
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CRAFT: TIME SERIES FORECASTING WITH CROSS-
FUTURE BEHAVIOR AWARENESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting is the crucial infrastructure in the field of e-commerce,
providing technical support for consumer behavior analysis, sales trends forecast-
ing, etc. E-commerce allows consumers to reserve in advance. These pre-booking
features reflect future sales trends and can increase the certainty of time series
forecasting issues. In this paper, we define these features as Cross-Future Behav-
ior, which occurs before the current time but takes effect in the future. To in-
crease the performance of time series forecasting, we leverage these features and
propose the CRoss-Future Behavior Awareness based Time Series Forecasting
method (CRAFT). The core idea of CRAFT is to utilize the trend of cross-future
behavior to mine the trend of time series data to be predicted. Specifically, to
settle the sparse and partial flaws of cross-future behavior, CRAFT employs the
Koopman Predictor Module to extract the key trend and the Internal Trend Min-
ing Module to supplement the unknown area of the cross-future behavior matrix.
Then, we introduce the External Trend Guide Module with a hierarchical struc-
ture to acquire more representative trends from higher levels. Finally, we apply
the demand-constrained loss to calibrate the distribution deviation of prediction re-
sults. We conduct experiments on real-world dataset. Experiments on both offline
large-scale dataset and online A/B test demonstrate the effectiveness of CRAFT.
Our dataset and code will be released after formal publication.

1 INTRODUCTION

Time series forecasting (TSF) is the crucial infrastructure in e-commerce (Ryali et al., 2023). By an-
alyzing trends and patterns in e-commerce data, TSF allows businesses to gain insights into both op-
erational behaviors and customer dynamics over time, thereby supporting consumer behavior analy-
sis and sales trend predictions. However, accurate TSF is a challenging task given the need to model
complex, non-linear temporal patterns over long periods of time (Rasul et al., 2024). To this end, re-
searchers explore various backbone networks such as convolutional neural networks (CNNs) (Chen
et al., 2020), recurrent neural networks (RNNs) (Yin et al., 2022), and Transformer (Zhou et al.,
2021). Additionally, they work on incorporating richer features into TSF and study issues related to
multivariate TSF (Zhao & Shen, 2024; Li et al., 2024) and feature decomposition (Zeng et al., 2023;
Liu et al., 2024).

Without Cross-Feature Behavior

Label Cross-Future Behavior Predicted Label

With Cross-Feature Behavior

Look-Back Window Predict Window Look-Back Window Predict Window

Without Cross-Feature Behavior

Label Cross-Future Behavior Predicted Label

With Cross-Feature Behavior

Look-Back Window Prediction Window Look-Back Window Prediction Window

Figure 1: Illustration of Cross-Future
Behavior (CFB).

With the advancement of the Internet, e-commerce has
introduced the pre-sale retail model. In many scenarios,
such as hotel check-ins and purchasing airline or tourist
attraction tickets, customers can book products in ad-
vance and consume the items they have booked later. This
process can produce useful priori information for TSF.
In this paper, we defined the in-advanced booking infor-
mation as Cross-Future Behavior (CFB): features that
occur before the current time but take effect in the fu-
ture. CFB positively affects TSF. As shown in Figure 1,
if only relying on the trend of the label, the future trend
may be predicted as a downward trend. With the guidance
of CFB, the prediction result will be more precise.
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In fact, existing work is also attempting to introduce more features into TSF. Zeng et al. (2023)
attempts to extract more information from the acquired data and decomposes the time series into
trend and remainder parts. Wen et al. (2017) classifies covariate features in TSF into dynamic
historical, known future, and static variables. CFB, we proposed in this paper, can be treated as the
known future variable and has many excellent properties. CFB contains true information related to
future events. The future trend of the prediction target, even the abnormal trend caused by sudden
events, can be reflected in the trend of CFB. However, as the existing TSF models primarily focus
on exploring the correlation between the historical series and future trends (Chen et al., 2020; Yin
et al., 2022; Zhou et al., 2021), it is difficult to achieve TSF that integrates CFB through existing
models. CFB-based TSF faces two main challenges. 1) CFB is sparse and partial. Consumers can
book items at any time, causing CFB to remain fully observed until the last minute. Thus, if CFB

Business 
District

Hotel

2024.07.08 2024.07.31

2024.07.08 2024.07.31

Figure 2: Sales trend comparison between the
business district and an individual hotel.

is simply incorporated into the model, the pre-
diction model may be unable to apply CFB fea-
tures correctly and even make incorrect predic-
tions due to CFB. 2) The trend of CFB is un-
obvious. As shown in Figure 2, compared with
the sales trend in a business district, the sales
trend in an individual hotel is unobvious. CFB
has the same nature, and the trend in an individ-
ual hotel is much unobvious compared with that
in a high-level business district. Consequently,
devising a method to utilize the sales trend in
high level to inform the auxiliary forecast for
an individual hotel presents another significant
challenge.

Therefore, jointly considering the above challenges, we propose CRAFT, a Cross-Future Behavior
Awareness based Time Series Forecasting method, for the first time to utilize Cross-Future Behavior
to realize time series forecasting. The core idea of CRAFT, as shown in Figure 1, is to utilize the
trend of CFB to mine the trend of time series data to be predicted. CRAFT is composed of three
main parts: the Koopman Predictor Module (KPM), the Internal Trend Mining Module (ITM), and
the External Trend Guide Module (ETG). KPM can extract the key trends of the label and CFB,
predicting the label in the prediction window. ITM supplements the unknown area of CFB, making
the final prediction of the label in the prediction window. ETG, with a hierarchical structure, can
acquire more representative trends from higher levels. Finally, we apply the demand-constrained
loss to calibrate the distribution deviation of prediction results. We conduct experiments on real-
world dataset. Experiments on both offline large-scale dataset and online A/B test demonstrate the
effectiveness of CRAFT. We summarize the main contributions of this paper as follows:

• We define the Cross-Future Behavior (CFB) and apply the CFB feature to time series forecasting
for the first time. CFB is a feature discovered from our extensive real case studies and has superior
characteristics: the trend of CFB can reflect the prediction target and even the abnormal trend of
the target.

• We propose a novel framework, namely CRAFT, to realize CFB-based time series forecasting.
CRAFT can utilize the trend of Cross-Future Behavior to mine the trend of prediction targets.
CRAFT is composed of three main modules, including KPM, ITM, and ETG, to address the two
challenges when applying CFB to time series forecasting. KPM and ITM can address the sparse
and partial flaws of CFB, and ETG can address the unobvious trend flaws of CFB.

• Extensive offline experiments on the real-world dataset and online A/B tests show the superiority
of CRAFT towards SOTA baselines. Specifically, CRAFT improves application performance
significantly, with an improvement rate of 41.35% on the IWR metric. Currently, CRAFT has
been successfully deployed on the reality application, serving online hotel inventory negotiations.

