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ABSTRACT

Efficient inference in high-dimensional models is a central challenge in machine
learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) al-
gorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF)
and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP up-
dates ensembles of prior samples into posterior samples by passing low-rank local
messages over the edges of a graphical model, enabling efficient handling of high-
dimensional states, parameters, and complex, noisy, black-box generative processes.
By utilizing local message passing within a graphical model structure, GEnBP
effectively manages complex dependency structures and remains computationally
efficient even when the ensemble size is much smaller than the inference dimension
— a common scenario in spatiotemporal modeling, image processing, and physical
model inversion. We demonstrate that GEnBP can be applied to various problem
structures, including data assimilation, system identification, and hierarchical mod-
els, and show through experiments that it outperforms existing belief propagation
methods in terms of accuracy and computational efficiency.

Supporting code is available at github.com/danmackinlay/GEnBP!
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Figure 1: Prior and posterior samples for latent q in the 1D system identification problem (Section.
The GEnBP ensemble has size N=64, and N=64 samples are drawn from the GaBP posterior. The
GEnBP prior comprises samples; the GaBP prior is sampled from a Gaussian density with the same
moments.
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1 INTRODUCTION

We combine the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to perform
inference in high-dimensional hierarchical systems. While both methods are well-established, their
combination seems novel and empirically outperforms existing approaches in key problems.

GaBP (Yedidia et al., 2005) is a specific Gaussian message-passing algorithm designed for inference
in graphical models. It performs density-based inference by leveraging a joint density over the model’s
state space. This density is approximated as a product of Gaussian factors, defining a graphical
model (Koller & Friedmanl [2009) over the graph G. Sum-product messages passed along G’s edges
help infer target marginals (Pearl, 2008)). Message-passing methods have been successfully applied
in various applications, including Bayesian hierarchical models (Wand, |2017)), error-correcting codes
(Forney, 2001} |Kschischang et al., 2001}, and Simultaneous Localization and Mapping (SLAM) tasks
(Dellaert & Kaess|, [2017;|Ortiz et al., 2021).

Graphical models possess various useful properties, such as permitting inference distributed over many
computational nodes (Vehtari et al., 2019), domain adaptation (Bareinboim & Pearl, 2013), a natural
means for estimating treatment effects (Pearl et al.|[2016), and online, streaming updates (Dellaert &
Kaess, [2017; Eustice et al., [2006). They perform well with low-dimensional variables but become
computationally expensive in high-dimensional scenarios.

The EnKF (Evensen| 2003) is widely used for inference in state-space models. It constructs a posterior
sample of a hidden state from prior samples by moment-matching the observation-conditional
distribution. Although the state update relies on a Gaussian approximation, EnKF never explicitly
evaluates the Gaussian density. This approach works well in high-dimensional settings, such as
climate models (Houtekamer & Zhang, 2016), where computing densities can be prohibitively
expensive. However, the standard EnKF is limited to state filtering and doesn’t extend to more
general inference tasks. In recent times, various techniques have extended EnKF to the system-
identification setting, where not only states but latent parameters of dynamics are jointly inferred (e.g.
Fearnhead & Kiinsch, 2018 |Chen et al., 2023)). EnKF is prized for its ability to handle correlated
spatial fields efficiently, as with other spatial Gaussian approximations such as the Integrated Nested
Laplace Approximation (Rue et al.l2009) and the related Stochastic Partial Differential Equation
approach (Lindgren et al., | 2011). Unlike those methods, it can exploit existing simulators to encode
complex physical dynamics, and does not require the Jacobian of the simulator. Thus far, there are
few methods which extend the attractive simulator-based, high-dimensional inference of the EnKF to
the more general setting of graphical models.

GEnBP borrows strength from both EnKF and GaBP, achieving the EnKF’s efficiency in high-
dimensional data processing and GaBP’s capability to handle complex graphical model structures
(Table[T). GEnBP is capable of performing inference in models with noisy and moderately non-linear
observation processes, unknown process parameters, and deeply nested dependencies among latent
variables, scaling to millions of dimensions in variables and observations. The key insight is that,
despite the name, Gaussian Belief Propagation as commonly used is not truly generic in the class
of possible Gaussian approximations (Section[2.2.3). Like GaBP and EnKF, GEnBP uses Gaussian
approximations. However, it relies on empirical samples for statistics over non-linear nodes, similar
to EnKEF, rather than the linearisation at the mode used in GaBP. By using ensembles to represent
Gaussian distributions, GEnBP avoids the computational burden of full covariance matrices, enabling
efficient belief propagation with potentially superior accuracy.

This approach is highly relevant for many practical problems, including physical and geospatial
systems like computational fluid dynamics, geophysical model inversion, and weather prediction.
Such systems typically feature high-dimensional representations with spatial correlations induced by
known physical dynamics that create a low-rank structure, which empirical covariance approximations
can effectively exploit.

Main Contributions

1. We introduce Gaussian Ensemble Belief Propagation (GEnBP), a novel message-passing
method for inference in high-dimensional graphical models.
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2. GEnBP leverages EnKF-like ensemble statistics instead of the traditional linearization used
in GaBP, improving the handling of non-linear relationships and reducing computational
complexity.

3. We demonstrate that GEnBP scales to higher dimensions than traditional GaBP while
achieving comparable or better accuracy in practically important physical problems, such as
spatiotemporal modeling and physical model inversion.

4. GEnBP is enabled by our development of:

(a) rank-efficient techniques for propagating high-dimensional Gaussian beliefs efficiently,
and
(b) computationally efficient methods for converting between Gaussian beliefs and en-
semble approximations without high-dimensional matrix operations,
which are, to our knowledge, novel contributions in this context.

2 PRELIMINARIES

We introduce our notation and essential concepts. See Appendix [C] for belief propagation background
and Appendix [D]for the Ensemble Kalman filter.

2.1 MODELS AS GENERATIVE PROCESSES AND DENSITIES

Random variables are denoted in sans-serif (e.g. x) and their values in bold (e.g. ¢); we assume all
variables have densities, x ~ p(x).

