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Abstract

The discovery of new materials with desirable properties is essential for techno-
logical advancements, from pharmaceuticals to renewable energy. Traditional
simulation methods like Density Functional Theory (DFT) provide ab initio quan-
tum calculation estimates of common properties but are computationally expensive,
prompting the need for carefully selecting candidates for the calculation. Bayesian
optimization (BO) is commonly used to efficiently find and screen candidates.
However, choosing the right vector representations for a Bayesian regressor is
challenging: While molecules are 3-dimensional, obtaining 3D features is com-
putationally intensive, so 1D and 2D features are typically used. In this work, we
study this discrepancy. Are 3D features worth considering for BO over molecules
despite their computational complexity? To this end, we evaluate the molecular
fingerprint representation, 2D message-passing neural networks, and 3D equiv-
ariant attention-based graph neural networks. We evaluate their performance on
four datasets, considering both low- and high-data regimes and different types of
Bayesian regressors. Finally, we explore the transfer learning capabilities of 2D
and 3D graph features by treating the graph networks as foundation models.

1 Introduction

The discovery of new materials is crucial for technological advancements, yet Density Functional
Theory (DFT), the gold standard for predicting molecular properties, is limited by its high compu-
tational cost, especially for large datasets or complex molecules [39]. To overcome this, Bayesian
optimization (BO) has emerged as a promising method for efficiently exploring the vast space of
potential materials and guiding experimental efforts toward the most promising candidates for DFT
calculations [30, 19, 21, 16]. BO typically relies on training probabilistic surrogate functions, such
as Gaussian Processes (GPs) or Bayesian Neural Networks (BNNs), using vector representations of
molecules. However, the importance of selecting an appropriate molecular representation is often
overlooked. While transformers and graph neural networks (GNNs) have been used [19], they assume
molecules are represented by 1D representations, like strings, or 2D graphs, which simplifies their
inherent three-dimensional nature.

Recently, 3D GNNs, particularly equivariant attention-based GNNs, have shown promise in capturing
the full geometric structure and the symmetries of molecules, potentially offering superior predictive
performance [11, 22, 23, 3, 7]. This work revisits whether incorporating 3D molecular features
into BO justifies the increased computational cost compared to 1D and 2D features. We evaluate

∗Correspondence to: andresguzco@gmail.com, akristiadi@vectorinstitute.ai.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



DATA

QM9
~110K

QM7
~7.5K

2D

N[C@H](C)C(=O)O
1D

3D ORACLE CALL
(DFT)

GNN

MPNN

GP

LLA

UPDATE SURROGATE

+

LLM

MAXIMIZE
PROPERTY 
MINIMIZE
ORACLE CALLS

BO LOOP

ACQUISITION
FUNCTION

Molecule
Net

~28K

GEOM
DRUGS
~318K

Figure 1: Comparison of the performance of 1D, 2D, and 3D representations in BO for molecular
property optimization. The models are tested on four datasets across varying data sizes to assess the
trade-offs between computational cost and predictive accuracy for each representation.

Gaussian Process regression and Large Language Model (LLM) prediction with 1D representations,
2D Message-Passing Neural Networks (MPNNs), and 3D equivariant attention-based GNNs across
various data regimes, assessing predictive performance using Laplace-approximated BNNs and GPs,
shown in Fig. 1. This study aims to determine if leveraging 3D structural information significantly
enhances BO’s effectiveness in materials discovery.

2 Preliminaries

Bayesian Optimization BO considers the problem of finding a global maximizer of an unknown
objective function f : X → Y denoted x∗ = argmaxx∈X f(x), over some d-dimensional search
space X . Although f lacks a simple closed form, it can be evaluated at any point x in the domain, and
the goal is to minimize the number of evaluations [37]. Key components of BO include (1) a surrogate
function g that approximates f ; (2) a probabilistic belief p(f | D) over the unknown function f ;
and (3) an acquisition function α : X → R, which guides where to evaluate f . The representational
capacity of g determines how closely we can approximate f , while the calibration of the posterior
distribution p(gt | Ωt) at time t, given the previous observations Ωt := {(xi, f(xi))}t−1

i=1 , dictates the
strategy for balancing exploration and exploitation within X [17]. This balance between exploration
and exploitation is crucial for the success of BO in efficiently identifying the optimal x∗ within a
reasonable timeframe [18].

