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Abstract

Mathematical reasoning, a core aspect of hu-001
man cognition, is vital across many domains,002
from educational problem-solving to scientific003
advancements. As artificial general intelli-004
gence (AGI) progresses, integrating large lan-005
guage models (LLMs) with mathematical rea-006
soning tasks is becoming increasingly signif-007
icant. This survey provides the first compre-008
hensive analysis of mathematical reasoning009
in the era of multimodal large language mod-010
els (MLLMs). We review over 200 studies pub-011
lished since 2021, and examine the state-of-the-012
art developments in Math-LLMs, with a focus013
on multimodal settings. We categorize the field014
into three dimensions: benchmarks, methodolo-015
gies, and challenges. In particular, we explore016
multimodal mathematical reasoning pipeline,017
as well as the role of (M)LLMs and the associ-018
ated methodologies. Finally, we identify seven019
major challenges hindering the realization of020
AGI in this domain, offering insights into the021
future direction for enhancing multimodal rea-022
soning capabilities. This survey serves as a023
critical resource for the research community in024
advancing the capabilities of LLMs to tackle025
complex multimodal reasoning tasks.026

1 Introduction027

Mathematical reasoning is a critical aspect of hu-028

man cognitive ability, involving the process of de-029

riving conclusions from a set of premises through030

logical and systematic thinking (Jonsson et al.,031

2022; Yu et al., 2024b). It plays an essential role in032

a wide range of applications, from problem-solving033

in education to advanced scientific discoveries. As034

artificial general intelligence (AGI) continues to035

advance (Zhong et al., 2024), the integration of036

large language models (LLMs) with mathematical037

reasoning tasks becomes increasingly significant.038

These models, with their impressive capabilities in039

language understanding, have the potential to sim-040

ulate complex reasoning processes that were once041

Figure 1: The illustration of our research scope (i.e.,
investigating the MLLM’s math reasoning capability).

Survey Venue & Year Scope Multimodal LLM

(O’Halloran, 2015) JMB’15 MM4Math ✔
(Hegedus and Tall, 2015) IRME’15 MM4Math ✔
(Lu et al., 2022b) ACL’22 DL4Math
(Li et al., 2023a) arXiv’23 LLM4Edu ✔
(Liu et al., 2023b) arXiv’23 LLM4Edu ✔
(Li et al., 2024g) COLM’24 DL4TP
(Ahn et al., 2024) EACL’24 LLM4Math ✔
(Xu et al., 2024a) IJMLC’24 LLM4Edu ✔
(Wang et al., 2024d) arXiv’24 LLM4Edu ✔

Ours - MLLM4Math ✔ ✔

Table 1: Comparisons between relevant surveys & ours.

thought to be inherently human. In recent years, 042

both academia and industry have placed increasing 043

emphasis on this direction (Wang et al., 2024d; Xu 044

et al., 2024a; Lu et al., 2022b; Yan et al., 2025). 045

The inputs for mathematical reasoning tasks 046

are diverse, extending beyond traditional text-only 047

to multimodal settings, as illustrated in Figure 1. 048

Mathematical problems often involve not only tex- 049

tual information but also visual elements, such as 050

diagrams, graphs, or equations, which provide es- 051

sential context for solving the problem (Wang et al., 052

2024e; Yin et al., 2024). In the past year, multi- 053

modal mathematical reasoning has emerged as a 054

key focus for multimodal large language models 055

(MLLMs) (Zhang et al., 2024c; Bai et al., 2024; 056

Wu et al., 2023a). This shift is driven by the recog- 057

nition that reasoning tasks in fields like mathe- 058

matics require models capable of integrating and 059

processing multiple modalities simultaneously to 060

achieve human-like performance. However, mul- 061

timodal mathematical reasoning poses significant 062
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Figure 2: The release timeline of Math-LLMs in recent years.

challenges due to the complex interaction between063

different modalities, the need for deep semantic un-064

derstanding, and the importance of context preser-065

vation across modalities (Liang et al., 2024a; Song066

et al., 2023; Fu et al., 2024b). These challenges067

are central to the realization of AGI, where models068

must integrate diverse forms of knowledge seam-069

lessly to perform sophisticated reasoning tasks.070

Math-LLM Progress. Figure 2 illustrates that,071

driven by the rapid development of LLMs since072

2021, the number of math-specific LLMs (Math-073

LLMs) has grown steadily, alongside enhanced074

support for multilingual and multimodal capabili-075

ties (More details in Appendix A). The landscape076

was marked by the introduction of models like077

GPT-f (Polu and Sutskever, 2021) and Minerva078

(Lewkowycz et al., 2022), with Hypertree Proof079

Search (Lample et al., 2022) and Jiuzhang 1.0080

(Zhao et al., 2022) highlighting advancements in081

theorem proving and mathematical question under-082

standing capabilities, respectively. Year 2023 saw083

a surge in diversity and specialization, alongside084

multimodal support from models like Skywork-085

Math (Zeng et al., 2024). In year 2024, there was086

a clear focus on enhancing mathematical instruc-087

tion (e.g., Qwen2.5-Math (Yang et al., 2024a)) and088

proof (e.g., DeepSeek-Proof (Xin et al., 2024a)) ca-089

pabilities. The year also witnessed the emergence090

of Math-LLMs with a vision component, such as091

MathGLM-Vision (Yang et al., 2024b).092

Scope. Previous surveys have not fully captured093

the progress and challenges of mathematical rea-094

soning in the age of MLLMs. As indicated in Table095

1, some works have concentrated on the applica- 096

tion of deep learning techniques to mathematical 097

reasoning (Lu et al., 2022b) or specific domains 098

such as theorem proving (Li et al., 2024g), but they 099

have overlooked the rapid advancements brought 100

about by the rise of LLMs. Others have broadened 101

the scope to include the role of LLMs in educa- 102

tion (Wang et al., 2024d; Xu et al., 2024a; Li et al., 103

2023a) or mathematical fields (Ahn et al., 2024; 104

Liu et al., 2023b), but have failed to explore the 105

development and challenges of mathematical rea- 106

soning in multimodal settings in depth. Therefore, 107

this survey aims to fill this gap by providing the 108

first-ever comprehensive analysis of the current 109

state of mathematical reasoning in the era of 110

MLLMs, focusing on three key dimensions: bench- 111

mark, methodology, and challenges. 112

Structure. In this paper, we survey over 200 113

publications from the AI community since 2021 114

related to (M)LLM-based mathematical reasoning, 115

and summarize the progress of Math-LLMs. We 116

first approach the field from the benchmark per- 117

spective, analyzing the LLM-based mathematical 118

reasoning task through four key aspects: basic fo- 119

cus, task, evaluation, and training data (Section 2). 120

Subsequently, we explore the roles that (M)LLMs 121

play in mathematical reasoning, categorizing them 122

as reasoners, enhancers, and planners (Section 3). 123

Finally, we identify seven core challenges that the 124

mathematical reasoning faces in the era of MLLMs 125

(Section 4). This survey aims to provide the com- 126

munity with comprehensive insights for advancing 127

multimodal reasoning capabilities of LLMs. 128
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2 Benchmark Perspective129

2.1 Overview130

Benchmarking for mathematical reasoning plays131

a crucial role in advancing LLM research, as it132

provides standardized, reproducible pipeline for as-133

sessing the performance on reasoning tasks. While134

previous benchmarks such as GSM8K (Cobbe135

et al., 2021) and MathQA (Amini et al., 2019) were136

instrumental in the pre-LLM era, our scope is cen-137

tered on those relevant to (M)LLMs. In this sec-138

tion, we present a comprehensive analysis of recent139

benchmarks for mathematical reasoning in the con-140

text of (M)LLMs (Shown in Table 3 from Appendix141

B). The section is organized into four subsections:142

Basic Focus (Sec.2.2), Tasks (Sec.2.3), Evaluation143

(Sec.2.4), and Training Data (Sec.2.5).144

2.2 Basic Focus145

Basic Format. In a math reasoning task (taking146

prblem-solving as a basic setting), the goal is to147

solve a mathematical problem given a specific for-148

mat of input and output. The input consists of a149

statement that describes the problem to be solved.150

As shown in Figure 3, this can be presented in ei-151

ther a textual format or a multimodal format (text152

accompanied by visual elements, such as figures or153

diagrams). The output is the predicted solution to154

the problem, represented as numerical or symbolic155

results. More cases can be seen in Appendix C.156

Language & Size. The majority of bench-157

marks are available in English, with a few ex-158

ceptions like Chinese (Li et al., 2024i) or Roma-159

nian (Cosma et al., 2024) datasets. This predom-160

inance of English datasets underscores the chal-161

lenges of multilingual representation in the math-162

ematical reasoning domain, suggesting an oppor-163

tunity for future work to diversify datasets across164

languages, especially those in underrepresented re-165

gions. Moreover, the size of these datasets varies166

widely, from smaller sets (e.g., QRData (Liu et al.,167

2024d) with 411 questions) to massive corpora168

(e.g., OpenMathInstruct-1 (Toshniwal et al., 2024b)169

with 1.8 million problem-solution pairs). Larger170

datasets are more likely to support robust model171

training and evaluation, but their size can also172

present challenges in terms of computational re-173

quirements and quality control.174

Source. The sources of datasets predominantly175

consist of public (i.e., derived from public reposi-176

tories or datasets) and private sources. The private177

datasets typically offer specialized problem types178

Figure 3: Typical data format of math reasoning task for
text-only & multimodal settings. Examples are derived
from MathVerse (Zhang et al., 2024f), which assess
whether and how much MLLMs can truly understand
the visual diagrams for mathematical reasoning.

and tasks, and may present unique challenges, such 179

as restricted access or ethical considerations. On 180

the other hand, public datasets foster wider com- 181

munity collaboration, though they may suffer from 182

limitations in diversity and task coverage. Some 183

works have also leveraged LLMs to generate the 184

datasets tailored to specific needs. For instance, 185

GeomVerse constructs synthetic datasets to eval- 186

uate the multi-hop reasoning abilities required in 187

geometric math problems (Kazemi et al., 2023). 188

Educational Level. The benchmarks span var- 189

ious educational levels, ranging from elementary 190

school to university-level problems. Besides, there 191

has also been a surge in datasets focused on 192

competition-level problems (Tsoukalas et al.), of- 193

fering insights into the current limitations of LLMs 194

in comparison to the upper bound of human cogni- 195

tive abilities. Future directions could involve more 196

focused datasets targeting specific educational lev- 197

els to enable models to specialize in handling par- 198

ticular age groups or skill sets. 199

2.3 Task 200

Model Choice. The choice of models in these 201

benchmarks spans open-source and closed-source 202

models, with a growing interest in Math-LLMs. 203

This trend indicates an increasing recognition of the 204

need for models tailored to mathematical reason- 205

ing, which often require specialized training and 206

handling of structured knowledge. Additionally, 207

with the recent release of GPT-4o (OpenAI, 2024) 208
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and Gemini-Pro-1.5 (Reid et al., 2024), which have209