The model state is partitioned into variables linked by a structural equation model M (Wright, [1934).
Specifically, M comprises J generating equations {P; } 3-]:1, where each P; is defined asﬁ

Pj: RP7 — IRDﬁJ', X.g; = X@, - )

Each P; relates an input set .%; to an output set ;. The ancestral variables, defined as &/ =
U 7,=0 0;, have no inputs. We classify variables as:

* Evidence &: Observed variables.
e Latent .. Unobserved or nuisance variables.
* Query 2: Variables whose evidence-conditional distribution is of interest.

We assume that £ = 7. This structure allows us to represent the joint density of all variables as a
product of conditional densities,

J

p(x) = [[ p(xo, | s)). )

j=1

Our main objective is specifically to compute the posterior distribution p(xg|xs=x%)
f p(o, xy, xs=x))dre.. ie. to update our beliefs about the ancestral variables by assimil-
ating observations of the evidence variables while accounting for the latent variables.

2.2 BELIEF PROPAGATION IN GRAPHICAL MODELS

Graphical models associate a graph G with the factorization of the model density (see Equation 3)).
Here, BP refers to loopy belief propagation in factor graphs (Kschischang et al.,2001); additional
details are in Appendix[C]

The factor graph is constructed by representing each conditional probability p(x ¢, | .s,) as a factor
potential f; over N = 0; U J;:

mwzﬂﬁ@m. 3)

G is bipartite, with factor nodes for each f; connected to eachh x;, in its neighborhood .4;.

"Each P, may be stochastic; we omit the noise terms for brevity.
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BP approximates the marginal (or belief) of a query node as

b () ~ / p(@) da . @)

Proposition 1 (Belief Propagation on Factor Graphs). By iteratively propagating the messages,

M fs—x,, /<fj (m%)HmXﬁdemwj\k’ o)

i€N\k
Mg, = [ mpom ©)
SEN\J
BP approximates the marginals as
b (@) =[] mson. = [ple)dovs ™)
SEN,
Proof: See|Yedidia et al.| (2000). O

Though its analysis is complex (Yedidia et al., 2005} [Weiss & Freeman, [2001), BP achieves state-of-
the-art performance in many applications (Davison & Ortiz, [2019).

2.2.1 THE POSTERIOR GRAPH

In practice, we are interested in the evidence-conditional posterior graph G*, which conditions on
xg = x. To construct G*, we modify the factors f; for all j € .4 by replacing them with
conditioned factors,

fi(x;) < fi(@ap\6) = p(@Ap\slX6 = T%). ®)
Observed variables and their edges are removed. The target marginal is then
p(®2|xs =as) = bge (o),

with bg- (€ .) the belief over ancestral variables. See Figure[I1]in the Appendix.

2.2.2 NECESSARY OPERATIONS FOR BELIEF PROPAGATION

To compute bg« (€4 ), we perform conditioning, marginalization, and multiplication on densities:

Definition 1. Consider a state space x| = [mz a:ﬂ with density f(x;0). The following opera-
tions suffice for BP in an observation-conditional graph ((Eq.[8)):

Conditioning: [ (x;0),x) — [ (xe;07) = f (x| xi = ) ; ©)
Marginalization: f (x;0) — f (xy;0f) = /f (z;0) day; (10)
Multiplication:  f (x;0), f (xzk;0k) — f (x;0") == f (x;0) f (xx; 0) . (11)

2.2.3 GAUSSIAN DISTRIBUTIONS IN BELIEF PROPAGATION

When variable relationships are linear with additive Gaussian noise, and ancestral distributions are
Gaussian, each factor is Gaussian. In these cases, all operations in Deﬁnitionﬂ]have closed-form
solutions (Bicksonl 2009; |Yedidia et al., 2000), as used in Gaussian Belief Propagation (GaBP)
(Dellaert & Kaess|, [2017]).

We represent Gaussian densities in two forms:
Definition 2 (Gaussian Density Forms).

1
Moments Form: ¢y (x;m,K) = |27rK|7% exp (2(33 —m) Kz — m)) , (12)
, P2 L T L 151
Canonical Form: ¢c(x;n,P) = 5| exp| 5% Pr+n' x— otk P™'n ). (13)
T

4
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Here, m and K are the mean and covariance, while P = K~! and n = Pm are the precision and
information vectors. Multiplication is simplest in canonical form:

dc(xz;n, P) gpc(zr;n',P') < o (z;n+n/,P+P'). (14)

For nonlinear simulators P, the joint covariance is non-Gaussian; standard GaBP methods (Eustice
et al., 2006; Ranganathan et al., 2007} Dellaert & Kaess| [2017) then use the J-method (Dorfman)
1938)) to approximate covariances via a first-order Taylor expansion:

Cov(g(8)) ~ J,(0) Cov(8) T, (6)",

where J, is the Jacobian of g at 6.

The accuracy of the J-method is challenging to analyze for nonlinear P. Additionally, GaBP scales
unfavorably with the dimensionality of nodes, incurring a memory cost of O(D?) and a time cost of
O(D?) whenever a D x D covariance matrix is inverted.

2.3 ENSEMBLE KALMAN FILTERING

The Ensemble Kalman Filter (EnKF) reduces the computational burden of large D by representing
prior distributions with ensembles. An ensemble is a matrix of N samples, X = [z}, ... x™)],
with (™ ~ ¢, (m, K). We define the ensemble mean X = XA and deviation X = X — XB, where
A= %1 andB=1"T.

By overloading the mean and variance operations to describe the empirical moments of ensembles,
we define:

EX =X, VaryX = x5 XX 4V, Cov(X,Y) = x5 XYT (1)

Here, V is a diagonal matrix known as the nugget term, typically set to o?1. Setting o > 0 is useful
for numerical stability and to encode model uncertainty. These diagonal terms are usually treated as
algorithm hyperparameters and also appear in GaBP.

The statistics of ensemble X define an implied Gaussian density:
xr ~ (bM(:c;X, @V[X])

Prior model ensembles are sampled via ancestral sampling using the generative model described in
Equation 23]

Two of the Belief Propagation (BP) operations from Definition[I] are applicable to the EnKF.