2 RELATED WORK

Backbone for time series forecasting. Recently, Transformer has reshaped the landscape of ma-
chine learning across numerous fields. Many works attempt to apply Transformer to forecast time
series data (Wen et al., 2023). PatchTST (Nie et al., 2024) designs a channel-independent Trans-
former for time series forecasting. To address the channel-independent limitations of Transformer,
CARD (Wang et al., 2024) proposes a channel-aligned attention structure that can acquire both tem-
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poral correlations and dynamical dependence among multiple variables over time. Informer (Zhou
et al., 2021) extends Transformer using ProbSparse based on KL divergence to solve Long Sequence
time series forecasting. TFT (Lim et al., 2021) introduces a novel attention-based architecture that
combines high-performance multi-horizon forecasting with interpretable insights into temporal dy-
namics. Autoformer (Wu et al., 2021) proposes a Decomposition Architecture and Auto-Correlation
Mechanism based on stochastic process theory to realize the series-wise connection and break the
bottleneck of information utilization. Pyraformer (Liu et al., 2021) proposes a new Transformer
based on a pyramidal attention module to simultaneously capture temporal dependencies of differ-
ent ranges in a compact multi-resolution fashion. Besides Transformer, a variety of other network
architectures are widely investigated. Convolutional neural networks-based time series forecasting
models such as WaveNet (Oord et al., 2016), TCN (Bai et al., 1803), and DeepTCN (Chen et al.,
2020) use causal convolution to learn sequences and use dilated convolution and residual block to
memorize historical patterns. Graph WaveNet (Zonghan et al., 2019) enhances the WaveNet frame-
work by using an adaptive and learnable adjacency matrix to automatically infer graph structures,
enabling the prediction of spatiotemporal sequences. Moreover, due to the sequential nature of time
series data, Recurrent Neural Networks-based time series forecasting is particularly widely suited,
mainly modeling the temporal dependence of time series (Salinas et al., 2020; Rangapuram et al.,
2018; Wen et al., 2017; Wang et al., 2019; Liu et al., 2020).

Multivariate time series forecasting. Multivariate time series forecasting utilizes multiple time-
dependent variables to realize prediction. Compared with univariate time series forecasting, multi-
variate time series forecasting can help to better understand the interactions between different com-
ponents of a complex system, which is crucial for strategy formulation and decision-making (Mendis
et al., 2024). There are two commonly used strategies in multivariate TSF, i.e., the channel-
dependent (CD) and channel-independent (CI) methods. CI method only models cross-time depen-
dence, and the CD method models both cross-time dependence and cross-variate dependence (Zhao
& Shen, 2024). While the CI method is characterized by simplicity and low risk of overfitting, the
CD method has inevitably become the mainstream of research. Recently, Zhao & Shen (2024) uti-
lizes the channel dependence between variates and proposes a plug-and-play method named LIFT,
which exploits the lead-lag relationship between variates by estimating leading indicators and lead-
ing steps. LIFT refreshes the accuracy of multivariate TSF.

Feature decomposition in time series forecasting. Different from the multivariate TSF that utilizes
multiple variates and the dependence between variates to realize prediction, feature decomposition
in TSF does not introduce new variates. The core idea of feature decomposition is to extract as much
information as possible from existing variates. Dlinear (Zeng et al., 2023) decomposes time series
into trend series and remainder series and uses two single-layer linear networks to model them,
bringing performance improvements. Koopa (Liu et al., 2024) solves non-stationary time series
prediction problems from the perspective of modern dynamics Koopman theory.

3 PRELIMINARIES

Time series forecasting (TSF) with Cross-Future Behavior (CFB) can be defined as Yt+1:t+P =
H(Yt−L+1:t,XT,CT). Yt−L+1:t ∈ RL and Yt+1:t+P ∈ RP are time series data (i.e., label) at the
L-length look-back window and P -length prediction window at time t respectively. XT is covariate
features, CT is the CFB feature and H is the prediction function to be learned. The covariate
features (Wen et al., 2017) Xt contains three categories: 1) historical features like month-on-month
sales features, etc; 2) known future features like holidays, weekends, etc; 3) static features like hotel
brands, business districts, etc. CT = {Ct−L+1:t,Ct+1:t+P }, where Ct−L+1:t is CFB in the look-
back window and Ct+1:t+P is CFB in the prediction window. It is worth noting that Ct+1:t+P in the
prediction window is partial as this is a not fully observable variate. Consumers can book items in
the prediction window at any time until the last minute. More detailed introduction to CFB feature
Ct refers to Appendix A.

In the following section, we omit the subscripts of some symbols for simplicity. Specifically, we
denote time series at the look-back window Yt−L+1:t as YL, time series at the prediction window
Yt+1:t+P as YP , CFB feature in look-back window Ct−L+1:t as CL, CFB feature in prediction
window Ct+1:t+P as CP . In addition, as CP is partial observed, we define a new notion CTP to
indicate the ground truth of CFB in prediction window. For clarity, we summarize all notions with
table in Appendix B.1.
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4 METHODOLOGY
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Figure 3: The overview of the proposed Cross-Future Behavior Awareness based Time Series
Forecasting method (CRAFT). The left decomposition part is based on DLinear (Zeng et al., 2023).
CRAFT is composed of three main parts, the Koopman Predictor Module (KPM), the Internal Trend
Mining Module (ITM), and the External Trend Guide Module (ETG). KPM is used to extract the
key trends of the trend of label and CFB, predicting the label in the prediction window. ITM is used
to supplement the unknown area of the CFB. ETG is used to acquire more representative trends from
higher levels.

Figure 3 depicts the overview of the proposed CRAFT method. CRAFT uses DLinear (Zeng et al.,
2023) to decompose the time series data YL,CL in the look-back window into the trend YT

L ,C
T
L

and residual YR
L = YL − YT

L ,C
R
L = CL − CT

L components. The moving average kernel with a
certain kernel size is used in the decomposition process. CRAFT’s core idea lies in how to use the
trend of partial CFB to mine the trend of label. We prove the consistency between partial CFB, CFB,
and label theoretically in Appendix D.1 and D.2. CRAFT is composed of three submodules: Koop-
man Predictor Module (KPM), Internal Trend Mining Module (ITM), and External Trend Guide
Module (ETG). KPM employs the Koopman operator to linearly map the CFB features from the
look-back window to the prediction window, after projecting the raw data into the mapping space.
Subsequently, it supervises the initialization of the label sequence within the prediction window.
ITM completes linear mapping between the look-back window and prediction window and adopts
an adaptation operator to instruct the evolution of the time series of the label sequentially. Due to
higher-level temporal sequences having lower noise and stronger regularity compared to lower-level
temporal sequences, ETG module makes forecast results more robust by structuring the reconcilia-
tion matrix and calibrating the predicted outcomes of root nodes. To avoid computational problems
caused by excessively large hierarchical matrices, the concept of hierarchical sampling is introduced.