demonstrated significant advancements in multi-210

modal reasoning capabilities, the latest benchmarks211

have begun to include them in the evaluations. For212

example, ErrorRadar, in its initial formulation of213

multimodal error detection setting, incorporates214

these state-of-the-art MLLMs to highlight the real-215

world performance gap between AI systems and216

human-level reasoning (Yan et al., 2024a).217

Reasoning Task. Problem-solving tasks typi-218

cally dominate, reflecting the emphasis on students’219

ability to apply knowledge and reasoning skills in220

real-world contexts. This also serves as the core221

objective of current Math-LLMs. In addition, a222

growing proportion of error detection tasks sug-223

gests an increasing focus on helping students rec-224

ognize and correct mistakes (Li et al., 2024e; Yan225

et al., 2024a; Kurtic et al., 2024). Meanwhile, prov-226

ing tasks, often associated with higher-order think-227

ing, highlight a shift towards cultivating logical228

reasoning and systematic problem-solving abilities229

(Tsoukalas et al.). Moreover, a smaller portion of230

work has addressed tasks that align with real-world231

educational needs but lack systematic formulation.232

For instance, Li et al. (2024e) further introduces er-233

ror correction (which goes beyond simple error de-234

tection); Didolkar et al. (2024) explores automated235

skill discovery for problem-solving; and MathChat236

(Liang et al., 2024c) focuses on reasoning in multi-237

turn settings (such as follow-up QA and problem238

generation). Given the higher demands on rea-239

soning capabilities in multimodal settings, many240

studies have also evaluated the aforementioned rea-241

soning tasks in image-text problem settings. These242

efforts aim to provide the LLM community with243

more diverse, real-world task scenarios, catering to244

the needs of multimodal learning environments.245

2.4 Evaluation246

Discriminative Evaluation is a common approach,247

focusing on the ability of M(LLM)s to correctly248

classify or choose the correct answer (Hendrycks249

et al., 2021; Mishra et al., 2022; Li et al., 2024c).250

Based on specific motivations, some works also251

build their metrics upon accuracy for further expan-252

sion. For example, GSM-PLUS, a new adversarial253

benchmark for evaluating the robustness of LLMs254

in mathematical reasoning, develops performance255

drop rate (PDR) to measure the relative decline256

in performance on question variations compared257

to the original questions (Li et al., 2024d). Error-258

Radar uses error step accuracy and error category259

accuracy together to evaluate the multimodal error 260

detection of MLLMs (Yan et al., 2024a). 261

Generative Evaluation, on the other hand, mea- 262

sures a M(LLM)’s ability to produce detailed expla- 263

nations or solve problems from scratch. This evalu- 264

ation type is gaining traction, particularly for com- 265

plex mathematical tasks where step-by-step solu- 266

tions are required. For instance, MathVerse, which 267

modifies problems with varying degrees of infor- 268

mation content in multi-modality, employs GPT-4 269

to score each key step in the reasoning process gen- 270

erated by MLLMs (Zhang et al., 2024f). CHAMP 271

proposes a solution evaluation pipeline where GPT- 272

4 is utilized as a grader for the answer summary, 273

given the ground truth answer (Mao et al., 2024). 274

Due to page limit, more details of both types of 275

evaluation metrics can be seen in Appendix D. 276

2.5 Training Data 277

The training of MLLMs for mathematical reason- 278

ing relies on a carefully orchestrated integration of 279

instruction design, data scale, and task diversity to 280

ensure robust and generalizable performance. Cen- 281

tral to this process is the design of instruction sets, 282

which are structured to bridge symbolic, textual, 283

and visual reasoning (Toshniwal et al., 2024b,a). 284

These instructions progressively escalate in com- 285

plexity, starting from foundational arithmetic to 286

advanced domains like calculus and linear algebra, 287

ensuring models build skills incrementally. Each 288

problem can be accompanied by explicit step-by- 289

step explanations, enabling models to learn logi- 290

cal sequencing and self-correction (Zhang et al., 291

2024g; Tang et al., 2024b; Liang et al., 2024c). 292

The scale of pre-training data also plays an 293

equally critical role. Models are exposed to ter- 294

abytes of data sourced from textbooks, research 295

papers (e.g., arXiv), online educational platforms 296

(e.g., Khan Academy), and synthetically generated 297

problems. A significant portion (10–30%) of the 298

pretraining corpus is dedicated to mathematical 299

content, with specialized datasets ensuring cov- 300

erage of niche topics. While scaling to trillion- 301

token corpora enhances robustness, rigorous filter- 302

ing mechanisms, such as self-supervised quality 303

checks, are applied to eliminate noise, including 304

incorrect solutions or irrelevant content (Shao et al., 305

2024; Qwen, 2024; Yue et al., 2024c). 306

Finally, the variety of mathematical tasks en- 307

sures models adapt to diverse challenges. Train- 308

ing spans core domains like algebra and geome- 309

try, as well as cross-disciplinary applications (e.g., 310
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Figure 4: The illustration of the comparisons among three paradigms of (M)LLM-based mathematical reasoning.

physics-based calculus problems). Tasks are pre-311

sented in multiple formats: closed-ended questions312

(e.g., solving equations), open-ended prompts (e.g.,313

deriving proofs), and error-analysis exercises that314

require identifying and correcting flawed reasoning315

(Lu et al., 2022b; Yan et al., 2025).316

For example, G-LLaVA (Gao et al., 2023) fo-317

cuses on solving geometry problems by extracting318

visual features from geometric figures and jointly319

modeling them with text descriptions, allowing the320

model to understand key elements (e.g., points,321

lines, angles) in geometric figures and their rela-322

tionship with text descriptions. MAVIS (Zhang323

et al., 2024g) features an automatic data genera-324

tion engine that can quickly generate large-scale,325

high-quality multimodal mathematical datasets, ad-326

dressing the problem of data scarcity. It also uses327

instruction fine-tuning to teach the model how to328

decompose complex mathematical problems and329

generate reasonable reasoning steps (esp., MAVIS-330

Instruct includes 834k visual math problems with331

CoT rationales). Math-LLaVA (Shi et al., 2024)332

uses the MathV360K multimodal dataset (360k333

instances), which covers multiple mathematical do-334

mains to gradually improve the model’s mathemat-335

ical reasoning ability through bootstrapping and336

further optimize the model using generated data.337

3 Methodology Perspective338

3.1 Overview & Findings339

MLLMs have been leveraged in various ways to340

tackle the broad spectrum of mathematical reason-341

ing tasks. Based on our comprehensive review342

of recent methodologies (summarized in Table 5343

from Appendix E), we classify the works into three344

distinct paradigms: LLM as Reasoner (Sec.3.2),345

LLM as Enhancer (Sec.3.3), and LLM as Planner346

(Sec.3.4), and finally provide a in-depth compari-347

son of technical distinctions (Sec.3.5).348

Findings. First, single-modality settings domi- 349

nate the current landscape of method-oriented re- 350

search, with the majority focusing solely on al- 351

gebraic tasks. However, since 2024, multimodal 352

approaches have been increasingly incorporated, 353

expanding the scope of mathematical reasoning 354

to include geometry, diagrams, and even broader 355

mathematical concepts. This shift signals a grow- 356

ing interest in enhancing model robustness through 357

multimodal learning, which can address the diverse 358

nature of mathematical problems. Second, regard- 359

ing the evaluated tasks, problem-solving and prov- 360

ing are gaining prominence, while some research 361

also focuses on error detection or others (e.g., Re- 362

fAug includes error correction and follow-up QA 363

as evaluation tasks (Zhang et al., 2024j)). Finally, 364

in terms of the role of LLMs, Reasoner is the most 365

common role, followed by Enhancer, while Plan- 366

ner remains less explored but holds promise due to 367

recent advancements in multi-agent intelligence. 368

3.2 LLM as Reasoner 369

Definition. In the Reasoner paradigm, M(LLM)s 370

harness their inherent reasoning capabilities to 371

solve mathematical problems, as shown in Figure 372

4 (a). This can either involve fine-tuning existing 373

LLMs on task-specific datasets or utilizing zero- 374

shot or few-shot learning strategies. These models 375

utilize advanced semantic understanding and rea- 376

soning techniques, such as symbolic manipulation, 377

logical deduction, and multi-step reasoning. 378

Examples. Deng et al. (2023) develops a unified 379

framework for answer calibration that integrates 380

step-level and path-level strategies on multi-step 381

reasoning of LLMs. MATH-SHEPHERD serves 382

as a process-oriented math verifier, which assigns 383

a reward score to each step of the LLM’s outputs 384

on math questions (Wang et al., 2024c). As for 385

multimodal approaches, Math-PUMA introduces 386

progressive upward multimodal alignment strat- 387
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egy for reasoning-enhanced training (Zhuang et al.,388