Proposition 2. Partition x| = [xz x;] such that X = [X,I XZ] Assume the ensemble X

follows the Gaussian distribution:
) . (16)

L Xk \//a}vXk @(X@ Xk)
X ~ I ’
¢1\4 <|:wZ:| 3 &€:| ’

— ——1

X, wz — Xy + COV(X@, Xk)VarV (Xk)(.CEZB — Xk) (17)

Cov(Xy,X,)  Vary(Xy)

In ensemble form, conditioning (Eq.[9) is performed as:

The computational cost of solving Equation|17|is O(N® + N2D,, ). Marginalization (Eq. @) is
simply truncation, i.e., X — Xj.

Proof: See Appendix O

While the EnKF reduces computational costs and potentially improves approximation accuracy
over GaBP for nonlinear relationships, it does not generalise to other model structures without the
multiplication operation (Eq. [TT)) needed for BP.

In the following sections, we extend the EnKF-like approach to the BP setting by defining the
necessary operations to handle general graphical models.
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Table 1: Relations in Gaussian Ensemble Belief Propagation

Empirical statistics

Generative Density-based
Operations * Samp_l ¢ * Propagate
* Condition
Directed Factor
Graph type
(D—) OO
Decomposition x3 = P(x1,X2) flx1, 29, x3)
Node Parameters Empirical moments Canonical parameters
m, K n, P

Ensemble recovery

3 GAUSSIAN ENSEMBLE BELIEF PROPAGATION

GEnBP consists of: (1) sampling from the generative prior; (2) converting ensemble statistics to
canonical form; (3) performing BP with low-rank representations; and (4) recovering ensemble
samples to match updated beliefs (see Figure[I)). Although conceptually simple, the implementation
details are delicate (see Appendix [H).

We consider an approximation ¢ (712, K) optimal if 72 = m and the Frobenius norm ||K — K|  is
minimized—equivalently, if the Maximum Mean Discrepancy (MMD) with a second-order polyno-
mial kernel is minimized (Sriperumbudur et al.| 2010, Example 3).

3.1 RANK-EFFICIENT GAUSSIAN PARAMETERISATIONS

A key component of GEnBP is the use of Diagonal Matrix with Low-rank perturbation (DLR)
representations. We represent a symmetric positive-definite matrix K € R”*P in DLR form as

K=V+sLL',

with L € RP*N, diagonal V, and s € {—1,+1} (see Appendix [F). In the EnKF, the empirical
covariance from ensemble samples is naturally DLR; here, N denotes the ensemble size (or rank of
the DLR factors) and D the variable dimension.

To initialize BP, we set each factor f7 to the empirical distribution of the ensemble at that factor, X;:
f; ~ QSM(.’B;X]',VaI‘,Yqu). (18)

Among possible DLR approximations, the ensemble-based approach is most favorable; see Appendix|[l]
for a cost comparison.

Proposition 3. Suppose x ~ ¢yr(x; m, K) has a DLR covariance K = LLT + V, with L, € RP*N

and V diagonal. Then, the canonical form parameters n and P can be computed efficiently:
n=Pm, P=K '=U-RR',

where U is diagonal and R. € RP*N . Both the conversion to canonical form and the recovery of

moments have time complexity O(N3 + N2D).

Proof: Standard application of the Woodbury identity. See Appendix [
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3.2 BELIEF PROPAGATION WITH DLR REPRESENTATIONS

Standard GaBP requires expensive full-matrix operations for density multiplication. In contrast,
GEnBP leverages the DLR structure for efficiency. For two DLR matrices,

K=V+4+sLL", K =V +sL/L'T,
their sum is .
K+K=(WV+V)+s[L LJL L7 .

Thus, density multiplication (cf. Equation [I4) can be performed efficiently while maintaining the
DLR representation. Other operations such as vector products, rank reduction, and marginalisation
are also efficient (see Appendix [F).

3.3 ENSEMBLE CONFORMATION

After message propagation, we update ensemble samples to reflect the new beliefs (ensemble
conformation) by finding an affine transformation of the prior ensemble that best matches the
posterior mean and covariance. Specifically, we seek an affine transformation

Tpr: X+ uB + XT,

with . = m (the posterior mean) and T € RY*¥ chosen to minimize

— o 2
T := arg min HVarnzl(uB +XT%) — (LLT + V)HF . (19)
T*

Since T is identifiable only up to a unitary transform, we have:

Proposition 4. Any symmetric positive semi-definite matrix G = TT T satisfying
XTXGXTX = (N —1) (XTL(XTL)T —XT(V - n21)>”<)

defines an affine transformation that minimizes the loss in Equation[I9 Such a G can be computed
with memory complexity O(M? + N?) and time complexity O(N3® + DN? + DM?).

Proof: See Appendix O

For a variable with K neighbors, in the worst case M = KN and the ensemble recovery cost is
O(K3N3 + DN?K?).

3.4 COMPUTATIONAL COMPLEXITY

The overall cost of GEnBP depends on the graph structure and ensemble size /N. In many applications
N < D, yielding significant savings compared to GaBP, which scales poorly with D. Tableg
summarizes the computational complexities of GaBP and GEnBP. Notably, GEnBP avoids the O(D")
costs of full covariance operations, making it well-suited for high-dimensional problems.

GEnBP scales as O(D) with D (versus O(D?) for GaBP) but as O(K?) with node degree (versus
O(1)). In practice, large factors can be decomposed via Forney factorization (Forneyl, [2001}|de Vries
& Friston, 2017)) to reduce K without altering marginal distributions. If the K scaling is prohibitive,
one may convert to a full covariance matrix and use GaBP updates (see Appendix [I); however, in our
experiments this was unnecessary.

4 EXPERIMENTS

In this section, we compare GEnBP against an alternative belief propagation method, GaBP, and,
for reference, a global Laplace approximation (Mackay, [1992). We use synthetic benchmarks
designed to assess performance in high-dimensional, nonlinear dynamical systems. In both cases, the
graph structure is a randomized system identification task (Appendix [A.T]), where a static parameter
influences a noisily observed, nonlinear dynamical system. Although GEnBP applies beyond system
identification, this benchmark is chosen for its simplicity and popularity. More sophisticated graphical
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Table 2: Computational complexities for Gaussian Belief Propagation (GaBP) and Gaussian Ensemble
Belief Propagation (GEnBP), where D is the node dimension, K the node degree, and IV the ensemble
size. Time complexities are measured in floating-point multiplications.