4.1 KOOPMAN PREDICTOR MODULE
KPM module aims to transfer the future trend information from CFB feature CT = {CL,CP } to
labels YP . The simplified framework of KPM is shown in Figure 3 and the specific framework
refers to Appendix C.1. KPM employs an encoder-decoder framework with the input of CFB CL

and label YL in the look-back window and output of partial CFB CP in the prediction window.
Concretely, we first construct an encoder RL 7→ RD as a data-driven measurement function, i.e.,
g(x) in Appendix B.2. The encoder module is Multi Layer Perception (MLP) (Zhu et al., 2023) and
it can also be replaced to other structure: ZCT

L = Encoder(CT
L),ZCP = Encoder(CP ),ZY

T
L =

Encoder(YT
L), where ZCT

L,ZCP ,ZY
T
L are the embeddings of the trend of CFB in the look-back

window, CFB in the prediction window, and the trend of labels in the look-back window. In partic-
ular, the encoder is shared for ZCT

L , ZCP , ZYT
L . Secondly, based on the Koopman Theory (Koop-

man, 1931), we use finite linear matrix KC to approach infinite koopman matrix K to simulate the
evolution process between time periods, that is:

ẐCP = KC × ZCT
L, (1)

where KC ∈ RD×D is the Koopman matrix for CFB, which contains the future sales trend infor-
mation. The feasibility proof of KC is in Appendix D.1. Referring to Eq. (17), its value can be
calculated as:

KC = (ZCT
L

⊤ × ZCT
L + λE)−1 × ZCT

L

⊤ × ẐCP . (2)
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Then, we use KC to convert the future trend information from CFB embedding to label embedding:

ẐY
T

Init = KC × ZYT
L. (3)

Finally, we construct a decoder RD 7→ RP to obtain the preliminary prediction result of label. Same
as encoder, decoder can adopt various model structures, and this paper uses the MLP layer (Zhu
et al., 2023). In particular, the decoder is shared for ĈP , ŶT

Init: ĈP = Decoder(ẐCP ), Ŷ
T
Init =

Decoder(ẐY
T

Init). Specifically, to ensure that KC is meaningful, we construct a recovery loss
Lbe k to constrain the decoder to restore the original data based on the embedding output by the
encoder, so that the embedded latent variable enables to obtain the potential attributes from raw data
and preserve the original information as much as possible. Lbe k is designed based on the MSE loss:

Lbe k =
2

P 2

∑P

i=0

∑i

j=0
(ĈP [i, j]−CP [i, j])

2, (4)

we choose CP to calculate loss because we emphasize more on tendency characterization at the
prediction window. It should be noted that we only focus on the known parts, i.e., j ≤ i, and the
loss of the masked data will not be calculated.

4.2 INTERNAL TREND MINING MODULE
ITM module aims to complete the CFB feature. After KPM, we attained preliminary insufficient
prediction ŶT

Init. In the ITM module, we first adopt a complete network to patch the mapping of
CFB from the look-back window to the prediction window and then employ an adaptation network
to fulfill the adaptive migration of data distribution from CFB to the label. The simplified framework
is in Figure 3 and the specific framework is in Appendix C.2. We utilize another pair of encoder
RL+P 7→ RD and decoder RD 7→ RL+P to learn the common embedding for entire known infor-
mation. Unlike KPM, ITM takes all known information as input, i.e., data in the train and prediction
window. Regarding the label, we pad preliminary predicted values ŶT

Init at the prediction window:
ZCT = Encoder(concat(CT

L,CP )),ZY
T = Encoder(concat(YT

L , Ŷ
T
Init)). To settle the fore-

cast window puzzle, we use the complete network to extend known curves into unknown regions,
which is designed as a linear network:

ẐC
T

TP = Complete network(ZCT ). (5)

Additionally, despite there being a certain correlation between CFB and label, their distributions
are not entirely identical. Based on this fact, we employ an adaptation network to adjust the label
adaptively, with the ETG module (4.3) following closely behind. Since both the complete network
and adaptation network operate on the hidden variable ZYT based on the original attributes of
labels, we merge them into the ITM module to distinguish it from the ETG module. After traversing
from the ITM & ETG module, we acquire the desired latent variable ẐY

T

P :

Z̃Y = Adaptation network(Complete network(ZYT )), ẐY
T

P = ETG module(Z̃Y).
(6)

Finally, the latent vector ẐC
T

TP and ẐY
T

P are converted into target predicted values with decoder:

ĈT
TP = Decoder(ẐC

T

TP ), Ŷ
T
P = Decoder(ẐY

T

P ). The final result is calculated by adding these
two values with the reminder predicted values (acquired with the linear mapping of YR

L ,C
R
L in

Figure 3, ĈR
TP = Linear(CR

L), Ŷ
R
P = Linear(YR

L )):

ĈTP = ĈT
TP + ĈR

TP , ŶP = ŶT
P + ŶR

P . (7)

To ensure the effectiveness of complete network, we introduce the prediction bias loss Lbe y:

Lbe y =
2

k2

∑k

i=0

∑k

j=0
(ĈTP [i, j]−CTP [i, j])

2. (8)

4.3 EXTERNAL TREND GUIDE MODULE
ETG module is designed to settle the trend unobvious challenge, which uses aggregated spatial di-
mension to improve prediction results. Aggregated spatial dimension has stronger regularity, less
noise, and is easier to estimate. Table 1 shows that the sample size of the hotel is approximately

5
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400k, which is too extensive for direct model train. Therefore, referring to (Lu et al., 2022), we
introduced a hierarchical sampling strategy to construct samples. This strategy assumes the global
reconciliation matrix P is sparse, indicating that only child nodes belonging to the same parent node
have calibration relationships with each other. This assumption aligns well with the geographic
attributes of hotels. We aggregate hotels into business districts based on their geographic location
and then to higher levels of urban granularity. First, we randomly pick a business district. Then,
we sample m hotels from this district, with the likelihood of selection increasing with each hotel’s
historical label value. These m hotels’ labels are combined to create a virtual parent node. To-
gether, the m + 1 nodes form a sampled hierarchy that serves as model input. This hierarchical
sampling maintains the sum constraint through virtual parent nodes, and label weighted sampling
aligns the virtual sequence more with the real parent sequence. Moreover, these strategies reduce
the reconciliation matrix’s parameter count from O(n2) to O(mn), significantly easing the model’s
computational load.

The framework of ETG is detailed in Figure 3 and Appendix C.3. The input of ETG is Z̃Y (Eq. (6)).
zi/j/k = Z̃Y[i/j/k] are the elements of Z̃Y. According to the hierarchical sampling, we can
adjust its shape from [Bt, · · · ] to [g,m, · · · ], where Bt = g ×m, indicating the number of original
nodes, the number of nodes in high-level and in low-level. All subsequent actions are operated
within the virtual hierarchical group. We obtain the key and query to calculate the reconciliation
matrix B between nodes in the same hierarchical structure, where B(i, j) indicates the reconciliation
relationship between the ith and jth nodes in the hierarchical structure:

eij = Wqzi ⊙Wkzj , B[i, j] =
exp(eij)∑

k∈Mi
exp(eik)

, (9)

where Wq ∈ Rd×d,Wk ∈ Rd×d are the query and key parameter of model, Mi is the set of nodes
in the current hierarchy of i. Then, we use the reconciliation matrix B to calibrate each sequence:

ẑi =
∑

k∈Mi

B[i, k]×Wv × zk, (10)

where Wv ∈ Rd×d is the model’s value parameter. Given the lower noise and greater regularity of
parent nodes compared to child nodes, we refrain from applying representation calibration to parent
nodes using masking techniques, aligning with the reconciliation process. During the model training
process, we introduce reconciliation loss to implement hierarchical constraints:

Lrecon =
1

g2

∑g

i=0
(ŶP [i

H ]−
∑m

j=0
ŶP [i, j])

2. (11)

where ŶP [i
H ] is the estimated result of parent node. Lrecon indicates the difference between the

direct estimation of the parent node and sum of underlying estimation results, ensuring the sum of
the calibrated estimated results of the underlying nodes approach parent node’s estimated results.

