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Abstract

Dialogue response selection aims to select an001
appropriate response from several candidates002
based on a given user and system utterance his-003
tory. Most existing works primarily focus on004
post-training and fine-tuning tailored for cross-005
encoders. However, there are no post-training006
methods tailored for dense encoders in dialogue007
response selection. We argue that when the008
current language model, based on dense dia-009
logue systems (such as BERT), is employed as010
a dense encoder, it separately encodes dialogue011
context and response, leading to a struggle to012
achieve the alignment of both representations.013
Thus, we propose Dial-MAE (Dialogue Contex-014
tual Masking Auto-Encoder), a straightforward015
yet effective post-training technique tailored016
for dense encoders in dialogue response selec-017
tion. Dial-MAE uses an asymmetric encoder-018
decoder architecture to compress the dialogue019
semantics into dense vectors, which achieves020
better alignment between the features of the di-021
alogue context and response. Our experiments022
have demonstrated that Dial-MAE is highly ef-023
fective, achieving state-of-the-art performance024
on two commonly evaluated benchmarks.025

1 Introduction026

The retrieval-based dialogue system is a popular re-027

search topic. Pre-trained language models (PLMs),028

especially deep bidirectional Transformer Lan-029

guage Models (LMs) like BERT encoder (Vaswani030

et al., 2017; Devlin et al., 2019), have been widely031

used in dialogue response. Common uses of deep032

LM are cross-encoder and bi-encoder (Gao and033

Callan, 2021). Recent works (Gu et al., 2020;034

Whang et al., 2021; Xu et al., 2021; Han et al.,035

2021; Zhang et al., 2022) on dialogue response re-036

trieval systems are mostly based on cross-encoders,037

which feed both the dialogue context and response038

directly into LM and use attention over all tokens to039

output a relevance score. Although cross-encoders040

have relatively stronger performances, they need041

to compute the matches for every possible com- 042

bination of context-response pairs, which is time- 043

consuming (Lan et al., 2021). In practice, cross- 044

encoders are often used for re-ranking after dia- 045

logue retrieval. In contrast, another common use 046

of deep LM is the dense encoder, i.e. bi-encoder, 047

which encodes dialogue context and response into 048

the context vector and response vector respectively. 049

The correlations between context and responses are 050

computed using cosine similarity or dot product 051

functions in vector space (Lan et al., 2021; Gao 052

et al., 2022). The bi-encoders have a faster compu- 053

tational speed but usually perform worse than the 054

cross-encoder. 055

Bi-encoders generally underperform compared 056

to cross-encoders due to two main reasons be- 057

low (Han et al., 2021; Gao and Callan, 2021; Lan 058

et al., 2021). Firstly, bi-encoders encode dialogue 059

context and responses separately, which lacks deep 060

interaction like the cross-encoder (Han et al., 2021). 061

We consider this as a potential information barrier 062

that hinders the performance of bi-encoders, result- 063

ing in significant differences between the dense 064

vector representations of the dialogue context and 065

response vectors. Secondly, language models like 066

BERT (Devlin et al., 2019) have not been trained to 067

aggregate complex information into a single dense 068

representation (Gao and Callan, 2021). Although 069

using contrastive learning during the fine-tuning 070

can alleviate the above two issues (Lan et al., 2021), 071

the discussion regarding their mitigation with post- 072

training remains absent in dialogue response selec- 073

tion. We argue that post-training a PLM specifically 074

tailored for the dense dialogue retrieval is essential 075

for achieving optimal performance. 076

In this paper, we focus on the above two is- 077

sues and propose Dial-MAE (Dialogue Contextual 078

Masking Auto-Encoder), a simple and effective 079

post-training method tailored for the bi-encoder 080

to compress dialogue semantic information and 081

enhance the representation of dialogue-dense vec- 082
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Figure 1: The model design for Dial-MAE. The input of the encoder is the dialogue context, and its next response
and dialogue context embedding output by the encoder is used as the input to the decoder.