Bayesian Regressors The de facto choice for surrogate pt(gt|Ωt) in BO is Gaussian Processes [37].
Furthermore, there is extensive literature demonstrating the use of other parametric models, such
as Bayesian Neural Networks (BNNs), as surrogates [20]. We consider two different alternatives:
Gaussian processes, and a BNN using Laplace Approximation. A Gaussian process can be thought
of as a collection of normally distributed random variables that emulate the behavior of h(x) + ε,
where h ∼ GP(µ(x|θ),K(x,x′|θ)), x,x′ ∈ X and ε ∼ N(0, σ2). Here, µ(x|θ) denotes the mean
function and K(x,x′|θ) denotes the covariance or kernel function [31].

Laplace Approximation While standard NNs make point-wise predictions, BNNs provide
point-wise predictive distributions, thus measuring the uncertainty of our estimates. Let f :
X × Θ → Y defined by (X, θ) 7→ fθ(x) be a NN. Then, the frequentist point-wise esti-
mate is θ∗ = argmaxθ∈Θ log p(D|θ) + log p(θ) [25]. The Laplace Approximation (LA) fits
a Gaussian distribution q(θ|D) := N (θ∗,Σ

−1
∗ ), this centered at the frequentist point-wise esti-

mated θ∗ with covariance given by the inverse of the Hessian Σ= − ∇2
θ log p(θ|D)|θ = θ∗ [27].

We employ the Linearized LA (LLA) [8], using the Gauss-Newton matrix and the linearization
f lin
θ (x) = fθ(x)−∇θfθ(x)|θ=θ∗ · (θ − θ∗) [17].

Feature Extractors Molecular representations play a crucial role in the success of BO, as molecules
are naturally expressed as 3D graphs. However, the computational costs of generating 3D structures
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over a large candidate space often lead to a preference for simpler 1D or 2D representations [13].
While molecular fingerprints are efficiently calculated, they may lack structural detail for complex
tasks. GNNs with 2D graph representation capture local structures in graph-structured data by
passing messages between nodes [9, 11]. Equivariant attention-based GNNs [23], further enhance
this by incorporating symmetries of the molecules in 3D space and attention mechanisms [6, 35, 28].
Recently, large language models (LLMs) specifically tailored for chemistry-related applications have
gained significant traction, particularly in their ability to extract meaningful features from chemical
data [36, 5]. These models are trained on large-scale chemical databases via the molecules’ 1D string
representations. This makes LLMs useful as molecular feature extractors and has been used for
materials discovery [14, 19].

3 Experiments

We investigate BO performance using 1D, 2D, and 3D representations of molecules. This sec-
tion outlines our experimental setup, including datasets, feature extractors, tasks, sample com-
plexities, and evaluation methods. Implementation in https://github.com/andresguzco/
molecular-bayes.

Datasets We use four datasets in our experiments: QM7 [26, 4], QM9 [34, 29], GEOM’s Molecu-
leNet and DRUGS [41, 1]. QM7 includes 7165 molecules with atomization energies (∆E) in kcal/mol
and up to seven heavy atoms (C, N, O, S), while QM9 contains 133 885 molecules with up to nine
heavy atoms (C, N, O, F) and 12 properties. The MoleculeNet dataset consists of benchmark datasets
designed for molecular machine learning tasks and includes 28 295 molecules, covering tasks like
quantum mechanics, physical chemistry, biophysics, and physiology. GEOM provides an enhanced
version of this dataset that includes conformers for each example. GEOM also contains the DRUGS
dataset, which provides molecular geometries for drug-like molecules, with up to 91 heavy atoms and
317 928 molecules, which are useful for studies involving conformational flexibility and geometric
properties. The models were trained on QM9, which was split into a training set and a virtual library
serving as the search space. The virtual library and the other datasets were used to evaluate the
models with no overlap with training observations.

Feature Extractors We implement three types of models: Molformer, an LLM trained on 1D
molecular representations [33], an MPNN which inherently leverages 2D molecular information, and
an equivariant attention-based GNN. All models serve as feature extractors up to their respective
readout layers, encoding molecules into high-dimensional embeddings before making predictions
on the target properties. To ensure consistency, the feature extractors are constrained to similar
sizes, with each containing approximately 1.5 million parameters. The readout layer consists of
two hidden layers, which are optimal for BO with LLA [21]. For the benchmark GP, we utilize the
Tanimoto kernel with molecular fingerprints, where the kernel function is defined as K(x,x′|θ) =
⟨x,x′⟩ · (||x||2 + ||x′||2 − ⟨x,x′⟩)−1 [38].

Tasks Each model is trained for two tasks: target property prediction and transfer learning. In
the target property prediction task, the model has a single readout layer trained to predict a specific
property—HOMO-LUMO gap (∆Egap in eV) from QM9. In transfer learning, the model has n− 1
readout layers, each trained on different tasks. We aim to assess whether a model trained on one set
of properties can still provide accurate predictions on different experimental datasets by fine-tuning
only the final layer, evaluating its potential as a foundation model [42].

Sample Complexity The models were trained on datasets with varying sample complexities to
evaluate their performance based on the number of observations needed to effectively utilize 3D
information. Previous research indicates that equivariant models generally require more samples
compared to non-equivariant models to achieve similar performance levels [10]. For the feature
extractors, we experimented with four different training set sizes: 500, 1000, 10 000, and 50 000
observations. This approach investigated how model performance scales with sample availability.

Framework In our experimental setup, each BO loop uses a pre-trained model to make predictions
over 1000 iterations. The model is frozen except for the readout layer, which estimates uncertainty in
two ways: by training the layer’s weights with known data and fitting a linear Laplace approximation,
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or by using a GP for the embedding readout. The loop begins with an initial set of 10 observations,
with the highest expected improvement per observation added to this set at each iteration.

Evaluation For each loop, we subsample 10 000 observations from our virtual library or use the
entirety of the dataset if it’s small enough (QM7), repeating the processes for 15 different seeds and
averaging over the results to obtain an unbiased estimator for the performance with its mean and
standard error. The models are compared with random search, which uniformly samples from the
molecular space, and GPs utilizing a 1D molecular fingerprint representation. In total, 2100 distinct
runs were perfromed, providing a comprehensive evaluation across settings.

4 Results

QM7 For QM7, which features relatively simple molecules, highlights the surprising effectiveness
of molecular fingerprints. Notably, the 1D GP method performed slightly worse than more complex
models. In contrast, GP regression with binary encoded SMILES, serving as a baseline, demon-
strated that even simple 1D representations can capture sufficient information to remain competitive.
Although 2D models outperformed 3D models overall—particularly when combined with GP re-
gressors—the performance gap was modest. While the 3D models saw slight improvements when
paired with LLA, the gains were limited, suggesting that higher-dimensional representations may not
be critical for simpler molecular structures like those in QM7. This is evident in Fig. 2, where the
top-performing models for simpler tasks did not heavily rely on 3D data. The results of the LLM
were striking, as it outperformed all other models by a significant margin. Its ability to leverage
contextual information and generate accurate predictions, even for relatively simple molecules in the
QM7 dataset, demonstrated its superior generalization capabilities.

QM9 In contrast, the QM9 dataset, which features slightly more complex molecules, underscores
the limitations of 1D representations. Here, 2D MPNNs achieve the highest performance, and consis-
tently outperform 1D GP and RS methods, while 3D models only outperform RS. The differences
become even more pronounced with increasing molecular complexity as described by size. While
2D models continue to demonstrate strong performance and stability, the 3D GNNs, particularly
when enhanced with LLA, begin to close the gap, indicating that the extra structural information
provided by 3D representations becomes more important as molecular complexity increases. Despite
the overall advantage of the 2D models, the smaller margins between 2D and 3D performance suggest
that for highly complex molecules, further optimization of 3D models may yield competitive results,
as seen in the bottom row of Fig. 2. Contrary to all other datasets, LLMs performed worse than 2D
and 3D models. This task may have been the most dependent on information not captured by 2D and
3D representations the specific, which could explain why it performed worse.

MoleculeNet As shown in Fig. 2, 2D models consistently outperformed 3D models across a wide
range of tasks, which suggests that 2D representations efficiently capture the necessary structural
information for accurate predictions without the computational overhead of 3D models. The slight
improvements observed with 3D models when using techniques like LLA are insufficient to justify
their use, as the performance gains are marginal and insufficient. The consistently strong performance
of 2D models raises important questions about the value of incorporating 3D information. Even as
molecular size increases, 3D models fail to offer significant advantages, and in many cases, they
underperform compared to 2D approaches. Additionally, the competitive performance of 1D models,
such as GPs with SMILES encoding, highlights the efficiency of simpler representations in certain
scenarios. Although 1D models struggle with larger datasets and more complex molecular structures,
their ability to remain competitive in simpler tasks emphasizes that higher-dimensional representations
are not always necessary. The LLM, as with the QM7 and DRUGS results, outperformed all other
models. Its superior performance across both simple and complex molecular datasets highlights its
ability to generalize effectively, surpassing the limitations of both 2D and 3D models. This reinforces
the trend observed before, where the LLM demonstrated remarkable versatility and accuracy.

GEOM DRUGS The DRUGS dataset emphasizes the importance of higher-dimensional features.
However, despite the increased molecular size, both 1D and 2D representations manage to capture
sufficient information to perform competitively. As shown in Fig. 2, LLMs and 2D models consistently
outperform 3D models across most tasks, even for large drug-like molecules. Interestingly, simple
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Figure 2: Experimental Results. Top row: QM7. Bottom row: QM9.

GP regression and random search performed similarly, suggesting that the models used may not
be sufficiently complex to outperform these benchmark methods. This indicates that larger models
or further optimization would be necessary to see significant improvements beyond the baseline
methods. The 3D models, while more suited for capturing subtle geometric features, do not provide
a substantial performance increase, reinforcing that for property optimization in such datasets, 3D
features may not be necessary unless ultra-high precision is required. The LLM achieved the most
substantial performance gap so far, outperforming all other models by a wide margin. This is
particularly remarkable given the complexity and size of the molecules in this dataset. Despite the
strong performance of 2D models, the LLM’s ability to handle intricate molecular details allowed
it to excel far beyond both 2D and 3D representations. This suggests that the LLM’s contextual
understanding is especially beneficial for larger, more complex molecular structures.

As molecular size increases, 1D models and 2D representations capture enough information
to perform effectively, rendering 3D features generally unnecessary.

5 Conclusion

1D representations consistently outperformed both 2D and 3D models across all datasets, providing a
stable and efficient solution for molecular property prediction, particularly in complex datasets like
GEOM DRUGS, where LLMs showed a significant advantage even with large, intricate molecules.
Notably, 2D representations also outperformed 3D models across many tasks, indicating that lower-
dimensional models can achieve strong predictive accuracy with an optimal balance between efficiency
and computational cost. This trend persisted even in datasets traditionally suited to 3D models, where
3D information offered only minor improvements at a greater computational expense. Future
research should focus on tasks where 3D data might have a greater impact, such as protein docking,
while exploring how BO performance scales with model size and complexity to optimize these
methods. Additionally, investigating graph foundation models could open new paths for molecular
data representation by combining the strengths of graph-based and foundational approaches.
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A Appendix A: Sample Complexity and Transfer Learning

A.1 How many samples does each dimension need?

As illustrated in Fig. 3, 3D models consistently required a larger number of training samples to
outperform or even match the performance of 2D models, particularly for simpler datasets such as
QM7. In these lower-complexity tasks, the computational overhead introduced by 3D features did
not translate into closes the performance gap until the sample size exceeded 10,000 observations.
For example, while 3D models did show some improvement with more samples, their performance
remained inferior to that of 2D models with smaller datasets.

In contrast, the 2D models were highly data-efficient across all datasets, capturing essential structural
information with relatively few samples. Even with a modest dataset of 500 to 1,000 observations,
2D models achieved competitive performance, suggesting that the information content provided by
2D representations is generally sufficient for many molecular property prediction tasks. The gap
between the performance of 2D and 3D models was most pronounced in smaller datasets, where
3D models often struggled to justify their computational expense. This finding aligns with earlier
research [10], which highlights the difficulty of leveraging 3D information in data-scarce regimes.
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Figure 3: Experimental Results per Sample Complexity. Top row: QM7. Bottom row: QM9.

A.2 Is transfer learning beneficial?