4.4 ALGORITHM INFERENCE
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Figure 4: Demand-Constrained
Loss.

To fully utilize demand information related to cross-future be-
havior, we constructed the demand-constrained loss. In prac-
tice, we have found that there are invisible boundaries on the
amount of user demand. Inspired by (Avati et al., 2020; Gao
et al., 2022), we are conscious that the boundary is informa-
tive for the model. Thus, we construct upper and lower lim-
its based on the demand in transaction scenarios and design a
demand-constrained loss to digest this boundary information.
The principle is shown in Figure 4. From the perspective of
likelihood estimation, we make assumptions about the distri-
bution of labels when using the common MAE or MSE as a
loss function. Taking the MSE loss function used in this paper
as an example, the MSE loss function is based on the assump-
tion that the predicted target follows a Gaussian distribution,
and what our model infers is the mean of the Gaussian dis-
tribution. The actual observation may not necessarily be the
mean of true Gaussian distribution. With the assistance of up-
per and lower limits, we can support the model hover the true distribution.
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In the check-in scenario of the hotel, we regard the truth value as label y (i.e., Y) and regard the
value for the day of reservation as the lower demand bounds yl, excluding entire CFB actions. We
also consider the page view of the order page as the upper bound yu, including the unconverted
potential user data. The demand-constrained loss is as follows:

fd(ŷ, y, yl, yu) =


(ŷ − y)2 + β(ŷ − yl)

2, if ŷ<yl
(ŷ − y)2, if yl ≤ ŷ ≤ yu
(ŷ − y)2 + β(ŷ − yu)

2, if ŷu<ŷ,

, (12)

where β is hyperparameter. We define the main loss as Ly , indicating the forecast bias of YP :

Ly = fd(ŶP ,YP ,Y
L
P ,Y

U
P ). (13)

where YL
P is the lower bound matrix, and YU

P is the upper bound matrix. Through the aforemen-
tioned submodules, CRAFT enables the future trend of cross-future behavior to approach consum-
mation and migrate it to the tendency cognition of label, aggregating to higher-level label to per-
ceive more distinct and precise inclination subsequently. During the process, we obtain ĈP which
is transferred from encoder to decoder to constrain the representation of koopman embedding, the
intact matrix expression of prediction window of cross-future behavior ĈTP , and ultimate desired
prediction results ŶP . To achieve better model outcome, the loss of CRAFT consists of four parts,
where αn, n ∈ 1, 2, 3 are hyper parameters used to balance multiple losses:

L=Ly + α1Lbe k + α2Lbe y + α3Lrecon. (14)

Lbe k, Lbe y , Lrecon, Ly are shown in Eq. (4), Eq. (8), Eq. (11), and Eq. (12) which corresponding
to the recovery loss of ĈP in the KPM module, the prediction error of ĈTP in the ITM module, the
reconstruction drift of ŶP at the ETG module and the forecast deviation of label ŶP respectively.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

5.1.1 DATASET

We conduct offline experiments on real-world dataset collected in May
2023 at ****. To reflect the model effects on different data distribu-
tions objectively, the prediction window we cover to verify the model’s
effectiveness contains both holidays and daily events. In addition, we
set different forecast lengths K ∈ {7, 14, 30}, corresponding to look-
back lengths T ∈ {30, 90, 180}. The dataset statistics are shown in
Table 1. The hotels we use for verification are located in over 400
cities, covering more than 5000 business districts. The total sample
size is around 400k.

Table 1: Dataset Statistics.

Hierarchy Volume
# of city 0.4k
# of business 5k
# of hotel 400k

5.1.2 BASELINE METHODS AND EVALUATION METRICS

The baseline methods for comparison include MQ-RNN (Wen et al., 2017), Informer (Zhou et al.,
2021), DLinear (Zeng et al., 2023), Koopa (Liu et al., 2024), TFT (Lim et al., 2021), Autoformer (Wu
et al., 2021) and Fedformer (Zhou et al., 2022).

Weighted Mean Absolute Percentage Error (wMAPE) is adopted to measure the models’ perfor-
mance in offline experiments:

wMAPE =

∑
|y − ŷ|∑

y
, (15)

where y denotes the ground truth and ŷ denotes the predicted value. In hotel booking situations,
the data distribution is a significant imbalance, adopting wMAPE as a performance metric can
effectively alleviate zero values issues. In addition, wMAPE allows assigning different weights to
different ground truth, thus increasing the evaluation robustness. In addition, MAE and RMSE,
two widely used metrics in time series forecasting, are adopted to evaluate the models’ performance.
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Table 2: Comparative forecasting results with the look-back window length of L ∈ {30, 90, 180}
and prediction window length of P ∈ {7, 14, 30} respectively, correspond one-to-one with the look
back window L ∈ {30, 90, 180}. The unit of length is days. The best results are highlighted in bold
and the second best results are highlighted with a underline.

Model Length P
Only label With CFB as covariate

MAE RMSE wMAPE MAE RMSE wMAPE

Autoformer
7 days 0.9319 2.9374 0.7030 0.9631 2.9132 0.7265

14 days 1.0017 2.3737 0.9830 0.9799 2.3566 0.9624
30 days 0.9658 2.2737 0.9910 1.2101 2.7625 1.2414

Fedformer
7 days 0.9280 2.9147 0.7000 0.9191 2.9100 0.6933

14 days 0.8744 2.3333 0.8605 0.9071 2.4167 0.8923
30 days 0.9109 2.1718 0.9347 1.6507 4.7499 1.6933

TFT
7 days 0.9584 2.9184 0.7195 0.9535 2.9043 0.7215

14 days 0.8643 2.2745 0.8535 0.8524 2.2730 0.8468
30 days 0.8294 2.3346 0.8494 0.8301 2.2945 0.8693

DLinear
7 days 0.9825 2.9539 0.7412 0.9822 2.9566 0.7410

14 days 0.8555 2.3279 0.8418 0.8571 2.3572 0.8427
30 days 0.8125 1.9499 0.8337 0.8089 1.9634 0.8298

Informer
7 days 0.9731 2.9251 0.7341 0.9365 2.9169 0.7065

14 days 0.8034 2.2653 0.7906 0.8203 2.2969 0.8065
30 days 0.7699 1.9618 0.7899 0.8063 1.9844 0.8271

MQ-RNN
7 days 0.9007 3.0013 0.6895 0.9064 3.0185 0.6830

14 days 0.7403 2.5217 0.7478 0.7415 2.4554 0.7381
30 days 0.6958 2.1756 0.7142 0.7029 2.2161 0.7215