tors. Our method provides a stronger foundation083

for model fine-tuning. Specifically, during the mod-084

eling process, we consider both the semantics of085

the dialogue context and the semantic relevance of086

the response.087

As shown in Figure 1, we introduce an asym-088

metric encoder-decoder architecture. With the help089

of the dialogue context embedding [CLS] output090

by the encoder, the auxiliary task utilizes a weak091

decoder to reconstruct the masked response text. In092

other words, we employ the embedding of the dia-093

logue context to directly generate responses. There-094

fore, even if the encoder side only receives the095

inputs of dialogue contexts, the output dialogue096

context embedding still needs to consider the cor-097

rect response. This enables the dialogue context098

embedding [CLS] to incorporate contextual infor-099

mation. In addition, the encoder is required to di-100

rectly predict the correct response when encoding101

the dialogue context, which breaks the informa-102

tion barrier between the context and the response.103

Therefore, the context and response features output104

by Dial-MAE are more similar, and our ablation105

experiments also prove this.106

Furthermore, it is noteworthy that, similar to107

(Xiao et al., 2022; Gao and Callan, 2021), we apply108

asymmetric mask rates to the encoder and decoder.109

The decoder side has a higher mask rate than the110

encoder side. Such a design has the following ad-111

vantage. Since the decoder has limited modeling112

capacity and high mask rate, the reconstruction on113

the decoder side is difficult to accomplish only by114

relying on masked response and rely more on the115

dialogue embedding output by the encoder, this116

forces the encoder to sufficiently aggregate the se-117

mantics of the dialogue context to aid the decoder118

in its MLM task (Xiao et al., 2022; Gao and Callan, 119

2021). 120

Our contributions are as follows: 121

1. We introduce Dial-MAE, a novel post-training 122

method designed for bi-encoders, which uti- 123

lizes dialogue context embeddings to gener- 124

ate responses, aiming to achieve feature align- 125

ment. 126

2. We design a novel asymmetric encoder- 127

decoder architecture to enhance the represen- 128

tational power of dialogue embedding. 129

3. Experimental results show that in dialogue 130

response retrieval, our method achieves state- 131

of-the-art on two benchmarks with faster re- 132

sponse speed. 133

2 Related Work 134

In this section, we first discuss traditional retrieval 135

dialogue systems based on neural networks, and 136

then we discuss current dialogue systems based on 137

pre-trained language models. 138

2.1 Neural Dialogue Response Retrieval 139

Dialogue response selection aims to select the most 140

appropriate response from a range of candidates. 141

Earlier studies (Kadlec et al., 2015; Lowe et al., 142

2015) focused on single-turn response selection. 143

Later, more and more studies paid attention to 144

multi-turn dialogue response selection. Lowe et al. 145

introduce a method that calculates the matching 146

degree between dialogue and response based on 147

Recurrent Neural Networks (RNNs). They also 148

contributed a benchmark dataset named Ubuntu 149

V1. In a similar vein, Kadlec et al. advocate for the 150
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use of Convolutional Neural Networks (CNN) and151

