 Let D? be a circular domain of radius R in R2. Let J, (x) be the Bessel function of the first
kind of order v, and let k, ; be defined such that J), (k, ;R) =0, Yv,j € N. Then

R
{Nu,jJu (kl/,jp) eiu€}7 where NV,j = 1/\/27T/0 pJE (kl’,jp) dp

is an orthonormal basis well-defined to express any squared-integrable functions f such that f : D?> C R? —
R.

Proof To prove this, we will use the fact that

/02” (v =) g — /027r cos (0 (v' —v)) +i/027r sin (6 (v = v))
2, -

since v/ — v is always an integer in our use of Bessel functions. We use also Lommel’s integrals, which are in
our particular case

R
/O oy (kosp) Jy (ku o) dp =

W [p (kv,j‘]z// (kv,jp) Ju (kv,j’p) - kwj"]z// (kv,j’p) Jy (kwjp))](})% if kwj #* kv,j”

{é [‘],12/ (kvjp) + (1 — %) Ju (kl,jp)HR otherwise. (A-2)
7 v.if ’ 0
By taking into account that J}, (k, jR) = 0, Lommel’s integrals lead to
" 0 if kyj # Ky,
/0 P (hujp) v (hvjep) dp = {(@2 - %) Jy (kyjR) otherwise.
- (122 — 2;};) Jy (kv jR) 8 5. (A.3)

Now, by using Equation (A.1)

27 R . . ,
/ / P [Nujdu (o ip) €] [Nyf,j/JV/ (kv jrp) € ? | dfdp
o Jo

R
:27'1'51,,,/ /0 pNy,le, (ky)jp) Ny)j/ Jl, (kl,yj/p) dp,

which, by using Equation (A.3), leads to

R
27('51,,y/ /0 pNy,le, (kyyjp) Nuyj/Jl, (ku,j/p) dp

R2 1/2
_ 2
=2mN,; (2 B Qk?,]> Ju (kv i R) 6y, 855

To conclude this proof, one can show by using Equation (A.3) again that
1

R
2m [y pJ3 (ku,jp) dp
1

"o (% - ﬁr) J, (ky;R)

N2 —
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and then finally,

27 R
/ / 0 [Nl (i) ) [Ny o s (k) €| dBdlp = 81,0065
0 0

which is the definition of an orthonormal basis®. [ |

B Appendix
In this Appendix we prove the properties that link ¢, ; and ¢_, ;.

Theorem 2 Let ¢, ;,Vv,j € N be the Bessel coefficients of a particular function ¥ (p,0) : D* C R? — R
defined on a circular domain of radius R, that is,

27 R
Pu,j = /0 /0 P [Nu,jJu (kl/,jp) ew@] v (pa 0) d@dp
Then, these coefficients are not all independent. They are linked by the relations

(1 ot %((sz/,j) = (_1)11%(9014]')
o ( 1) Prs {C‘}((p—mj) = (_l)y+1 C‘}(qu,j)'

Proof To prove this, we will use different properties of the Bessel functions. Firstly,
Iy (x) = (=1)" J, (),

and secondly,

1

Ty (@) = 5 (Jom1 (@) = Tyt (7)) -

Then, by using these two relations, one can show that

T (@) = 5 (T () = T (@)

B v+1
= % (z]y+1 (I) - Jv—l (1‘))
= (-1)" T, (2) (B.1)

However, if k_, ; is such that J', (k_, jR) = 0, it also leads thanks to Equation (B.1) to J, (k_, ;R) = 0.
And then, the only possibility is that k_, ; =k, ; (because we still have J}, (k, jR) = 0).

Now, regarding the normalization factor,

R
NZ, ;= ¢ 2m /O pJ2, (k—v;p) dp

R
= \/%/0 pJ2 (kuip) (=1)* dp
a1

v,

6Note that the proof for k,,; defined by J, (k,,;R) = 0 is now straightforward since it only sweeps the non-zero term in
Equation (A.2). The following remains the same.
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One can now put all this together to show that

27 R
P—v,j = /0 /) 4 [N—u,jJ—u (k—u,jp) eiwe] v (pa 0) d@dp

27 R

(—1)”/ / p [Ny Jy (kujp) e ™" W (p, 0) dbdp
0 0

:(_1)1)@;]7

which leads to the end of the proof. |

C Appendix

In this Appendix, we prove that the rotation invariant operation described in Section 5.1 is pseudo-injective.
It means that results will be different if images are different. Pseudo makes reference to the exception when
an image is compared to a rotated version of itself.

Theorem 3 Let {p, ;} be the Bessel coefficients of a particular function ¥ (p,0) : D* C R*> — R defined
on a circular domain of radius R. Let {¢), ;} be the Bessel coefficients of another particular function W' (p,0)
defined on the same domain D?. Finally, let {kv;} be some arbitrary complex numbers. Then,

Z | ZK’;J@”J‘Z = Z ’ Zm;jgpfj,jf = Ja: ¥V (p,0) =V (p,0 —a),Vp,Vo.
v 7 v J

Proof To make developments easier, one can use the bra-ket notation commonly used in quantum mechanics
to denote quantum states. In this notation, |v> is called a ket and denotes a vector in an abstract complex
vector space, and <v‘ is called a bra and corresponds to the same vector but in the dual vector space. It
follows that |v>’L = <v|, and the inner-product between two vectors is conveniently expressed by <v| f), and
the outer-product by |f)<v|

By using the fact that |z|2 = zz* and the bra-ket notation,
P DA DB DAy
v J v J

leads to

Z<’$V}SDV><“V |90V>* = Zmu |90Iu><’iv |90/u>*v

174 v

where k,, (resp., ¢,) is a vector that contains all the different values x, ; (resp., ¢, ;) for this particular v.
This Equation can further be written

Z<“u’¢l/><§0l/|“u> = Z<HV|SDIV><50/D|HV>' (C.1)

However, since the &, ;’s are totally arbitrary, the only possibility to satisfy Equation (C.1) is that
S e en] =D e
14 v

In quantum mechanics, ’gol,><<pl,‘ is called the density matrix of ¢,, and it is known that the only way to
achieve identical density matrices for different states ¢, and ¢’, is that they should only differ by a phase
factor”. |

A"

"Indeed, if ¢, = ¢’,e™*, then ’90’1,><4p’1,| =

ei’/acpu><8iya901/| =e e_i”a‘cpu><§0u| = |§Ol/><901/|
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