Koopa
7 days 0.9024 2.9047 0.6943 0.8927 2.8948 0.6818

14 days 0.7440 2.3485 0.7326 0.7475 2.4327 0.7350
30 days 0.7045 2.1943 0.7276 0.6984 2.3456 0.7176

CRAFT
7 days 0.8480 2.8654 0.6706

14 days 0.7237 2.2696 0.7121
30 days 0.6895 2.0121 0.7078

5.1.3 IMPLEMENTATION

All experiments are implemented with Python 3.8.5 and Pytorch 1.12.1 We conduct them on the
cloud servers with two NVIDIA Tesla T4 GPUs with 16GB VRAM each. We initialize the network
parameters with Xavier Initialization (Glorot & Bengio, 2010). Each parameter is sampled from
N(0, µ2), where µ = −

√
2/(nin + nout). nin, nout denote the number of input and output neurons,

respectively. In actuality, the kernel size of the moving average in temporal decomposition is 15,
the λ of ridge regression for solving the koopman matrix in the ITM module is 0.1, the number of
child nodes m at the virtual hierarchy is set as 15 during hierarchical sampling. In addition, we train
all models by setting the mini-batch size to 256 and using the Adam optimizer with a learning rate
of 0.001. Except for MQRNN with the quantile loss at 0.5, all other models choose MSE as the
training loss. The number of training epochs is 2 on the dataset, and the value of each experimental
result is the average of 5 repeated tests. The detailed model configuration selections for all models
are provided in Appendix F.

5.2 OFFLINE EXPERIMENTS

5.2.1 COMPARISON WITH BASELINES

The comparative results are shown in Table 2. For fairness, we compared both the original baseline
methods and the improved versions with CFB. CRAFT achieves the best performance, significantly
outperforming the other baselines. We obtain the following observations from Table 2:

• Compared to the original model, directly integrating CFB into the existing framework does not
yield significant performance enhancements. In some cases, it even leads to performance degra-
dation. The experimental results confirm that, despite its indispensable role, effectively applying
CFB presents considerable challenges.

• Compared with the optimal baseline, CRAFT improves by at least {0.0447, 0.0166, 0.0063}
and {0.0112, 0.0205, 0.0064} in MAE and wMAPE metrics in the prediction window of {7,

8
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Figure 5: Case study on (a)-(d) four different cases, where blue line is the truth value and the orange
line is the prediction of CRAFT.

Table 3: Ablation study of CRAFT.

KPM ITM ETG Demand Loss MAE RMSE wMape
✓ × × × 0.9440 3.1507 0.7122
✓ ✓ × × 0.9090 2.9416 0.6857
✓ ✓ ✓ × 0.8557 2.7555 0.6455
✓ ✓ ✓ ✓ 0.8480 2.7480 0.6397

14, 30}. In RMSE metric, CRAFT ranks the best and the second best when the length of
prediction window is 7 and 14. To sum up, CRAFT performs better than baseline models in
various prediction lengths, demonstrating stable superiority. The reason behind the excellent
results is that CRAFT utilizes the KPM and the ITM module to fully explore the CFB, adopts the
ETG to transfer the trend of high-level time series to low-level time series, and employs demand-
constrained loss to correct the prediction distribution deviation.

• Experimental results indicate that CRAFT achieves the best results at the prediction length of 7.
The reason behind this phenomena is that when the prediction length increases, the sparsity and
unknown properties of the CFB become more obvious.

• In the experimental results, the longer the prediction window, the smaller the prediction error. The
reason is that the prediction windows consist of daily data and holiday data, and holiday patterns
are more difficult to predict. As the length of the prediction window increases, the proportion of
holiday data decreases and the overall prediction error reduces.

5.2.2 ABLATION STUDY

To verify the effectiveness of each module in CRAFT, we conduct an ablation study on the setting
of the prediction window’s length is 7, as CRAFT achieves the best results on this condition. The
experiment results of the ablation study are listed in Table 3. According to Table 3, we can know that
the ITM, ETG module, and the constrain-demand loss all have positive impact on improving the per-
formance of CRAFT. Among them, ITM and ETG module achieve the most obvious improvement
with 0.035, 0.053 on MAE, 0.2091, 0.1861 on RMSE, 0.0265, 0.0402 on wMAPE.

5.2.3 CASE STUDY

To verify that the model is effective in capturing future trends, we selected samples from the dataset
with different trends for validation. As shown in Figure 5, the trend varies from sample to sample
event for the same event impact: some hotels reached their peak in the early stages of the holiday
and showed an overall downward trend (Figure 5 (a), (c)); some hotels had high traffic in the middle
holiday period and showed an overall mountain shape (Figure 5 (b), (d)). The predicted trend of
CRAFT is also not constant but changes with the actual trend of the sample, which indicates the
reliability of CRAFT.

9
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Table 4: Online A/B test result during holiday on IWR and PHDI metric.

Holiday IWR
*

PHDI
†

MQ-RNN CRAFT MQ-RNN CRAFT
2023 Mid-autumn 0.0513 0.0306 0.3659 0.2983

2023 National Day 0.0534 0.0311 0.3694 0.2990

2024 New Year’s Day 0.0601 0.0354 0.3661 0.3093

2024 Spring Festival 0.0583 0.0337 0.3655 0.3047
* IWR means inventory waste rate. † PHDI means the proportion of hotels with depleted inventory.

5.3 ONLINE A/B TEST

To further verify the performance of CRAFT in the real online environment, we apply CRAFT to
holiday inventory negotiations. In the real application, we need to predict the hotel sales before
holidays, and business developers (BD) will check whether the inventory is sufficient based on the
prediction results of our model. If not, they will negotiate with the hotel in advance based on the
prediction results to give more inventory. We select the MQ-RNN as the baseline and utilize IWR
and PHDI metrics to measure the overall impact of different models. The definition of IWR and
PHDI refers to Appendix B.4. IWR and PHDI are defined according to specific scenarios and
are the most concerned metrics in BD negotiations. Moreover, as we cannot equally assign daily
traffic to each model, such as testing personalized recommendation systems, we randomly divided
the hotels into two groups for the MQ-RNN and CRAFT models.

For both the IWR and PHDI metrics, the smaller the value, the better the model performance.
The online A/B test results are shown in Table 4. Compared with MQ-RNN, CRFAT achieves
significant improvement on these two metrics. Indeed, based on the data from four holidays, CRAFT
method has an average improvement of 0.0231 and an improvement rate of 41.35% on the IWR
metric. On the PHDI metric, the improvement value and improvement rate are 0.0639 and 17.42%,
respectively. The results above illustrate the effectiveness of CRAFT in the real application.