2024); Math-LLaVA, a LLaVA-1.5-based model,389

directly bootstraps mathematical reasoning via fine-390

tuned on 360K high-quality math QA pairs, which391

can ensure the depth and breadth of multimodal392

mathematical problems (Shi et al., 2024); STIC393

develops a two-stage self-training pipeline (consist-394

ing of Image Comprehension Self-Training phase395

& Description-Infused Fine-Tuning phase) for en-396

hancing visual comprehension (Deng et al., 2024);397

VCAR emphasizes on the visual-centric supervi-398

sion, thus proposing a similar two-step training399

pipleine which handles the visual description gener-400

ation task first, followed by mathematical rationale401

generation task (Jia et al., 2024).402

Summary & Outlook. This paradigm has403

shown significant promise, particularly in solv-404

ing problems requiring multiple steps of reasoning.405

However, despite improvements, issues with robust-406

ness remain, particularly with zero-shot reasoning407

tasks. Future work should focus on combining rea-408

soning with structured knowledge retrieval systems409

and enhancing models’ ability to reason effectively410

across diverse domains, especially in multimodal411

contexts (Fan et al., 2024b; Pan et al., 2023).412

3.3 LLM as Enhancer413

Definition. In the Enhancer paradigm, M(LLM)s414

are primarily used to augment data, thereby en-415

abling improvements in mathematical reasoning,416

as illustrated in Figure 4 (b). This can be achieved417

by synthesizing new training data, refining existing418

datasets, or introducing new variations that target419

specific problem-solving abilities (Li et al., 2022).420

Data augmentation can include paraphrasing math-421

ematical problems, adding noise to mathematical422

expressions, or generating problem variants for un-423

derrepresented cases.424

Examples. A typical example of a single-425

modality enhancement approach is Masked426

Thought, which introduces perturbations to the in-427

put and randomly masks tokens within the chain of428

thought during training (Chen et al., 2024a). Math-429

Genie, which aims to generate diverse and reliable430

math problems and solution from a small-scale431

dataset, leverages a solution augmentation model432

to iteratively create new solutions from existing433

ones (Lu et al., 2024b). For multimodal meth-434

ods, AlphaGeometry proves most olympiad-level435

mathematical theorems, via trained from scratch436

on large-scale synthetic data guiding the symbolic437

deuction (Trinh et al., 2024); LogicSolver intro-438

duces interpretable formula-based tree-structure for 439

each solution equation (Yang et al., 2022); InfiMM- 440

Math achieves the exceptional performance as 441

it is trained on a large-scale multimodal inter- 442

leaved math dataset developed and validated by 443

LLMs such as LLaMA3-70B-Instruct (Han et al., 444

2024); DFE-GPS constructs its synthetic training 445

set, which integrates visual features and geometric 446

formal language (Zhang et al., 2024i). 447

Summary & Outlook. This paradigm offers 448

substantial performance improvements by enrich- 449

ing the training set. However, challenges remain in 450

ensuring the diversity and relevance of the gener- 451

ated data. Moreover, while text-based augmenta- 452

tion methods have proven effective, the potential 453

for multimodal augmentation is still underexplored. 454

Future research should focus on advancing multi- 455

modal data augmentation techniques, especially for 456

tasks that require interaction between visual and 457

textual modalities (Xiao et al., 2023). 458

3.4 LLM as Planner 459

Definition. In the Planner paradigm, M(LLM)s 460

are treated as coordinators that guide the solution 461

of complex mathematical problems by delegating 462

tasks to other models or tools, as illustrated in Fig- 463

ure 4 (c). This includes scenarios where multiple 464

agents or models collaborate to achieve a single 465

objective, thereby enhancing the performance of 466

mathematical problem-solving through cooperative 467

interactions. These models often work in envi- 468

ronments with multiple steps or require iterative 469

refinement of solutions. 470

Examples. A notable tool-integrated agent is 471

ToRA, which plans the sequential use of natural 472

language rationale and program-based tools syn- 473

ergistically to solve mathematical problems in an 474

optimal manner (Gou et al., 2023). Additionally, 475

COPRA simulates a single agent-like reasoning 476

mechanism where GPT-4 proposes tactic applica- 477

tions within a stateful backtracking search, leverag- 478

ing feedback from the proof environment (Thakur 479

et al., 2024). This can also extend to multimodal 480

scenarios, as seen in Chameleon, which serves as 481

an AI system that augments MLLMs with plug-and- 482

play modules for compositional reasoning, lever- 483

aging an LLM-based planner to assemble tools for 484

complex tasks (Lu et al., 2024a). Furthermore, Vi- 485

sual Sketchpad presents the concept of sketching 486

as a ubiquitous tool used by humans for commu- 487

nication, ideation, and problem-solving. Hence, 488

MLLMs can enable external tools (e.g., matplotlib) 489
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Aspect LLM as Reasoner LLM as Enhancer LLM as Planner

Data Interaction Patterns

Input-Output Relation
End-to-end mapping
(Problem → Answer)

Data augmentation pipeline
(Raw data → Enhanced data)

Dynamic workflow planning
(Problem → Plan → Subtasks)

External Dependencies
Low

(Self-contained reasoning)
Medium

(Data distribution dependent)
High

(Requires toolchain integration)

Pros & Cons

Advantages
Transparent reasoning &

Strong interpretability
Improves generalization &

Handles data scarcity
Breaks capability boundaries &
Enables complex task solving

Limitations Error-prone in complex reasoning May introduce semantic biases High system complexity & Increased latency

Table 2: Comparisons among the three methodology paradigms.

to generate intermediate sketches to aid in reason-490

ing, which includes an iterative interaction process491

with an environment (Hu et al., 2024). Although492

there has been much work on Compositional Vi-493

sual Reasoning in the past (Gupta and Kembhavi,494

2023; Surís et al., 2023; Yao et al., 2022), Visual495

Sketchpad is the first work that integrates the plan-496

ning capabilities of MLLMs with the real gap of497

mathematical reasoning settings (i.e., sketch-based498

reasoning involving visuo-spaital concepts).499

Summary & Outlook. While the Planner500

paradigm introduces significant improvements, par-501

ticularly for complex tasks that require multi-502

agent collaboration, it remains a relatively under-503

explored area (Xi et al., 2023; Guo et al., 2024b).504

There is potential for further improvement in task505

decomposition, agent cooperation strategies, and506

integration of diverse computational tools. Future507

work will likely focus on refining these planning508

strategies, especially for multimodal systems that509

can jointly leverage visual and textual knowledge510

to solve more intricate problems (Xie et al., 2024;511

Durante et al., 2024; Li et al., 2023b).512

3.5 Paradigm Comparison513

As summarized in Table 2, we list the differences514

between the three paradigms to provide the com-515

munity with a more comprehensive understanding516

of the latest technical distinctions. These three517

paradigms show a progressive development logic:518

Reasoner focuses on intrinsic model capabilities,519

Enhancer targets data optimization, and Planner520

moves towards system-level intelligent collabora-521

tion. In practice, we also anticipate adopting a522

hybrid approach (e.g., using Enhancer to generate523

augmented data to train Reasoner, then coordinat-524

ing multiple Reasoner modules via Planner to solve525

complex problems). This layered architecture may526

become the core design paradigm for future multi-527

modal mathematical reasoning systems.528

4 Challenges 529

In the realm of MLLMs for mathematical reason- 530

ing, the following key challenges persist that hinder 531

their full potential. Addressing these challenges is 532

essential for advancing MLLMs toward more ro- 533

bust and flexible systems that can better support 534

mathematical reasoning in real-world settings. 535

❶ Lack of High-Quality, Diverse, and Large- 536

Scale Multimodal Datasets. As discussed in Sec- 537

tion 2.5, current multimodal mathematical reason- 538

ing datasets face tripartite limitations in quality 539

(e.g., misaligned text-image pairs), scale (insuffi- 540

cient advanced topic coverage), and task diversity 541

(overemphasis on problem-solving versus error di- 542

agnosis or theorem proving). For instance, most 543

datasets focus on question answering but lack an- 544

notations for error tracing steps or formal proof 545

generation, while synthetic datasets often exhibit 546

domain bias (Wang et al., 2024a; Lu et al., 2023). 547

Three concrete solutions emerge: i) Develop hybrid 548

dataset construction pipelines combining expert- 549

curated problems with AI-augmented task vari- 550

ations; ii) Implement cross-task knowledge dis- 551

tillation, where models trained on proof genera- 552

tion guide error diagnosis through attention pat- 553

tern transfer; iii) Leverage automated frameworks 554

quality-controlled multimodal expansion to system- 555

atically generate diverse task formats (e.g., convert- 556

ing proof exercises into visual dialogues). More 557

discussion on data bottlenecks in Appendix F.1. 558

❷ Insufficient Visual Reasoning. Many math 559

problems require extracting and reasoning over vi- 560

sual content, such as charts, tables, or geometric 561

diagrams. Current models struggle with intricate vi- 562

sual details, such as interpreting three-dimensional 563

geometry or analyzing irregularly structured tables 564

(Zhang et al., 2024f). Hence, it may be benefi- 565

cial to introduce enhanced visual feature extraction 566

modules and integrate scene graph representations 567

for better reasoning over complex visual elements 568

(Ibrahim et al., 2024; Guo et al., 2024c). 569
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❸ Reasoning Beyond Text and Vision. While570

the current research focus on the combination of571

text and vision, mathematical reasoning in real-572

world applications often extends beyond these two573

modalities. For instance, audio explanations, inter-574

active problem-solving environments, or dynamic575

simulations might play a role in some tasks. Cur-576

rent models are not well-equipped to handle such577

diverse inputs (Abrahamson et al., 2020; Jusslin578

et al., 2022). To address this, datasets should be ex-579

panded to include more diverse modalities, such as580

audio, video, and interactive tools. MLLMs should581

also be designed with flexible architectures capable582

of processing and reasoning over multiple types583

of inputs, allowing for a richer representation of584

mathematical problems (Dasgupta et al., 2023).585

❹ Limited Domain Generalization. Mathemat-586

ical reasoning spans many domains, such as alge-587

bra, geometry, diagram and commonsense, each588

with its own specific requirements for problem-589

solving (Liu et al., 2023b; Lu et al., 2022b). Math-590

LLMs that perform well in one domain often fail591

to generalize across others, which can limit their592

utility. By pretraining and fine-tuning Math-LLMs593

on a wide array of problem types, models may han-594

dle cross-domain tasks more effectively, improving595

their ability to generalize across different mathe-596

matical topics and problem-solving strategies. We597

extend more discussion on limited domain general-598

ization in multimodal contexts in Appendix F.2.599

❺ Error Feedback Limitations. Mathematical600

reasoning involves various types of errors, such601

as calculation mistakes, logical inconsistencies,602

and misinterpretations of the problem. Currently,603

MLLMs lack mechanisms to detect, categorize, and604

correct these errors effectively, which can result605

in compounding mistakes throughout the reason-606

ing process (Yan et al., 2024a; Li et al., 2024e).607

A potential solution is to integrate error detection608

and classification modules that can identify errors609

at each step of the reasoning process. Besides,610

multi-agent collaboration mechanism could be in-611

troduced, via involving multiple agents collaborat-612

ing by exchanging feedback and collectively refin-613

ing the reasoning process (Xu et al., 2024d). We614

extend more discussion on error feedback limita-615

tion in multimodal contexts in Appendix F.3.616

❻ Integration with Real-world Educational617

Needs. Existing benchmarks and models often618

overlook real-world educational contexts, such as619

how students use draft work, like handwritten notes620

or diagrams, to solve problems (Xu et al., 2024c;621

Wang et al., 2024d). These real-world elements are 622

crucial for understanding how humans approach 623

mathematical reasoning (Mouchere et al., 2011; 624

Gervais et al., 2024). By incorporating draft notes, 625

handwritten calculations, and dynamic problem- 626

solving workflows into the training data, MLLMs 627

can be tailored to provide more accurate and con- 628

textually relevant feedback for students. 629

❼ Test-Time Scaling Technique in Multi- 630

modal Context. While foundation models increas- 631

ingly adopt test-time scaling techniques (e.g., dy- 632

namic architecture adaptation), their integration 633

with multimodal mathematical reasoning remains 634

underexplored and suboptimal. For example, cur- 635

rent implementations like o1 (Jaech et al., 2024) or 636

DeepSeek-R1 (Guo et al., 2025) struggle to dynam- 637

ically allocate computational resources based on 638

math problem complexity across modalities, such 639

as deciding when to prioritize symbolic computa- 640

tion over visual parsing for optimization problems. 641

Future work should focus on two directions: i) 642

Develop modality-aware scaling controllers that 643

jointly consider problem type, visual complex- 644

ity, and required mathematical operations to op- 645

timize dynamic architecture decisions; ii) Create 646

lightweight meta-optimization layers that can ad- 647

just model capacity allocation (e.g., expert selec- 648

tion in MoE systems) through real-time analysis of 649

multimodal problem-solving workflows (Xu et al., 650

2025a; Besta et al., 2025). Such advancements 651

could enable more efficient trade-offs between ac- 652

curacy and computational cost in deployed systems. 653

We also discuss how test-time scaling techniques 654

can tackle the other challenges in Appendix F.4. 655

5 Conclusion 656

In this survey, we have provided a comprehensive 657

overview of the progress and challenges in math- 658

ematical reasoning within the context of MLLMs. 659

We highlighted the significant advances in the de- 660

velopment of Math-LLMs and the growing impor- 661

tance of multimodal integration for solving com- 662

plex reasoning tasks. We identified five key chal- 663

lenges that are crucial for the continued develop- 664

ment of AGI systems capable of performing so- 665

phisticated mathematical reasoning tasks. As re- 666

search continues to advance, it is essential to focus 667

on these challenges to unlock the full potential of 668

LLMs in multimodal settings. We hope this survey 669

provides insights to guide future LLM research, ul- 670

timately leading to more effective and human-like 671

mathematical reasoning capabilities in AI systems. 672
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Limitations673