Operation GaBP GEnBP

Time Complexity

Simulation o) O(N)

Error propagation O(D?) —

Jacobian calculation O(D) —
Covariance matrix O(D?) O(ND)
Factor-to-node message O(D3) O(K3N3+ DN?K?)
Node-to-factor message O(D?) o)
Ensemble recovery — O(K3N? + DN?K?)
Canonical-Moments conversion O(D?) O(N3 + N2D)
Space Complexity

Covariance matrix O(D?) O(ND)
Precision matrix O(D?) O(NDK)

model problems are discussed in Appendix [C| and Appendix [B.3]demonstrates GEnBP applied to
few-shot domain adaptation of a system dynamics emulator on unobserved states.

Fort =1,2,...,T we define
x; = Px(x¢-1,9), Y = Py(xt) (20)
where the evidence is & = {y, = y;}._; and the query is 2 = q

The GaBP implementation is modified from |Ortiz et al.|(2021) to allow arbitrary prior covariance.
Hyperparameters are not directly comparable between methods; we address this by choosing favorable
values for each algorithm. We measure performance by the mean squared error (MSE) of the posterior
mean estimate relative to the ground truth go and by the log-likelihood log bg+(go; q) at go. In
gradient-based methods such as Laplace or GaBP, the estimated posterior covariance may not be
positive definite, rendering the log-likelihood undefined; in such cases, it is omitted. Additional
experiments and details are provided in Appendix

4.1 1D TRANSPORT MODEL

The transport problem (Appendix [A.2)) is a simple nonlinear dynamical system defined over a 1-
dimensional spatial extent, chosen for ease of visualization. States are subject to both transport and
diffusion, with the transport term introducing nonlinearity. Observations consist of subsampled state
vectors perturbed by additive Gaussian noise. Figure [[|shows sample prior and posterior distributions
produced by GaBP and GEnBP, demonstrating that GEnBP recovers the posterior substantially better.
Further analysis of this example is provided in Appendix where it is also compared against a
global Laplace approximation.

4.2 2D FLUID DYNAMICS MODEL

In the computational fluid dynamics (CFD) problem (Appendix [A.3), states are governed by dis-
cretized Navier—Stokes equations over a 2D spatial domain. The parameter of interest is a static,
latent forcing field q. In this setting, GaBP fails for D > 1024, and the Laplace approximation
is unavailable because the estimated posterior covariance is far from positive definite. In our 2D
incompressible model, both the state and forcing fields are scalar fields over a d x d domain, which
we stack into vectors so that Do = D,, = d*. For comparison with a classic sampler that does
not use belief propagation, we implement a Langevin Monte Carlo (LMC) algorithm (Roberts &
Tweedie, |1996)) as a baseline, running it until it achieves an MSE comparable to that of GEnBP (2000
iterations after a 1000-iteration burn-in).

Figure[2]shows results as the dimension increases. The Langevin Monte Carlo algorithm achieves
the best posterior RMSE, but at roughly 102 times the computational cost of GEnBP. GEnBP attains

2If q were known, estimating {x; }+ from {y, }+ would be a filtering problem, solvable by EnKF.
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Figure 2: Influence of dimension D g in the 2D fluid dynamics model. Error bars indicate empirical
50% intervals from n = 10 runs. In grey-shaded regions, GaBP ran out of memory.
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Figure 3: Influence of viscosity v on a 32 x 32 2D fluid dynamics model. Error bars indicate empirical
50% intervals from n = 40 simulations.

superior MSE and posterior likelihood compared to GaBP while scaling to a much higher D . GaBP
experiments are truncated because trials with D g > 1024 failed due to resource exhaustion.

We caution that absolute runtimes should be interpreted carefully. In particular, the high-dimensional
Jacobian calculation in GaBP is not effectively parallelized by the PyTorch library, penalizing GaBP
by a constant factor. The asymptotic O(D) scaling of these Jacobian calculations (Margossian, 2019)
will eventually favor GEnBP.

Figure [3|illustrates the effect of varying viscosity v from laminar to turbulent regimes, producing
diverse nonlinear behaviors (see Figure[6). GEnBP strictly dominates GaBP in speed. It generally
outperforms in terms of MSE, although there are ranges around 7 ~ 1 where performance is similar
or slightly worse. Regarding the posterior log-likelihood at the ground truth, GEnBP is superior in
the low-v (turbulent) regime, while GaBP performs better in the high- (laminar) regime. Langevin
Monte Carlo is not competitive in terms of posterior log-likelihood, although its performance might
be improved through hyperparameter tuning.

5 CONCLUSIONS

Gaussian Ensemble Belief Propagation (GEnBP) advances inference in probabilistic graphical models
by combining the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation
(GaBP). It scales to higher factor dimensions than GaBP and achieves superior accuracy in complex,
high-dimensional problems. By employing ensemble approximations, GEnBP accommodates the
larger and more intricate factors common in real-world applications. Unlike EnKF, GEnBP handles
complex dependencies without requiring gradients and often outperforms GaBP in both accuracy and
speed.
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While GEnBP introduces additional tuning parameters and requires more model executions during
sampling, these costs are often offset by avoiding the high-dimensional Jacobian calculations needed
in GaBP. Its effectiveness is best in systems where the dynamics can be well-approximated in a
low-dimensional subspace (i.e., via DLR approximations). As with GaBP and EnKF, GEnBP relies
on Gaussian approximations and is thus constrained to unimodal distributions; convergence analysis
remains an open question. Moreover, comparing overall computational cost is complex and depends
on the graph structure. Our empirical results demonstrate that there are problems where GEnBP
is significantly more efficient than GaBP, although the full range of such problems has not been
characterized.