Long Short-Term Memory (LSTM) as encoders to152

represent both the context and response. However,153

these methods do not explicitly treat each utterance154

as a unit, making it difficult to capture utterance-155

level discourse information. Zhou et al. propose156

a multi-view model that encodes both word-level157

and utterance-level representations. Meanwhile, to158

fully reflect the relationship between dialogue and159

response, Wu et al. suggest utilizing word embed-160

dings and their sequential representations, encoded161

by Gated Recurrent Units (GRU), to construct a162

matching matrix between the dialogue context and163

response. With the popularity of attention mech-164

anisms(Luong et al., 2015; Vaswani et al., 2017).165

Zhou et al. propose a deep attention-matching net-166

work that applies the attention mechanism to the167

response selection dialogue system. Furthermore,168

Tao et al. advocate for context and response match-169

ing by stacking multiple interaction blocks, provid-170

ing a nuanced perspective. In a similar vein, Yuan171

et al. introduce a multi-hop selector network de-172

signed to identify relevant utterances in the context173

of response matching. However, most traditional174

retrieval models are lightweight networks, and their175

performance is difficult to compare with PLMs.176

2.2 PLM-based Dialogue Response Retrieval177

Since PLMs show impressive performances in var-178

ious downstream NLP tasks. More and more stud-179

ies apply PLMs to response selection. BERT-VFT180

(Whang et al., 2020) first applies the pre-trained lan-181

guage model BERT to dialogue response selection,182

and achieves state-of-the-art results. SA-BERT183

(Gu et al., 2020) adds speaker embedding to the184

model, in order to make the model aware of the185

speaker change information. Multi-Task Learning186

is also an effective way, UMSBERT+ (Whang et al.,187

2021) proposes a set of strategies, which aids the188

response selection model towards maintaining dia-189

logue coherence. Alternatively, Xu et al. propose190

learning a context-response matching model with191

multiple auxiliary self-supervised tasks. However,192

these methods have the problem of not fully con-193

sidering the relationship between each utterance in194

the context. BERT-FP (Han et al., 2021) proposes195

to classify the relationship between a given utter-196

ance and a target utterance into more fine-grained197

labels, which makes the model learn the semantic198

relevance and coherence between the utterances.199

Zhang et al. propose two-level supervised con-200

trastive learning so that the learned dialogue repre- 201

sentations can be further separated in the embed- 202

ding space. In addition, DR-BERT(Lan et al., 2021) 203

explores the transfer of techniques from dense pas- 204

sage retrieval community to dialogue response se- 205

lection. Although DR-BERT (Lan et al., 2021) pro- 206

pose fine-tuning PLMs through contrastive learn- 207

ing to enhance the representation capability of 208

dialogue-dense vectors, there has been no research 209

on tailoring post-training tasks to enhance the rep- 210

resentation ability of dialogue-dense vectors. 211

3 Methodology 212

This section first introduces masked language 213

model pre-training as preliminary knowledge. 214

Then we introduce detailed post-training, includ- 215

ing the construction of data and the auxiliary task. 216

Finally, we introduce the details of fine-tuning. 217

3.1 Masked Language Model Pre-training 218

MLM is an unsupervised method that masks parts 219

of the input tokens and requires the Transformers- 220

based LM to predict them based on the unmasked 221

tokens. Formally, given an input sentence X = 222

[x1, x2, ..., xn]. We select a certain percentage of 223

tokens from X and replace them with a special to- 224

ken [MASK] to get corrupted X̃ . We denote these 225

tokens replaced by [MASK] as m(X). Then, LM 226

is used to transform the corrupted input into the 227

hidden states: 228

[hl
cls,h

l] = LM([CLS], X̃) (1) 229

Here, [CLS] is a special token that is prepended at 230

the beginning of the text. hl
cls and hl respectively 231

represent the hidden states of the final layer out- 232

put after the [CLS] and X̃ pass through the LM, 233

i.e., hl = [hl
1,hl

2,...,hl
n]. For masked token, its cor- 234

responding hidden feature is used to predict the 235

actual label. We formulate this process as: 236

Lmlm = −
∑

xi∈m(X)

log p(xi|LM([CLS], X̃))

(2) 237

3.2 Dial-MAE: Dialogue Contextual Masking 238

Auto-Encoder 239

Dial-MAE learns dialogue context information, 240

which jointly models the semantics of the tokens 241

inside a dialogue context and its response. We first 242

describe how to build training data from all utter- 243

ances of the dialogue session and then introduce 244
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the Dial-MAE post-training method. We randomly245