Despite our best efforts to ensure comprehensive674

coverage of the published works, it is possible that675

some relevant studies were overlooked. Addition-676

ally, human errors could have occurred during the677

categorization or referencing of papers in the sur-678

vey. To minimize such errors, we made a con-679

certed effort to gather studies from multiple sources680

and performed a multiple-round checking process.681

While minor inconsistencies or omissions may still682

exist, we believe this survey represents the most683

comprehensive review of MLLM-based mathemat-684

ical reasoning to date, effectively capturing key re-685

search trends and highlighting ongoing challenges.686
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A Details of Math-LLMs’ Progress1756

The rapid development of general-purpose LLMs1757

has made significant advancements in natural lan-1758

guage processing tasks. However, the development1759

of domain-specific models remains a core require-1760

ment, as they are better equipped to handle spe-1761

cialized tasks that general models may not address1762

effectively. This is particularly true in fields such as1763

healthcare (Liu et al., 2023a; Nazi and Peng, 2024),1764

law (Cui et al., 2023; Zhou et al., 2024c; Wang1765

et al., 2023c), finance (Wu et al., 2023b; Yang et al.,1766

2023a; Zhang and Yang, 2023), and urban science1767

(Yan et al., 2024b; Zou et al., 2025; Yan and Lee,1768

2024), where domain-specific knowledge is critical1769

for high accuracy and performance.1770

In the case of mathematical reasoning, general1771

models may struggle with tasks that require a1772

deep understanding of complex mathematical con-1773

cepts, structures, and problem-solving steps (Yan1774

et al., 2025). Therefore, the development of math-1775

specific LLMs is of paramount importance, as these1776

models are designed to enhance performance in1777

mathematical reasoning, theorem proving, equa-1778

tion solving, and other math-intensive tasks.1779

Therefore, Table 4 provides a detailed overview1780

of various math-specific LLMs (i.e., Math-(LLMs),1781

sorted by their release date. It includes informa-1782

tion about the organization behind each model, the1783

release date, publication details, language(s) sup-1784

ported, parameter size, evaluation benchmarks, and1785

whether the model is open source.1786

Key findings are summarized as follows:1787

1. Release Trends: The models started emerg-1788

ing in 2020, with a significant increase in the1789

number of releases from 2022 onward, indi-1790

cating a growing interest in developing math-1791

specific LLMs.1792

2. Parameter Sizes: There is a noticeable trend1793

towards larger parameter sizes, with some1794

models offering up to 130B parameters, re-1795

flecting the increasing computational capacity1796

for handling complex mathematical tasks.1797

3. Evaluation Benchmarks: Many models1798

are evaluated on popular benchmarks like1799

GSM8K, MATH, and MMLU, highlight-1800

ing the focus on improving performance1801

across well-established mathematical reason-1802

ing datasets.1803

4. Multilingual Support: While most models 1804

are focused on English, a few (e.g., MathGPT 1805

& Math-LLM) also support Chinese, showing 1806

a trend towards multilingual capabilities. 1807

5. Open Source: A significant number of mod- 1808

els are open-source, allowing broader access 1809

and fostering further research and develop- 1810

ment in the field. 1811

In summary, the table reflects the rapid develop- 1812

ment of specialized Math-LLMs, with an increas- 1813

ing trend towards larger models, comprehensive 1814

evaluation benchmarks, and support for multilin- 1815

gual applications. 1816

B Summary of Benchmarks 1817

Table 3 summarizes the LLM-based benchmarks 1818

for mathematical reasoning. 1819

C Illustration of More Cases 1820

Figure 5 illustrates the diverse multimodal cases of 1821

mathematical reasoning settings. 1822

C.1 Multimodal Plane Geometry Setting 1823

The Multimodal Plane Geometry Setting involves 1824

mathematical problems that require understanding 1825

and reasoning about 2D geometric relationships. 1826

These problems typically focus on fundamental 1827

geometric concepts, such as points, lines, angles, 1828

and triangles, often leveraging trigonometric prin- 1829

ciples like sine, cosine, or tangent. Visually, these 1830

questions are characterized by clear plane diagrams 1831

with labeled points, angles, and lengths. Students 1832

need to interpret these visuals to solve for unknown 1833

distances, angles, or other parameters. The defin- 1834

ing feature here is the emphasis on 2D spatial re- 1835

lationships and the need to derive solutions from 1836

diagrammatic representations that combine mea- 1837

surements and geometry. 1838

C.2 Multimodal Solid Geometry Setting 1839

The Multimodal Solid Geometry Setting shifts the 1840

focus from 2D to 3D shapes and figures, such as 1841

cylinders, spheres, cubes, or cones. These ques- 1842

tions often require students to compute surface area, 1843

volume, or height based on given measurements or 1844

constraints. Visually, these questions feature 3D 1845

diagrams with dimensions like radius, height, or 1846

length, typically annotated on the figure to help 1847

guide problem-solving. The main distinction is 1848
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Benchmarks Venue Language Size Source Level(s) Evaluation Model(s) Task(s)

DynaMath (Zou et al., 2024)? ICLR’25 English 5,010 S P G E M H U Both Closed/Open S
MathCheck (Zhou et al., 2024d)? ICLR’25 English/Chinese 4,536 P E M H U Discriminative Closed/Open/Math S
GSM-Symbolic (Mirzadeh et al., 2024) ICLR’25 English 5,000 P E Discriminative Closed/Open S
Omni-MATH (Gao et al., 2024) ICLR’25 English 4,428 S C Discriminative Closed/Open/Math S
HARDMath (Fan et al., 2024a) ICLR’25 English 1,466 G U Both Closed/Open S
OpenMathInstruct-2 (Toshniwal et al., 2024a) ICLR’25 English 14,000,000 P G E H C Discriminative Open/Math S
UGMathBench (Xu et al., 2025b) ICLR’25 English 5,062 S U Discriminative Closed/Open/Math S
M3CoTmath (Chen et al., 2024b)? ACL’24 English 1,166 P G C Discriminative Closed/Open S
GSM-Plus (Li et al., 2024d) ACL’24 English 10,552 P E M H U Generative Closed/Open/Math S
MuggleMath (Li et al., 2024c) ACL’24 English 37,365 P E H Discriminative Open S
Olympiadbench (He et al., 2024)? ACL’24 English/Chinese 8,476 S H C Generative Closed/Open/Math S
MathBench (Liu et al., 2024b) ACL Findings’24 English/Chinese 3,709 P S E M H U Generative Closed/Open/Math S
GeoEval (Zhang et al., 2024d)? ACL Findings’24 English 5,050 P G E M H Discriminative Closed/Open/Math S
QRData (Liu et al., 2024d) ACL Findings’24 English 411 S U Discriminative Closed/Open/Math S
EIC-Math (Li et al., 2024e) ACL Findings’24 English 1,800 P E M H Discriminative Closed/Open D O
Srivastava et al. (2024) ACL Findings’24 English - P H Discriminative Closed/Open S
CHAMP (Mao et al., 2024) ACL Findings’24 English 270 S H Generative Closed/Open S
IMO-AG-30 (Trinh et al., 2024) Nature’24 English 30 S C Discriminative Closed P
PutnamBench (Tsoukalas et al.) NeurIPS’24 English 1,697 S C Generative Closed S P
MATH-Vision (Wang et al., 2024a)? NeurIPS’24 English 3,040 S E M H U Discriminative Closed/Open S
CARP (Zhang et al., 2024a) NeurIPS’24 Chinese 4,886 S C Discriminative Closed S
SMART-840 (Cherian et al., 2024)? NeurIPS’24 English 840 S E M H Discriminative Closed/Open S
OpenMathInstruct-1 (Toshniwal et al., 2024b) NeurIPS’24 English 1,800,000 P E M H C Generative Closed/Open/Math S
Didolkar et al. (2024) NeurIPS’24 English 8,600 P E Discriminative Closed S O
Putnam-AXIOM (Gulati et al., 2024) NeurIPS Workshop’24 English 236 S C Discriminative Closed/Open/Math S
Scibench (Wang et al., 2023b)? ICML’24 English 869 S U Discriminative Closed/Open S
GeomVerse (Kazemi et al., 2023)? ICML Workshop’24 English 1,000 G U Discriminative Closed S
MathVista (Lu et al., 2023)? ICLR’24 English 6,141 S P E M H U Discriminative Closed/Open S
MMMUmath (Yue et al., 2024a)? CVPR’24 English 540 S U Discriminative Closed/Open S
MathVerse (Zhang et al., 2024f)? ECCV’24 English 2,612 S P H Generative Closed/Open S
Mathador-LM (Kurtic et al., 2024) EMNLP’24 English - G E Both Closed/Open S D
MM-MATH (Sun et al., 2024a)? EMNLP Findings’24 English 5,929 S M H Discriminative Closed/Open S D
Scieval (Sun et al., 2024b) AAAI’24 English 15,901 S P H Both Closed/Open S
ArqMATH (Satpute et al., 2024) SIGIR’24 English 450 P U Generative Closed/Open/Math S
IsoBench (Fu et al., 2024a)? COLM’24 English 1,887 S E M H U Discriminative Closed/Open S
MMMU-Promath (Yue et al., 2024b)? arXiv’24 English 60 S U Discriminative Closed/Open S
MathOdyssey (Fang et al., 2024) arXiv’24 English 387 S H U C Both Closed/Open/Math S
MathScape (Zhou et al., 2024b)? arXiv’24 Chinese 1,325 S E M H Generative Closed/Open S
U-Math (Chernyshev et al., 2024)? arXiv’24 English 1,100 S U Discriminative Closed/Open/Math S D
MathHay (Wang et al., 2024b) arXiv’24 English 673 S P H Both Closed/Open S
ErrorRador (Yan et al., 2024a)? arXiv’24 English 2,500 S E M H Discriminative Closed/Open D
FaultyMath (Rahman et al., 2024)? arXiv’24 English 363 G E M H Discriminative Closed/Open/Math D
MathChat (Liang et al., 2024c) arXiv’24 English 1,319 P E Both Closed/Open/Math S D O
E-GSM (Xu et al., 2024e) arXiv’24 Chinese 4,500 P E Both Closed/Open/Math S O
Tangram (Tang et al., 2024a)? arXiv’24 English 4,320 S E M H C Discriminative Closed/Open O
CMM-Math (Liu et al., 2024c)? arXiv’24 Chinese 28,069 S E M H Both Closed/Open/Math S
CMMaTH (Li et al., 2024i)? arXiv’24 English/Chinese 23,856 S E M H Both Closed/Open/Math S
EAGLE (Li et al., 2024h)? arXiv’24 English 170,000 P E M H Discriminative Closed/Open/Math S
VisAidMath (Ma et al., 2024)? arXiv’24 English 1,200 S M H C Discriminative Closed/Open S
AutoGeo (Huang et al., 2024d)? arXiv’24 English 100,000 S E M H U Both Closed/Open O
NTKEval (Guo et al., 2024a) arXiv’24 English 1,860 P G H Discriminative Open S
Mamo (Huang et al., 2024b) arXiv’24 English 1,209 S G U Generative Closed/Open/Math O
RoMath (Cosma et al., 2024) arXiv’24 Romanian 70,000 S M H C Discriminative Closed/Open/Math S
MaTT (Davoodi et al., 2024) arXiv’24 English 1,958 S U Discriminative Closed/Open S
Li et al. (2024a) arXiv’24 English 15,000 P E M H Generative Closed/Open/Math S
PolyMATH (Gupta et al., 2024)? arXiv’24 English 5,000 S M H U Discriminative Closed/Open S
SuperCLUE-Math6 (Xu et al., 2024b) arXiv’24 English/Chinese 2,144 S E Generative Closed/Open S
TheoremQA (Chen et al., 2023) EMNLP’23 English 800 S U Discriminative Closed/Open S
LILA (Mishra et al., 2022) EMNLP’22 English 133,815 P H Discriminative Closed S
GeoQA (Chen et al., 2021)? ACL’21 Chinese 4,998 S M Discriminative Open S
MATH (Hendrycks et al., 2021) NeurIPS’21 English 12,500 S C Discriminative Closed S

