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ABSTRACT

Numerous explainability methods have been proposed to shed light on the
inner workings of GNNs. Despite the inclusion of empirical evaluations in all
the proposed algorithms, the interrogative aspects of these evaluations lack
diversity. As a result, various facets of explainability pertaining to GNNs, such
as a comparative analysis of counterfactual reasoners, their stability to variational
factors such as different GNN architectures, noise, stochasticity in non-convex
loss surfaces, feasibility amidst domain constraints, and so forth, have yet to be
formally investigated. Motivated by this need, we present a benchmarking study
on perturbation-based explainability methods for GNNs, aiming to systematically
evaluate and compare a wide range of explainability techniques. Among the key
findings of our study, we identify the Pareto-optimal methods that exhibit superior
efficacy and stability in the presence of noise. Nonetheless, our study reveals that
all algorithms are affected by stability issues when faced with noisy data. Further-
more, we have established that the current generation of counterfactual explainers
often fails to provide feasible recourses due to violations of topological constraints
encoded by domain-specific considerations. Overall, this benchmarking study
empowers stakeholders in the field of GNNs with a comprehensive understanding of
the state-of-the-art explainability methods, potential research problems for further
enhancement, and the implications of their application in real-world scenarios.

1 INTRODUCTION AND RELATED WORK

GNNs have shown state-of-the-art performance in various domains including social networks [Man-{
chanda et al.|(2020); Chakraborty et al.| (2023)), biological sciences|Ying et al.|(2021); [Rampasek et al.
(2022); Ranjan et al.| (2022)), modeling of physical systems|[Thangamuthu et al.|(2022); |Bhattoo et al.
(2022 2023)); Bishnoi et al.| (2023)), event detection |Cao et al.| (2021)); [Kosan et al.| (2021)) and traffic
modeling \Gupta et al.[(2023)); Jain et al.|(2021); |Wu et al.| (2017); Li et al.| (2020). Unfortunately, like
other deep-learning models, GNNs are black boxes due to lacking transparency and interpretability.
This lack of interpretability is a significant barrier to their adoption in critical domains such as
healthcare, finance, and law enforcement. In addition, the ability to explain predictions is critical
towards understanding potential flaws in the model and generate insights for further refinement.
To impart interpretability to GNNs, several algorithms to explain the inner workings of GNNs have
been proposed. The diversified landscape of GNN explainability research is visualized in Fig. I} We
summarize each of the categories below:

* Model-level: Model-level or global explanations are concerned with the overall behavior of
the model and search for patterns in the set of predictions made by the model. XGNN |Yuan
et al.| (2020), GLG-Explainer |Azzolin et al.| (2023), Xuanyuan et al. [Xuanyuan et al.[ (2023)),
GCFExplainer Huang et al.[(2023)).

*Both authors contributed equally to this research.
"Work done prior to joining Visa Inc.
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Figure 1: Structuring the space of the existing methods on GNN explainability.

Instance-level: Instance-level or local explainers provide explanations for specific predictions
made by a model. For instance, these explanations reason why a particular instance or input is
classified or predicted in a certain way.

Gradient-based: They follow the idea of the rate of change being represented by gradients.
Additionally, the gradient of the prediction with respect to the input represents the prediction
sensitivity to the input. This sensitivity gives the importance scores and helps in finding explanations.
SA and Guided-BP [Baldassarre & Azizpour|(2019), Grad-CAM Pope et al.[(2019).
Decomposition-based: They consider the prediction of the model to be decomposed and distributed
backward in a layer-by-layer fashion and the score of different parts of the input can be construed
as its importance to the prediction. CAM and Excitation-BP [Pope et al.|(2019), GNN-LRP Schnake
et al.| (2021).

Perturbation-based: They utilize input perturbations to identify important subgraphs serving as
factual or counterfactual explanations. GNNExplainer |Ying et al.|(2019b), PGExplainer Luo et al.
(2020), SubgraphX |Yuan et al.|(2021)), GEM [Lin et al.|(2021a), TAGExplainer Xie et al.| (2022),
CF? [Tan et al.|(2022), RCExplainer |Bajaj et al.| (2021), CF-GNNexplainer [Lucic et al.| (2022),
CLEAR Ma et al.| (2022), |Shan et al.|(2021)); |/Abrate & Bonchi| (2021)); [Wellawatte et al.| (2022)
Surrogate: They use the generic intuition that in a smaller range of input values, the relationship
between input and output can be approximated by interpretable functions. The methods fit a simple
and interpretable surrogate model in the locality of the prediction. GraphLime |[Huang et al.| (2022,
Relex |Zhang et al.[(2021), PGM-Explainer |Vu & Thai| (2020).

The type of explanation offered represents a crucial component. Explanations can be broadly classified
into two categories: factual reasoning and counterfactual reasoning.

Factual explanations provide insights into the rationale behind a specific prediction by identifying
the minimal subgraph that is sufficient to yield the same prediction as the entire input graph.
Counterfactual explanations elucidate why a particular prediction was not made by presenting
alternative scenarios that could have resulted in a different decision. In the context of graphs, this
involves identifying the smallest perturbation to the input graph that alters the prediction of the
GNN. Perturbations typically involve the removal of edges or modifications to node features.

1.1 CONTRIBUTIONS

In this benchmarking study, we systematically study perturbation-based factual and counterfactual
explainers and identify their strengths and limitations in terms of their ability to provide accurate,
meaningful, and actionable explanations for GNN predictions. The proposed study surfaces new
insights that have not been studied in existing benchmarking literature Amara et al.| (2022); Agarwal
et al| (2023)(See. App. [J]for details). Overall, we make the following key contributions:

Comprehensive evaluation encompassing counterfactual explainers: The benchmarking study
encompasses seven factual explainers and four counterfactual explainers. The proposed work is the
first benchmarking study on counterfactual explainers for GNNs.

Novel insights: The findings of our benchmarking study unveil stability to noise and variational
factors and generating feasible counterfactual recourses as two critical technical deficiencies that
naturally lead us towards open research challenges.

Codebase: As a by-product, a meticulously curated, publicly accessible code base is provided
(https://github.com/Armagaan/gnn-x-bench/).


https://github.com/Armagaan/gnn-x-bench/
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Table 1: Key highlights of the perturbation-based factual methods. The “NFE” column implies Node
Feature Explanation. “GC” and “NC” indicate whether the dataset is used for graph classification
and node classification respectively.

Method Subgraph Extraction Strategy ~ Scoring function Constraints NFE  Task Nature
GNNExplainer Continuous relaxation Mutual Information Size Yes GC+NC Transductive
PGExplainer Parameterized edge selection Mutual Information ~ Size, Connectivity No  GC+NC Inductive
TAGEXxplainer Sampling Mutual Information Size, Entropy No GC+NC Inductive
GEM Granger Causality+Autoencoder Causal Contribution ~Size, Connectivity No  GC+NC Inductive
SubgraphX Monte Carlo Tree Search Shapley Value Size, Connectivity No GC Transductive

2 PRELIMINARIES AND BACKGROUND

We use the notation G = (V, £) to represent a graph, where ) denotes the set of nodes and £ denotes
the set of edges. Each node v; € V is associated with a feature vector x; € R, We assume there
exists a GNN @ that has been trained on G (or a set of graphs).

The literature on GNN explainability has primarily focused on graph classification and node classifi-
cation, and hence the output space is assumed to be categorical. In graph classification, we are given
a set of graphs as input, each associated with a class label. The task of the GNN & is to correctly
predict this label. In the case of node classification, class labels are associated with each node and
the predictions are performed on nodes. In a message passing GNN of ¢ layers, the embedding on
a node is a function of its /-hop neighborhood. We use the term inference subgraph to refer to this
£-hop neighborhood. Henceforth, we will assume that graph refers to the inference subgraph for node
classification. Factual and counterfactual reasoning over GNNs are defined as follows.

Definition 1 (Perturbation-based Factual Reasoning) Let G be the input graph and ®(G) the pre-
diction on G. Our task is to identify the smallest subgraph Gs C G such that ®(G) = ®(Gs).
Formally, the optimization problem is expressed as follows:

Gs = arg IAG")] (1)

min
G'Cg, (9)=2(9")
Here, A(Gg) denotes the adjacency matrix of Gs, and || A(Gs)|| is its L1 norm which is equivalent to
the number of edges. Note that if the graph is undirected, the number of edges is half of the L1 norm.
Nonetheless, the optimization problem remains the same.

While subgraph generally concerns only the topology of the graph, since graphs in our case may be
annotated with features, some algorithms formulate the minimization problem in the joint space of
topology and features. Specifically, in addition to identifying the smallest subgraph, we also want to
minimize the number of features required to characterize the nodes in this subgraph.

Definition 2 (Counterfactual Reasoning) Let G be the input graph and ®(G) the prediction on
G. Our task is to introduce the minimal set of perturbations to form a new graph G* such that
D(G) # ®(G*). Mathematically, this entails to solving the following optimization problem.
G* =ar min dist(G,G’ 2

gg’€G7 2(G)#2(9’) ( ) @
where dist(G,G') quantifies the distance between graphs G and G’ and G is the set of all graphs one
may construct by perturbing G. Typically, distance is measured as the number of edge perturbations
while keeping the node set fixed. In case of multi-class classification, if one wishes to switch to a target
class label(s), then the optimization objective is modified as G* = arg ming:cg, o(g/)=c dist(G,G’),
where C is the set of desired class labels.

2.1 REVIEW OF PERTURBATION-BASED GNN REASONING

Factual (Yuan et al. (2022); Kakkad et al. (2023)): The perturbation schema for factual reasoning
usually consists of two crucial components: the subgraph extraction module and the scoring function
module. Given an input graph G, the subgraph extraction module extracts a subgraph G,; and the
scoring function module evaluates the model predictions ®(Gs) for the subgraphs, comparing them
with the actual predictions ®(G). For instance, while GNNExplainer|Ying et al.|(2019a)) identifies
an explanation in the form of a subgraph that have the maximum influence on the prediction, PG-
Explainer |Luo et al.| (2020) assumes the graph to be a random Gilbert graph. Unlike the existing
explainers, TAGExplainer |Xie et al.|(2022) takes a two-step approach where the first step has an



Published as a conference paper at ICLR 2024

Table 2: Key highlights of the counterfactuals methods.“GC” and “NC” indicate whether the dataset
is used for graph classification and node classification respectively.

Method Explanation Type Task Target/Method Nature
RCExplainer Bajaj et al.|(2021) Instance level GC+NC Neural Network Inductive
CF?|Tan et al.| (2022) Instance level GC+NC Original graph Transductive
CF-GNNExplainer |Lucic et al.|(2022) Instance level NC Inference subgraph Transductive
CLEAR Ma et al.[(2022) Instance level GC+NC  Variational Autoencoder Inductive

embedding explainer trained using a self-supervised training framework without any information
of the downstream task. On the other hand, GEM |Lin et al.|(2021a)) uses Granger causality and an
autoencoder for the subgraph extraction strategy where as SubgraphX |Yuan et al.|(2021) employes
a monte carlo tree search. The scoring function module uses mutual information for GNNExplainer,
PGExplainer, and TAGExplainer. This module is different for GEM and SubgraphX, and uses casual
contribution and Shapley value respectively. Table [[|summarizes the key highlights.
Counterfactual (Yuan et al.|(2022)): The four major counterfactual methods are CF-GNNExplainer
Lucic et al.| (2022), CF” [Tan et al. (2022), RCExplainer Bajaj et al.| (2021), and CLEAR Ma et al.
(2022)). They are instance-level explainers and apply to both graph and node classification tasks
except for CF-GNNExplainer which is only applied to node classification. In terms of method,
CF-GNNExplainer aims to perturb the computational graph by using a binary mask matrix. The corre-
sponding loss function quantifies the accuracy of the produced counterfactual and captures the distance
(or similarity) between the counterfactual graph and the original graph, whereas, CF? Tan et al.|(2022)
extends this method by including a contrastive loss that jointly optimizes the quality of both the factual
and the counterfactual explanation. Both of the above methods are transductive. As an inductive
method, RCExplainer Bajaj et al.|(2021), aims to identify a resilient subset of edges to remove such
that it alters the prediction of the remaining graph while CLEAR Ma et al.|(2022)) generates coun-
terfactual graphs by using a graph variational autoencoder. Table 2| summarizes the key highlights.

3 BENCHMARKING FRAMEWORK

In this section, we outline the investigations we aim to conduct and the rationale behind them. The
mathematical formulation of the various metrics are summarized in Table

Comparative Analysis: We evaluate algorithms for both factual and counterfactual reasoning and
identify the pareto-optimal methods. The performance is quantified using explanation size and
sufficiency Tan et al.|(2022). Sufficiency encodes the ratio of graphs for which the prediction derived
from the explanation matches the prediction obtained from the complete graph Tan et al.|(2022). Its
value spans between 0 and 1. For factual explanations, higher values indicate superior performance,
while in counterfactual lower is better since the objective is to flip the class label.

Stability: Stability of explanations, when faced with minor variations in the evaluation framework, is a
crucial aspect that ensures their reliability and trustworthiness. Stability is quantified by taking the Jac-
card similarity between the set of edges in the original explanation vs. those obtained after introducing
the variation (details in § [4). In order to evaluate this aspect, we consider the following perspectives:

* Perturbations in topological space: If we inject minor perturbations to the topology through a
small number of edge deletions or additions, then that should not affect the explanations.

* Model parameters: The explainers are deep-learning models themselves and optimize a non-
convex loss function. As a consequence of non-convexity, when two separate instances of the
explainer starting from different seeds are applied to the same GNN model, they generate dissimilar

Table 3: The various metrics used to benchmark the performance of GNN explainers.

G ={G',G?,...,G"}: graph set.

G§: explanation subgraph of G*

Gs = {G4,G%,...,G2}: explanation set.

R'=G -G

R = {R',R?,...,R"}: residual graph set.

P, g, Pr: the models trained on G, Gg, R.
G 4 _ ACC(®s All models are trained on the same labels.

Reproducibility™ (R*) = ACCE(‘I’)) ®(G'): the prediction of the model on G'.

ACC(®): the test accuracy of .

[Le]] i\ (G
Sufficiency(S) = Lz UB(G5)=2(G") “@?gf)‘@(y )

Sl (B(RY)£D(GE
Necessity(V) = ZiLLEE)20@)

G

Stability (£x, £ ) = [& gg;;;

Reproducibility (R ™) = S
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explanations. Our benchmarking study investigates the impact of this stochasticity on the quality
and consistency of the explanations produced.

* Model architectures: Message-passing GNNs follow a similar computation framework, differing
mainly in their message aggregation functions. We explore the stability of explanations under
variations in the model architecture.

Necessity: Factual explanations are necessary if the removal of the explanation subgraph from the
graph results in counterfactual graph (i.e., flipping the label).

Reproducibility: We measure two different aspects related to how central the explanation is towards
retaining the prediction outcomes. Specifically, Reproducibility™ measures if the GNN is retrained
on the explanation graphs alone, can it still obtain the original predictions? On the other hand,
Reproducibility ™ measures if the GNN is retrained on the residual graph constructed by removing
the explanation from the original graph, can it still predict the class label? The mathematical
quantification of these metrics is presented in Fig. 3]

Feasibility: One notable characteristic of counterfactual reasoning is its ability to offer recourse
options. Nonetheless, in order for these recourses to be effective, they must adhere to the specific
domain constraints. For instance, in the context of molecular datasets, the explanation provided must
correspond to a valid molecule. Likewise, if the domain involves consistently connected graphs, the
recourse must maintain this property. The existing body of literature on counterfactual reasoning
with GNNs has not adequately addressed this aspect, a gap we address in our benchmarking study.

Table 4: The statistics of the datasets. Here, “F” and “CF” in the column ““X-type” indicates whether
the dataset is used for Factual or Counterfactual reasoning. “GC” and “NC” in the Task column
indicates whether the dataset is used for graph classification and node classification respectively.

#Graphs  #Nodes  #Edges  #Features #Classes Task F/CF

MUTAGENICITY [Riesen & Bunke|(2008); |Kazius et al.|(2005) 4337 131488 133447 14 2 GC F+CF
PROTEINS |Borgwardt et al.|(2005); Dobson & Doig|(2003) 1113 43471 81044 32 2 GC F+CF
IMDB-B |Yanardag & Vishwanathan|(2015) 1000 19773 96531 136 2 GC F+CF
AIDS [Ivanov et al.|(2019) 2000 31385 32390 42 2 GC F+CF
MUTAG [Ivanov et al.|(2019) 188 3371 3721 7 2 GC F+CF
NCI1 |Wale et al.|(2008) 4110 122747 132753 37 2 GC F
GRAPH-SST?|Yuan et al.|(2022) 70042 714325 644283 768 2 GC F
DD |Dobson & Doig|(2003) 1178 334925 843046 89 2 GC F
REDDIT-B|Yanardag & Vishwanathan|(2015) 2000 859254 995508 3063 2 GC F
OGBG-MOLHIV |Allamanis et al.|(2018) 41127 1049163 2259376 9 2 GC CF
TREE-CYCLES |Ying et al.|(2019a) 1 871 1950 10 2 NC CF
TREE-GRID|Ying et al.|(2019a) 1 1231 3410 10 2 NC CF
BA-SHAPES|Ying et al.|(2019a) 1 700 4100 10 4 NC CF

4 EMPIRICAL EVALUATION

In this section, we execute the investigation plan outlined in § [3] Unless mentioned specifically, the
base black-box GNN is a GCN. Details of the set up (e.g., hardware) are provided in App.[Al
Datasets: Table [d] showcases the principal statistical characteristics of each dataset employed in our
experiments, along with the corresponding tasks evaluated on them. The TREE-CYCLES, TREE-
GRID, and BA-SHAPES datasets serve as benchmark graph datasets for counterfactual analysis.
These datasets incorporate ground-truth explanations [Tan et al.[(2022); Lin et al.|(2021a)); Lucic et al.
(2022). Each dataset contains an undirected base graph to which predefined motifs are attached to
random nodes, and additional edges are randomly added to the overall graph. The class label assigned
to a node determines its membership in a motif.

4.1 COMPARATIVE ANALYSIS

Factual Explainers: Fig. [2]illustrates the sufficiency analysis of various factual reasoners in relation
to size. Each algorithm assigns a score to edges, indicating their likelihood of being included in the
factual explanation. To control the size, we adopt a greedy approach by selecting the highest-scoring
edges. Both CF? and RCEXPLAINER necessitate a parameter to balance factual and counterfactual
explanations. We set this parameter to 1, corresponding to solely factual explanations.

Insights: No single technique dominates across all datasets. For instance, while RCEXPLAINER
performs exceptionally well in the MUTAG dataset, it exhibits subpar performance in IMDB-B and
GRAPH-SST?2. Similar observations are also made for GNNEXPLAINER in REDDIT-B vs. MUTAG
and Nci1l. Overall, we recommend using either RCEXPLAINER or GNNEXPLAINER as the preferred
choices. The spider plot in Fig. [Qmore prominently substantiates this suggestion. GNNEXPLAINER
is transductive, wherein it trains the parameters on the input graph itself. In contrast, inductive
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Figure 2: Sufficiency of the factual explainers against the explanation size. For factual explanations,
higher is better. We omit those methods for a dataset that threw an out-of-memory (OOM) error.

methods use pre-trained weights to explain the input. Consequently, transductive methods, such as
GNNEXPLAINER, at the expense of higher computation cost, has an inherent advantage in terms
of optimizing sufficiency. Compared to other transductive methods, GNNEXPLAINER utilizes a
loss function that aims to increase sufficiency directly. This makes the method a better candidate
for sufficiency compared to other inductive and transductive explainers. On the other hand, for
RCEXPLAINER, we believe that calculation of decision regions for classes helps to increase its
generalizability as well as robustness.

In Fig. 2] the sufficiency does not always increase monotonically with explanation size (such as
PGEXPLAINER in Mutag). This behavior arises due to the combinatorial nature of the problem.
Specifically, the impact of adding an edge to an existing explanation on the GNN prediction is a
function of both the edge being added and the edges already included in the explanation. An explainer
seeks to learn a proxy function that mimics the true combinatorial output of a set of edges. When this
proxy function fails to predict the marginal impact of adding an edge, it could potentially select an
edge that exerts a detrimental influence on the explanation’s quality.

Table 5: Sufficiency and size of counterfactual explainers on graph classification. Lower values are
better for both metrics. OOM indicates that the technique ran out of memory.

Mutag Mutagenicity AIDS Proteins IMDB-B ogbg-molhiv
Method / Metric | Suffic. Size| Suffic.| Size] Suffic.| Size| Suffic.) Size| ‘ Suffic.| Size| ‘ Suffic.| Size]
RCExplainer 044012 1.14+£022 | 04£0.06 1.01£0.19/091+£0.04 1.0£0.0 | 0.96£0.02 1.0£0.0 0.72£0.11 1.0£0.0 0.90+£0.02 1£0.0
CF*(a =0) 0.90+£0.12  1.0£0.0 [0.50£0.05 2.78+£0.98 | 0.98+0.02 5254035 | 1.0£0.0 NA 0.81£0.07 8.57£4.99{0.9640.00 10.45 £ 4.43
CLEAR 055+£0.1 17.15£1.62| OOM ooM 0.84+0.03 164.9 £47.9 OOM OOM | 0.9640.02 218.6240 OoOoM OOoM

Counterfactual Explainers: Tables[5]and [f] present the results on graph and node classification.

Insights on graph classification (Table [5): RCEXPLAINER is the best-performing explainer
across the majority of the datasets and metrics. However, it is important to acknowledge that
RCEXPLAINER’s sufficiency, when objectively evaluated, consistently remains high, which is
undesired. For instance, in the case of AIDS, the sufficiency of RCEXPLAINER reaches a value
of 0.9, signifying its inability to generate counterfactual explanations for 90% of the graphs. This
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Table 6: Performance of counterfactual explainers on node classification. Shaded cells indicate the
best result in a column. Note that only CF-GNNEXPLAINER and CF? can explain node classification.
In these datasets, ground truth explanations are provided. Hence, accuracy (Acc) represents the
percentage of edges within the counterfactual that belong to the ground truth explanation.

‘ Tree-Cycles ‘ Tree-Grid ‘ BA-Shapes
Method / Metric | Suffic. | Size | Acc(%)1 | Suffic. | Size | Acc(%) 1 | Suffic. | Size | Ace(%) T

CF-GNNEX 0.5+£0.08 1.03+0.16 100.0£0.0 0.09+£0.06 1.4240.55 92.70+4.99| 0.37£0.05 1.37+£0.59 91.5+4.36
Cr? (a = 0) 0.76 £0.06 4.55£1.48 74.71£18.70 ‘ 0.99+£0.02 7.0£0.0 1429+£0.0 | 0.25£0.88 4.244+1.70 68.89 +12.28

observation suggests that there exists considerable potential for further enhancement. We also note
that while CLEAR achieves the best (lowest) sufficiency in AIDS, the number of perturbations it
requires (size) is exorbitantly high to be useful in practical use-cases.

Insights on node classification (Table [6): We observe that CF-GNNEXPLAINER consistently
outperforms CF? (o = 0 indicates the method to be entirely counterfactual). We note that our result
contrasts with the reported results in CF? [Tan et al.| (2022), where CF2 was shown to outperform
CF-GNNEXPLAINER. A closer examination reveals that in Tan et al.|(2022), the value of o was set to
0.6, placing a higher emphasis on factual reasoning. It was expected that with ov = 0, counterfactual
reasoning would be enhanced. However, the results do not align with this hypothesis. We note that in
CF2, the optimization function is a combination of explanation complexity and explanation strength.
The contribution of « is solely in the explanation strength component, based on its alignment with
factual and counterfactual reasoning. The counterintuitive behavior observed with « is attributed to
the domination of explanation complexity in the objective function, thereby diminishing the intended
impact of . Finally, when compared to graph classification, the sufficiency produced by the best
methods in the node classification task is significantly lower indicating that it is an easier task. One
possible reason might be the space of counterfactuals is smaller in node classification.

Mutagenicity Proteins IMDB-B AIDS
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Figure 3: Stability of factual explainers in Jaccard similarity of explanations under topological noise.
Here, the z-ticks (Noise) denote the number of perturbations made to the edge set of the original
graph. Here, perturbations include randomly sampling x(denoted on X axis) negative edges and
adding them to the original edge set (i.e., connect a pair of nodes that were previously unconnected).

4.2 STABILITY

We next examine the stability of the explanations against topological noise, model parameters, and
the choice of GNN architecture. In App.[C} we present the impact of the above mentioned factors
on other metrics of interest such as sufficiency and explanation size. In addition, we also present
impact of feature perturbation and topological adversarial attack in App.[C]

Insights on factual-stability against topological noise: Fig. |3|illustrates the Jaccard coefficient
as a function of the noise volume. Similar to Fig[2] edge selection for the explanation involves a
greedy approach that prioritizes the highest score edges. A clear trend that emerges is that inductive
methods consistently outperform the transductive methods (such as CF? and GNNEXPLAINER). This
is expected since transductive methods lack generalizable capability to unseen data. Furthermore, the
stability is worse on denser datasets of IMDB-B since due to the presence of more edges, the search
space of explanation is larger. RCEXPLAINER (executed at « = 1) and PGEXPLAINER consistently
exhibit higher stability. This consistent performance reinforces the claim that RCEXPLAINER is
the preferred factual explainer. The stability of RCEXPLAINER can be attributed to its strategy
of selecting a subset of edges that is resistant to changes, such that the removal of these edges
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Table 7: Stability in explanations provided by factual explainers across runs. We fix the size to 10 for
all explainers. The most stable explainer for each dataset (row) corresponding to the three categories
of 1vs2, 1vs3 and 2vs3 are highlighted through gray, yellow and cyan shading respectively.

| PGExplainer TAGExplainer CF? RCExplainer GNNExplainer
Dataset/ Seeds | 1vs2  1vs3  2vs3 | lvs2 1us3 2us3 | 1vs2  lvs3  2us3 | lvs2  1vs3  20s3 | lvs2 1vs3  2vs3
Mutagenicity 069 075 062 | 076 0.78 0.74 | 0.77 0.77 075 071 0.71 | 046 047 0.47

Proteins 038 051 038 ] 055 048 046 | 0.34 034 0.35 | 0.88 0.85 028 028 0.28
Mutag 0.5 054 051|036 043 0.72 | 0.78 0.79 0.79 | 0.86 0.92 0.57 057 0.58
IMDB-B 0.67 0.76 0.67 | 0.67 0.60 0.56 | 0.32 032 0.32 | 0.75 0.73 0.18 0.19 0.18
AIDS 0.88 087 082 | 081 083 0.87 | 085 0.85 0.85 | 0.95 0.96 0.80 0.80 0.80
NCI1 0.58 0.55 064 | 0.69 081 0.65 | 0.60 0.60 0.60 | 0.71 0.71 044 044 044

Table 8: Stability of factual explainers against the GNN architecture. We fix the size to 10. We
report the Jaccard coefficient of explanations obtained for each architecture against the explanation
provided over GCN. The best explainers for each dataset (row) are highlighted in gray, yellow and
cyan shading for GAT, GIN, and GRAPHS AGE, respectively. GRAPHSAGE is denoted by SAGE.

| PGExplainer TAGExplainer CF? RCExplainer GNNExplainer
Dataset / Architecture ‘ GAT GIN SAGE ‘ GAT GIN SAGE ‘ GAT GIN SAGE ‘ GAT GIN SAGE ‘ GAT GIN SAGE

Mutagenicity 0.63 0.65 024 025 032 | 052 047 054 | 056 052 046 | 043 042 043
Proteins 022 0.47 045 041 0.18 | 0.28 0.28 0.28 | 0.37 0.41 028 028 0.28
Mutag 0.57 0.58 0.60 065 0.64 | 0.58 0.56 0.62 | 047 0.76 0.54 | 0.55 0.57 0.55
IMDB-B 0.48 0.45 044 035 047 | 017 0.23 0.17 | 030 033 026 | 017 0.17 0.17
AIDS 0.81  0.85 083 083 0.84 | 080 0.80 0.80 | 0.81 0.85 0.81 0.8 0.8 0.8
NCII 0.39 0.41 045 0.17 0.37 038 0.38 | 049 0.53 0.52 | 0.37 0.38 0.39

significantly impacts the prediction made by the remaining graph Bajaj et al.[{(2021). PGEXPLAINER
also incorporates a form of inherent stability within its framework. It builds upon the concept
introduced in GNNEXPLAINER through the assumption that the explanatory graph can be modeled
as a random Gilbert graph, where the probability distribution of edges is conditionally independent
and can be parameterized. This generic assumption holds the potential to enhance the stability of
the method. Conversely, TAGEXPLAINER exhibits the lower stability than RCEXPLAINER and
PGEXPLAINER, likely due to its reliance solely on gradients in a task-agnostic manner |Xie et al.
(2022). The exclusive reliance on gradients makes it more susceptible to overfitting, resulting in
reduced stability.

Insights on factual-stability against explainer instances: Table[7] presents the stability of expla-
nations provided across three different explainer instances on the same black-box GNN. A similar
trend is observed, with RCEXPLAINER remaining the most robust method, while GNNEXPLAINER
exhibits the least stability. For GNNEXPLAINER, the Jaccard coefficient hovers around 0.5, indicating
significant variance in explaining the same GNN. Although the explanations change, their quality
remains stable (as evident from small standard deviation in Fig. [2). This result indicates that multiple
explanations of similar quality exist and hence a single explanation fails to complete explain the data
signals. This component is further emphasized when we delve into reproducibility (§ E-3).

Insights on factual-stability against GNN architectures: Finally, we explore the stability of
explainers across different GNN architectures in Table 8] which has not yet been investigated in
the existing literature. For each combination of architectures, we assess the stability by computing
the Jaccard coefficient between the explained predictions of the indicated GNN architecture and the
default GCN model. One notable finding is that the stability of explainers exhibits a strong correlation
with the dataset used. Specifically, in five out of six datasets, the best performing explainer across
all architectures is unique. However, it is important to highlight that the Jaccard coefficients across
architectures consistently remain low indicating stability against different architectures is the hardest
objective due to the variations in their message aggregating schemes.

4.3 NECESSITY AND REPRODUCIBILITY

We aim to understand the quality of explanations in terms of necessity and reproducibility. The
results are presented in App.[D]and [E| Our findings suggest that necessity is low but increases with
the removal of more explanations, while reproducibility experiments reveal that explanations do not
provide a comprehensive explanation of the underlying data, and even removing them and retraining
the model can produce a similar performance to the original GNN model.
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4.4 FEASIBILITY

Counterfactual explanations serve as recourses and are expected to generate graphs that adhere to the
feasibility constraints of the pertinent domain. We conduct the analysis of feasibility on molecular
graphs. It is rare for molecules to be constituted of multiple connected components [Vismara &
Laurenco (2000). Hence, we study the distribution of molecules that are connected in the original
dataset and its comparison to the distribution in counterfactual recourses. We measure the p-value of
this deviation. App. presents the results.

4.5 VISUALIZATION-BASED ANALYSIS

We include visualizations of the explanations in App.[F] Our analysis reveals that a statistically good
performance does not always align with human judgment indicating an urgent need for datasets
annotated with ground truth explanations. Furthermore, the visualization analysis reinforces the need
to incorporate feasibility as a desirable component in counterfactual reasoning.

5 CONCLUDING INSIGHTS AND POTENTIAL SOLUTIONS

Our benchmarking study has yielded several insights that can streamline the development of ex-
planation algorithms. We summarize the key findings below (please also see the App. [K]for our
recommendations of explainer for various scenarios).

* Performance and Stability: Among the explainers evaluated, RCEXPLAINER consistently out-
performed others in terms of efficacy and stability to noise and variational factors (§ 4.I]and § {.2).

* Stability Concerns: Most factual explainers demonstrated significant deviations across explainer
instances, vulnerability to topological perturbations and produced significantly different set of
explanations across different GNN architectures. These stability notions should therefore be
embraced as desirable factors along with other performance metrics.

* Model Explanation vs. Data Explanation: Reproducibility experiments (§ revealed that
retraining with only factual explanations cannot reproduce the predictions fully. Furthermore, even
without the factual explanation, the GNN model predicted accurately on the residual graph. This
suggests that explainers only capture specific signals learned by the GNN and do not encompass
all underlying data signals.

* Feasibility Issues: Counterfactual explanations showed deviations in topological distribution from
the original graphs, raising feasibility concerns (§ 4.4).

Potential Solutions: The aforementioned insights raise important shortcomings that require further
investigation. Below, we explore potential avenues of research that could address these limitations.

* Feasible recourses through counterfactual reasoning: Current counterfactual explainers pre-
dominantly concentrate on identifying the shortest edit path that nudges the graph toward the
decision boundary. This design inherently neglects the feasibility of the proposed edits. Therefore,
it is imperative to explicitly address feasibility as an objective in the optimization function. One
potential solution lies in the vibrant research field of generative modeling for graphs, which has
yielded impressive results |Goyal et al.[(2020); |You et al.| (2018)); [Vignac et al.| (2023)). Generative
models, when presented with an input graph, can predict its likelihood of occurrence within a
domain defined by a set of training graphs. Integrating generative modeling into counterfactual
reasoning by incorporating likelihood of occurrence as an additional objective in the loss function
presents a potential remedy.

* Ante-hoc explanations for stability and reproducibility: We have observed that if the explana-
tions are removed and the GNN is retrained on the residual graphs, the GNN is often able to recover
the correct predictions from our reproducibilty experiments. Furthermore, the explanation exhibit
significant instability in the face of minor noise injection. This incompleteness of explainers and
instability is likely a manifestation of their post-hoc learning framework, wherein the explanations
are generated post the completion of GNN training. In this pipeline, the explainers have no visibility
to how the GNN would behave to perturbations on the input data, initialization seeds, etc. Potential
solutions may lie on moving to an ante-hoc paradigm where the GNN and the explainer are jointly
trained |Kosan et al.| (2023)); Miao et al.| (2022)); Fang et al.| (2023).

These insights, we believe, open new avenues for advancing GNN explainers, empowering researchers
to overcome limitations and elevate the overall quality and interpretability of GNNs.
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