sample multiple consecutive utterances as context246

and the next utterance as its response. Multiple ut-247

terances of the context are connected using [SEG].248

For each dialogue scene, we sample multiple sets249

of such context and response pairs. The sampled250

context and response will serve as input to the en-251

coder and decoder, respectively.252

Then, we introduce the post-training design for253

Dial-MAE, as shown in Figure 1, we use an asym-254

metric encoder-decoder: A deep encoder to gen-255

erate dialogue context embedding, and a shallow256

transformer-based decoder (e.g. one or two layers)257

for response reconstruction. We apply a BERT258

encoder Enc(.) with 12 layers, which receives259

masked dialogue context as inputs. The deep en-260

coder has enough parameters to learn good dia-261

logue representations, following the common prac-262

tice, we select the final hidden state from the [CLS]263

token as the dialogue context embedding. The de-264

coder is designed to assist the encoder in learning a265

better semantic representation of the dialogue. The266

input of the decoder Dec(.) is the masked response267

as well as the dialogue context embedding, and it268

reconstructs the masked response tokens with the269

help of the context embedding.270

Through our design, the encoder Enc(.) needs271

to predict the features of the correct response when272

encoding the dialogue context. This makes the273

dense encoder with behavior similar to that of a274

cross-encoder: simultaneously considering both275

the dialogue context and the response. The advan-276

tage of doing this is to achieve feature alignment277

between the dialogue context and response during278

the post-training. Meanwhile, since the auxiliary279

MLM task breaks down the information barrier280

between separately encoding the dialogue context281

and response, the encoded output’s [CLS] hidden282

state encompasses information from both. Further-283

more, it is worth noting that we employ an asym-284

metric masking operation(eg., 30% for encoder,285

75% for decoder). On the decoder side, an aggres-286

sive mask rate and fewer model parameters will287

force its MLM task to rely more on the encoder’s288

context embedding, which helps the encoder side289

aggregate complex information about the dialogue290

context into a dense vector.291

Formally, we denote the dialogue context as c292

and the response as r. We apply random mask op-293

eration to context to get c̃, denoting these tokens294

replaced by [MASK] in context as menc(c). Simi-295

larly, we apply a random masking operation with a 296

higher masking ratio for response to get r̃, denoting 297

these tokens replaced by [MASK] in response as 298

mdec(r). The encoding process can be expressed 299

as: 300

[hc
cls,h

c] = Enc([CLS], c̃) (3) 301
302

[hr
cls,h

r] = Dec(hc
cls, r̃) (4) 303

On the encoder side, the original context is learned 304

to be reconstructed by optimizing the cross-entropy 305

loss: 306

Lenc = −
∑

ci∈menc(c)

log p(ci|Enc([CLS], c̃))

(5) 307

Differently, on the decoder side, the decoder recon- 308

structs the original response with the help of the 309

context embedding hccls. We formulate this process 310

as: 311

Ldec = −
∑

ri∈mdec(r)

log p(ri|Dec(hccls, r̃)) (6) 312

Then, we add the encoder and decoder losses to 313

obtain a summed loss: 314

L = Lenc + Ldec (7) 315

3.3 Fine-tuning for dialogue response 316

selection 317

At the end of Dial-MAE post-training, fine-tuning 318

is conducted on the downstream dialogue response 319

selection to verify the effectiveness of post-training. 320

As shown in Figure 2, in the fine-tuning stage, we 321

only keep the encoder and discard the decoder. The 322

encoder weights are used to initialize a dialogue 323

context encoder fc and a response encoder fr, re- 324

spectively. 325

The dialogue consists of a context c that includes 326

multiple utterances and a response r with one ut- 327

terance. After the dialogue context and response 328

pass through the encoder, the context vector and 329

response vector are respectively output. We train 330

a dialogue response selection model using a con- 331

trastive learning loss function. 332

Lft =
exp(d(c, r+))

exp(d(c, r+)) +
∑

j exp(d(c, r
−
j ))

(8) 333

r+ is the correct response corresponding to the 334

dialogue context c. r− represents negative samples 335

within a mini-batch. At inference time, we use 336

the dot product d(c, r) to measure the similarity 337

between the context vector and the response vector: 338

d(c, r) = fc(c) · fr(r) (9) 339
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Figure 2: We discard the decoder, initialize the context
encoder and response encoder using the encoder part
of Dial-MAE, and fine-tune using contrastive learning.
At inference time, We use a dot product to measure
similarity.