6 CONCLUSION

In this paper, inspired by real-world application, we define Cross-Future Behavior (CFB). CFB is
a kind of features that occur before the current time but take effect in the future, containing true in-
formation related to future events. For the application of CFB in the time series forecasting problem,
we propose an improved method, named Cross-Future Behavior Awareness based Time Series
Forecasting method (CRAFT). CRAFT regards the trend of CFB as prior information to predict
the trend of target time series data. Specifically, CRAFT is composed of three main modules, the
Koopman Predictor Module (KPM), the Internal Trend Mining Module (ITM), and the External
Trend Guide Module (ETG). The first two modules aim to mine the prediction trends from partial
CFB, and the ETG module aims to acquire more representative trends from higher levels. In addi-
tion, CRAFT adopts demand-constrained loss to correct the distribution of prediction results. We
conduct experiments on real-world dataset. Experiments on both offline and online tests demonstrate
the effectiveness of CRAFT.

This paper only explores the application of CFB and CRAFT on the e-commerce area. Electricity
demand, stock price, and disease spread forecasting typically do not have clear lead-up operation
events, making it difficult to apply our method. In addition, the current public available dataset (e.g.,
ETT(Zhou et al., 2021), ECL1, Weather2) does not contain the CFB feature or similar feature, we
only verify CRAFT on our dataset limited by this actual situation. In the future, we will further
collect related data to form a series benchmark dataset. Moreover, we will continue to generalize
the definition of CFB to enable CRAFT method to be applied more broadly.

1ECL dataset was acquired at https://archive.ics.uci.edu/ml/ datasets/ElectricityLoadDiagrams20112014.
2Weather dataset was acquired at https://www.ncei.noaa.gov/ data/local-climatological-data/.
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APPENDIX

A SUPPLEMENT INTRODUCTION TO CROSS-FUTURE BEHAVIOR
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Figure 6: Cross-Future Behavior (CFB) on hotels booking example.

Label & behavior

t

L-length 
Look-back window

P-length 
Prediction window

t

Label & behavior

CRAFT

L-length 
Look-back window

P-length 
Prediction window

Label Cross-Future BehaviorPredicted Label Predicted CFB

Figure 7: An illustration of label and Cross-Future Behavior (CFB). The top black line is the label,
the red lines are CFB, the dash black line is the predicted lable, and the dashed red lines are the
unknown part of CFB. Left: the original inputs of the model, consisting of L-length look-back
window and P -length prediction window. Right: the model’s outputs to be predicted, forming a
complete prediction window.

Cross-Future Behavior (CFB) is feature that occurs before the current time but takes effect in the
future. Taking hotels as an example to illustrate CFB, as shown in Figure 6. A user can book a
hotel room on that day or make an early book for a future date (Figure 6 (b), (c)), a hotel’s check-in
rooms within a day originate from bookings made on that day and previous days (Figure 6 (a)).
Assuming today is July 25, the bookings made from July 23 to July 25 for July 27 (2 rooms, 5
rooms, 11 rooms) exemplify the early book matrix (Figure 6 (d)). Furthermore, in order to obtain
more comprehensive information, we accumulate the quantities of early books to obtain the cross-
future matrix (Figure 6 (e)). The early book matrix and cross-future behavior matrix decompose the
number of hotel check-in rooms for a given day based on the book dimension. Hotel examples will
also be used later in the text for ease of understanding and will not be repeated below. As shown
in Figure 7, the left graph shows all information known at the moment of predicting t, and after
prediction by the model, the right graph completes the unknown information to be predicted.

However, the use of CFB in TSF problem faces two main challenges: 1) CFB is sparse and partial.
Consumers can book items at any time, causing CFB to remain fully observed until the last minute.
As shown in Figure A(d), half of the data in the cross-future matrix cannot be obtained. When
making predictions, the data for row T-0 can only be fully obtained at the end of the day, meaning
only rows T-1 to T-n are available for forecasting, showing that CFB is sparser and smaller than
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other features such as hotel historical sales. Thus, if CFB is simply incorporated into the model, the
prediction model may be unable to apply CFB features correctly and even make incorrect predictions
due to CFB. 2) The trend of CFB is unobvious. As shown in Figure 2, compared with the sales
trend in a high-level business district, the sales trend in an individual hotel is unobvious. CFB has
the same nature, and the trend in an individual hotel is much unobvious compared with that in a
high-level business district. CFB can reflect future trends to a certain extent, however, the coverage
of CFB for some hotels may be too atypical to reveal a trend. Sales at higher-level districts are much
more representative than in individual hotels. If there is a rising trend at a higher level, it is also
possible that the sales of individual hotels may increase. How to leverage the sales trends of the
higher level to guide the trends exploration for individual hotels is the second challenge.

B SUPPLEMENT PRELIMINARIES

B.1 PROBLEM DEFINITION

Table 5: Important notations used in this paper.

Notation Definition
t the time point
L the length of look-back window
P the length of prediction window
YL the time series in look-back window
YP the time series (i.e., predicted output) in prediction window
YT

L the trend part of YL in look-back window
YR

L the reminder part of YL in look-back window
YU

P upper limit of YP

YL
P lower limit of YP

Ct Cross-Future Behavior (CFB)
CL CFB in look-back window
CTL the ground truth of CFB in look-back window
CP CFB in prediction window
CT

L trend part of CL

CR
L reminder part of CL

Xt covariate features

For clarity, we summarize the important notations used in this paper as Table 5.

B.2 KOOPMAN THEORY

Koopman Theory (Koopman, 1931) mainly focuses on the dynamical system, studying the evolu-
tion of state variables along one or more coordinate axes (usually time). Koopman theory trans-
forms finite-dimensional nonlinear dynamics problems into infinite-dimensional linear dynamics
problems, by projecting the state into the space of measurement function g(y) and evolving for-
ward by an infinite-dimensional linear operator K which is also called the Koopman matrix. For a
discrete-time dynamical system, it can be transformed as:

yt+1 = F (yt),

K(g(yk)) = g(F (yk)) = g(yk+1),
(16)

where F is the evolution function in dynamic systems. In practice, we apply a finite linear matrix K
to approach the infinite value. Recently, there have been several studies applying koopman theory to
the filed of time series prediction. Taking inspiration from (Liu et al., 2024), we treat the prediction
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window as a time period and calculate the koopman matrix between time periods. The Koopman
matrix can be approximated by ridge regression, i.e.,:

B = KA ⇒ K = (ATA+ λE)−1ATB, (17)

where λ is the ridge coefficient to command the weight of regularization terms, E is the identity ma-
trix. Ridge regression effectively prevents model over-fitting and solves multicollinearity problems
under Deficient-rank conditions by introducing L2 regularization terms.

B.3 HIERARCHICAL STRUCTURE

Multivariate time series data typically have a hierarchical structure, where each upper-level time
series is computable by summing over the appropriate lower-level time series. Hierarchical prog-
nostics need to satisfy aggregation constraints, i.e., they need to ensure that the sum of predictions
of some parent node and the sum of the predictions of its child nodes are approximately equal.
Reconciliation-based hierarchical prognostics approach is currently the state-of-the-art solution in
hierarchical time series estimation, which is based on the estimated values of existing nodes, and the
calibrated estimated results are obtained through the following formula:

ỹt = SBŷt. (18)

Where S is the hierarchical structure matrix, the value between node pairs with parent-child re-
lationships is 1, otherwise it is 0. B is the reconciliation matrix which represents the calibration
relationship between the bottom nodes and is the parameter to be solved.

