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Figure 1: Given text prompts, LISA can generate high-quality meshes with PBR materials on a
single RTX 3090 GPU within 30 seconds.

ABSTRACT

Despite its potential, 3D generation lags behind 2D generation in quality and util-
ity, primarily due to the vast gap in the scale and diversity of training data—high-
quality 2D data is abundant, while high-quality 3D assets remain limited by orders
of magnitude. Existing methods use 2D generative priors for 3D asset creation
via distillation or generate-and-reconstruct schemes, both of which suffer from
quality loss during optimization. In this paper, we propose a novel scheme to
exploit 2D diffusion prior to 3d generation by integrating a lightweight adapter
into the decoder of a frozen 2D diffusion model, allowing it to generate RGB
images, Gaussian splats, and physics-based rendering material maps simultane-
ously. Once trained, the proposed Lightweight Image Splats Adaptation (LISA)
directly produces relightable Gaussian splats in feed-forward manner, which can
be converted into high-quality, relightable 3D meshes through an inverse render-
ing framework. Quantitative and qualitative results demonstrate that our method
outperforms state-of-the-art approaches with a significantly lower computational
budget for both training and sampling. More results can be found at https://LISA-
3dgen.github.io.

1 INTRODUCTION

AI-generated content(AIGC) has achieved remarkable progress in recent years, especially in 2D im-
age generation Rombach et al. (2022). However, 3D generation has been left far behind with 3D
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datasets of limited scale and quality. Though suffering from time-consuming per-prompt optimiza-
tion and 3D inconsistency, Dreamfusion Poole et al. (2022) and its follow-up works Wang et al.
(2023); Chen et al. (2023); Lin et al. (2023); Wang et al. (2024a); Chen et al. (2024b); Tang et al.
(2023) achieve zero-shot 3D generation via score distillation from pre-trained 2D diffusion priors.
To better leverage 2D priors, pioneer works Shi et al. (2023a); Long et al. (2024); Liu et al. (2023a);
Shi et al. (2023b) fine-tune stable diffusion models on the large-scale open-world 3D dataset Deitke
et al. (2023; 2024); Yu et al. (2023a) to inject 3D consistency prior into 2D diffusion models, known
as multi-view(MV) diffusion models. Large reconstruction models(LRMs) Li et al. (2023a); Hong
et al. (2023); Xu et al. (2023b; 2024a); Tang et al. (2024); Xu et al. (2024b) lift MV images to
3D representation Mildenhall et al. (2021); Wang et al. (2021a); Shen et al. (2023); Kerbl et al.
(2023) via a large feed-forward model. Although the latter diagram reconstructs 3D representation
from multi-view images, the LRMs are trained on 3D datasets with limited scale and have no direct
access to 2D diffusion priors, failing to explore 2D diffusion priors encoded in the network fully.

Does a 2D diffusion model already encode 3D information? We conduct a toy experiment to in-
vestigate this. We take an off-the-shelf multi-view latent diffusion model and attach a lightweight
decoder, allowing it to output a splatter image Szymanowicz et al. (2024) (where each pixel has a
Gaussian splat’s mean, opacity, and covariance features instead of RGB color). We only fine-tune
this decoder on a toy dataset that contains multiple 3D plants, while freezing all other learnable
components. Surprisingly, we find that this new model is able to generate complete 3D Gaussian
assets, even for input prompts that are not plants, such as animals and robots. This suggests that (1)
multi-view latent diffusion might already encode 3D knowledge; we just need a lightweight adapta-
tion to unleash it, allowing it to output 3D, and (2) such 3D generation can retain the rich knowledge
learned in 2D diffusion and transfer it to 3D without forgetting, thereby enabling us to leverage
widely available 2D data.

Inspired by the findings above, we present the Lightweight Image Splats Adaptation (LISA) to
repurpose 2D diffusion for end-to-end realistic, relightable, and generalizable 3D asset generation,
as shown in Figure 1. LISA achieves efficient end-to-end 3D generation by directly adapting pre-
trained layers from 2D diffusion models to output Gaussian splat images via additional learnable
zero convolution layers. We can easily fuse the Gaussian splats from multiple views and ensemble
a complete 3D Gaussian asset. This lightweight adaptation approach maximizes the preservation of
rich generative priors learned from 2D data while generalizing for 3D creation. Moreover, it benefits
from low 3D training data requirements as well as fast sampling and rendering speeds. To produce
realistic and user-ready 3D assets, we further apply test-time inverse rendering to convert our 3D
Gaussians into high-quality, UV-mapped, relightable 3D meshes.