Table 3: Overview of LLM-based benchmarks for mathematical reasoning. ?refers to those designed to
evaluate the multimodal mathematical setting. Different colors indicate different types for the following columns:
Source: S = Self-Sourced, P = Collected from Public Dataset, G = Generated by LLM
Level: E = Elementary, M = Middle School, H = High School, U = University, C = Competition, H = Hybrid
Task: S = Problem-Solving, D = Error Detection, P = Proving, O = Others

the incorporation of three-dimensional spatial rea-1849

soning and the need to analyze geometric proper-1850

ties of solids rather than flat, planar relationships.1851

These tasks challenge students to bridge visual un-1852

derstanding with formulas involving multiple di-1853

mensions.1854

C.3 Multimodal Diagram Setting1855

In the Multimodal Diagram Setting, the problems1856

revolve around interpreting visual data presented1857

in the form of tables, charts, or diagrams. These1858

tasks require students to extract numerical or cate-1859

gorical information and perform basic operations, 1860

such as addition, comparison, or selection. The 1861

visual components often include neatly organized 1862

tables, bar charts, or pie graphs, where the infor- 1863

mation is clearly labeled for accessibility. Unlike 1864

geometry-based problems, which require spatial 1865

reasoning, diagram settings focus on numerical lit- 1866

eracy and the ability to synthesize information from 1867

structured visual data. This type highlights the inte- 1868

gration of simple arithmetic and the comprehension 1869

of organized visual representations. 1870
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Math (M)LLMs Organization Release Date Publication Language Parameter Size Evaluation Benchmarks Open Source

GPT-f (Polu and Sutskever, 2021) OpenAI Sep 2020 - English 160M/400M/700M - ✔
Hypertree Proof Search (Lample et al., 2022) Meta Nov 2022 NeurIPS’22 English - miniF2F/Metamath -
Minerva (Lewkowycz et al., 2022) Google Jun 2022 NeurIPS’22 English 8B/62B/540B MATH/MMLU-STEM/GSM8k -
JiuZhang 1.0 (Zhao et al., 2022) RUC & iFLYTEK Jun 2022 KDD’22 English 145M - ✔
GAIRMath-Abel (Chern et al., 2023) Shanghai Jiaotong University 2023 - English 7B/13B/70B GSM8K/MATH/MMLU/SVAMP/SCQ5K-English/MathQA ✔
JiuZhang 2.0 (Zhao et al., 2023) RUC & iFLYTEK 2023 KDD ADS’23 English - JCAG/JBAG (MathBERT/DART/JiuZhang) ✔
KwaiYiiMath (Fu et al., 2023) Kuaishou Jan 2023 - English/Chinese 13B GSM8K/CMath/KMath -
MathCoder (Wang et al., 2023a) CUHK Jan 2023 ICLR’24 English 7B/13B GSM8K/MATH ✔
Llemma (Azerbayev et al., 2023) Princeton University & Eleuther AI Jan 2023 - English 7B/34B MATH/GSM8k/MMLU-STEM/SAT/OCWCourse ✔

Skywork-13B-Math (Zeng et al., 2024)? SkyworkAI Jan 2023 - English 7B/13B GSM8K/CMATH/MATH ✔

MathGPT (TALEducation, 2023)? TAL Education Group Aug 2023 - English/Chinese 130B CEval-Math/AGIEval-Math/APE5K/CMMLU-Math/GAOKAO-
Math/Math401

-

WizardMath (Luo et al., 2023) Microsoft Aug 2023 ICLR’25 English 7B/70B GSM8K/MATH ✔
MAmmoTH1 (Yue et al., 2023) UWaterloo Sep 2023 ICLR’24 English 7B/13B/70B GSM/MATH/MMLU-STEM/AQuA/NumGLUE ✔
MathGLM (Yang et al., 2023b) Tsinghua & Zhipu.AI Sep 2023 - English 10M/100M/500M/2B(Arith.)&335M/6B/10B (MWP) BIG-bench/ Ape210K ✔
MetaMath (Yu et al., 2023) Cambridge & Huawei Sep 2023 - English 7B/13B/70B GSM8k/MATH ✔
DeepSeekMath (Shao et al., 2024) DeepSeek AI Jan 2024 - English 7B GSM8K/MATH/OCW/SAT/MMLU-STEM/CMATH/Gaokao-

MathCloze/Gaokao-MathQA
✔

InternLM2.5-StepProver (Wu et al., 2024c) Shanghai AI Lab Jan 2024 - English/Chinese 7B miniF2F/Lean-Workbook-Plus/ProofNet/Putnam ✔
ChatGLM-Math (Xu et al., 2024f) Zhipu.AI Apr 2024 - English/Chinese 32B MathUserEval/Ape210k/CMath/GSM8k/MATH/Hungarian -
Rho-Math (Lin et al., 2024) Microsoft Apr 2024 - English 1B/7B GSM8K/MATH/MMLU-STEM/SAT/SVAMP/ASDiv/MAWPS/TAB/MQA ✔
DeepSeekProver-V1 (Xin et al., 2024b) DeepSeek AI May 2024 - English 7B miniF2F/FIMO -
InternLM2-Math (Wu et al., 2024c) Shanghai AI Lab May 2024 - English/Chinese 1.8B/7B/20B/8x22B MiniF2F-test/MATH/MATH-Python/GSM8K/MathBench-

A/Hungary/
✔

JiuZhang 3.0 (Zhou et al., 2024a) RUC & iFLYTEK May 2024 NeurIPS’24 English 7B/8B GSM8k/MATH/G-Hard/SVAMP/MAWPS/ASDiv/TabMWP ✔
MAmmoTH2 (Yue et al., 2024c) UWaterloo May 2024 - English 7B/8B TheoremQA/MATH/GSM8K/GPQA/MMLU-STEM/BBH ✔
Math-LLaVA (Shi et al., 2024) NUS Jun 2024 EMNLP Finding’24 English 13B MMMU/MATH-V/MathVista ✔
Mathstral (MistralAI, 2024) Mistral AI Jul 2024 - English 7B MATH/GSM8K/GREMath/AMC2023/AIME2024/MathOdyssey -
DeepSeek-Prover-V1.5 (Xin et al., 2024a) DeepSeek AI Aug 2024 - English 7B miniF2F-test/ProofNet ✔
Qwen2-Math (Qwen, 2024) Alibaba Aug 2024 - English/Chinese 1.5B/7B/72B GSM8K/Math/MMLU-STEM/CMATH/GaoKaoMath Cloze/-

GaoKao Math QA
✔

Qwen2-Math-Instruct (Qwen, 2024) Alibaba Aug 2024 - English/Chinese 1.5B/7B/72B GSM8K/MATH/Minerva Math/GaoKao2023 En/Olympiad
Bench/College Math/MMLU STEM/Gaokao/CMATH/CNMiddle
School 24/AIME24/AMC23

✔

MathGLM-Vision (Yang et al., 2024b)? Tsinghua & Zhipu.AI Sep 2024 - English 9B/19B/32B MathVista/MathVista(GPS)/MathVerse/Math-
Vision/MMMU/MathVL

-

Math-LLM (Liu et al., 2024c)? East China Normal University Sep 2024 - Chinese 8.26B/7B/72B CMM-Math/MathVista/Math-V -
Qwen2.5-Math (Yang et al., 2024a) Alibaba Sep 2024 - English/Chinese 1.5B/7B/72B GSM8K/MATH/MMLU-STEM/CMATH/GaoKao Math ✔
Xwin-LM (Ni et al., 2024) Microsoft May 2024 - English 7B/13B/70B GSM8K/MATH ✔
MathCoder2 (Lu et al., 2024c) CUHK Nov 2024 ICLR’25 English 7B GSM8K/MATH/SAT-Math/OCW/MMLU-Math ✔

math-specialized Gemini 1.5 Pro? Google Not launched yet - English - MATH/AIME2024/Math Odyssey/HiddenMath/IMO Bench -
k0-math (MoonshotAI, 2024) Moonshot AI Nov 2024 - English/Chinese - KAOYAN/MATH/AIME/OMNI-

MATH/GAOKAO/ZHONGKAO
-

Duolingo Math (Duolingo, 2024) Duolingo 2024 - English - - -
Khanmigo (KhanAcademy, 2024) Khan Academy 2024 - English - - -
Squirrel LAM (SquirrelAiLearning, 2024)? Squirrel Ai Learning 2024 - Chinese - - -

Table 4: Overview of math-specific LLMs (sort by release date). ?refers to those designed to support the
multimodal mathematical setting.

Figure 5: The illustration of diverse multimodal mathematical settings.

C.4 Multimodal Algebra Setting1871

The Multimodal Algebra Setting introduces prob-1872

lems that combine graphical representations and1873

algebraic reasoning. These tasks often involve in-1874

terpreting visual graphs, identifying equations, or1875

understanding transformations such as translations1876

or reflections. The visuals typically feature co-1877

ordinate graphs with curves or lines, where solid1878

and dotted lines may represent different functions1879

or changes. Students are required to connect the1880

visual graph to algebraic expressions, such as equa- 1881

tions or transformations of functions. This type of 1882

question emphasizes the interplay between visual 1883

understanding (graph) and symbolic representation 1884

(algebra), making it distinct from purely numerical 1885

or geometric settings. 1886

C.5 Multimodal Commonsense Setting 1887

The Multimodal Commonsense Setting is character- 1888

ized by problems that involve interpreting everyday 1889

visuals and applying logical reasoning. These ques- 1890
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tions present familiar objects, such as clocks, calen-1891