B.4 DEFINITION OF IWR AND PHDI METRIC

In practical application scenarios, in addition to the negotiated inventory based on predict results,
sellers usually provide some additional inventory for unexpected needs. Therefore, there may be
situations where the label value is greater than the predict result. Thus, the IWR and PHDI
indicators of trade-off are adopted online to evaluate the quality of prediction performance at ****.
we define the truth value as label YP , and define the predict result as ŶP as stated in the main text,
m is the number of samples. IWR means inventory waste rate. If the predicted value is on the high
side, there will be some inventory that has not been consumed, which is a wasted resource. namely,

IWR =
1

m

{
0, if ŶP [i] ≤ YP [i] + b
ŶP [i]−YP [i]

ŶP [i]
, if ŶP [i] > YP [i] + b,

(19)

where b is the buffer amount, which is the acceptable error range for BD. we set b = 1. The more
predicted values are higher than the true values, the larger the IWR is. PHDI means the proportion
of hotels with depleted inventory, which is defined as follows:

PHDI =
1

m

{
1, if ŶP [i] < YP [i]− b

0, if ŶP [i] ≥ YP [i]− b.
(20)

If our predicted inventory is depleted, it indicates that our prediction of user demand is underesti-
mated. The more hotels with predicted values lower than the true values plus buffer, the larger the
PHDI is.
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C SUPPLEMENT METHOD ARCHITECTURE

C.1 KOOPMAN PREDICTOR MODULE

Look-back Window Prediction Window

𝑪𝑪𝐿𝐿𝑇𝑇 𝑪𝑪𝑃𝑃

𝒁𝒁𝑪𝑪𝐿𝐿𝑇𝑇

Encoder Encoder

𝒁𝒁𝑪𝑪P

�𝒁𝒁𝑪𝑪P

Decoder

�𝑪𝑪𝑃𝑃

Prediction Window

𝒀𝒀𝐿𝐿𝑇𝑇

𝒁𝒁𝒀𝒀𝐿𝐿𝑇𝑇

𝑲𝑲𝑪𝑪

Encoder

�𝒁𝒁𝒀𝒀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇

Decoder

�𝒀𝒀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇

Look-back Window

Prediction Window

𝑲𝑲𝑪𝑪

Figure 8: Framework of Koopman Predictor Module (KPM). The red portion indicates the look-back
window and the purple portion is the prediction window. The left side is Cross-Future Behavior-
related operations while the right side is label-related operations. In addition, the encoder and de-
coder are shared by both, the KC is computed by the Cross-Future Behavior side and applied to the
label side.

Figure 8 is the framework of Koopman Predictor Module (KPM).
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C.2 INTERNAL TREND MINING MODULE

Complete network

𝑪𝑪𝐿𝐿𝑇𝑇 𝑪𝑪𝑃𝑃
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𝒀𝒀𝐿𝐿𝑇𝑇 �𝒀𝒀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇

submodules

𝒁𝒁𝒀𝒀𝑇𝑇

Encoder
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�𝒁𝒁𝒀𝒀𝑃𝑃𝑇𝑇

Decoder

�𝒀𝒀𝑃𝑃𝑇𝑇

Complete network

Adaptation network

Look-back Window Prediction Window Prediction Window

Prediction Window Prediction Window

Look-back Window

Figure 9: The framework of Internal Trend Mining Module (ITM). The meanings of red and purple
portions are consistent with that in Figure 8. The Encoder, Decoder, and Complete network are all
shared between the left and right sides.

Figure 9 is the framework of Internal Trend Mining Module (ITM).
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C.3 EXTERNAL GUIDE MODULE

Hierarchical 
sampling

Label

Time

𝑾𝑾𝑞𝑞𝑾𝑾𝑘𝑘

Reconciliation 
Matrix

𝑺𝑺1
𝑺𝑺2
𝑺𝑺3
𝑺𝑺4

𝑩𝑩1
𝑩𝑩2
𝑩𝑩3
𝑩𝑩4

Matrix Learning 
Layer

Reconciliation Loss

Sample composition

𝑾𝑾𝑣𝑣

Figure 10: The framework of External Trend Guide Module (ETG). Top: The external trend guide
module embedded in Figure 9, accompanied by reconciliation loss. Bottom: The sample composi-
tion matched with the ETG module which adopts a hierarchical sampling.

Figure 10 is the framework of External Trend Guide Module (ETG).
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D THEORETICAL ANALYSIS

D.1 THE CORRELATION ANALYSIS BETWEEN KTC AND KC

Assuming we know the complete value CTP of CFB, the logic for calculating the value of koopman
matrix KTC is as follows:

Encoder(CT
L) = ZCT

L, Encoder(CTP ) = ZCTP . (21a)

ZCT
L ×KTC = ZCTP , (21b)

inwhich KTC contains the trend information carried by CFB that we intend to learn.

In practice, the value we can acquire is CTP = CP ⊙ L, where ⊙ represents the hadamard product

and L =

[
1 ··· 0
...

. . .
...

1 ··· 1

]
is the unit lower triangular matrix. Therefore, in this section, we will demonstrate

the relationship between KTC and KC utlized in the model, and further verify the rationality and
necessity of KPM and ITM in the CRAFT.

In KPM module, the calculation process used for KC value is as follows:

Encoder(CT
L) = ZCT

L, Encoder(CP ) = ZCP . (22a)

ZCT
L ×KC = ZCP , (22b)

The encoder operation is a MLP, which can be defined as

Encoder() := tanh(WX+ b). (23)

From equation 21a, 22a and 23, it can be concluded that

ZCTP = tanh(WCTP + b), (24)

ZCP = tanh(WCP + b),

= tanh(W(CTP ⊙ L)) + b.
(25)

From equation 21b and 24,

KTC = ZCT
L

−1
ZCTP

= ZCT
L

−1
tanh(WCTP + b)

(26)

can be derived. Similarly, from 22b and 25, it can be concluded that

KC = ZCT
L

−1
ZCP

= ZCT
L

−1
tanh(W(CTP ⊙ L) + b)

= ZCT
L

−1
tanh(W(CTP ⊙ (L+ 1− 1)) + b)

= ZCT
L

−1
tanh(W(CTP ⊙ 1−CTP ⊙ (1− L)) + b)

= ZCT
L

−1
tanh(W(CTP + b) + (−W(CTP ⊙ (1− L))))

(27)

If we define x : W(CTP + b, y := −W(CTP ⊙ (1−L)), then the above equation can be derived
as

KC = ZCT
L

−1
tanh(x+ y)

= ZCT
L

−1 tanh(x) + tanh(y)

1 + tanh(x)tanh(y)

= ZCT
L

−1
tanh(x)

1 + tanh(x)
tanh(y)

1 + tanh(x)tanh(y)

= KTC

1 + tanh(x)
tanh(y)

1 + tanh(x)tanh(y)
.

(28)
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By the same token, it can be calculated that

ZCP = ZCTP

1 + tanh(x)
tanh(y)

1 + tanh(x)tanh(y)
. (29)

Based on the above reasoning, there is a certain correlation between KTC and KC , and the correla-
tion will be fitted through the subsele.

D.2 THE DISTRIBUTION CONSISTENCY VERIFICATION OF CFB AND LABEL
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Figure 11: Pearson correlation between the CFB and label.

We verify the consistency between CFB and label from the data distribution view. Specifically,
we randomly select one month of training data and calculate pearson correlation between label in
look-back window and CFB in p-length prediction window. The calculation results are shown in
Figure 11, where the x-axis is the length p of prediction window and y-axis is the calculated pearson
correlation. According to Figure 11, we can know that there are strong consistency between the the
CFB and label. Especially, the smaller the window length p, the greater the correlation between
CFB and label. This phenomena is also consistent with the experimental results in Table 2, that is,
the smaller the prediction window length, the better the experimental results.
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E EXPERIMENTAL RESULTS

E.1 VISUALIZATION OF KEY MODULES

10 20 30

Upward Trendinput label

(a) Known label value without CFB.

10 20 30

Peak Pointinput label

input CFB at 3 days

input CFB at 7days

(b) Known label and CFB value.

10 20 30

Peak Pointinput label

input CFB at 3 days

input CFB at 7days

(c) Known label and CFB value of virtual
parent node.

10 20 30

input label

ground truth

prediction of KPM

(d) True label and the prediction of KPM
module.

10 20 30

prediction of ITM

(e) True label and the prediction of KPM
and ITM module.

10 20 30

prediction of CRAFT

10 20 30

prediction of CRAFT

(f) True label and the prediction of KPM,
ITM module and CRAFT.

Figure 12: Visualization of key modules using data of hotel A.

Figure 12 visualizes the original input data of CRAFT method sub-figure(a)-(c) and the prediction
results after different modules sub-figure(d)-(f). According to Figure 12(a)-(c), we can know that
there are strong consistency between the CFB and input label. When the prediction window is
smaller, the consistency between CFB and label is stronger. This phenomena is also verified with
results in Table 2 and Figure 11. Further, as shown in Figure 12(c), compared with CFB in the
original node, CFB value of the virtual parent node tends towards the trend of the label more.

Figure 12(d)-(f) show the phased prediction results after KPM, ITM, and all modules of CRAFT,
respectively. According to these three sub-figures, we can observe that these phased prediction
results are closer to the ground truth label step by step. This is consistent with the results in Table 3,
demonstrating the effectiveness of each module in the CRAFT method.
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Figure 13: Hyper parameter analysis
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Figure 14: Time complexity analysis
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E.2 HYPER PARAMETER ANALYSIS

Figure 13 analyzes the effects of hyper parameter λ, α1, α2, α3 to the wMAPE metric. Firstly,
all of these hyper paramter cover the interval from 10−2 to 102. Based on the performance of the
model, it will further explore areas with better property. In the end, λ varies in [10−2, 102], α1 varies
in [10−2, 5 ∗ 104], α2 varies in [10−2, 102], and α3 varies in [10−2, 100]. According to Figure 13,
we can know that the value of hyper parameters affects the performance of the model to a certain
extent, and the selection of model parameters is very important.

E.3 TIME COMPLEXITY ANALYSIS

Figure 14 shows the time complexity of different methods. The x-axis is the inference cost for a
batch of data, the y-axis is the performance on wMAPE metric, and the circle size represents the
wall-time training cost. From Figure 14, we can know that the training and inference costs of the
proposed CRAFT method are both moderate among all baseline methods, faster than other most
Transformer based methods. In addition, CRAFT outperforms all baseline methods in terms of
wMAPE performance.

E.4 USING CFB AS LABEL

Table 6: Experimental results using CFB as label.

Model Length P MAE RMSE wMAPE

Informer
7 days 1.2566 4.2363 0.9480

14 days 0.8263 2.2853 0.8131
30 days 0.7799 1.9655 0.8007

MQ-RNN
7 days 0.9053 3.0241 0.6829

14 days 0.7453 2.4314 0.7439
30 days 0.6913 2.1229 0.7189

CRAFT
7 days 0.8480 2.8654 0.6706

14 days 0.7237 2.2696 0.7121
30 days 0.6895 2.0121 0.7078

In addition, we also explore the different uses of CFB based on Informer and MQ-RNN model.
In the new experiment, we treat CFB features and label equally. Specifically, we define the time
series forecasting problem as {YP ,CP } = H(YL,Xt,CL), using CFB and label in the look-
back window as input and CFB and label in prediction window as output. Experimental results
are shown in Table 6. Compared with experimental results in Table 2, the effect of MQ-RNN is
not significantly different, while the outcome of Informer deteriorates. Meanwhile, the wall-time
training cost increased by 3-8 times.
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F EXPERIMENTAL CONFIGURATION

The time-series data is divided into training set, validation set, and testing set along the time dimen-
sion, which can avoid the problem of data traversal. The model is trained on the training set and
hyperparameters are selected based on the descent of the loss function in the training set and the
prediction error in the validation set. Based on this method, the search space and optimal parameters
for each baseline model and CRAFT are as follows.
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Table 7: The search space and optimal parameters for baseline models and CRAFT.

Model Parameter Search space Optimal value

MQRNN

encoder hidden layer {1, 2, 4} 2

encoder hidden size {8, 16, 32, 64, 128, 256} 128

decoder hidden size {8, 16, 32, 64, 128, 256} 128

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 3e-4

Informer

heads of attention {1, 2, 4, 8} 8

hidden size {8, 16, 32, 64, 128, 256} 64

inner channel size {32, 64, 128, 256, 512, 1024, 2048} 256

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 1e-3

Autoformer

heads of attention {1, 2, 4, 8} 8

hidden size {8, 16, 32, 64, 128, 256} 128

inner channel size {32, 64, 128, 256, 512, 1024, 2048} 512

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 8e-4

Fedformer

heads of attention {1, 2, 4, 8} 8

hidden size {8, 16, 32, 64, 128, 256} 128

inner channel size {32, 64, 128, 256, 512, 1024, 2048} 512

modes {4, 8, 16, 32} 16

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 1e-3

TFT
heads of attention {1, 2, 4, 8} 2

hidden size {8, 16, 32, 64, 128, 256} 128

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 3e-3

DLinear
kernel size {3, 7, 15, 30} {7, 7,15}
individual {True, False} True

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 3e-4

Koopa

num blocks {1, 2, 4, 8} 2

hidden size {8, 16, 32, 64, 128, 256, 512} 128

dynamic size {4, 8, 16, 32, 64, 128, 256} 64

seg len {3, 7, 15, 30} {7, 15, 30}
learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 3e-4

CRAFT
kernel size {3, 7, 15, 30} {15, 15, 30}
hidden dim {8, 16, 32, 64, 128, 256, 512} 128

learning rate {1e-4, 3e-4, 8e-4, 1e-3, 3e-3, 8e-3, 1e-2} 1e-3

{} represents the set of values. If there are three optimal values, they correspond to the case where the predicted lengths P ∈ {7, 14, 30}, respectively.
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