4 Experiment340

In this section, we first introduce our experimental341

details, including datasets, evaluation metrics, post-342

training, and fine-tuning. Then we introduce the343

experimental results.344

4.1 Datasets345

We tested our model on widely used benchmarks346

that include Ubuntu Corpus and E-commerce Cor-347

pus. The statistics for the two datasets are presented348

in Table 1.349

1. Ubuntu Corpus. Ubuntu IRC Corpus V1350

(Lowe et al., 2015) is a publicly available351

domain-specific dialogue dataset. Each set of352

conversations has two participants discussing353

how to troubleshoot Ubuntu systems.354

2. E-commerce Corpus. E-commerce Corpus355

(Zhang et al., 2018) comprises genuine con-356

versations in Chinese between customers and357

customer service personnel, collected from358

Taobao, a Chinese e-commerce platform.359

Dataset Ubuntu E-commerce
train val test train val test

context-response pairs 1M 500k 500k 1M 10k 10k
pos : neg 1:1 1:9 1:9 1:1 1:1 1:9
avg turns 10.13 10.11 10.11 5.11 5.48 5.64

Table 1: Statistics related to data for the Ubuntu and
E-commerce Corpus.

4.2 Evaluation Metric360

We evaluated our model using R10@k, following361

previous studies (Han et al., 2021; Zhang et al.,362

2022), we evaluate our model using R10@k. The363

notation R10@k represents Recall, indicating that364

among ten possible responses, the correct answer 365

is included within the top k options. 366

4.3 Implementation Details 367

We first introduce the experimental setup for post- 368

training, followed by the experimental setup for 369

contrastive learning. 370

Post-training. Dial-MAE’s encoder is initial- 371

ized with a pre-trained 12-layer BERT-base model, 372

while the decoder is initialized from scratch. 373

Specifically, following the previous works, for 374

the E-commerce dataset, we employ bert-base- 375

chinese1. For the Ubuntu dataset, we utilize the 376

bert-base-uncased2. We pre-train the model using 377

the AdamW optimizer for a maximum of 15k steps, 378

a global batch size of 1k, and a linear schedule with 379

a warmup ratio of 0.1 on all two datasets. We set 380

the input sequence lengths to 256 and 64 for the 381

encoder and decoder, respectively. In fact, for the 382

Chinese datasets E-commerce, we followed the pa- 383

rameter settings from Cot-MAE(Wu et al., 2023): 384

The masking ratio of the encoder is 30%, the mask- 385

ing rate of the decoder is 45%, the learning ratio is 386

1e-4, and the decoder has two layers. Differently, 387

for the English dataset Ubuntu, the masking ratio 388

of the encoder is 30%, the masking ratio of the de- 389

coder is 75%, and the decoder is one layer. We also 390

adjust the learning rate to 3e-4 to ensure the loss 391

function converges. We set a widely used random 392

seed as 42 for reproducibility. After post-training, 393

we discard the decoder, only leaving the encoder 394

for fine-tuning. 395

Fine-tuning. We fine-tune using contrastive 396

learning on each dataset. During training, we fol- 397

low (Lan et al., 2021) regarding every utterance in 398

the dialogue sense as a response and its previous 399

utterances as a context. Our model is optimized 400

by AdamW optimizer, and the linear learning ra- 401

tio scheduler is used. We tuned the hypermeters 402

of individual tasks on their development sets. For 403

Ubuntu, we fine-tune for 5 epochs, the learning 404

rate is set to 5e-5, and the batch size is set to 64. 405

For E-commerce, we fine-tune for 2 epochs, the 406

learning rate is set to 1e-4, and the batch size is set 407

to 128. We set a widely used random seed as 42 408

for reproducibility. 409
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Models Ubuntu E-commerce
R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

TF-IDF (Lowe et al., 2015) 0.410 0.545 0.708 0.159 0.256 0.477
RNN (Lowe et al., 2015) 0.403 0.547 0.819 0.118 0.223 0.589
CNN (Kadlec et al., 2015) 0.549 0.684 0.896 0.328 0.515 0.792
LSTM (Kadlec et al., 2015) 0.638 0.784 0.949 0.365 0.536 0.828
SMN (Wu et al., 2017) 0.726 0.847 0.961 0.453 0.654 0.886
DUA (Zhang et al., 2018) 0.752 0.868 0.962 0.501 0.700 0.921
DAM (Zhou et al., 2018) 0.767 0.874 0.969 0.526 0.727 0.933
IOI (Tao et al., 2019) 0.796 0.894 0.974 0.563 0.768 0.950
ESIM (Chen and Wang, 2019) 0.796 0.894 0.975 0.570 0.767 0.948
MSN (Yuan et al., 2019) 0.800 0.899 0.978 0.606 0.770 0.937
RoBERTa-SS-DA (Lu et al., 2020) 0.826 0.909 0.978 0.627 0.835 0.980
BERT-VFT (Whang et al., 2020) 0.855 0.928 0.985 - - -
SA-BERT (Gu et al., 2020) 0.855 0.928 0.983 0.704 0.879 0.985
UMSBERT+ (Whang et al., 2021) 0.875 0.942 0.988 0.764 0.905 0.986
BERT-SL (Xu et al., 2021) 0.884 0.946 0.990 0.776 0.919 0.991
DR-BERT (Lan et al., 2021) ♣ 0.910 0.962 0.993 - - -
BERT-FP (Han et al., 2021) 0.911 0.962 0.994 0.870 0.956 0.993
BERT-TL (Zhang et al., 2022) 0.910 0.962 0.993 0.927 0.974 0.997

BERT+CL 0.887 0.948 0.989 0.849 0.937 0.991
Dial-MAE 0.918∗ 0.964∗ 0.993 0.930∗ 0.977∗ 0.997
diff. %p +3.1% +2.4% +0.4% +8.1% +4% +0.6%

Table 2: Main experiment results on E-commerce Corpus and Ubuntu Corpus. BERT+CL means fine-tuning BERT
using contrastive learning. The best score on a given dataset is marked in bold, and the second best is underlined.
♣ : According to the published code, for E-commerce, they adjusted the hyperparameters on the test set without
cross-validation, we think the results are misleading, and this part has been removed. Two-tailed t-tests demonstrate
statistically significant improvements of Dial-MAE over baselines (∗ ≤ 0.01).

4.4 Results and Discussions410

We show the main results in Table 2, which shows411

that Dial-MAE achieves new state-of-the-art on412

the Ubuntu dataset and E-commerce dataset. We413

are able to achieve comparable performance to the414

state-of-the-art cross-encoders using a bi-encoder,415

and we have lower computational requirements416

compared to cross-encoders. Compared to BERT-417

FP, our model achieved an absolute improvement418

of 0.7%p in R10@1 on the Ubuntu Corpus and 6%p419

in R10@1 on the E-commerce. Compared to BERT-420

TL, our model achieves an absolute improvement421

of 0.8%p in R10@1 on the Ubuntu Corpus and a422

slight improvement of 0.3%p in E-commerce. This423

suggests that our carefully tailored post-training424

method for the bi-encoder can achieve compara-425

ble performance to the complex-designed cross-426

encoder.427

1https://huggingface.co/bert-base-chinese
2https://huggingface.co/bert-base-uncased

BERT+CL means fine-tuning BERT using con- 428

trastive learning. In comparison to BERT+CL, 429

Dial-MAE achieve an absolute improvement in 430

R10@1 by 3.1%p, 8.1%p on Ubuntu Corpus and 431

E-commerce Corpus, respectively. This suggests 432

that our custom post-training approach for dialogue 433

retrieval models is effective. Aligning the features 434

of the dialogue context and response during post- 435

training enables improvements in contrastive fine- 436

tuning. We believe the improvement comes from 437

two aspects. On the one hand, the post-training 438

method considers both the semantics of the tokens 439

inside the context and its response. On the other 440

hand, the asymmetric encoder-decoder structure 441

with an asymmetric masking strategy facilitates 442

post-training, which forces the encoder to learn 443

better dialogue embeddings. 444

4.5 Ablation Study 445

In this section, we analyze the experimental results 446

to demonstrate the effectiveness of the proposed 447
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Models Ubuntu E-commerce
R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

BERT+CL 0.887 0.948 0.989 0.849 0.937 0.991
w/o Contrastive loss 0.205 0.341 0.647 0.141 0.242 0.466
Dial-MAE 0.918 0.964 0.993 0.930 0.977 0.997
w/o Contrastive loss 0.783 0.867 0.950 0.483 0.639 0.853

Table 3: Ablation results on the test sets of the two benchmarks.

Dial-MAE method. In the following experimen-448

tal analysis, due to high computing budgets, most449

experiments use Ubuntu Corpus.450

The Impact of Auxilary Network. We remove451

the contrastive loss in BERT+CL and Dial-MAE,452

then evaluate their performance changes. As shown453

in Table 3, Dial-MAE achieved an absolute im-454

provement in R10@1 by 57.7%p, and 34.2%p on455

Ubuntu Corpus and E-commerce Corpus, respec-456

tively.457

This suggests that our proposed post-training458

method effectively achieves the alignment of con-459

textual representations, making the dialogue con-460

text more similar to the features of the response.461

We believe the gain comes from our auxiliary net-462

work helping the encoder aggregate dialogue con-463

textual information. First, the encoder achieves464

feature alignment in the dialogue’s contextual in-465

formation by predicting the features of the correct466

response during the encoding of the context. Sec-467

ondly, due to the small number of parameters of468

the decoder and the high mask rate on the decoder469

side, this will force the MLM task of the decoder470

to rely more on the dialogue context embedding471

output by the encoder. This enables the decoder to472

aggregate complex information about the dialogue473

context into a dense vector.474

We then use contrastive learning to fine-tune the475

post-training models, and the performance of the476

models can be further improved. We also give the477

fine-tuning schedule on Ubuntu Corpus as shown478

in Figure 3, with the accuracy steadily improv-479

ing as the training time increases, and Dial-MAE480

consistently outperforms BERT+CL. This result481

shows that both the contrastive loss and the aux-482

iliary MLM loss are crucial in our method. Both483

contrastive learning and our post-training method484

are effective in achieving dialogue context and re-485

sponse feature alignment, and their effects can be486

additive.487

Impact of Mask Rate. Wu et al. find that us-488

1k 3k 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
Steps

77.5

80.0

82.5

85.0

87.5

90.0

92.5

R1
0@

1

BERT+cl

DialMAE

Figure 3: Fine-tuning schedules on the dev set of Ubuntu
Corpus. A longer fine-tuning schedule gives a notice-
able improvement. The performance of Dial-MAE is
always better than BERT+CL.

Enc Dec R10@1 R10@2 R10@5

0.15 0 91.0 96.0 99.2
0.15 0.15 91.3 96.1 99.2
0.15 0.45 91.5 96.2 99.3
0.15 0.75 91.5 96.3 99.3
0.30 0.45 91.7 96.5 99.3
0.30 0.75 91.9 96.5 99.3
0.30 0.90 91.6 96.4 99.3
0.45 0.75 91.8 96.4 99.4

Table 4: Impact of mask rate on the dev set of Ubuntu
Corpus. "Enc" denotes encoder, "Dec" denotes decoder.
"Enc=0.15 Dec=0" means only using BERT’s native
MLM task without the decoder part.

ing a larger mask rate in both the encoder and de- 489

coder can enhance the performance of the contex- 490

tual masking Auto-Encoder. As shown in Table 491

4, in our experiments, we find that an aggressive 492

mask rate helps the learning of Dial-MAE. when 493

the encoder mask rate equals 30%, and the decoder 494

mask rate equals 75%, Dial-MAE achieves the best 495

performance. When the encoder mask rate stays be- 496

low 30%, the performance of Dial-MAE improves 497

as the decoder mask rate increases. When the en- 498

coder mask rate rises to 45%, Dial-MAE’s perfor- 499
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mance declines slightly. We believe this is due to500