dars, or real-world scenarios, where students must1892

analyze the visual information to derive straightfor-1893

ward answers. Visually, these tasks feature clear1894

and relatable imagery, like an analog clock with1895

its hands pointing to a specific time. Unlike other1896

types, commonsense settings rely less on abstract1897

mathematical reasoning and more on practical in-1898

terpretation of everyday visual cues. This setting1899

highlights how mathematical understanding can1900

intersect with routine, real-world observations.1901

C.6 Summary1902

In summary, the key differences among these types1903

stem from their visual focus and cognitive demands.1904

While plane and solid geometry emphasize spatial1905

reasoning in 2D and 3D, respectively, diagram set-1906

tings target numerical literacy through organized1907

data. Algebra settings merge visual graphs with1908

algebraic transformations, and commonsense set-1909

tings leverage real-world visuals requiring practical1910

logic. Each type uniquely integrates multimodal el-1911

ements to challenge students across different math-1912

ematical skills.1913

D Details of Metrics1914

D.1 Discriminative Metrics1915

Discriminative tasks refer to evaluation processes1916

where the outputs are typically binary, such as1917

"Yes" or "No". These tasks often include multiple-1918

choice questions, fill-in-the-blank problems, or1919

judgment assessments. The evaluation metrics fo-1920

cus on LLM’s accuracy in specific task types and1921

its ability to control biases.1922

Accuracy (ACC): It measures the proportion of1923

correctly predicted outcomes. The value should be1924

as high as possible.1925

ACC = ∑1,m xi

∑1,n yj
1926

Where xi represents the correct output for the i-th1927

instance, yj represents the j-th instance, m is the1928

number of the correct instances and n is the number1929

of the total instances.1930

Exact match: It evaluates the congruence be-1931

tween the answers generated by LLM and the cor-1932

rect ones. Specifically, in cases where the answer1933

produced LLM coincides with the reference answer,1934

a score of 1 point will be assigned. Conversely, if1935

there is any discrepancy between them except for1936

bias, a score of 0 point will be given.1937

F1 score: It combines two crucial aspects, 1938

namely precision and recall, in order to comprehen- 1939

sively assess the accuracy of LLM. It is calculated 1940

as : 1941

F1 = 2 × Precision ×Recall
Precision +Recall 1942

The value of the F1 score ranges from 0 to 1. A 1943

higher value of the F1 score indicates better overall 1944

performance of LLM in terms of both precision 1945

and recall. 1946

Macro-F1 score: It calculates the F1 score for 1947

each category separately and then takes the average 1948

of the F1 scores of all categories, so as to obtain 1949

the overall performance of LLM on all categories. 1950

Round-r accuracy: It is the proportion of cor- 1951

rect answers given by a model on the question set 1952

Qr in round r. It is calculated as follows: 1953

ACCr(M) = ∑q∈Qr
I[M(q) = gt(q)]
∣Qr ∣ 1954

Here, ACCr(M) represents the accuracy of LLM 1955

M on question set Qr in round r. I is an indicator 1956

function. When the answer M(q) given by M for 1957

question q is consistent with the true answer gt(q) 1958

of the question, the value of I is 1; otherwise, it 1959

is 0. The symbol ∑q∈Qr
means summing over all 1960

questions in question set Qr. ∣Qr ∣ indicates the 1961

number of questions in question set Qr. 1962

ACCstep ∶ It is used to evaluate LLM’s ability 1963

to identify the first step where an error occurs. The 1964

accuracy for identifying the first erroneous step is 1965

calculated as follows: 1966

ACCstep = 1

N

N

∑
i=1

I(Sstep,i = Gstep,i) 1967

Here, N is the total number of samples. For the i-th 1968

sample, Sstep,i is the predicted step where the error 1969

occurs, and Gstep,i is the ground truth label for the 1970

first erroneous step. The indicator function I(⋅) 1971

returns 1 if the predicted step matches the ground 1972

truth and 0 otherwise. 1973

ACCcate ∶ It is for assessing LLM’s perfor- 1974

mance in categorizing the type of error. The accu- 1975

racy for error categorization is defined by 1976

ACCcate = 1

N

N

∑
i=1

I(Cerror,i = Gerror,i) 1977

Here, N is the total number of samples. For the 1978

i-th sample, Cerror,i is the predicted error category, 1979

and Gerror,i is the ground truth label for the error 1980

category. The indicator function I(⋅) has the same 1981
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meaning as in the previous metric, returning 1 if1982

the predicted error category matches the ground1983

truth and 0 otherwise.1984

The skill success rate: It measures the propor-1985

tion of a model correctly applying major skills in1986

problem-solving. It’s calculated by analyzing test1987

questions and determining correct use of major1988

skills, then finding the ratio to total questions. For1989

example, in triangle area calculation, checking use1990

of the area formula. Similarly, the secondary skill1991

success rate focuses on the proportion of correct1992

application of secondary skills like understanding1993

graphic properties and unit conversion, calculated1994

by analyzing problem-solving and finding the ratio1995

to total questions.1996

The False Positive Rate (FPR): It is the propor-1997

tion of cases where the evaluation LLM misjudges1998

an incorrect answer as a correct one. A low FPR1999

indicates that LLM rarely misjudges incorrect stu-2000

dent answers as correct.2001

The False Negative Rate (FNR): It is the pro-2002

portion of cases where the evaluation LLM mis-2003

judges a correct answer as an incorrect one. A low2004

FNR indicates that LLM is relatively accurate in2005

correctly determining whether a student’s answer2006

is correct.2007

Mean Squared Error (MSE): It is a metric2008

that measures the average of the squares of the2009

differences between the LLM’s predicted values2010

and the actual true values. It is calculated as:2011

MSE = 1

n

n

∑
i=1

(yi − ŷi)22012

Here, n represents the number of samples. For2013

the i-th sample, yi is the true value and ŷi is the2014

predicted value by LLM. The summation symbol2015

∑n
i=1 means summing up the squared differences2016

for all n samples. Dividing by n gives the average2017

squared difference, which is the MSE. MSE should2018

be as low as possible.2019

Average-Case Accuracy (Aavg): This metric2020

evaluates the average accuracy of LLM across all2021

variants of a seed question. It is calculated as the2022

proportion of correct answers across all variants2023

and seed questions. The formula is:2024

Aavg = 1

N

N

∑
i=1

1

M

M

∑
j=1

I[Ans(i, j) = GT(i, j)]2025

where N is the total number of seed questions,2026

M is the number of variants per seed question,2027

and I[Ans(i, j) = GT(i, j)] checks if the answer2028

matches the ground truth.2029

Worst-Case Accuracy (Awst): This evaluates 2030

the worst-case performance by considering the min- 2031

imum accuracy across all variants of a seed ques- 2032

tion. It reflects the robustness of LLM against chal- 2033

lenging variations. The formula is: 2034

Awst = 1

N

N

∑
i=1

min
j∈[1,M]

I[Ans(i, j) = GT(i, j)] 2035

D.2 Generative Metrics 2036

Generative tasks involve evaluating the content gen- 2037

erated by LLM, typically encompassing free-form 2038

answers and responses to open-ended questions. 2039

These tasks focus primarily on assessing the extent 2040

of hallucinations in the generated content, espe- 2041

cially when the content is not faithful to the given 2042

images. Evaluating generative tasks often requires 2043

more complex metrics, such as CHAIR and Faith- 2044

score, which measure hallucinations across differ- 2045

ent categories, including objects, attributes, and 2046

relationships within the generated content. These 2047

metrics provide a nuanced understanding of the 2048

fidelity and reliability of MLLMs in producing con- 2049

tent aligned with the visual and textual inputs. 2050

Reasoning Robustness (RR): This metric mea- 2051

sures the relative robustness of LLM by comparing 2052

the worst-case performance to the average-case per- 2053

formance. The formula is: 2054

RR = Awst

Aavg
2055

Repetition Consistency (RC): This evaluates 2056

the consistency of LLM’s responses across re- 2057

peated queries for the same question variant. It 2058

helps distinguish between variability due to ran- 2059

domness and systematic errors. The formula is: 2060

RC(i, j) = 1

K

K

∑
k=1

I[Ansk(i, j) = Ans(i, j)] 2061

where K is the number of repetitions. 2062

OpenCompass Scoring: It is a comprehensive 2063

evaluation framework that leverages the OpenCom- 2064

pass platform to assess the generative capabilities 2065

of LLM across multiple dimensions. Perplexity 2066

(PPL) evaluates the naturalness and fluency of gen- 2067

erated text, with lower scores indicating greater 2068

model confidence and the ability to produce con- 2069

textually coherent sequences. Simultaneously, Cir- 2070

cularEval assesses the robustness and consistency 2071

of LLM in multiple-choice scenarios by evaluating 2072

its performance across N random permutations of 2073
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the options in an N -option question. A question is2074

deemed correctly answered only if LLM provides2075

the correct response for all permutations, highlight-2076

ing its ability to handle randomized inputs reliably.2077

Bilingual Evaluation Understudy (BLEU): It2078

evaluates the quality of text generation by measur-2079

ing n-gram overlap between generated and refer-2080

ence texts, focusing on precision and brevity. Its2081

formula is:2082

BLEU = BP ⋅ exp(
N

∑
n=1

wn log pn)2083

where BP is the brevity penalty, calculated as 12084

if c > r , or exp(1 − r/c) if c ≤ r, with c and2085

r representing the lengths of the generated and2086

reference texts, respectively. wn denotes n-gram2087

weights (typically uniform), and pn is the precision2088

of n-grams of size n. BLEU scores range from 0 to2089

1 (often expressed as percentages, 0-100%), with2090

higher scores indicating greater similarity between2091

the generated and reference texts.2092

Recall-Oriented Understudy for Gisting2093

Evaluation-L (ROUGE-L): It evaluates the qual-2094

ity of generated text by measuring its similarity to2095

reference text, focusing on sequence alignment and2096

structural consistency through the Longest Com-2097

mon Subsequence (LCS). It calculates recall as the2098

proportion of the LCS length relative to the refer-2099

ence text length. The formula of recall is:2100

R = LCS(Generated, Reference)
Length(Reference)2101

It also calculates precision as the proportion of the2102

LCS length relative to the generated text length.2103

The formula is:2104

P = LCS(Generated, Reference)
Length(Generated)2105

The F1 score is a harmonic mean of precision and2106

recall, expressed as:2107

F1 = (1 + β
2) ⋅ P ⋅R

β2 ⋅ P +R2108

where β (commonly set to 1) controls the weight-2109

ing of recall and precision. ROUGE-L scores range2110

from 0 to 1, with higher scores indicating greater2111

similarity between the generated and reference2112

texts.2113

Consensus-based Image Description Evalua-2114

tion (CIDEr): It is designed for image descrip-2115

tion tasks, measuring the semantic relevance of2116

generated descriptions by calculating the TF-IDF 2117

weighted n-gram similarity with reference descrip- 2118

tions. The formula is: 2119

CIDErn(ci, Si) = 1

m

m

∑
j=1

gn(ci) ⋅ gn(sij)
∣∣gn(ci)∣∣ ⋅ ∣∣gn(sij)∣∣ 2120

2121

CIDEr(ci, Si) =
N

∑
n=1

wnCIDErn(ci, Si) 2122

Here, ci is the candidate description, Si = 2123

{si1, si2, . . . , sim} is the set of reference descrip- 2124

tions, and m is the number of references. gn(ci) 2125

and gn(sij) are the TF-IDF weighted n-gram vec- 2126

tors for the candidate and reference descriptions, 2127

with ∣∣gn(ci)∣∣ and ∣∣gn(sij)∣∣ being their magni- 2128

tudes. wn is the weight for n-grams of different 2129

lengths, usually wn = 1/N , where N is the max- 2130

imum n-gram length. Scores range from 0 to 10, 2131

with higher scores indicating stronger alignment 2132

between candidate and reference descriptions. 2133

Mathematical Symbol Similarity: This metric 2134

measures the similarity between the correct steps 2135

in a reasoning process and the steps generated by 2136

LLM, using symbolic computation software to per- 2137

form the evaluation. 2138

GPT Scoring: This metric evaluates the gener- 2139

ated content based on scores assigned by GPT or 2140

other language models, focusing on the linguistic 2141

coherence and logical consistency of the text. 2142

Context Length Generalization Efficacy 2143

(CoLeG-E): It is a metric used to measure LLM’s 2144

consistency in answering variations of the same 2145

question across different context lengths. It is de- 2146

fined as: 2147

CoLeG−E(M) = ∑q∈QR
[⋀R

r=1 I[M(qr) = gt(qr)]]
∣QR∣ 2148

where QR represents the set of all questions under 2149

evaluation, and qr refers to the r-th variation of 2150

a question q, corresponding to a specific context 2151

length. M(qr) is LLM’s predicted answer for the 2152

r-th variation, while M(qr) denotes the ground 2153

truth answer. The indicator function I[⋅] equals 1 2154

if LLM’s answer matches the ground truth, and 0 2155

otherwise. The logical AND operator ΛR
r=1 ensures 2156

that the model must answer all variations of a ques- 2157

tion correctly for that question to be considered 2158

correctly answered. 2159

Context Length Generalization Robustness 2160

(CoLeG-R): It measures LLM’s robustness to con- 2161

text length expansion by quantifying the relative 2162
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drop in accuracy from initial to extended questions.2163