Our experiments show that LISA achieves superior performance over prior 3D generation ap-
proaches in terms of both geometry quality and rendering quality, demonstrating the efficacy of
the proposed framework. Notably, LISA achieves this with significantly less 3D training data and
faster generation times. Specifically, with a subset of 46K high-quality multi-view instances from
G-Objaverse Qiu et al. (2024), LISA can be efficiently fine-tuned to generate 2D Gaussian splats
with coarse PBR materials, based on which we further achieve high-quality mesh generation with
PBR materials in under 30 seconds on a single RTX 3090 GPU.

Our contributions are as follows:

• We find that 2D diffusion networks can be adapted to directly generate 3D Gaussian splats
using a lightweight decoder with data- and compute-efficient training, and present the LISA
decoder to exploit 2D diffusion models for direct 3D generation.

• We present a novel text-to-3D generation scheme that efficiently generates high-quality,
relightable, and realistic 3D assets with consumer-grade GPUs.

2 RELATED WORKS

Text-to-3D with 2D diffusion priors. With the development of diffusion theory Ho et al. (2020) and
the emergence of various neural 3D representations Mildenhall et al. (2021); Wang et al. (2021a);
Shen et al. (2023); Kerbl et al. (2023); Shen et al. (2021); Mescheder et al. (2019), text-to-3D has
achieved significant progress in terms of quality and speed. Dreamfusion Poole et al. (2022) pro-
pose Score Distillation Sampling(SDS) loss to distill 3D consistent NeRF from text-to-image(T2I)
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diffusion priors given only text prompts, which open up a new era for zero-shot 3D generation and
follow-up efforts that improve distillation quality Yu et al. (2023b); Liang et al. (2024); Wang et al.
(2024a), apply on different neural representations Chen et al. (2023; 2024b); Lin et al. (2023); Yi
et al. (2023); Tang et al. (2023), text-to-3D scene generation Zhang et al. (2024); Fang et al. (2023),
and even extend to 4D generations Ren et al. (2023); Singer et al. (2023); Ling et al. (2024) oc-
cur like mushrooms after rain. However, due to the lack of 3D priors in T2I diffusion models,
distillation-based methods suffer from the 3D inconsistency problem, also known as the Janus prob-
lem; therefore, the community paves the way to inject multi-view 3D priors into T2I models by
fine-tuning pre-trained models using rendered views from large-scale dataset Deitke et al. (2023;
2024) to generate multi-view consistency images Shi et al. (2023b); Liu et al. (2023a); Long et al.
(2024); Shi et al. (2023a); Qiu et al. (2024); Li et al. (2023b), which server as strong 2D and 3D
combined priors and improve the quality of generated 3D assets by a large margin.

Multi-view 2D diffusion priors for 3D generation. As distillation-based methods still suffer from
time-consuming per-prompt optimization, instant3D Li et al. (2023a) propose the diagram to de-
compose the text-to-3D generation task into text-to-MV images generation and MV-to-3D gener-
ation, the former phase is implemented as a fine-tuned multi-view 2D diffusion model, while the
latter phase features a feed-forward network mapping multi-view images to NeRF representation.
The two-stage diagram indirectly benefits from both 2D and 3D priors and demonstrates superi-
ority against previous methods regarding quality and speed. InstantMesh Xu et al. (2024a) and
CRM Wang et al. (2024b) extend the diagram to direct mesh generation, while LGM Tang et al.
(2024) and GRM Xu et al. (2024b) build the reconstruction models with 3D Gaussian Splatting.
However, such models are all trained from scratch and fail to directly reuse 2D priors. Therefore,
the training process consumes tens to hundreds of high-end GPUs, which is typically unaffordable
in the academic community. Concurrent work LaRa Chen et al. (2024a) proposes to leverage the
pre-trained 2D feature encoder Caron et al. (2021) to construct dense 3D volumes and regress 2D
Gaussian primitives from them. Though LaRa achieves remarkable results on a limited budget, 3D
volume-based regression networks are GPU-memory-intensive designs, which will limit the scala-
bility and downstream applications.

3D generation with PBR materials. Simultaneously recovering geometry, materials, and illumi-
nations is a highly ill-posed problem even from densely captured data Liu et al. (2023b); Zhu et al.
(2024); Zhang et al. (2021); therefore, most existing works generate meshes with simple baked col-
ors, which are not compatible with modern graphics pipeline. Liu et al. (2023c); Xu et al. (2023a);
Qiu et al. (2024) introduce PBR priors into the optimization process to achieve material decompo-
sition during the generation procedure, while Siddiqui et al. (2024) propose a feed-forward network
to regress SDF fields with coarse PBR materials and refine the textures by a texture refiner network.

3 METHODS

Our proposed pipeline is shown in Figure 2, based on which we seamlessly adapt 2D diffusion mod-
els for direct high-quality 3D asset generation. Firstly, we briefly revise the related 3D representation
and diffusion models in Section 3.1. Then, we introduce the building blocks for our LISA model
by experimentally adapting MVDream for 3D Gaussian splats generation in Section 3.2, which also
demonstrates the benefits of reusing 2D diffusion priors. Next, we describe the details of our LISA
model in Section 3.3. To improve the usability of generated 3D assets, we design an automatic post-
processing procedure to convert our generated Gaussian splats into high-quality meshes with PBR
materials in Section 3.5.

3.1 PRELIMINARIES

2D Gaussian Splatting. Kerbl et al. (2023) propose 3D Gaussian Splatting (3DGS) to parameterize
the 3D scene via radiance fields in the form of a collection of Gaussian primitives G = {gi}, where
each primitive contains multiple attributes recovered by differentiable rendering. However, 3DGS
fails to recover accurate geometry surface. Therefore, Huang et al. (2024) improve the representation
by simplifying each primitive into 2D Gaussian Splatting (2DGS), each of which is parameterized
by a 3D position µ ∈ R3, a rotation vector R ∈ R3, a scaling vector S ∈ R2, an opacity o ∈ R,
and a view-dependent appearance c ∈ R(d+1)2×3 represented by spherical harmonic of degree
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(a) LISA model (Sec. 3.2) (b) Relightable GS generation (Sec. 3.3) (c) Post processing (Sec. 3.5)

Figure 2: Overview of the proposed pipeline. We decompose the generation process into three parts.
Firstly, we generate 2DGS with PBR materials using our LISA model. Then, we extract mesh via
TSDF Fusion, perform continuous remeshing to refine geometry, unwrap the uv map for the refined
mesh, and initialize the PBR texture maps by projecting rendered views from 2DGS onto the mesh.
Finally, we align the rendered views of the mesh with generated 2D views from MVDream to refine
the PBR materials via differentiable ray-racer Jakob et al. (2022b).

d. As an explicit representation, 2DGS is an unstructured represetation, which is incompatible
with traditional 2D neural networks. Inspired by Splatter Image Szymanowicz et al. (2024), we
leverage 2DGS and organize them in the form of multi-view Gaussian attribute maps, where each
pixel represents one Gaussian primitive, therefore, we can easily leverage 2D neural networks to
generate 2DGS while guarantee accurate geometry extraction.

Multi-view diffusion model. Multi-view(MV) diffusions are typically fine-tuned from stable diffu-
sion Rombach et al. (2022) to generate 3D consistent MV images. MVDream Shi et al. (2023b) is
fine-tuned to generate four orthogonal views around the object with elevation at the range of [0, 30]
through the denoising process. MV normal depth diffusion Qiu et al. (2024) is trained to directly
generate MV normal and depth images. The above diffusion priors contain strong 2D and 3D priors.

3.2 LIGHTWEIGHT IMAGE SPLATS ADAPTATION

Except for current ways to leverage 2D diffusion priors for 3D generation via distillation or generate-
and-reconstruct scheme, we opt to exploit another way to achieve end-to-end 3D generation by
modifying multi-view diffusion models to output 3D representation. However, the challenge mainly
lies in the entirely different organization of primitive data. To mitigate the gap, we construct the
generation part using the Gaussian Splatting organized in multi-view Gaussian attribute maps as
mentioned in Section 3.1, and for simplicity, we use 3DGS instead of 2DGS in this section.

With proper 3D representation, we propose to extract 3D information from 2D diffusion models
without violating pre-trained priors. ControlNet Zhang et al. (2023) paves an efficient way to inject
control information into a large pre-rained diffusion model via a new branch adapted by zero con-
volution layers, inspired by which we present our Lightweight Image Splats Adaptation (LISA) to
achieve direct 3D generation, except that ControlNet is designed to modulate extra information into
the diffusion model while LISA is to demodulate extra information from the model.