The results comparing 2D and 3D models across single-property prediction and transfer learning
tasks, as shown in Fig. 4, reveal key differences in their effectiveness. The LLM used was trained in
multiple tasks, thus offering only a transfer learning perspective. In single-property tasks, 2D models
consistently outperform 3D models, particularly in datasets with limited data, like QM7 and QM9.
This suggests that 2D representations capture essential structural information efficiently, without
the computational cost of 3D models. Even in more complex datasets like GEOM DRUGS, where
the performance gap between 2D and 3D models narrows, 2D models remain more competitive and
effective for property prediction, offering a balance of simplicity and accuracy. However, in transfer
learning—where models trained on one molecular property are fine-tuned to predict another—3D
models show some improvement but still lag behind 2D models. The additional geometric detail
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provided by 3D representations enhances generalization across tasks but is not enough to outperform
2D models in terms of efficiency and accuracy.
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Figure 4: Experimental Results per Task. Top row: QM7. Bottom row: QM9.

B Appendix B: Algorithms and Hyperparameters

B.1 Pseudocodes

We present the pseudocode of the Bayesian Optimization (BO) loop and Section 5 in Algorithm 1.

Algorithm 1 Using an NN as a feature extractor in BO.
Require: Pre-trained feature extractor ϕW∗ , mapping a molecular representation c(x) to its embed-

ding vector h ∈ RH ; surrogate model gθ : RH → R; candidate molecules Dcand = {xi}ni=1;
initial dataset D1 = {(xi, f(xi))}mi=1; time budget T .

1: for t = 1, . . . , T do
2: Φt = {(ϕW∗(c(x)), f(x)) : (x, f(x)) ∈ Dt}
3: p(gt|Dt) = infer(gθ,Φt)
4: xt = argmaxx∈Dcand α(p(gt(c(x))|Dt))
5: Dt+1 = Dt ∪ {(xt, f(xt))}
6: Dcand = Dcand \ {xt}
7: end for
8: return argmax(x,f(x))∈DT+1

f(x)

B.2 Training

B.2.1 Fixed-Feature Surrogates

The following are the training details of the surrogates we used in Section 5. We used HuggingFace’s
transformers library [40] for MolFormer. For GPs, we use BoTorch [2] to construct the surrogate
function. The Tanimoto kernel is taken from Gauche [12]. To optimize the marginal likelihood, we
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use Adam [15] with a learning rate of 0.01 for 500 epochs. We constrain the GNNs to 1̃.5 million
parameters, and further train Equifrormer v2 on noisy nodes. We optimize the GNNs with Adam
with a learning rate of 1× 10−4 and weight decay of 5× 10−4 until convergence with early stopping
at 20 epochs without improvement with a batch size of 64. We anneal the learning rate with the
cosine annealing scheme [24]. On the other hand for LLA, our implementation is based on the
laplace-bayesopt package. The neural net used is a 2-hidden-layer multilayer perceptron with 50
hidden units on each layer along with the ReLU activation function. The Laplace approximation is
done post-hoc, and we tune the prior precision with the marginal likelihood for 100 iterations. The
Hessian is approximated with a Kronecker structure [32]. At last, we show the parameters used to
train Equiformer v2 [23], the 3D GNN, in Table 1.

Table 1: Hyper-parameters for the EquiformerV2 Model.

Hyper-parameters Value or description
Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 5
Maximum learning rate 5× 10−4

Batch size 64
Number of epochs 300
Weight decay 5× 10−3

Dropout rate 0.1
Drop path rate 0.05
Project drop rate 0.0
Cutoff radius (Å) 5.0
Maximum number of neighbors 500
Maximum atomic number 90

Number of radial bases 64
Dimension of hidden scalar features in radial functions 64
Maximum degree Lmax [3]
Maximum order Mmax [3]
Number of Transformer blocks 2
Embedding dimension 16
Attention hidden dimension 64
Number of attention heads h 4
Attention alpha channels 32
Attention value channels 16
Hidden dimension in feed forward networks 128
Resolution of point samples R 64
Distance function Gaussian
Attention activation scaled silu
Attention renormalization True
Noise standard deviation σdenoise 0.02
Denoising coefficient λdenoise 0.1
Denoising probability pdenoise 0.5
Corrupt ratio rdenoise 0.25

B.3 Prompting

Following the framework in Kristiadi et al. [19], we used the prompt “The estimated {objective str}
of the molecule {smiles str} is:” in our experiments. The variable smiles_str equals the SMILES
representation of the molecule at hand, e.g., “OS(=O)(=O)O” for sulfuric acid. The variable obj_str
has the value of the textual description of the problem at hand: “HOMO-LUMO gap in eV” for QM9,
“ atomization energy in kcal/mol ” for QM7, “total energy in Hartees” for GEOM’s Molecule Net and
DRUGS.
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