the encoder doesn’t provide enough dialogue con-501

text semantic information when its mask rate is too502

high. In addition, from the experimental results, no503

matter what set of mask rates, Dial-MAE obviously504

exceeds the result of post-training for MLM tasks505

alone, which proves the robustness of Dial-MAE.506

Impact of Decoder Layer Number. As shown in507

Figure 4, we further explore the impact of different508

decoder layer numbers on Dial-MAE performance.509

we find that using only one layer of the decoder510

yields the best results. Fewer decoder parameters511

can force the auxiliary MLM task to rely more on512

dialogue context embeddings output by the encoder.513

We believe that the more layers of the decoder, the514

stronger the decoding ability, and the decoder’s515

dependence on context embedding will decrease,516

leading to insufficient constraints on encoder train-517

ing. In general, no matter what set of layers, R@1518

obviously exceeds the result of post-training for519

MLM tasks alone (Enc=0.15 Dec=0), as shown in520

Table 4, which proves the robustness of Dial-MAE.521

1 2 3 4 5 6
Layer

91.2

91.3

91.4

91.5

91.6

91.7

91.8

R1
0@

1

R10@1
R10@5 99.26

99.28

99.30

99.32

99.34

99.36

99.38

99.40

R1
0@

5

Figure 4: Impact of layer number on Ubuntu Corpus.

Compared with Dense Models. To further il-522

lustrate the effectiveness of our custom approach523

for bi-encoders in dialogue response selection, we524

compared it with state-of-the-art dense models in525

the Information Retrieval(IR) community. On the526

Ubuntu dataset, we fine-tune the dense models527

proposed by the IR community using contrastive528

learning, and the experimental results are shown529

in the table 5. During pre-training, the corpus of530

CoT-MAE(Wu et al., 2023) and RetroMAE(Xiao531

et al., 2022) contains an additional 3.2M documents532

dataset MS-MARCO(Nguyen et al., 2016) in addi-533

tion to BooksCorpus and Wikipedia. However, our534

experimental results show that although the results535

of the three dense models have improved compared536

with BERT+CL, they are still not as good as our 537

proposed Dial-MAE. This shows that our proposed 538

method is better suited for encoding dense vectors 539

of dialogue than other dense models.

Models R10@1 R10@2 R10@5

BERT+CL 89.2 95.1 99.2
Condenser(Gao and Callan, 2021) 89.4 95.4 99.1
RetroMAE(Xiao et al., 2022) 89.3 95.3 99.1
Cot-MAE(Wu et al., 2023) 89.8 95.9 99.2

Dial-MAE 91.9 96.5 99.3

Table 5: Comparison results of Dial-MAE and dense
retrieval models on the Ubuntu dev set.

540

5 Conclusion 541

In this paper, we propose a post-training method 542

tailored for dialogue response, considering the se- 543

mantics of dialogue context and its corresponding 544

responses. Precisely, we leverage a shallow de- 545

coder to force the encoder output dialogue embed- 546

dings to be more expressive. Experimental results 547

show that our post-training method leads to consid- 548

erable improvements, achieving state-of-the-art on 549

two benchmark datasets. We also demonstrate the 550

effectiveness of Dial-MAE through ablation exper- 551

iments. Specifically, both contrastive learning and 552

our post-training method are effective in achieving 553

dialogue context and response feature alignment, 554

and their effects can be additive. 555

6 Limitations 556

Recently, generative conversational models based 557

on large language models (LLMs) have demon- 558

strated powerful performance. Despite the advan- 559

tages of retrieval-based dialogue models in terms of 560

computational cost and answer controllability, gen- 561

erative conversational systems based on LLMs sur- 562

pass retrieval-based models in terms of answer di- 563

versity and flexibility. Furthermore, there has been 564

much recent work exploring retrieval-augmented 565

generation (RAG). In the future, we will further 566

expand Dial-MAE to explore the effective integra- 567

tion with LLMs, using a dialogue response selec- 568

tion approach to attempt to address issues such as 569

large model hallucinations and challenges related 570

to knowledge updates. We hope that our work can 571

also bring benefits to large language models. 572
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