We introduce our LISA model from the basic building block, which we name the LISA block and
LISA switcher, as in Figure 3. For simplicity, we follow the notation from Zhang et al. (2023),
and refer network block in diffusion models as commonly combined network blocks, such as resnet
block, conv-bn-relu block, transformer block, et al. The LISA block clones and freezes the pre-
trained layer from 2D diffusion models, adapts the information flow from the previous layer, skip
connection, and intermediate information from frozen 2D diffusion models with zero convolution
layers. With such a design, the LISA block outputs the same information with the same inputs given
at the start of training. Therefore, the constructed model maximizes the preservation of rich gener-
ative priors learned from 2D data while generalizing for 3D creation. As we unleash 2D diffusion
priors to output extra information as 3D representation, we construct LISA with the decoder part of
the 2D diffusion models.
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(b) LISA switcher

ZC trainable frozen

(c) LISA with MVDream (d) LISA with multiple priors
Figure 3: Illustration of LISA constructed with different 2D diffusion priors. ZC stands for zero
convolution, which is used to adapt the frozen layers from 2D priors. GS represents output heads for
GS attribute maps. In (a), x represents the feature map from the former layer, xs is the one from the
skip connection, xf is intermediate information from 2D diffusion models, and xo stands for output.
Block (b) is based on (a) and used for information switching between different 2D diffusion priors,
where x1

i and x2
i represent feature maps from the former layer in their branch while x1

o and x2
o stand

for output feature maps. Due to the flexibility of our block, we can construct a LISA model with
one 2D diffusion prior, as shown in (c) with the LISA block, or fuse multiple 2D priors to a LISA
model, as in (d) with additional switcher blocks.

To verify our design, we build a simple LISA model with MVDream Shi et al. (2023b) being the
2d priors, which is fine-tuned from stable diffusion to generate four views with orthogonal azimuth
angles and an elevation angle in the range of [0, 30], as shown in Figure 3(c). We train the model
on a subset of multi-view images labeled “Plants” from G-Objaverse Qiu et al. (2024), which we
provide details in Section 4.1. During training, we follow Shi et al. (2023b) to generate the required
inputs for multi-view models and extract the needed intermediate information

{fi} = MV(xt; y, c, t) (1)
where MV is the pre-trained MVDream, t is the noise level, c is the camera pose, and xt is the
noisy orthogonal views with random noise ϵ at noise level t. With intermediate information {fi}, we
then generate the Gaussian attribute map as

G = F({fi}; y, c, t) (2)
where F(·) is our generation network, G is the predicted Gaussian attribute maps at the shape of
[4 × d × H × W ], d is the attribute channel for each Gaussian primitive, and H = W = 32 is
the height and width for feature maps. The generated Gaussian attribute map G is at a very low
resolution, resulting in a very sparse 3DGS with just 4096 primitives, and the representation ability
is severely limited. Therefore, we initialize 16 embedding vectors and repeatedly add the embedding
vectors to the feature maps before Gaussian attribute heads to decode 16 pairs of Gaussian attribute
maps {Gi}16i=1, which forms a dense 3DGS with 65,536 primitives.

We supervise the model by rendering eight views from the 3DGS, consisting of the four orthog-
onal views input to MVDream and four random views, and we utilize MSE loss and SSIM loss
at the resolution of 256 along with LPIPS loss at the resolution of 128. During inference, we run
DDIM Song et al. (2020) sampling for MVDream, and when the noise level is lower than 80, we
feed the intermediate information from MVDream into our GS prediction model once to generate
the corresponding 3DGS representation. As shown in Figure 4, given prompts out of the training
domain, our model learns to adapt the knowledge from MV image generation into 3DGS generation.
Note that the model is only trained on two NVIDIA RTX 3090 GPUs.

3.3 LISA WITH MULTIPLE PRIORS

Our toy experiment in Section 3.2 demonstrates the possibility of reusing 2D diffusion models for
direct 3D generation via our LISA model. Tough directly reusing 2D priors for 3D generation shows
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Figure 4: We fine-tune our model on the shown plant-shaped multi-view data, and the model demon-
strates strong generalization ability to generate out-of-domain instances, while the generated 3DGS
are consistent with 2D image priors.

great potential, the results shown in Figure 4(b) still suffer from blurry results, which is mainly due
to the low resolution of the Gaussian attribute map and the placement of each Gaussian primitive
needs more accurate 3D priors instead of just multi-view priors. To improve the generation quality,
we propose to combine multiple 2D diffusion priors for better Gaussian primitive placement and
upsample the Gaussian attribute maps to improve reconstructed details.

As shown in Figure 3(d), we design parallel LISA branches to leverage multiple priors. To align
different diffusion priors for single 3D asset generation, we inject information between each branch
via a LISA switcher module, which densely connects parallel LISA branches via zero convolution
layers, allowing the gradual construction of an information bridge. Since the Gaussian attribute
maps are separated into different independent maps, we can flexibly decode the attributes using
different parts of our network. Therefore, we assign the position generation task to MV normal
depth diffusion Qiu et al. (2024) as it encodes priors related to geometry, and we generate other
attributes using the MVDream diffusion prior to model the appearance of the 3D instance. Further,
we leverage pre-trained a lightweight super-resolution model Wang et al. (2021b) to upsample the
feature maps by a factor of 4 to decode Gaussian attribute maps at a resolution of 128, and we lock
the pre-trained super resolution block and add trainable layers before and after the block, which
helps stabilize the training progress while builds connections between each primitive in the feature
maps.

To improve the usability of the generated 3D assets, we employ 2D Gaussian Splatting Huang et al.
(2024) as our representation, and we add heads to decode albedo, metallic, and roughness. Besides,
we project the Gaussian primitives into 3D scenes via depth and offset to guarantee more accurate
placement. Specifically, each primitive in the generated Gaussian attribute maps consisting of a
depth t ∈ R, a 2D offset p ∈ R2, a rotation vector R ∈ R3, a scaling vector S ∈ R2, an opacity
o ∈ R, a metallic value m ∈ R, a roughness value r ∈ R, and a view-dependent appearance
c ∈ R(d+1)2×3 represented by spherical harmonic(SH) of degree d = 2. For the view-dependent
appearance c we predict the DC component via the albedo head, and leave the other channels to the
SH head. We project each primitive into the 3D world via µ = o+ t ·d, where o ∈ R3 is the camera
center and d ∈ R3 is the view direction, which is calculated after we move the primitive with offset
p in the NDC space. As MVDream tends to generate multi-view images with random background
colors, we use an additional head to decompose a background color cb ∈ R3 from the feature map
before upsampled. Also, we preserve the original denoising head for our network to stabilize the
model.

3.4 TRAINING AND INFERENCE

Training. During training, we sample a batch with four orthogonal views and four random views,
each of which consists of RGB, alpha mask, normal, depth, albedo, metallic, and roughness at the
resolution of 256. We train our model using bfloat16 precision and gradient checkpointing steps of
16, with each GPU processing one batch, resulting in a total batch size of 128. We add random grid
distortion Tang et al. (2024) to the four orthogonal views, apply a random background color to the
RGB images, and then process the views following MVDream and MV-normal-depth with random
noise level t ∈ [0, 1000] to get the input for the model. Then, we render the eight views of RGB,
albedo, alpha map, metallic, roughness, depth, and normal at the resolution of 256. For RGB and
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albedo supervision, we apply MSE loss, SSIM loss, and LPIPS loss:

Lcolor = λ1LMSE(Icolor, IGT ) + λ2LSSIM (Icolor, IGT ) + λ3LLPIPS(Icolor, IGT ) (3)

where λ1 = 1, λ2 = 2, λ3 = 5. For alpha map, we use binary cross entropy loss

Lalpha = (λ1 + λ2 + λ3)LBCE(Ialpha, IGT ) (4)

For metallic and roughness, we apply MSE loss

Lmaterial = (λ1 + λ2 + λ3)LMSE(Imaterial, IGT ) (5)

And we also apply the depth distortion loss with a weight of 2e4 and normal consistency loss from
Huang et al. (2024).

Inference. We infer our model with DDIM sampling with 50 steps and a guidance scale of 7.5 for the
MVDream and MV normal-depth model. As our model directly decodes multi-view splat images
from multi-view diffusion models, we only take the generated multi-view splat images generated
when the noise level is lower than 80. To align the MV normal depth model with MVDream, we
perform sampling using the denoising head in LISA decoder instead of the original one in the MV
normal depth model.

3.5 GEOMETRY AND TEXTURE REFINEMENT

Based on the generated 2DGS from our feed-forward network, we first extract meshes from 2DGS
via TSDF Fusion and refine them through continuous remeshing Palfinger (2022), then initialize
texture maps for the 3D assets and leverage differentiable ray-tracer to refine the PBR materials.

Geometry extraction and refinement. To extract meshes from 2DGS, we render albedo and depth
along circle camera paths at elevations of [10, 15, 20] around the instance plus a top view and a
bottom view, and we use the ScalableTSDFVolume from open3d Zhou et al. (2018) with the voxel
size of 0.004 and the truncation threshold of 0.02 to perform TSDF Fusion to extract the initial
mesh. Then, we extract the convex hull of the initial mesh to fill all the holes in the original mesh.
Finally, we render normal maps and alpha maps from the 2DGS along circle paths at elevations
of [−40,−30,−20,−10, 0, 10, 20, 30, 40] around the instance as the target views and perform 100
iterations of continuous remeshing Palfinger (2022) to transform the convex hull into high-quality,
smooth meshes.

Texture initialization and refinement. After mesh extraction, we use the smart uv project from
Blender Community (2018) to generate UV maps for the mesh, and we unproject the rendered
albedo, metallic, and roughness from 2DGS onto the mesh to initialize the PBR materials. Then
following Ummenhofer et al. (2024), we use differentiable ray-tracer from Jakob et al. (2022b;a) to
align the four orthogonal images with the generated four views from MVDream.

4 EXPERIMENTS

We introduce the details of the dataset and the training settings in Section 4.1, then in Sec-
tion 4.2 we report quantitative comparisons with MVDream via FID Heusel et al. (2017), Inception
score(IS) Salimans et al. (2016), and CLIP score Radford et al. (2021), and provide the user study
with LGM Tang et al. (2024) and LaRa Chen et al. (2024a), as which are Gaussian-based genera-
tion methods. Finally, we exhibit qualitative comparisons between our methods with LGM, LaRa,
Meshy-3, and LumaAI Genie.

4.1 DATASET AND IMPLEMENTATION DETAILS

Dataset. We use a subset of G-Objaverse Qiu et al. (2024) as our training data, which is a large
scale multi-view dataset rendered from Objaverse Deitke et al. (2023). G-Objaverse renders 264,775
instances in total, which renders 38 views for each instance, consisting of 24 views at an elevation
range of [5, 30] and evenly distributed around the object along the azimuth channel, 12 views at
an elevation range of [−5, 5] and evenly distributed around the object along the azimuth channel,
plus one top view and one bottom view. For each view, it provides rendered RGB, albedo, metallic,
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Star Wars Stormtrooper helmet, single object.

LGM LaRa Meshy-3* Luma Genie* Ours
a red and white rocket ship with a dome on top, 3d asset, single object.

LGM LaRa Meshy-3* Luma Genie* Ours
a wooden treasure chest filled with gold coins and a lock, 3d, single object.

LGM LaRa Meshy-3* Luma Genie* Ours

Figure 5: Qualitative comparisons between generated 3D assets and ones from related works. ’*’
refers to the non-publicly available commercial software.

roughness, depth, and normal map. We follow the experience from Long et al. (2024) to use the
subset with LVIS annotations in the G-Objaverse dataset as our training set, which consists of 21,469
objects, and we name it as LVIS subset. Besides, to boost our model in generating correct PBR
materials for Gaussian splats, we filter the whole dataset with the following criteria: (a) the object
must have rendered albedo, metallic, and roughness; (b) the front, left, back, right, top, and bottom
views have more than 20% meaningful pixels; (c) corresponding prompt has no specific words,
including ‘resembling’, ‘debris’, and ‘frame’. With the above criteria, we further select a subset
consisting of 24,010 instances, which we refer to as PBR subset, and we fine-tune our model on
this subset to improve the generation quality on PBR materials.

Implementation details. We implement our model based on MVDream 2.1 Shi et al. (2023b) and
MV-normal-depth Qiu et al. (2024), the former shares the same structure with stable diffusion 2.1,
and the later is the same as stable diffusion 1.5. Our model outputs four views of Gaussian attribute
maps at the resolution of 128, which forms a dense 2DGS representation with 65,536 primitives.
We first train our model on 8 RTX 3090 GPUs for approximately 17 hours on the LVIS subset and
then fine-tune the model on 4 RTX 3090 GPUs for approximately 10 hours on the PBR subset.

4.2 QUANTITATIVE COMPARISON

Quantitative comparison with multi-view diffusion model. As our model is an adapter that adapts
MVDream for direct 3D generation, we provide a quantitative evaluation as MVDream does. Specif-
ically, we randomly choose 1,000 prompts from the training set and choose the rendered images as
the target dataset. Then, we infer our model with the prompts and camera poses to generate the
corresponding MV images and meshes, and we render 12 views around the generated meshes. The
FID Heusel et al. (2017), Inception score(IS) Salimans et al. (2016), and CLIP score Radford et al.
(2021) are reported in Table 1a.
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FID↓ IS↑ CLIP score(ViT-B/L)↑

Training data (4 views) 14.36± 0.69 33.43
MVDream* 32.06 13.68± 0.41 31.12
MVDream 35.42 13.83± 0.53 34.23

Training data (12 views) 14.27± 0.35 33.26
Ours (12 views) 33.02 14.13± 0.55 32.96

(a) Quantitative evaluation of our methods, ’*’ means
we cite the metrics from the original paper, as MV-
Dream is evaluated on the non-public dataset; there-
fore, we report them here for reference only.

Methods Mesh Votes(%) Appearance Votes(%)

LGM 9.6 10.3
LaRa 30.0 14.4
Ours 60.4 75.4

(b) User study against LGM and LaRa on the gener-
ated meshes.

Table 1: Evaluation of LISA model.

L
+
P

P

L

Albedo Metallic Roughness

Different training strategy SR module

w/ SR w/o SR

Figure 6: Ablation study on the super resolution (SR) module and training strategy. ’L+P’ represents
training on LVIS subset and fine-tuning on PBR subset, ’P’ stands for PBR subset training only, and
’L’ stands for LVIS subset training only.

User study. We further perform a user study to evaluate the performance of our pipeline. As our
model is most related to Gaussian splats-based multi-views reconstruction methods, we perform
comparisons with LGM and the SOTA method LaRa Chen et al. (2024a). We choose 150 generated
results from Section 4.2, and reconstruct meshes using the generated MV images via the official
scripts from LGM Tang et al. (2024) and LaRa Chen et al. (2024a). We render 360-degree circle
views around the reconstructed meshes with and without texture maps, resulting in 300 videos.
We present each volunteer with 20 multi-view images with corresponding prompts, then randomly
show the rendered videos with or without texture maps from all methods, and ask everyone to vote
for the best results to evaluate the appearance quality or geometry quality. We finally get 72 valid
results and report them in Table 1b, which demonstrate the superiority over Gaussian splats-based
3D generation methods both in terms of appearance and geometry.

4.3 QUALITATIVE COMPARISON

As shown in Figure 5, we compare our results against other Gaussian splats based 3D generation
methods, which indicate that our pipeline can robustly generate better meshes with decomposed PBR
materials, while LGM and LaRa bake RGB into a single texture map. Besides, we also compare our
results against Meshy-v3 mes and LumaAI-Genie Ai, which are non-publicly available software that
supports 3D mesh generation with PBR materials. As in Figure 5, our model provides meaningful
PBR material decomposition, and we further exhibits more results in Figure 7.

4.4 ABLATION STUDY

Fine-tuning on PBR subset. We train our model with the following different strategies: (a) LVIS
subset training and PBR subset fine-tuning; (b) PBR subset training only; (c) LVIS subset training
only. As shown in Figure 6, the LVIS subset helps model better reconstruct the geometry, and the
PBR subset improves the PBR material generation.
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geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

geometry albedo

metallic roughness

Figure 7: More text-to-3D results.

Super resolution module. We replace the upsampler module in our network with bicubic interpo-
lation to upsample the feature maps to the resolution of 128, and train the model on LVIS subset.
The results in Figure 6 shows that the super resolution module generates results with more details,
while simply increasing the number of Gaussian primitive fails to improve the quality.

5 CONCLUSION

In this paper, we explore another way to exploit 2D diffusion priors for 3D generation except for
socre distillation or generation-and-reconstruct scheme. We propose a novel LISA model that modu-
lates and reassembles pre-trained layers from multi-view diffusion models for direct multi-view splat
image generation, which demonstrates superior generalization ability and efficiency. Furthermore,
we construct a complete pipeline based LISA model, which achieves efficient generation of high-
quality 3D meshes with PBR materials on consumer-grade GPUs within 30 seconds. Quantitative
and qualitative comparisons demonstrate that the great potential of our scheme.
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