It is defined as:2164

CoLeG−R(M) = 1 − ACC0(M) −ACCR(M)
ACC0(M)2165

Here, ACC0(M) is the LLM’s accuracy on the2166

initial set of shorter-context questions Q0, and2167

ACCR(M) is its accuracy on the extended longer-2168

context questions QR. Higher CoLeG-R values2169

indicate better robustness, with less performance2170

degradation across context lengths.2171

Performance Drop Rate (PDR): This metric2172

measures the relative decline in model performance2173

when transitioning from the original dataset to the2174

perturbed dataset. It is defined as:2175

PDR = 1 − ∑(x,y)∈Da
I[LLM(x), y]/∣Da∣

∑(x,y)∈D I[LLM(x), y]/∣D∣2176

where D is the original dataset and Da is the per-2177

turbed dataset. I[LLM(x), y] is an indicator func-2178

tion that checks if the LLM’s output matches the2179

ground truth y.2180

Accurately Solved Pairs (ASP): ASP measures2181

the percentage of seed questions and their perturbed2182

variations that are both correctly answered by LLM.2183

It is defined as:2184

ASP = ∑x,y;x′,y′ I[LLM(x), y] ⋅ I[LLM(x′, y′)]
N ⋅ ∣D∣2185

where x and x′ are a seed question and its variation,2186

respectively. N is the number of perturbations per2187

question. ∣D∣ is the total number of seed questions.2188

Mean Average Precision (mAP): It is a metric2189

that evaluates LLM’s ability to rank relevant an-2190

swers higher in its output list for a given query. It2191

is defined as:2192

mAP = 1

∣Q∣ ∑q∈Q
AP (q)2193

2194

AP (q) = 1

m

m

∑
k=1

P (k)2195

2196

P (k) = # relevant ans retrieved up to position k

k
2197

Here, Q represents the set of all queries in the2198

dataset. AP (q) is the Average Precision for query2199

q, calculated as the mean of the precision values2200

P (k) at ranks where relevant answers appear.P (k)2201

is the precision at rank k, representing the propor-2202

tion of relevant answers retrieved up to position k.2203

m is the total number of relevant answers for query 2204

q. 2205

Training Set Coverage (TSC): It measures how 2206

effectively LLM has learned to generate correct 2207

solutions for tasks similar to those in its training 2208

set. TSC is particularly useful in cross-domain or 2209

cross-modal tasks, where it assesses LLM’s ability 2210

to generalize learned patterns to problems aligned 2211

with its training data. Higher TSC scores indicate 2212

better learning and consistency, while lower scores 2213

suggest insufficient training or overfitting. 2214

Pass@N: This metric measures the likelihood of 2215

LLM generating at least one correct solution within 2216

N attempts for a given problem. Formally: 2217

Pass@N = EProblems[min(c,1)] 2218

where c represents the number of correct answers 2219

out of N responses. A higher Pass@N indicates 2220

a greater chance of producing a correct answer 2221

in multiple attempts, reflecting LLM’s potential 2222

capability. 2223

PassRatio@N: This metric calculates the pro- 2224

portion of correct answers among N generated re- 2225

sponses for a given problem. It is defined as: 2226

PassRatio@N = EProblems [ c
N
] 2227

where c is the count of correct answers. This metric 2228

reflects LLM’s stability in consistently generating 2229

correct answers. It can be considered analogous to 2230

Pass@1 but offers reduced variance. 2231

E Summary of Methods 2232

Table 5 summarizes the LLM-based methods for 2233

mathematical reasoning. 2234

F More Details of Challenges 2235

F.1 Discussion of Data Bottlenecks 2236

We dive into the three bottlenecks of multimodal 2237

mathematical datasets as follows. 2238

❶ Bottleneck in Data Quality: 2239

1. Labeling Noise and Modality Alignment: 2240

Multimodal math problems often involve com- 2241

plex associations between text, formulas, and 2242

charts. Mismatches between text descriptions 2243

and images/formulas (e.g., incorrect axis la- 2244

bels, contradictions between geometry figures 2245

and problem statements) can severely impair 2246

the model’s ability to understand cross-modal 2247

relationships. 2248
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Methods Venue Evaluated Math Dataset(s) Task(s) Scope(s) LLM as Enhancer LLM as Reasoner LLM as Planner

MAVIS (Zhang et al., 2024g)? ICLR’25 MathVerse/GeoQA/MathVista/MMMU/MathVision S M ✔ ✔
TVM (Lee et al., 2024) ICLR’25 GSM8K/MATH S A ✔
MathCoder2 (Lu et al., 2024c) ICLR’25 GSM8K/MATH/SAT-Math/OCW/MMLU-Math S P M ✔ ✔
Xiong et al. (2024) ICLR’25 GSM8K/MATH S P A ✔ ✔
TSMC (Feng et al., 2024) ICLR’25 GSM8K/MATH500 S P A ✔

AlphaGeometry (Trinh et al., 2024)? Nature’24 IMO-AG-30 S P G ✔ ✔
Masked Thought (Chen et al., 2024a) ACL’24 GSM8K/MATH/GSM8K-

RFT/MetaMathQA/MathInstruct
S A ✔ ✔

MathGenie (Lu et al., 2024b) ACL’24 GSM8K/MATH/SVAMP/Simuleq/Mathematics S A ✔ ✔
MATH-SHEPHERD (Wang et al., 2024c) ACL’24 GSM8K/MATH S P A ✔ ✔
SEGO (Zhao et al., 2024) ACL’24 GSM8K/MATH S P A ✔ ✔
Deng et al. (2023) ACL Workshop’24 GSM8K/SVAMP/MultiArith/MathQA/CSQA S A ✔
MathCoder (Wang et al., 2023a) ICLR’24 GSM8K/MATH S P A ✔
ToRA (Gou et al., 2023) ICLR’24 GSM8K/MATH S P A ✔ ✔

Visual Sketchpad (Hu et al., 2024)? NeurIPS’24 Geometry3K/ IsoBench S G ✔
JiuZhang 3.0 (Zhou et al., 2024a) NeurIPS’24 GSM8K/MATH/SVAMP/ASDiv/MAWPS/CARP S P A ✔ ✔
Minimo (Poesia et al., 2024) NeurIPS’24 - P A ✔
DART-Math (Tong et al., 2024) NeurIPS’24 MATH/GSM8K/College/DM/Olympiad/Theorem S P A ✔ ✔
Li et al. (2024f) NeurIPS’24 GSM8K/MATH S A ✔
MACM (Lei et al., 2024) NeurIPS’24 MATH S A ✔

Sinha et al. (2024)? NeurIPS Workshop’24 IMO-AG-30 S P G ✔
SBIRAG (Dixit and Oates, 2024) NeurIPS Workshop’24 GSM8K S A ✔
MathScale (Tang et al., 2024b) ICML’24 - - - -
VerityMath (Han et al., 2023) ICML Workshop’24 GSM8K S A ✔
RefAug (Zhang et al., 2024j) EMNLP’24 GSM8K/MATH/Mathematics/MAWPS/

SVAMP/MMLU-Math/SAT-Math/MathChat-
FQA/MathChat-EC/MINI-Math

S D P A ✔ ✔

Math-LLaVA (Shi et al., 2024)? EMNLP Findings’24 MathVista/Math-V S P M ✔ ✔
COPRA (Thakur et al., 2024) COLM’24 miniF2F-test S A ✔
PRP (Wu et al., 2024b) AAAI’24 MAWPS/ASDivA/Math23k/SVAMP/Un-

biasedMWP
S A ✔

PERC (Jin et al., 2024) L@S’24 PERC S A ✔

Math-PUMA (Zhuang et al., 2024)? arXiv’24 MathVerse/MathVista/WE-MATH S P M ✔

MultiMath (Peng et al., 2024)? arXiv’24 MathVista/MathVerse/MultiMath-300K S P M ✔
MathAttack (Zhou et al., 2024e) arXiv’24 GSM8K/MultiAirth S A ✔
MinT (Liang et al., 2023b) arXiv’24 GSM8K/MathQA/CM17k/Ape210k S A ✔
DotaMath (Li et al., 2024b) arXiv’24 GSM8K/MATH/Mathematics/SVAMP/TabMWP/ASDiv S A ✔ ✔
DFE-GPS (Zhang et al., 2024i) arXiv’24 FORMALGEO7k S G ✔ ✔

PGPSNet-v2 (Zhang et al., 2024e)? arXiv’24 Geometry3K/PGPS9K S G D ✔ ✔
LLaMA-Berry (Zhang et al., 2024b) arXiv’24 GSM8K/MATH/GaoKao2023En/OlympiadBench/College

Math/MMLU STEM
S P A ✔

Skywork-Math (Zeng et al., 2024)? arXiv’24 GSM8K/MATH S P A ✔ ✔
SIaM (Yu et al., 2024a) arXiv’24 GSM8K/CMATH S P A ✔
InternLM-Math (Ying et al., 2024) arXiv’24 GSM8K/MATH S P A ✔

MathGLM-Vision (Yang et al., 2024b)? arXiv’24 MathVista/MathVerse/MathVision S P M ✔ ✔

Qwen2.5-Math (Yang et al., 2024a)? arXiv’24 GSM8K/MATH/MMLU-STEM/CMATH/GaoKao-
Math-Cloze/GaoKao-Math-QA

S P A ✔ ✔

S3c-Math (Yan et al., 2024c) arXiv’24 GSM8K/MATH/SVAMP/Mathematics S P A ✔ ✔
SIRP (Wu et al., 2024a) arXiv’24 CSQA/GSM8K/MATH/MBPP S P A ✔
AIPS (Wei et al., 2024) arXiv’24 MO-INT-20 S G ✔
DeepSeekMath (Shao et al., 2024) arXiv’24 GSM8K/MATH/OCW/SAT/MMLU STEM/CMATH/-

Gaokao MathCloze/Gaokao MathQA
S A ✔

MMIQC (Liu et al., 2024a) arXiv’24 MATH/MMIQC S A ✔ ✔

LANS (Li et al., 2023c)? arXiv’24 Geometry3K/PGPS9K S G D ✔

VCAR (Jia et al., 2024)? arXiv’24 MathVista/MathVerse S M ✔
KPDDS (Huang et al., 2024c) arXiv’24 GSM8k/MATH/SVAMP/TabMWP/ASDiv/MAWPS S A ✔ ✔

HGR (Huang et al., 2024a)? arXiv’24 Geometry3K S G ✔ ✔

InfiMM-Math (Han et al., 2024)? arXiv’24 GSM8K/MMLU/MathVerse/We-Math S A ✔
CoSC (Han et al., 2024) arXiv’24 GSM8K/MATH S P A ✔ ✔
SICCV (Liang et al., 2024b) arXiv’24 GSM8k/MATH500 S P A ✔
BEATS (Sun et al., 2024c) arXiv’24 GSM8K/MATH/SVAMP/SimulEq/NumGLUE S P A ✔
MindStar (Kang et al., 2024) arXiv’24 GSM8K/MATH S P A ✔
UMM (Zhang et al., 2024h) arXiv’24 MMLU/GSM8K-COT/GSM8K-Coding/MATH-

COT/MATH-Coding/HumanEval/InfiBench
S P A ✔

STIC (Deng et al., 2024)? arXiv’24 ScienceQA/TextVQA/ChartQA/LLaVA-
Bench/MMBench/MM-Vet/MathVista

S M ✔

SPMWPs (Zhang et al., 2023) ACL’23 GSM8K S A ✔
CoRe (Zhu et al., 2022) ACL’23 GSM8K/ASDiv-A/SingleOp/SinlgeEq/MultiArith S A ✔
TabMWP (Lu et al., 2022a) ICLR’23 TabMWP S A D ✔

Chameleon (Lu et al., 2024a)? NeurIPS’23 ScienceQA/TabMWP S A D ✔
ATHENA (Kim et al., 2023) EMNLP’23 MAWPS/ASDivA/Math23k/SVAMP/Un-

biasedMWP
S P A ✔

UniMath (Liang et al., 2023a)? EMNLP’23 SVAMP/GeoQA/TabMWP/MathQA/UniGeo-
Proving

S P A D ✔

Jiuzhang 2.0 (Zhao et al., 2023) KDD’23 MCQ/BFQ/CAG/BAG/KPC/QRC/JCAG/JBAG S A ✔
TCDP (Qin et al., 2023) TNNLS’23 Math23k/CM17K S A ✔

UniGeo (Chen et al., 2022)? EMNLP’22 GeoQA/UniGeo S P G ✔
LogicSolver (Yang et al., 2022) EMNLP Findings’22 InterMWP/Math23K S A ✔ ✔
Jiuzhang (Zhao et al., 2022) KDD’22 KPC/QRC/QAM/SQR/QAR/MCQ/BFQ/CAG/BAG S A ✔
MWP-BERT (Liang et al., 2021) NAACL’22 Math23k/MathQA/Ape-210k S A ✔

Inter-GPS (Lu et al., 2021)? ACL’21 Geometry3K/GEOS S G ✔

Table 5: Overview of LLM-based methods for mathematical reasoning. ?refers to those specifically designed
to tackle the multimodal mathematical setting. Different colors indicate different types for the following columns:
Task: S = Problem-Solving, D = Error Detection, P = Proving, O = Others
Scope: G = Geometry, A = Algebra, D = Diagram, M = General Math

2. Lack of Deep Annotation for Problem Solv-2249

ing Process: Most datasets only provide final2250

answers, lacking intermediate steps such as2251

algebraic transformations or construction of2252

geometric auxiliary lines, making it difficult2253

for models to learn the mathematical thinking2254

chain (Chain-of-Thought).2255

❷ Bottleneck in Data Diversity:2256

1. Limited Coverage of Problem Types and Sce- 2257

narios: Existing datasets are mostly focused 2258

on basic math areas (e.g., algebraic equations, 2259

simple geometry) and insufficiently cover 2260

higher-level math (e.g., topology, discrete 2261

mathematics) or real-world scenarios (e.g., 2262

physics modeling, financial calculations). 2263

2. Monotony in Multimodal Combination Pat- 2264

terns: Modal interactions are often simple con- 2265
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catenations (e.g., text + static charts) without2266

dynamic interactions (e.g., scalable geometric2267

figures), or multi-step cross-modal reasoning2268

(e.g., generating charts from text descriptions2269

and then solving problems).2270

❸ Bottleneck in Data Scale:2271

1. High Cost of High-Quality Data Acquisi-2272

tion: Mathematical problems need to be de-2273

signed by experts and ensure multimodal con-2274

sistency, which leads to long production cy-2275

cles and high costs. Additionally, there is data2276

scarcity for long-tail problems (e.g., niche2277

branches of mathematics), which cannot be2278

supplemented by scraping existing resources2279

(e.g., textbooks, online question banks).2280

2. Imbalance in Modal Data Volumes: Text2281

data volumes far exceed those of image/sym-2282

bol modalities, leading to models’ insuffi-2283

cient feature extraction capability for non-text2284

modalities.2285

❹ Based on recent trends in the latest works, we2286

further propose the following actionable sugges-2287

tions to address these dataset bottlenecks:2288

1. Innovation in Data Generation Techniques:2289

Combine formal mathematical engines (e.g.,2290

Lean, Coq) to generate verifiable reasoning2291

steps, use programmatic rendering tools (e.g.,2292

TikZ, GeoGebra) to automatically generate2293

precise charts, and design semi-automated an-2294

notation pipelines that reduce manual labor2295

through large models generating drafts and2296

experts refining them.2297

2. Diversity Enhancement Strategies: Con-2298

struct interdisciplinary, cross-cultural bench-2299

mark datasets (e.g., math-physics cross-2300

domain problems), utilize crowdsourcing plat-2301

forms to collect real-world scenario problems,2302

and explore controllable data augmentation2303

techniques, such as rule-based problem defor-2304

mation (e.g., modifying parameters or replac-2305

ing chart elements).2306

3. Scaling and Resource Integration: Encour-2307

age collaborative dataset creation within the2308

academic community (similar to ProofWiki),2309

integrate existing educational resources (e.g.,2310

Khan Academy video-text analysis), and use2311

synthetic data to fill long-tail gaps while im-2312

proving model robustness to synthetic noise2313

through adversarial training.2314

F.2 Limited Domain Generalization in 2315

Multimodal Contexts 2316

We further discuss the challenge of limited domain 2317

generalization in multimodal contexts through the 2318

perspective of the methodology paradigm. 2319

1. LLM as Enhancer: Generate mixed-domain 2320

problems (e.g., combining algebraic equations 2321

with geometric figures) to force the model 2322

to learn cross-domain associations. Explic- 2323

itly add domain labels (e.g., "spatial reason- 2324

ing" label for geometry problems) to guide 2325

the model in distinguishing domain-specific 2326

features. The limitation of this paradigm is 2327

that enhanced data may lack the real-world 2328

complexity of domain intersections. 2329

2. LLM as Reasoner: Fine-tune the model sep- 2330

arately for different mathematical domains 2331

(e.g., algebra, geometry) to learn domain- 2332

specific visual patterns (e.g., encoding geomet- 2333

ric properties in figures). Use domain-specific 2334

few-shot examples (e.g., providing figure-text 2335

associations in geometry) to guide the model 2336

in switching reasoning modes. The limitation 2337

is that the model’s capacity may be limited, 2338

making it difficult to master multiple signifi- 2339

cantly different domains simultaneously (e.g., 2340

switching from algebraic symbol manipula- 2341

tion to geometric spatial reasoning). 2342

3. LLM as Planner: Based on the problem 2343

domain (e.g., detecting the "triangle" key- 2344

word), call specialized tools (e.g., geomet- 2345

ric theorem prover). For composite problems 2346

(e.g., algebraic-geometry equations), coordi- 2347

nate symbolic computation tools (e.g., Mathe- 2348

matica) and graphical reasoning tools (e.g., 2349

GeoGebra). The limitation is that domain 2350

boundary issues (e.g., math word problems 2351

requiring commonsense reasoning) may fail 2352

to route to the appropriate tools. 2353

F.3 Error Feedback Limitations in 2354

Multimodal Contexts 2355

We further discuss the challenge of error feedback 2356

limitations in multimodal contexts through the per- 2357

spective of the methodology paradigm. 2358

1. LLM as Enhancer: Inject cross-modal errors 2359

(e.g., plot errors in function curves while the 2360

text description is correct) to train the model 2361

to detect contradictions. The limitation is that 2362
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labeling error types is costly and it’s difficult2363

to cover all long-tail errors.2364

2. LLM as Reasoner: Decompose reasoning2365

into "computation-logic-conclusion" stages2366

and cross-check text derivations with graphi-2367

cal information (e.g., verify function extrema2368

calculations using coordinates in the image).2369

The limitation is that self-doubt relies on the2370

model’s prior knowledge of error types, poten-2371

tially missing rare error patterns in the training2372

data.2373

3. LLM as Planner: Use OCR tools to ex-2374

tract symbols from figures and compare them2375

with the text description to detect misunder-2376

standings. The limitation is that tool invoca-2377

tion delays affect real-time performance, and2378

some errors require manually defined detec-2379

tion rules.2380

F.4 How Test-Time Scaling Techniques2381

Handle Other Challenges2382

We believe that test-time scaling techniques (Xu2383

et al., 2025a; Li et al., 2025; Besta et al., 2025;2384

Muennighoff et al., 2025; Chen et al., 2024c, 2025)2385

can also help handle other challenges discussed2386

in Section 4, especially the following three chal-2387

lenges.2388

❶ Insufficient Visual Reasoning:2389

1. Enhancement of Multimodal Reasoning2390

Chains: During reasoning, generate multi-2391

step visual-symbol joint inference paths. For2392

example, using CoT prompts to guide the2393

model in decomposing geometric shapes into2394

angle, side length, and other symbolic con-2395

straints, and then calling a geometry solver to2396

validate spatial relationships.2397

2. Visual-Symbol Alignment Verification: Use2398

Best-of-N sampling to generate multiple can-2399

didate diagram parsing results and call exter-2400

nal OCR tools or geometry validators (e.g.,2401

GeoGebra) to detect visual-text consistency2402

and filter out erroneous explanations.2403

3. Limitations: Parsing complex visual details2404

(e.g., topological structures) depends on the2405

pretrained visual encoder’s capabilities. If the2406

training data coverage is insufficient, test-time2407

strategies may not be able to compensate.2408

❷ Limited Domain Generalization:2409

1. Dynamic Domain Routing: Use Beam Search 2410

Process Reward Model (PRM) to select 2411

domain-specific inference paths based on 2412

problem types (e.g., detecting the “trian- 2413

gle” keyword and choosing between algebra 2414

solvers or geometry theorem provers). 2415

2. Meta-learning Optimization: Fine-tune the 2416

model on a small number of domain-specific 2417

samples via Test-Time Training (TTT) to 2418

quickly adapt to new domains (e.g., proba- 2419

bility and statistics problems) 2420

3. Limitations: Problems with blurred domain 2421

boundaries (e.g., math application problems 2422

involving common sense reasoning) may fail 2423

due to routing errors. 2424

❸ Error Feedback Limitations: 2425

1. Process Supervision Reinforcement: Use 2426

PRM to validate each step of reasoning in 2427

real-time. If an error is detected (e.g., misuse 2428

of integration symbols), backtrack and correct 2429

the path; combine Self-Consistency by gener- 2430

ating multiple inference paths and selecting 2431

the one with no contradictions via majority 2432

voting. 2433

2. Limitations: The reliability of PRM depends 2434

on the coverage of error types in the training 2435

data. Long-tail errors such as rare symbol 2436

confusions may be overlooked. 2437

In summary, combining the flexibility of test- 2438

time scaling with the specialization of multimodal 2439

tools can help mitigate the core challenges in mul- 2440

timodal mathematical reasoning. However, it is 2441

crucial to balance computational efficiency and 2442

accuracy. 2443
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