Despite these limitations, GEnBP’s scalability, flexibility, and ease of use make it a promising tool
for applications such as geospatial prediction and high-dimensional data assimilation. Future work
will focus on integrating practical improvements from both GaBP and EnKF—such as covariance loc-
alization, covariance inflation, adaptive ensemble selection, message damping, incremental updating,
robust covariance scaling, and graph truncation—to enhance stability and convergence at lower cost.
Exploring connections with particle-based and score-based methods may further expand GEnBP’s
capabilities.
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A BENCHMARK PROBLEMS

To demonstrate our method’s utility, we consider example problems of the system identification type,
where a latent parameter must be inferred from its influence on the dynamics of a hidden Markov
model. In this context, the problem is closely related to—but more challenging than—state filtering.

Unless otherwise specified, the hyperparameters for both GaBP and GEnBP are set to 42 = 0.01
and 02 = 0.001. GEnBP has additional hyperparameters 1> = 0.1 and ensemble size N = 64. We
cap the number of message-propagation descent iterations at 150 and relinearise or re-simulate after
every 10 steps.

A.1 SYSTEM IDENTIFICATION

In the system identification problem, our goal is to estimate the time-invariant latent system parameter
q. This parameter influences all states in the hidden Markov model, where xq represents the
unobserved initial state and subsequent states X1, X2, . . . evolve over time. Each state x; is associated
with an observation y;, as depicted in Figure 4]

Figure 4: Generative model for the system identification problem. The latent parameter q influences
all states, and observed states are shaded.

A.2 ONE-DIMENSIONAL TRANSPORT PROBLEM

We consider a one-dimensional state-space model where the state at time ¢, x; € RY, evolves
according to

th X X1

— S, (c s (yxe+(1— ’y)q)) te, 1)
P x>y,
= Dy(x:) +n,, (22)

where:

* X is the state vector at time ¢.

*+ q € R? s a fixed parameter vector to be estimated.

* v € [0, 1] is a decay parameter.

* (C x z denotes convolution of z with a kernel C' (modeling diffusion).

* Sy is a circular shift operator shifting the vector by k positions (modeling advection).
s € ~ N(0,721,) is process noise.
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* y, is the observation vector at time ¢.
* Dy is a downsampling operator selecting every /-th element.
e 1, ~N(0,0%1,,) is observation noise.

The latent parameter ¢ is drawn from a prior that generates smooth periodic functions. Specifically,
each element is defined as

qk:AeXp(/@cos(?—u)), k=0,1,...,d—1, (23)
where

* 11 ~ Uniform[0, 27] is a random phase.
e k ~ x?(df = smoothness - d—/ 2) controls the concentration (i.e. smoothness) of the

function.
* Ais ascaling constant.

Operator Definitions

* Convolution (C' * z): Applies a blur kernel C to the vector z, modeling diffusion.
* Circular Shift (S)): Shifts z by k positions to the right, wrapping around.
* Downsampling (D,): Selects every ¢-th element from z, reducing spatial resolution.

Intuitive Interpretation The state update in Equation [21/ models a transport process where the
state x; evolves by:

1. Decaying toward a background field: yx; + (1 — v)q.
2. Diffusing via convolution with C.

3. Being advected via the circular shift Sj.

4. Incorporating process noise €;.

The observation equation Equation 22 represents measurements of the state at reduced resolution
with additive noise 1,. Our inference goal is to estimate q from the sequence of observations {y, }
and the initial state xo. We use 7" = 10 timesteps for this problem.

A.2.1 RESULTS

Figure 5] plots the influence of the state dimension D o on various inference quality measures. GEnBP
estimates are substantially more accurate than GaBP, as indicated by lower MSE and more stable
posterior likelihoods. In this relatively low-dimensional problem, a global Laplace approximation
is also available. We observe that while the Laplace approximation is faster than both GaBP and
GEnBP, its MSE performance is intermediate, and its posterior likelihood is less stable—especially
as D g increases beyond 100. In contrast, GEnBP’s posterior log likelihood degrades more slowly
and remains defined.

A.3 NAVIER-STOKES SYSTEM

The Navier—Stokes equation is a classic problem in fluid modeling (Ferziger et al.,|2019). Here we
consider 2D incompressible flow solved with a spectral method using a PyTorch implementation

from |Li et al.| (2020). Defining the vorticity w = 57 — %Z and streamfunction 1 via
N
U = =
oy’
v
oz’

the Navier—Stokes equations are:

1. Poisson equation: V219 = —w.

2. Vorticity equation: 22 + w22 + vg—; =vVuw.
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Figure 5: Influence of dimension D o in the transport example. Error bars are empirical 90% intervals
from n = 40 runs. Missing log likelihood values indicate undefined values from non-positive definite
covariance estimates.
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Figure 6: Three Navier—Stokes simulations with At = 0.2 and varying viscosity v. The simulation
is on a 64 x 64 grid; observations are 8 x 8 and corrupted by white Gaussian noise with standard
deviation 0 = 0.1 on a normalized scale.
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The equations are discretized onto a d x d grid. At each timestep, we inject additive Gaussian white
noise vy ~ N(0, af,] 42) and a static forcing term q to the velocity field. The state x; is obtained by
stacking the 2D streamfunction %) into a vector. Observations are given by

y, = downsample,(x;) + 7,
with n ~ N(0,021).

The prior state and forcing are sampled from a discrete periodic Gaussian random field with power
spectral density

PSD(k) = o (47| k||* + 7). (24)

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 HARDWARE CONFIGURATION

Experiments were conducted on a Dell PowerEdge C6525 Server with AMD EPYC 7543 32-Core
Processors running at 2.8 GHz (3.7 GHz turbo) with 256 MB cache. Float precision is set to 64 bits,
and memory usage is capped at 32 GB. Execution time is limited to 119 minutes.

B.2 ENSEMBLE SIZE

In the main text, we leave the choice of ensemble size [NV open. In practice, ensembles on the order
of N = 10% seem sufficient. The computational cost of GEnBP scales as O(DN? + N?) (see
Section [3.4)), but the extra precision gained by increasing N is not unbounded. Figure [7] shows an
experiment where N is varied from 16 to 512 in steps of 16. The performance improves rapidly up to
N = 64 with diminishing returns thereafter. We use N = 64 as our default.

Mean-Squared Error

Execution Time <10—3 «103 Log Likelihood
a S L6 HH++++++++++
L _._"'-:- °7 1.4 ‘i

10" A -

] - 4 4

+"' l+ 1.2 4
o T HHH

1(|)0 2(|)0 1(|)0 2(|)0 1(|)0 2(|)0

Figure 7: Performance of GEnBP versus ensemble size IV for the 1D transport system identification
problem (Appendix @ Confidence intervals are empirical 95% intervals based on n = 80 runs.

B.3 EMULATION USING GENBP

In Section ] we demonstrated GEnBP in system identification problems, which are pedagogically
useful but may not showcase the full range of belief propagation methods. GEnBP can, however, be
applied to more complex problems.

Here, we devise a proof-of-concept experiment in few-shot domain adaptation of a neural network
emulator for unobserved states. The graphical model structure is shown in Figure

The interpretation is as follows: We have a forward model P : x;_1,u — x;, a known observation
operator H : x; — y,, and a neural network Q : x|u trained to predict the state given the unknown
parameter u. In the system identification problem, we stop here. However, in few-shot domain
adaptation, we introduce a Bayesian neural network A : X;_1, w — x; with weights w previously
trained on related (possibly synthetic) data. Our goal is to adapt the neural network to a new target
problem by estimating the posterior distribution p(w|y) using GEnBP.
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In our experiment, we use the CFD model from SectionEl as the ground truth. For the neural network,
we employ the Fourier Neural Operator (FNO) architecture because it can produce
high-fidelity results with fewer than 10° parameters. We simulate 10 time steps on a 32 x 32 grid
with viscosity ¥ = 0.001 and At = 0.1. GEnBP is applied to the first 5 time steps for domain
adaptation, with observations downsampled by a factor of 5 and corrupted with zero-mean Gaussian
noise (o, = 0.01). An ensemble size of N = 30 is used. The FNO employs 12 Fourier modes, 32
hidden channels, and 4 layers, with a Tensor Fourier Neural Operator variant that incorporates a 5%
rank factor, totaling 1,590,030 weights. Figure[§]shows that the domain-adapted emulator closely
tracks the target density over subsequent timesteps, while the unadapted emulator diverges.

%10-1 Domain adapation of the latent Navier Stokes emulator

me - Adapted emulator

Original emulator
7 -
6 -
5 -
4 -
3 -
2 -
1 -
0 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 8: Performance of GEnBP in the emulator domain adaptation problem. The graph shows the
Maximum Mean Discrepancy (MMD) between the observation-conditional state distribution, the
unadapted emulator, and the domain-adapted emulator, computed using an isotropic Gaussian kernel

of width 1/ v/D, over 50 randomized emulation problems.

C MINIMUM VIABLE INTRODUCTION TO PROBABILISTIC GRAPHICAL MODELS

The field of probabilistic graphical models is mature and extensive (see, e.g., Koller & Friedman|
(2009); [Wainwright & Jordan| (2008))). For our purposes, it suffices to understand that this framework
enables inference in complex hierarchical systems with partial observations. For example, Figure 0]
illustrates a simplified weather model where an oceanic physics simulator and an atmospheric physics
simulator provide forward predictions and interact through physical coupling. Their outputs are
observed by different sensors (thermal IR satellite imagery for the oceans and phased radar for the
atmosphere). These systems are high-dimensional, noisy, and governed by nonlinear PDEs. Our
primary target here is the one-step-ahead prediction for the atmospheric model, though extensions to
jointly learn observation and physics parameters are straightforward.

Figure [T0]shows a model closer to the system identification problem described in Sectiond] In this
model, we extend the system identification task (recovering u) by also recovering an emulator (e.g., a
neural network) that predicts an approximate state X; from the previous emulated state x;_;. The
goal is to estimate a posterior over neural network weights w to improve predictions when only noisy
observations y, are available.
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Figure 9: A complex graphical model structure from a weather prediction problem. It includes
an oceanic physics simulator, an atmospheric physics simulator, phased radar observations, and
thermal IR satellite imagery. The model is high-dimensional, noisy, and governed by nonlinear partial
differential equations.

Figure 10: Directed graph of the generative model M.y, in an emulation problem, showing temporal
dependencies (t = 0,1,2,...,T). Observed variables y, are shaded, and the global parameter w is
highlighted.

Graphical model formalisms provide a general framework for estimating states and parameters in
such systems. The key idea is that if we can establish a set of inference rules for arbitrary models, we
can extend them to complex models like that in Figure[9]

C.1 DIRECTED GRAPHS AND FACTOR GRAPHS

Starting from the structural equations defining a model, by sampling from the ancestral variable
distributions and iteratively applying the generative model,

X0, P (Xﬂl )
x=|:|=| : |, (25)
X0, Py (xﬂ,l)
we obtain samples from the joint prior distribution.

For a valid structural equation model, the following must hold:
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1. Forall j, 0; N .#; = (i.e., no self-loops).
2. If v € 0}, then for all k > j, v appears only in .7}

This defines a directed acyclic graph (DAG) over the variables, where nodes represent variables and
edges represent generating equations. Each generating equation j induces a density p(z ¢, |, ), s0
that

p(@) =] p(zo,l2). (26)

Under mild conditions (local Markov, faithfulness, and consistency; see Koller & Friedman| (2009)),
this representation is equivalent to the joint distribution.

As a running example, consider:

< [ P T
X5 Pra(x1)
X3 PIS(XI)
= . 27

X4 Pasza(x2, X3) 7)
X5 Pas(x2)
X6

| Pase (X4, X5) ]

This model is diagrammed in Figure [T1aand its density factorizes as

p(x) = pr(x1)pr2(T2|x1)p13(T3|T1)p2sa(®a| T2, 3)pas (x| T2)pase (T6|Ta, T5).  (28)
The directed generative model M is shown in Figure [TTa]

The directed generative model is intuitive but not always convenient for inference. The factor graph
representation (Frey et al., 1997} [Kschischang et al.l 2001)) discards directional arrows and uses
generic factors:

p(x1|e2) = f(21,22). (29)
Thus, the running example density Equation 28| becomes

p(x) = fi(x1) fro(@1, 2) fiz(x1, T3) faza (T2, T3, 4) fo5 (@2, T5) fase (4, T5, T6)- (30

The corresponding factor graph is shown in Figure[TTb] Factor graphs are bipartite, with nodes for
both variables and factors, and they allow simple, local approximate belief-updating rules (introduced

in Section |C.2).

We now introduce the conditional graph transformation. In practice, we are interested in the evidence-
conditional posterior p(z 2|xs = ), i.e.,

p(wg,wg = :C})
p(ze =)
(e, xy,xs =xf)day
" [p(xo, e, zs =z})deodey

3D

p(xolxs =xp) =

(32)

This conditional distribution can be represented as a factor graph, as shown in Figure where the
observed nodes are fixed and the corresponding factors are replaced by conditional factors (denoted

J35 and fi56).

C.2 FACTOR GRAPH GAUSSIAN BELIEF PROPAGATION

Loopy belief propagation (Murphy et al.,|1999) is an efficient algorithm for approximate marginal
inference in factor graphs. Although its convergence properties have been extensively studied (Wain+
wright & Jordan, 2008} |Yedidia et al., 2005)), we follow industrial practice (e.g.|Dellaert & Kaess),
2017) and treat it as sufficiently accurate for our purposes.
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(a) Prior directed graph of generative model M:
p(x) = p1(x1)pr2(x2|®1)p1s(zs|T1)pes (s |22)pasa(Ta| T2, 3)pase (6 |Ta, T5).

(b) Prior factor graph G for M:
p(x) = fi(x1) fiz(x1, ©2) f13(@1, 23) foza (@2, T3, T4) fo5 (T2, T5) fase (T4, T5, T6).

(c) Posterior factor graph G* for M after observing @5 and xg, where
p(x1, T2, T3, T4 |5, T6) O
fi(xr) frz(1, @2) fr3(@, 3) fosa (@2, T3, 4) f35(2) fis6 (X4).

Figure 11: Graphical model variants for the example model in Figure (a) prior generative graph,
(b) prior factor graph, and (c) posterior factor graph; with query nodes 2 = {1}, latent nodes
£ ={2,3,4}, and observed nodes & = {5,6}.

Proposition 1 (Belief Propagation on Factor Graphs). By iteratively propagating the messages,

My —sx, = / <fj (z.y,) meﬁfj>dwwj\k, (5)

i€N;\k
mxk—>fj - H mfs—)xka (6)
SEN\J
BP approximates the marginals as
b (1) = [ ~ [pl@) davs ™
SEN

The belief propagation algorithm for generic factor graphs, using the messages defined in Equations

(Eq.[), (Eq.[6), and (Eq.[7), is summarized in Algorithm T|following the terminology of Ortiz et al.
(2021)).
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Algorithm 1 Loopy Low-rank Belief Propagation over Factor Graph G

Require: Factor graph G with variable nodes {x; } and factor nodes { f; }
Require: Initial messages {x; — f;} and {f; — x;}
Ensure: Approximate marginal beliefs b(x) for all x;, € G

1: Initialize message queues Qx, s, and @y, x, as empty.

2: while not converged do

3:  for each factor f; € G do

4: for each variable x;, € 4}, do

5: Send factor-to-variable message (cf. (Eq.[3)).
6: end for

7:  end for

8:  for each variable x;, € G do

9: for each factor f; € 45, do
10: Send variable-to-factor message (cf. (Eq. @).
11: end for

12: Update belief b(x,) using (Eq.[7).
13:  end for

14:  Check convergence criteria.
15: end while
16: return b(xy) for all x;, € G.

C.3 GAUSSIAN FACTOR UPDATES

The factor graph formalism is especially convenient for Gaussian models because the Gaussian
density is closed under multiplication, conditioning, and marginalisation. Although we introduced
these ideas in Section[2.2.3] we detail them here.

Working with Gaussians in canonical form is advantageous (Eustice et al., [2006). We denote by
¢ (x; m, K) the Gaussian density with mean m and covariance K.

Proposition 5. Partition the random vector as

x| [mi] [Kgk Kké]
X; ~ ; , . 33
! ¢M< L;[] {mj [Kek Koo ) (33)
. -1
Define K = (K;Jl + K’] j ’1) . Then, for Gaussian nodes and factors, the operations in Deﬁnition
take the following forms.

Conditioning:

M (iL’j; mj, ij>7 T = Our (we; my + KoK (zh — my), Koo — K(?kK/:lek-Z) 34

Marginalisation:
oM (wj; mj, ij) = dm (CBk; my, Kkk) (35)
Multiplication (moments):
& (a:j;m;.,K;j), dnr (wj;mj,ij) > dar (wj;K(K;jlmj + K;j—lm;.), K) (36)
Multiplication (canonical):
o (wj; n, P;.j), b0 (mj; n;, ij) — o (mj; ) +n;, P + ij) 37)
Proof: See|Bickson|(2009). O
Note that Equation [37)is Equation [I4]in the main text.
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C.4 GAUSSIAN APPROXIMATION OF NON-GAUSSIAN FACTOR POTENTIALS

For simplicity, assume that all factor potentials are bivariate with xo = P(x1). (If not, the variates
can be stacked and relabeled accordingly.)

A classic approach to approximating the factor potential generated by a nonlinear process is the
propagation-of-errors, also known as the §-method (Dorfman [1938)). The -method uses a first-order
Taylor expansion to approximate how a nonlinear function transforms the moments (e.g., the mean
and covariance) of a random variable. This is analogous to a Laplace approximation but is specifically
used for error propagation in moments. In its simplest form, it approximates

Ef(x1) =~ f(]Exl), (38)

which is justified by Taylor expansion.

To estimate the joint covariance of the transformed variable, define

bbbl

The difference
Exenen(x1, f) = Ef (x1) = f (Ex1) (40)

is called the Jensen gap and represents one source of error in the linearisation.

Since the function P is typically nonlinear and intractable for an exact moment calculation, the
d-method further approximates f using a first-order Taylor expansion about the mean:

@)~ F(Bx1) + Var F(@)| g, (@ = Bx1). (1)
The error in this Taylor approximation is defined as

g’l‘aylor(xla f7 f) = [Ef(xl) - E[f(xl)]' (42)

In summary, the overall error in approximating the transformed covariance using the §-method
includes the Jensen gap, the Taylor error, and any additional error due to non-Gaussianity of the
inputs. Although the d-method is simple and computationally efficient, it is not always optimal
in terms of accuracy; alternative methods (such as higher-order approximations or sigma-point
approaches, or ensemble approximations) might sometimes yield better results.

D MINIMUM VIABLE INTRODUCTION TO THE ENSEMBLE KALMAN FILTER

The field of Ensemble Kalman methods is mature and extensive; see, e.g., Evensen| (2009) for a
comprehensive treatment. Here we provide a brief introduction sufficient for our purposes.

Figure 12: Generative model for a state filtering problem, where hidden states x; evolve over time
and produce observations y, fort =1,2,...
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The central idea is as follows: Given the state-space model in Figure[I2] where the joint prior density
factors as

T
p(®or, Yr.1) = Hp(iﬂt|ﬂ3t—1) p(yelxe),
t=1

filtering seeks the conditional density p(xo.r|y1.r). By induction, if we know an estimate
of p(xo.r—1|y1.7—1), then incorporating the new observation yr only requires multiplying by
p(xr|xr—1) p(yr|er) and normalizing.

Under the assumptions of linearity and Gaussianity, let
p(@r—1lyrr—1) = ¢m(Tr—1;m7r -1, Kr_1).
Linearity implies that the state transition can be written as
xr = Pr_1(xr-1) =Fr1xr_1 +dr_1 + €r, (43)

with e ~ N (0, Q7). Consequently, the joint density for z7_; and @1 (conditioned on y1.7_1) is
bum Tr—-1| . mr_1
zy |’ |dr1 +Fr_iomy 1|’ ’

The marginal for x is then
p(@r|yir—1) = o (zr e, Kr), (44)

Kr_1 Kr 1 Fp
Fro1Kr_1 Fr1Kr_1Fl_ | +Qr

with

mpr=Fr_ympr_1+dr_1, Kpr= FTflKTle—lT—fl + Q7.
Next, conditioning on the observation yr (assuming the linear observation model yr = Hrxr +
er + er with e ~ N (0, Rr)) yields the standard Kalman filter update:

~ - - —1 -
Ky = Ky — KpHE (HTKTH; + RT) Hy Ko, (45)
~ —1
mr = mr + KTH¥ (HTKTH; + RT) (yT —Hrmp — eT) . (46)

In practice, state transitions or observation models may be nonlinear. The Extended Kalman Filter
(EKF) approximates these models by linearizing via Taylor expansion (propagation of errors). For
example, one sets

dr_1 = E[Pr_1(m7_1)], Fr_1~VyPr_:

)
r=mr_1

and similarly for the observation model, while choosing diagonal covariance matrices Q7 and Ry.
However, the EnKF takes a different approach.

Rather than computing updates in closed form, the Ensemble Kalman Filter (EnKF) approximates
the filtering distribution using an ensemble of Monte Carlo samples. Let

X=[z® ... 2]

be a matrix of N samples drawn from p(x; m, K). The empirical ensemble statistics are defined as
follows:

— 1
X:=XAy, where Ay = Nleh 47)
)V(::X—XB]\h WlthBN = 11><N7
EX =X, (48)
VaryX = — XXT 4V (49)
I'vA = N_1 ’
Cov(X,Y) = ——X¥T G0
ov 5 - N _1 )
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where V is a diagonal “nugget” term (often set to o-2I) to ensure numerical stability.

The EnKF propagates the ensemble forward using the model:

{XTl X1 ‘y1:T71 51

‘yl:Tfl =
Xr } P(XT—l‘yl:T—l)
Thus, the EnKF approximates the joint density by the empirical distribution defined by the ensemble

without ever explicitly evaluating the Gaussian density.

A key step is the ensemble update (often referred to as the Matheron update).

Proposition 2. Partition x' = [x;r xZ] such that X7 = [X,;r X;—] Assume the ensemble X
follows the Gaussian distribution:
) . (16)

X~ dn ([i’j ; E{ﬂ )
In ensemble form, conditioning (Eq.[9) is performed as:

X,z > Xg + Cov(Xe, Xpo) Vary (Xp) (@B — Xy) (17
The computational cost of solving Equation|17|is O(N? + N2Dy, ). Marginalization (Eq. @) is
simply truncation, i.e., X — X.

Vary Xy Cov (X, Xy)
Cov(Xg, X))  Vary(Xy)

Proof: The equality Equation follows from 6] with the substitution of Equation[I6] which can be
computed with a cost of O(N® + N2D,, ) using the Woodbury formula to efficiently solve the linear

—1
system involving Vary, (Xj) (MacKinlay, 2025). Marginalization is simply performed by truncating
the ensemble to the relevant components. O

We can use Equationto calculate X7 |y1.7 by using yr as the observations x; in the update. We
have thus obtained sampled from the filtered distribution without ever evaluating its density. This
update is then used to condition the ensemble on new observations. For example, if the joint ensemble
of states and observations is

[XT] ‘y Xr|Yy1.r-1
1:T-1 —
Yr H(Xy

one uses Equation With the observed yr in place of  to obtain the updated ensemble X7 |y;.7.
In this way, samples from the filtered distribution are obtained without explicit density evaluations.

)

yl:T—l)

D.1 GAUSSIAN APPROXIMATION OF NON-GAUSSIAN FACTOR POTENTIALS

Unlike the GaBP, which approximates non-Gaussian factors using the §-method (i.e. via Taylor
expansion and linearisation), the EnKF avoids this entirely by using empirical samples to estimate
the moments of the joint distribution. Although this stochastic approximation introduces additional
(aleatoric) noise, empirical studies (e.g. |[Furrer & Bengtsson| (2007)) suggest that the EnKF often
produces more accurate estimates than the Gaussian approximations used in GaBP. In particular, by
sampling from the full joint distribution, the EnKF bypasses the Jensen gap and Taylor errors inherent
to the 4-method.

Heuristically, this means that while the GaBP may produce an approximate joint variance of the form

oGaBP x| