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Abstract

Many of the recent remarkable advances in computer vision and language models
can be attributed to the success of transfer learning via the pre-training of large
foundation models. However, a theoretical framework which explains this empirical
success is incomplete and remains an active area of research. Flatness of the loss
surface and neural collapse have recently emerged as useful pre-training metrics
which shed light on the implicit biases underlying pre-training. In this paper,
we explore the geometric complexity of a model’s learned representations as
a fundamental mechanism that relates these two concepts. We show through
experiments and theory that mechanisms which affect the geometric complexity of
the pre-trained network also influence the neural collapse. Furthermore, we show
how this effect of the geometric complexity generalizes to the neural collapse of
new classes as well, thus encouraging better performance on downstream tasks,
particularly in the few-shot setting.

1 Introduction

Many of the recent remarkable advances in modern machine learning owe their success in part to
transfer learning [4, 6, 9, 15, 28, 49, 50, 66]. While there are different approaches to this technique,
the standard one involves two stages. In a first stage, called pre-training, ones trains a deep neural
network on a general, large-scale dataset in the form of a supervised or unsupervised source task; e.g.,
ImageNet or CIFAR-100 [14, 33] for image models or the Common Crawl, C4 or LM1B datasets
[8, 11, 49] for language models. In the second stage, one then leverages portions of the pre-trained
network to use as features map or embeddings that can then be adapted, or fine-tuned, on a more
specific target task. Often these target tasks are unknown at the time of pre-training and labeled
data may be very scarce, such as in the context of few-shot learning [34, 51, 60]. However, despite
these limitations, this approach often results in a fine-tuned model that achieves quite impressive
performance substantially better than training on the target task alone and requiring less computational
resources [20]. Despite this empirical success, a comprehensive theoretical understanding of the
mechanisms underlying this effectiveness of transfer learning is not fully understood and remains an
active area of research [63].

One interesting line of research suggests that the effectiveness of transfer learning is due to the implicit
biases encoded in pre-trained models [22, 36, 48]. These implicit biases effectively constrain the
hypothesis space, guiding the model towards solutions that have a preference for smoother functions
[12, 17, 38, 40, 53], simpler geometry in the loss surface [3, 13, 18, 55, 58] or reduced complexity of
the internal learned representations [23, 32]. In the same way that these implicit biases have been
used to help explain the success of deep learning, recent work has shown that the notion of neural
collapse [22, 35, 62] and flatness of the loss surface [36] can also inform the mechanisms behind
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transfer learning. This suggests that these preferences during pre-training also act as a form of prior
knowledge which is highly transferable to downstream tasks, even with limited task-specific data.

In this paper, we present a novel perspective that further sheds light on these mechanisms and
implicit biases hidden within transfer learning. Our approach analyzes the geometric complexity
[16, 17] of the internal representations learned by the deep neural networks during pre-training and
provides a complementary theoretical framework which unifies previous work examining the role of
neural collapse and loss surface flatness in transfer learning [22, 36]. In particular, we show through
experiments and theory that the geometric complexity of the pre-trained network directly controls the
neural collapse of the pre-trained model and thus its efficacy in transfer learning, particularly in the
few-shot setting. We argue that geometric complexity (similarly to flatness of the loss surface and
neural collapse) can be used as hidden progress metrics, cf. [2], for transfer learning, serving as an
informative proxy toward the transfer power of a pre-trained network.

Our primary contributions are the following:

• We uncover relationships between learning-path flatness, neural network geometric-
complexity, and embedding neural-collapse providing a framework to understand how
these implicit biases interact (Section 4).

• We show through theory that the geometric complexity (GC) of a neural network controls
neural collapse and verify this empirically by showing how mechanisms which regularize
the GC in turn put pressure on the neural collapse (Section 4.1 and Fig. 1).

• We demonstrate both theoretically and empirically that pre-trained networks with lower
GC promote lower neural collapse on new unseen target classes, and thus enable improved
transfer accuracy during fine-tuning (Section 5 and Fig. 4).

• We prove a new generalization bound in terms of geometric complexity (Section 4.3).
• We show that the empirical GC can be accurately and efficiently estimated on a small

number of samples, input coordinates, and output features making it computationally
tractable compared to other progress metrics in machine learning (Section 4.2 and Fig. 2).

Notation. Throughout, we denote by ‖ · ‖ the L2 Euclidean norm and by ‖ · ‖F the Frobenius norm.

2 Background and Related Work

The implicit biases introduced by an optimization algorithm play a crucial role in deep learning and
in the generalization ability of the learned models [43, 44, 55, 64]. They help ensure that the model
not only finds a solution with low error but also one with low complexity which generalizes well
[26, 67]. Uncovering the mechanisms of these implicit regularizers is crucial for understanding how
the model learns, both as a means to improve generalization and as valuable leverage for designing
more efficient algorithms and decreasing costly experiment iteration cycles.

Here we focus on three seemingly different themes behind implicit regularization in deep learning
and explain how they are related: the loss surface slope measuring the flatness of the learning path
[3, 29, 45], the geometric complexity of the learned model function measuring its variability with
respect to a dataset [16, 42], and the neural collapse [32, 46] measuring how a neural network
efficiently clusters its learned representations of the input class examples in embedding space.

Flatness in parameter space. In parameter space, the learning dynamics is fully characterized by
the discrete optimization path θt where t ∈ N. At each step, one can compute the flatness of the
learning path as the slope of the tangent space at θt to the loss surface L = {(θ, L(θ)) : θ ∈ Rn}.
As shown in [3, Appendix A.2], this slope coincides with the loss-gradient square norm: slope(θt) =
‖∇L(θt)‖2. This quantity has been used to bound a generalization gap in [25] and as a beneficial
explicit regularizer in [3, 24, 58] indicating that learning curves with lower slope values tend to also
have better test performance.

Moreover, many standard optimizers and common training heuristics have been shown to put an
implicit pressure on the learning-path flatness, making it an implicit bias of the training procedure
[3, 5, 10, 13, 17, 25, 39, 58]. Related to the learning curve slope is the optima sharpness

sharpness(θ∗) =
1

n
traceH(θ∗)
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where θ∗ is a global minima toward which the learning dynamics converges to θt → θ∗ and H is the
Hessian of the loss. Since the sharpness of an optima corresponds to the mean curvature of the loss
surface at that point, flat minima (i.e., minima with low curvature in all directions) can be reached
only through learning paths with shallower slopes.

Neural collapse in embedding space. Neural collapse [22, 27, 46] refers to a phenomenon ob-
served in deep learning where the embedding network (i.e., the subnetwork f before the logit layer g
in a neural network h(x) = softmax(g(f(x))) collapses the input points around their respective class
means. Furthermore, these class means form a simplex creating an equiangular tight frame (ETF)
centered around the global mean with roughly equal distance between its vertices. Intuitively, such a
phenomenon is beneficial to generalization since the embeddings of different classes are optimally
separated, making the job of the classifier head softmax(g(z)) easier. To measure neural collapse,
the authors in [22] introduce the class-distance normalized variance (CDNV) as

Vf (Qi, Qj) :=
Varf (Qi) + Varf (Qj)

2‖µf (Qi)− µf (Qj)‖2
, (1)

where Qr = qr(x)dx is the input distribution for classes r ∈ {i, j} and where

µf (Qr) = Ex∼Qr
[f(x)] and Varf (Qr) =

∫
‖µf (Qr)− f(x)‖2qr(x)dx. (2)

Neural collapse between two classes happens when their class variance decreases while the distance
between their class means increases, causing lower values of their CDNV. Following [22], given a
well-balanced input distributionQ = 1

k (Q1+· · ·+Qk) with k classes (Qi being the input distribution
for class i), neural collapse (NC) during training is characterized by the following limit as the number
of training steps t goes to infinity:

lim
t→∞

NC(ft, Q) = 0 where NC(f,Q) := Avgi 6=j (Vf (Qi, Qj)) , (3)

and where ft is the learned embedding network at step t. Thus, more neural collapse (i.e., more
clustering around better separated class-means) happens with lower NC values. Proposition 5 from
[22] proves that NC(f,Q) bounds a generalization gap and lower values of NC(Q, f) are correlated
with better test performance of the neural network f , and [37] shows that explicitly regularizing for
neural collapse is beneficial.

Geometric complexity in function space: The geometric complexity (GC) of a function f : Rd →
Rk w.r.t. a data distribution Q = q(x)dx on Rd is defined as the expectation of the gradient Frobenius
square-norm w.r.t. to the data distribution [17] given by

GC(f,Q) := Ex∼Q
[
‖∇xf(x)‖2F

]
.

Intuitively, the GC measures the function complexity or variability and is closely related to the
Dirichlet energy in geometric analysis [21]. Provided mild Lipschitz smoothness assumptions [42,
Proposition 3.4], the GC can be estimated accurately on batches of training data D by its empirical
counterpart

ĜC(f,D) =
1

|D|
∑
x∈D
‖∇xf(x)‖2F , where D is an i.i.d. sample drawn from Q. (4)

Previous work has explored the relationship between the GC and model generalization. When
measured on the full neural network, lower GC values correlate experimentally with higher test
accuracy [45] and it has also been used as a beneficial explicit regularizer [30, 59]. In [16, 17], the
authors ignore the softmax activation and study the GC measured with respect to the logit network,
exploring its connection with various implicit and explicit regularizers and training heuristics. The
logit GC has also be used to prove a margin based multi-class generalization bound [42], assuming
that the input distribution Q satisfies a mild assumption known as the Poincaré inequality [1].

In fact, both this work and the proof of the generalization bound rely on the Poincaré inequality,
which we argue is indeed a natural and mild assumption for the types of data distributions typically
encountered in machine learning; see Appendix A.6 for further discussion. For completeness, we
recall it here, cf. [19]. A distribution Q satisfies a Poincaré inequality if, for all differentiable
functions v defined on supp(Q), there exists a constant c such that

Varv(Q) ≤ cEx∼Q
[
‖∇xv‖2F

]
= cGC(v,Q). (5)
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Note that the same assumption is used in [7] to prove the law of robustness for overparameterized
neural networks via isoperimetric inequalities. In this paper, we peel back yet another layer of the
network and consider the embedding geometric complexity measured on a feature map (Section 3).

Relationship between flatness, neural collapse, and geometric complexity. The learning-path
flatness as measured by its slope influences the geometric complexity of the learned solutions [16,
Theorem 5.1]. Namely, for dense layers a regularizing pressure on the slope of the learning path
in parameter space transfers to a regularizing pressure on the geometric complexity of the learned
solution in function space. A similar result also been shown for special attention layers as well [52].

In this paper, we will see that imposing a regularization pressure on the embedding geometric
complexity encourages more neural collapse of the model. This results in the following chain of
influences from regularization pressure:

learning path flatness  function geometric complexity  embedding neural collapse
Regularizing Pressure Regularizing Pressure Lower CDNV

3 Problem Formulation

We are interested in understanding the relationship between the geometric complexity (GC) and
neural collapse (NC) in the transfer learning setting and explore this relationship in two stages. In
the first stage, we examine the general impact of the GC on NC during model training/pre-training.
Secondly, we examine how this relationship provides insight into the mechanisms behind transfer
learning and the advantageous implicit biases of the pre-training stage. In short, lower GC during
pre-training on source classes leads to lower NC for target classes and improved transfer accuracy.

For the first stage of our inquiry (Section 4), we are concerned with a k-classification task. Let D :=
{(xi, yi)}mi=1 be a dataset drawn from a distribution Q with xi ∈ Rd and yi ∈ {ej | j = 1, . . . , k}
where ej ∈ Rk are the canonical basis vectors representing a one-hot encoding of the labels. We aim
to learn this task using a neural network denoted by a function hθ : Rd → Rk parameterized by θ
(though to simplify notation we subsequently drop this dependence on θ).

We can write hθ(x) = softmax(g(f(x)) where g : Rp → Rk is a classifier head mapping from
the feature space Rp to the prediction layer Rk and f : Rd → Rp is a feature mapping from
the input space to the penultimate embedding layer of the network before the classification head.
The standard way of training hθ is to find, via some stochastic optimization technique, an optimal
parameter configuration θ∗ such that θ∗ = argminθ

∑m
i=1 `(hθ(xi), yi) for a given loss function

` : Rk × Rk → [0,∞).

To analyze the role of neural collapse and geometric complexity in this setting, we focus our attention
on the feature map f : Rd → Rp. The NC as described in Section 2 is defined using this sub-network
map f of h and thus we also measure the geometric complexity with respect to this sub-network
feature mapping as well. Throughout this paper, we use the term embedding GC to refer to the GC of
such a feature map f and unless otherwise specified, when we refer to the model GC we mean the
embedding GC, not the GC of the logit network as in [16, 17].

Our second stage of inquiry (Section 5) is focused on the role of geometric complexity in transfer
learning. For this setting, we assume there is some l-class classification target task we would like to
solve and corresponding target distribution T . We aim to learn a classifier h′ : Rd → Rl given some
training data D′ := {(x′i, y′i)}m

′

i=1 which is potentially very limited in size. In order to find a good
solution, we can leverage a pre-trained feature mapping that has been trained on some other source
task and source distribution S where more data is available. For example, by leveraging a feature map
f pre-trained as in the above setup, the target task classifier h′ can instead be trained on the outputs
of our feature map; i.e., {f(x′i), y

′
i)}m

′

i=1. In this way, we can write h′ = softmax(g′ ◦ f) where
the parameters of f are fixed and we only need to learn the parameters of g′ : Rp → Rl. Ideally,
provided f is a rich enough feature map trained on a general enough source distribution dataset, then
the task for learning g′ is much simpler.
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4 Geometric complexity and neural collapse

In this section, we explore the general relationship between the embedding GC and neural collapse
showing that the geometric complexity can be used to bound neural collapse. Next, we see how the
geometric complexity can be efficiently and accurately estimated, both as an approximation of the
theoretical GC as well as through a number of sampling techniques for the empirical GC via batch
sampling, feature sampling and label sampling. Lastly, following [22], we derive a new generalization
bound for neural networks expressed in terms of the embedding geometric complexity; cf. [42].

4.1 Geometric complexity controls neural collapse

Previously, it has been shown [16] that the GC can be controlled implicitly through choice of learning
rate and batch size, as well as through standard explicit regularization. Practically, this means that
these same beneficial tuning strategies which ensure that models have low GC should also work to
keep the NC low as well. The following proposition (which we prove in Appendix A.1) bounds the
neural collapse by the geometric complexity provided that the input distribution satisfies a Poincaré
inequality also assumed in [42] and [7].

Proposition 4.1. Suppose that we have a balanced multi-class input-distribution Q with k classes
satisfying the Poincaré inequality in (5) for some constant c, then the geometric complexity of a
network embedding f bounds its neural collapse as measured by (3); namely, we have the following
bound

NC(f,Q) ≤ c ·GC(f,Q)

k − 1

∑
i 6=j

1

d2ij

 , (6)

where k is the number of classes, and dij is the distance between the mean of class i and class j.

We call the RHS of the bound in Eq. (6), excepting the Poincaré constant c, the geometric collapse:

GC(f,Q)

k − 1

∑
i 6=j

1

d2ij

 , (7)

where k is the number of classes, and dij = ‖µf (Qi) − µf (Qj)‖ denotes the Euclidean distance
between the mean µf (Qi) and µf (Qj) of class i and class j (resp.) in embedding space.

This quantity can be seen as another proxy metric measuring neural collapse. It is made of two
main parts decoupling the variances and mean differences present in the neural collapse framework.
The variances are consolidated into a single factor through the GC, while the mean differences are
averaged across classes in a separate factor. This separation allows the overall intra-class variability
to be influenced through the GC term, ensuring sufficient between-class separation through the
mechanisms identified in neural collapse.

This bound provides a powerful method to control the overall within-class variability via the L2-norm
of the model gradient. As a result, the geometric collapse provides a simplified and more refined
approach to managing class separability and variance in deep learning models.

We verify the relationship posed in Eq. (6) through experiments on VGG-13 trained on CIFAR-10
(see Figure 1). Through both implicit and explicit regularizers the pressure on the embedding GC
translates to a direct pressure on the neural collapse of the model via the geometric collapse. As
already observed in [17], lower levels of GC coincide with higher test accuracy as show in Figure 5
in Appendix A.5 containing the learning curves of that experiment.

In Appendix A.5 we see the same relationship holds across various datasets; e.g., MNIST, Fashion-
MNIST, CIFAR-100, and architectures; e.g., ResNet-18, ResNet-50. To avoid possible confounding
factors that could arise through batch size and learning rate manipulations, we also directly regularize
with the geometric complexity in Appendix A.5.6; the same relations hold in this case too.

4.2 The geometric complexity is a reliable and robust measure

One of the key advantages of the GC as a complexity measure is its computational efficiency.
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Figure 1: Controlling the neural collapse via the model geometric complexity for VGG-13 trained
on CIFAR-10. Lower embedding GC produces lower geometric collapse (Eq. 7) and more neural
collapse (i.e., lower NC) for Top row: increased learning rates, Middle row: decreased batch sizes,
and Bottom row: increased L2 regularization.

Under mild regularity constraints on the model function the theoretical geometric complexity of
a map can be efficiently estimated by its empirical counterpart, as stated in the proposition below,
already proven in [42] for logit networks (see Appendix A.2 for a proof). Additionally and crucially,
we verify that the empirical GC is a robust and reliable measure with respect to that data sample.
Proposition 4.2. Let f : Rd → Rp be a map with Lipschitz constant L and let DX be a sample of
m elements drawn independently from an input distribution Q. Then, for any δ > 0, we have with
probability 1− δ/2 the following bound

GC(f,Q) ≤ ĜC(f,DX) + L

√
log 2

δ

2m
. (8)

For a function f and data sample DX as in Proposition 4.2, to measure ĜC(f,DX) requires
computing the Frobenius norm of a potentially very large Jacobian matrix, particularly when p
represents the embedding dimension of a feature map. Note that,

ĜC(f,DX) =
1

m

m∑
i=1

p∑
j=1

d∑
s=1

(
∂f j(x(i))

∂xs

)2

. (9)

Although the computational complexity of the GC is impervious to increasing complexity of the
network architecture, e.g., in terms of parameter count or number of layers, one may run into
computation bottlenecks as the sample size m increases or when increasing the dimensionality d
(resp. p) of the inputs (resp. outputs). In these scenarios, it is necessary to find efficient means to
accurately approximate or sample the Jacobian; cf. [61].
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We explore the robustness of the GC when measured via samplings along these three axes; i.e.,
decreasing the number of examples m in the batch, randomly sampling the full Jacobian matrix which
has order d× p, and randomly sampling the number of model outputs p. As shown Figure 2, we find
that the value of the sampled ĜC remains stable and consistent to its true value through these fairly
simple and naive sampling tricks.

Figure 2: The GC computation is robust and consistent to sampling via Left: number of examples
in the batch, Middle: number of elements in the Jacobian, or Right: by sampling the embedding
dimension of the model. Here the GC and subnet GC have been computed over 20 trials, plotting
the mean and standard deviations for a ResNet-18 model that has been trained to convergence on
CIFAR-100. The true value of the GC for each setting is indicated by dotted line.

4.3 A new generalization bound with GC through NC

In [42], the authors derive a margin-based multi-class generalization bound for neural networks
which depends on the geometric complexity GC(h,Q) of the full logit network. In this section, we
extend this result. With inspiration from [22, Proposition 5], we show that the geometric complexity
measured on the sub-network feature map GC(f,Q) bounds the classification error of the nearest-
mean classifier defined by the feature map f .

As in [22], given a balanced k-class classification problem, let S =
⋃
c∈[k] Sc denote all class samples

and define the nearest-mean classifier by hf,S(x) := argminc∈[k] ‖f(x) − µf (Sc)‖ given by the
feature map f where µf (Sc) denotes the sample mean of the set Sc under the map f . Define the
generalization error

Error := E(x,y)∼P [I[hf,S(x) 6= y]]

where I[hf,S(x) 6= y] is the indicator function of the error set [hf,S(x) 6= y] and P is the full data
distribution from which samples S are drawn.
Proposition 4.3. Suppose that we have a balanced sample S from a k-class input-distribution
(x, y) ∼ P with mc samples per class. Assume further that the induced input distribution x ∼ Q
satisfies a Poincaré inequality as in (5) for some constant c. Then, for any δ > 0, with probability
1− δ/2 we have the following bound for the generalization error

E [Error] ≤ 16c

(
1

p
+

1

mc

)ĜC(f, S) + L

√
log 2

δ

2mck

∑
i 6=j

1

d2ij

 , (10)

where p is the embedding dimension of the feature map f and dij = ‖µf (Si)− µf (Sj)‖. Note, the
outer expectation on the left hand side is taken over the samples S used to produce the classifier hf,S .

Proof. This follows immediately from [22, Proposition 5] which gives the bound in terms of the
neural collapse instead of the geometric complexity. By using Proposition A.1 we can replace
the neural collapse with the geometric complexity and using Proposition 4.2 we then replace the
theoretical GC with the empirical GC, yielding the additional term with the Poincaré constant.

In Figure 3, we plot the LHS and RHS of the generalization bound in (10) from Proposition 4.3
for a VGG-13 model trained on CIFAR-10. In this plot, we see that the bound is not vacuous,
demonstrating a relatively tight fit. Note that on the RHS, we omitted the term involving the Lipschitz
constant L, assuming it is small due to its denominator. Additionally, we estimated a lower bound
for the Poincaré constant c by comparing the magnitudes of the RHS and LHS in the inequality (6),
based on results in Figure 1. This approximation yielded c ≈ 1000 in our setup.
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Figure 3: VGG-13 trained on CIFAR-10 with 5 random seeds.

5 The impact of geometric complexity on transfer learning

Many implicit regularization mechanisms in gradient descent exert a pressure on geometric complexity
which in turn constrain the neural collapse. In this section, we discuss the affect of this implicit bias
in transfer learning. Specifically, we show with theory how this bias during pre-training can help
explain the mechanisms behind transfer learning. Namely, that lower GC in a pre-trained embedding
network promotes neural collapse on new target classes, simplifying the fine-tuning process.

However, our bound makes it clear that certain compatibility conditions between the pre-training
(source) distribution and the fine-tuning (target) distribution are needed, which we argue are satisfied
in image foundational models and large language models. At last, we verify empirically that known
methods to reduce geometric complexity for the pre-trained embedding result in better performance
during fine-tuning on unseen tasks, in agreement with our neural collapse bound for transfer learning.

5.1 Lower pre-trained GC leads to improved fine-tuning

To analyze the impact of GC in the context of transfer learning, we consider the same formal setup as
in [22, Proposition 2]. Assume a class c in a set C of classes is represented by a class-conditional
distribution Qc(x) = P (x|y = c). Both the pre-training/source classes Q̃1, . . . , Q̃k and the fine-
tuning/target classesQ1, . . . , Ql are assumed to be drawn from a distribution over all classes in C. The
induced input distribution on all the classes (i.e., the combined source and target input distribution)
is denoted Q, while the source-only input distribution is denoted by Q̃. Let F∗ denote the set of
pre-trained feature maps f : Rd → Rp selected by the training procedure (e.g., the set of trained
embeddings with different initialization seeds but the same training protocol) and consider

∆(F∗) = inf
f∈F∗

inf
c6=c′
‖µf (Qc)− µf (Qc′)‖. (11)

With this, we can state the transfer learning bound
Proposition 5.1. Suppose that the source and target input distributions satisfy a Poincaré inequality
with constant cQ̃ and cQ (resp.). Then, with probability 1 − δ, over the selection Qc and Qc′ of
target class distributions, we have that the CDNV expectation for two target classes is bounded by
the geometric complexity of the embedding network f in the following way

EQc 6=Qc′ [Vf (Qc, Qc′)] ≤
cQ̃ GC(f, Q̃)

k − 1

∑
i 6=j

1

d2ij


+

(
8 +

16cQ supc∈C GC(F∗, Qc)
∆(F∗)

)(√
2π log(k)H(F∗, Q̃)

(k − 1)∆(F∗)

)

+

1 +

4 supx∈supp(Q)
f∈F∗

‖f(x)‖

∆(F∗)2


2
√

log 1
δ cQ supc∈C GC(F∗, Qc)
√
k∆(F∗)2


8



where k is the number of source classes, GC(F∗, Qc) = supf∈F∗ GC(f,Qc), dij = ‖µf (Qci) −
µf (Qcj )‖, and H(F∗, Q̃) is a complexity measure for F∗ over Q̃ (see Appendix A.3).

Proof. This follows immediately from [22, Proposition 2] which proves this bound for the NC and
distribution variances. Using our Proposition 4.1, we can replace the NC by the GC and swap the
variances by the corresponding geometric complexities via the respective Poincaré inequality.

Interpretation. In the bound above, the first term depends on the geometric complexity measured
over the source distribution Q̃ and decreases as the number of source classes k increases. Thus, we
can predict that lower GC(f, Q̃) encourages lower NC values (i.e. more neural collapse) on the new
target classes provided that the second and third term of the bound are also small.

However these other two terms involve both the source and target classes, making the full bound no
longer dependent only on the geometric complexity over Q̃.

Moreover these two terms can apriori explode since the infimum over the class-mean distances ∆(F∗)
no longer only involves source classes (where this distance is bounded away from zero due to neural
collapse into an equidistant simplex) but also target classes (for which we no longer have theoretical
guarantees).

However, if the source labels are granular enough in the sense the target labels can be represented
as combinations of the source labels (as for instance a target label of “dog” can be subsumed as all
the breeds of dogs in source classes on ImageNet), then the issues above are mitigated. Formally,
we can summarize this granularity compatibility condition between the source and target classes as
follows: For each label c of the target class there exists labels c1, . . . , ck in the source classes such
that Qc = 1/k(Qc1 + · · ·+Qck). Because GC(f, ·) is linear, we have

sup
c∈C

GC(F∗, Qc) ≤ sup
c∈[k]

GC(F∗, Q̃c)

and thus recover dependence only on source classes.

To address the ∆(F∗) term, observe that the compatibility condition above implies in terms of class-
means that µf (Qc) = 1

k (µf (Qc1) + · · ·+ µf (Qck)). Because of neural collapse during pre-training,
these source class-means form the vertices of a face in the neural-collapse class-mean simplex making
the target-class mean µf (Qc) the barycenter of this face. Since the distance between any two points
taken in the vertices of a simplex plus its barycenters is bounded away from zero, so is ∆(F∗). Note,
albeit intuitive and natural, this granularity condition is hard to verify in practice.

5.2 Improve fine-tuning by controlling pre-trained GC

When the compatibility conditions above are satisfied, Proposition 5.1 indicates that increasing the
amount of neural collapse for the target classes can be achieved by lowering the embedding GC during
pre-training. We verify this indeed occurs experimentally using the same regularization techniques
exploited in Section 4. Furthermore, we verify that these implicit methods of controlling pre-training
GC produce feature maps that perform better on fine-tuning tasks on CIFAR-FS with a ResNet-18 in
Figure 4 and on mini-ImageNet with VGG-16 in Appendix A.5.5.

6 Limitations and Conclusion

There is a notable limitation when extending our findings to language modeling and, for example,
large language models (LLMs). However, this limitation is not specific to our work per-se, but instead
it is a limitation of the application of neural collapse to language models in general, as described in
the recent work [65]. Namely, language modeling, as conducted via training by token prediction,
creates a classification task where the conditions for neural collapse are implausible. The main
problem, in addition to an imbalanced vocabulary, is that the embedding dimension for language
models is typically far less than the number of classes (i.e., the total vocabulary size), making the
neural collapse simplex impossible to exist. Extending the notion of neural collapse to the language
models is an open question and an active area of research and beyond the scope of this work.
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Figure 4: Controlling target neural collapse through source GC on CIFAR-FS with ResNet-18. Lower
Source GC produces more neural collapse on target classes (i.e. lower target NC), and higher 5-shot
transfer accuracy for Top row: increased learning rates, Middle row: decreased batch sizes, and
Bottom row: increased L2 regularization.

Uncovering and understanding the implicit biases that enable successful transfer learning is a critical
area of research in modern machine learning. Here we provide a framework connecting three different
themes behind implicit regularization: flatness of the loss surface, geometric complexity, and neural
collapse. We show that the embedding geometric complexity directly controls the neural collapse
during training and, moreover, plays a role in the success of transfer learning.

Extensive experiments on different image classification and fine tuning tasks across different hy-
perparameters verify our hypothesis. We believe this opens up an intriguing direction of research
further exploring the role of geometric collapse and geometric complexity in deep learning and
provides valuable insight for designing more efficient and effective techniques for model training and
fine-tuning.
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A Appendix

A.1 Proof of Proposition 3.2 (Neural collapse bound)

Proof. Suppose that we have an input probability distribution Q(x) = q(x)dx coming from a data
distribution P (X,Y ) (i.e. q(x)dx is the marginal probability distribution of p(x, y)dxdy) where Y
represents the k possible classes. Suppose further that P (X,Y ) is a balanced multi-class distribution.
In terms of the input distribution Q(x) this means that

Q =
1

k
(Q1 + · · ·+Qk)

where Qi(x) = qi(x)dx is the input distribution of class i. Suppose moreover that Q(x) satisfies the
Poincaré inequality in (5), that is,

Varf (Q) ≤ cEQ(‖∇xf‖2F ) = cGC(f,Q)

for some constant c. Then the statement we want to prove is that the geometric complexity of f , that
is,

GC(f,Q) :=

∫
‖∇xf(x)‖2q(x)dx

bounds its neural collapse as measured by

NC(f,Q) :=
1

#{i 6= j}
∑
i6=j

(
Varf (Qi) + Varf (Qj)

2‖µf (Qi)− µf (Qj)‖2

)
(12)

More precisely, we want to prove that we have the following inequality:

NC(f,Q) ≤ c ·GC(f,Q)

k − 1

∑
i 6=j

1

d2ij

 , (13)

where dij = ‖µf (Qi)− µf (Qj)‖ is the distance between the mean of class i and class j. Let us now
prove this statement.

First of all, since the geometric complexity respects convex sums of data densities, we have that for a
distribution Q = 1

k (Q1 + · · ·Qk) we can write

GC(f,Q) =
1

k
(GC(f,Q1) + · · ·+ GC(f,Qk)). (14)

In particular, this means that GC(f,Qi) ≤ kGC(f,Q). Furthermore, the Poincare inequality ensures
that VarQi

(f) ≤ cGC(f,Qi). Using these two properties and the definition of the neural collapse,
we obtain that:

NC(f,Q) =
1

#{i 6= j}
∑
i 6=j

(
Varf (Qi) + Varf (Qj)

2‖µf (Qi)− µf (Qj)‖2

)

≤ c

#{i 6= j}
∑
i 6=j

GC(f,Qi) + GC(f,Qj)

2d2ij

≤ ckGC(f,Q)

k(k − 1)

∑
i 6=j

1

d2ij

 ,

which simplifies to the desired result.

Remark A.1. Excepting the Poincaré constant, the quantity on the RHS above given by

GC(f,Q)

k − 1

∑
i 6=j

1

d2ij

 (15)

could be taken as an alternative measure of neural collapse. We call this the geometric collapse.
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A.2 Proof of Proposition 4.2 (Estimating the Theoretical GC by ĜC)

Proof. Let Q be an (input) probability distribution defined over Rd and let D = {xi}mi=1 of m ≥ 1
points drawn as i.i.d. samples from Q. Given the map f : Rd → Rp, we denote the empirical
geometric complexity of f over D by ĜC(f,D) which is defined as

ĜC(f,D) =
1

m

m∑
i=1

‖∇xf(xi)‖2F .

We begin by showing that

ED∼Qm

[
ĜC(f,D)

]
= GC(f,Q).

This follows by direct computation, keeping in mind that Q is a probability distribution and that the
points are independently sampled. We can write Q as Q(x) = q(x)dx and note that

ED∼Qm

[
ĜC(f,D)

]
= Ex1,...,xm∼Qm

[
1

m

m∑
i=1

‖∇xf(xi)‖2F

]

=
1

m

∫
Rm×d

m∑
i=1

‖∇xf(xi)‖2F dQm(x1, . . . , xm)

=
1

m

∫
Rm×d

m∑
i=1

‖∇xf(xi)‖2F q(x1) · · · q(xm)dx1 · · · dxm

=
1

m

m∑
i=1

∫
R(m−1)×d

[∫
Rd

‖∇xf(xi)‖2F q(xi)dxi
]
q(x1) · · · q̂(xi) · · · q(xm)dx1 · · · d̂xi · · · dxm

=
1

m

m∑
i=1

[∫
Rd

‖∇xf(xi)‖2F q(xi)dxi
]

=
1

m

m∑
i=1

[∫
Rd

‖∇xf(xi)‖2F dQ(xi)

]

=
1

m

m∑
i=1

GC(f,Q)

= GC(f,Q).

Now suppose we have two separate independent samples D and D′ each of of size m ≥ 1 which
differ by exactly one point, say xi in D and x′i in D′. By assumption, the map f is L-Lipschitz for
some Lipschitz constnt L > 0. Therefore, we have

ĜC(f,D)− ĜC(f,D′) =
1

m

(
‖∇xf(xi)‖2F − ‖∇xf(x′i)‖2F

)
≤ L2/m,

and similarly, ĜC(f,D′)− ĜC(f,D) ≤ L2/m. It follows that |ĜC(f,D)− ĜC(f,D′)| ≤ L2/m
and by applying McDiarmind’s inequality (e.g., [41]), we have that for any ε > 0,

P
[
ĜC(f,D)− ED∼µm [ĜC(f,D)] ≤ ε

]
≥ 1− exp(−2mε2/L2). (16)

Since, from the computation above, ED∼µm [ĜC(f,D)] = GC(f,Q) and setting δ/2 =
exp(−2mε2/L2) and substituting for ε in (16), we get that for any δ > 0 with probability as
least 1− δ/2 the following holds:

GC(f,Q) ≤ ĜC(f,D) + L

√
log 2

δ

2m
.

This completes the proof.
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A.3 Definition of the complexity measure H(F , Q) in Proposition 4.1

Let us restate here for the sake of completeness the definition given in Galanti et al. [22]. First
consider the Rademacher complexity R(A) of a set A ⊂ Rn which is given as the expectation
Eε(X) of the random variable X = supa∈A〈ε, a〉 where ε = (ε1, . . . , εn) is a random vector with
components uniformly distributed among the two values -1 and 1. Now consider the input distribution
Q coming from a multiclass distribution with labels in c ∈ C with label input distribution Qc. We
define the complexity measure H(F , Q) for the candidate functions in F over the source distribution
Q as the Rademacher complexity of the following set:

{(µf (Qc), Varf (Qc)) : c ∈ C, f ∈ F)} .

A.4 Experiment details

A.4.1 Figure 1: Geometric Complexity Controls Neural Collapse on CIFAR-10.

We trained a VGG-13 neural network on the full CIFAR-10 dataset with the provided architecture
[56] and using the standard train/test split. Throughout training, we reported the following metrics
measured and averaged over multiple batches of the training dataset: 1) the geometric complexity of
the model embedding layer; i.e., the layer on which the neural collapse is measured, 2) the neural
collapse as measured by (3) measured on the model embedding layer, and 3) the geometric collapse
of the model also measured on the penultimate embedding layer of the model and given by

GC(f,Q)

k − 1

∑
i 6=j

1

d2ij

 (17)

where Q is the training distribution, k = 10 as this was CIFAR-10, and (as in the paper) where
dij = ‖µf (Qi)− µf (Qj)‖ is the distance between the sample means of class i and class j.

These quantities were measured every 1000 steps of a very long pre-training of 100, 000 steps.
The optimizer was plain SGD (note we obtained similar results with momentum) without any
regularization nor schedule to avoid masking effects. We used random crop and random flip for
data augmentation. The results were all averaged over 5 random seeds for the neural network
parameter default initialization. The plots have no smoothing applied to the learning curves. Top
row: We swept over a learning rate range of {0.001, 0.0025, 0.005, 0.01, 0.025, 0.1} with a constant
batch size of 512. Middle row: We swept over a batch size range of {8, 16, 32, 64, 128, 256} with
a constant learning rate of 0.01. Bottom row: We swept over a L2 regularization rate range of
{0.0, 0.00025, 0.0005, 0.001, 0.0025} with learning rate 0.01 and batch size 256. Each sweep took
roughly 10h of training on a single Google Cloud TPU V3 accessed via a Google colab.

In Figure 5, we show the complete learning curves of that experiment.

A.4.2 Figure 3: Tightness of the generalization bound on CIFAR-10

We trained a VGG-13 neural network [56] on the full CIFAR-10 dataset using the provided train/test
split. For this model architecture we use an embedding layer dimension p = 1024. Note also that the
number of examples per class is mc = 5000. We used a constant learning rate of 0.005, a batch size
of 512 and trained for 100000 steps reporting metrics every 1000 steps.

Throughout training, we reported the following metrics measured and averaged over multiple batches
of the training dataset: 1) the empirical geometric complexity of the model embedding layer; i.e., the
layer on which the neural collapse is measured, denoted ĜC, and 2) the sum of the inverse squares of
dij which denotes the distance between the mean of class i and class j for i, j ∈ [k] for i 6= j and,
here, k = 10. These quantities were used to create the blue curve in Figure 3. We also computed the
nearest mean classifier error on the test set. Recall, for the feature map f and a sample S the nearest
mean classifier is defined as hf,S := argminc∈[k] ‖f(x)− µf (Sc)‖ where, here k = 10, and µf (Sc)
denotes the sample mean of the set Sc for class c under the feature map f . To create the orange curve
in Figure 3 we plot the average error hf,S(x) 6= y over the test set.
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Figure 5: VGG-13 on CIFAR-10. Training has reached terminal phase of training (TPT) with training
accuracy equal to 1 (see first and second column). Lower GC in training correlates with higher test
accuracy in all settings (see third and fourth column).

A.4.3 Figure 4: Controlling target performance through source GC on CIFAR-FS.

We trained a RestNet-18 neural network with width 1 implemented in Flax https://github.
com/google/flax/blob/main/examples/imagenet/models.py on CIFAR-FS with its initial
convolution modified to stride 1 and kernel size of 3 to adapt to CIFAR-FS instead of ImageNet. We
used only 10 classes for the source datasets with 600 images per class, which further we split in a
10/90 split for the test and train splits. The metrics were computed on an average of 100 random
samples of 5 classes in the remaining classes of CIFAR-FS. We reported 1) the geometric complexity
of the embedding layer measured on the source dataset (Source GC), 2) the neural collapse as
measured by (3) measured and averaged on the 100 random samples of 5-label samples from the
target dataset, 3) the test accuracy obtained by solving the normal equation directly for a ridge
regression with only 5 examples per class obtained from the target set. These three quantities were
measured every 1000 steps of a very long pre-training of 100000 steps. The optimizer was plain SGD
(note we obtained similar results with momentum) without any regularization nor schedule to avoid
masking effects. We used random crop and random flip for data augmentation. The results were
all averaged over 5 random seeds for the neural network parameter default initialization. The plots
have no smoothing applied to the learning curves. Top row: We swept over a learning rate range of
{0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5} with a constant batch size of 256. Middle row: We swept
over a batch size range of {8, 16, 32, , 64, 128} with a constant learning rate of 0.005. Bottom row:
We swept over a L2 regularization rate range of {0, 0.0001, 0.0005} Each sweep took roughly 10h of
training on a single Google Cloud TPU V3 accessed via a Google colab.

18

https://github.com/google/flax/blob/main/examples/imagenet/models.py
https://github.com/google/flax/blob/main/examples/imagenet/models.py


A.5 Additional Experiments

A.5.1 Cifar-10 on ResNet-18

In Figure 6, we trained a ResNet-18 neural network on CIFAR-10. The experimental setup is the
same as described in Appendix A.4.1. The results were all averaged over 5 random seeds for the
neural network parameter default initialization. The plots have no smoothing applied to the learning
curves.

Top row: We swept over a learning rate range of {0.005, 0.01, 0.025, 0.05, 0.1, 0.2} with a constant
batch size of 256. Middle row: We swept over a batch size range of {8, 16, 32, 64, 128, 256} with
a constant learning rate of 0.2. Bottom row: We swept over a L2 regularization rate range of
{0.0, 0.0001, 0.00025, 0.0005, 0.00075} with learning rate 0.02 and batch size 512.

Figure 6: Controlling the neural collapse via the model geometric complexity for ResNet-18 trained
on CIFAR-10. Lower GC produces lower geometric collapse and more neural collapse (i.e., lower
NC) for Top row: increased learning rates, Middle row: decreased batch sizes, and Bottom row:
increased L2 regularization.

A.5.2 MNIST on VGG-11

In Figure 7, we trained a VGG-11 neural network [56] on MNIST. The experimental setup is the
same as described in Appendix A.4.1. The results were all averaged over 5 random seeds for the
neural network parameter default initialization. The plots have no smoothing applied to the learning
curves.

Top row: We swept over a learning rate range of {0.0025, 0.005, 0.01, 0.025, 0.05, 0.1}
with a constant batch size of 512. Middle row: We swept over a batch size range of
{8, 16, 32, 64, 128, 256, 512, 1024} with a constant learning rate of 0.005. Bottom row: We swept
over a L2 regularization rate range of {0, 0.00001, 0.0001, 0.00025, 0.0005} with learning rate 0.02
and batch size 512.
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Figure 7: Controlling the neural collapse via the model geometric complexity for VGG-11 trained on
MNIST. Lower GC produces lower geometric collapse and more neural collapse (i.e., lower NC) for
Top row: increased learning rates, Middle row: decreased batch sizes, and Bottom row: increased
L2 regularization.
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A.5.3 Fashion-MNIST on VGG-11

In Figure 8, we trained a VGG-11 neural network [56] on Fashion-MNIST. The experimental setup is
the same as described in Appendix A.4.1. The results were all averaged over 5 random seeds for the
neural network parameter default initialization. The plots have no smoothing applied to the learning
curves.

Top row: We swept over a learning rate range of {0.005, 0.01, 0.025, 0.05, 0.1, 0.2} with a
constant batch size of 256. Bottom row: We swept over a L2 regularization rate range of
{0, 0.00001, 0.0001, 0.00025, 0.0005} with learning rate 0.02 and batch size 512.

Figure 8: Controlling the neural collapse via the model geometric complexity for VGG-11 trained on
Fashion-MNIST. Lower GC produces lower geometric collapse and more neural collapse (i.e., lower
NC) for Top row: increased learning rates, Bottom row: increased L2 regularization.

A.5.4 Cifar-100 on ResNet50

In Figure 9, we trained a ResNet-50 neural network on CIFAR-100. The experimental setup is the
same as described in Appendix A.4.1. The results were all averaged over 5 random seeds for the
neural network parameter default initialization. The plots have no smoothing applied to the learning
curves.

Top row: We swept over a learning rate range of {0.005, 0.01, 0.05, 0.1, 0.2} with a con-
stant batch size of 256. Bottom row: We swept over a L2 regularization rate range of
{0.0, 0.0001, 0.00025, 0.0005, 0.00075} with learning rate 0.02 and batch size 256.
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Figure 9: Controlling the neural collapse via the model geometric complexity for ResNet-50 trained
on CIFAR-100. Lower GC produces lower geometric collapse and more neural collapse (i.e., lower
NC) for Top row: increased learning rates, Bottom row: increased L2 regularization.

A.5.5 Lower Pre-trained GC Leads to Improved Fine-tuning: mini-ImageNet dataset on
VGG architecture

In Figure 10, we trained a VGG16 neural network (as described in [57]) implemented in Flax on
Mini-ImageNet (as described in [60]). We used 10 classes with 600 examples per class for training,
with a 10/90 train/test split. To evaluate the downstream performance we used 100 downstream tasks
consisting of 5 labels for few shot learning randomly chosen from a pool of 20 separate from the
training labels. The experimental setup was the same as described in section A.4.3. Namely, we
reported 1) the geometric complexity of the embedding layer measured on the source dataset (Source
GC), 2) the neural collapse as measured by (3) measured and averaged on the 100 random samples of
5-label samples from the target dataset, 3) the test accuracy obtained by solving the normal equation
directly for a ridge regression with only 5 examples per class obtained from the target set. These three
quantities were measured every 1000 steps of a very long pre-training of 100,000 steps. The optimizer
was plain SGD (note we obtained similar results with momentum) without any regularization nor
schedule to avoid masking effects. We used random crop and random flip for data augmentation. The
results were all averaged over 5 random seeds for the neural network parameter default initialization.
We swept over a learning rate range of {0.001, 0.005, 0.01} with a constant batch size of 256. Each
sweep took roughly 10h of training on a single Google Cloud TPU V3 accessed via a Google colab.

Figure 10: Controlling target NC through source GC on mini-imagenet with VGG-16: Increased
learning rates produces lower GC and more neural collapse (i.e. lower NC) resulting in higher 5-shot
transfer accuracy.
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A.5.6 Direct GC regularization increases neural collapse

To mitigate possible confounding factors due to batch size and learning rate manipulations, we train
a VGG-13 model [57] on CIFAR-10 with explicit GC regularization using a fixed learning rate
of 0.01 and a batch size of 256. We explore increasing levels of explicit GC regularization with
rates 10−6, 10−5, 10−4 and plot the results in Figure 11. We observe the same predictions as in our
experiments which indirectly lower the GC through learning rates, batch sizes and L2 regularization.
Namely, lower GC produces lower NC values (i.e., increased neural collapse). Note that in this
experiment we regularized w.r.t. the GC computed at the logit layer rather than the embedding
GC. This is because the high dimension of the embedding layer makes taking the gradient of the
embedding GC prohibitively expensive. Already, regularization with GC taken at the logit layer was
possible only for one seed. That being said, explicit regularization by GC computed at the logit layer
provides a direct way to control GC computed at the embedding layer.

Figure 11: VGG-13 on CIFAR-10 with explicit GC regularization (one seed).

A.6 Discussion on the Poincaré inequality

Recall that a distribution Q satisfies a Poincaré inequality if, for all differentiable functions v defined
on the support of Q, there exists a constant c > 0 such that

Varv(Q) ≤ cEx∼Q
[
‖∇xv‖2F

]
. (18)

In this section, we argue that the Poincare Inequality (PI) is a mild and natural assumption to make.
For instance, the Gaussian distribution, mixtures of Gaussians with equal (or different) variances,
mixtures of Gaussians and sub-Gaussians, mixtures of uniform and Gaussian measures; and any
log-concave probability measure all satisfy a PI; see, for example, [1, 54]. The same is true for most
distributions of importance in probability and statistics; see [47].

The Poincaré constant c itself can take very high values depending on the spread of the distribution.
For example, for a standard normal distribution the Poincare constant is 1 while for a multivariate
normal distribution the Poincare constant equals the largest eigenvalue of its covariance matrix which
can be any positive real number. Intuitively speaking, the Poincaré constant will increase if the space
is stretched in any direction and decrease if it is compressed in any direction.

The PI has also been assumed to hold for real life image datasets, where it has been used to help
improve GAN convergence, as in [31]. It is also a key assumption to understand the role of over-
parameterization in generalization as happens for large neural networks (cf. [7] which frames this as
an equivalent isoperimetry condition).

On the contrary, non-PI distributions are considered pathological; they can be constructed for instance
by artificially concatenating distributions with fully disjoint support. See [42] for a construction of
pathological examples of distributions not satisfying a Poincaré inequality.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the paper provides sufficient information on the computer resources
required for each experiment, including the type of compute workers, and execution time,
ensuring that the experiments can be accurately contextualized for performance.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [NA]
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• If there are negative societal impacts, the authors could also discuss possible mitigation
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Answer: [NA]

Justification: No use of third-party code beyond machine learning frameworks like JAX and
TensorFlow, and common Python libraries for experimental purposes.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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30


	Introduction
	Background and Related Work
	Problem Formulation
	Geometric complexity and neural collapse
	Geometric complexity controls neural collapse
	The geometric complexity is a reliable and robust measure
	A new generalization bound with GC through NC

	The impact of geometric complexity on transfer learning
	Lower pre-trained GC leads to improved fine-tuning
	Improve fine-tuning by controlling pre-trained GC

	Limitations and Conclusion
	Appendix
	Proof of Proposition 3.2 (Neural collapse bound)
	Proof of Proposition 4.2 (Estimating the Theoretical `39`42`"613A``45`47`"603AGC by `39`42`"613A``45`47`"603AGC"0362`39`42`"613A``45`47`"603AGC)
	Definition of the complexity measure H(F, Q) in Proposition 4.1
	Experiment details
	Figure 1: Geometric Complexity Controls Neural Collapse on CIFAR-10.
	Figure 3: Tightness of the generalization bound on CIFAR-10
	Figure 4: Controlling target performance through source GC on CIFAR-FS.

	Additional Experiments
	Cifar-10 on ResNet-18
	MNIST on VGG-11
	Fashion-MNIST on VGG-11
	Cifar-100 on ResNet50
	Lower Pre-trained GC Leads to Improved Fine-tuning: mini-ImageNet dataset on VGG architecture
	Direct GC regularization increases neural collapse

	Discussion on the Poincaré inequality


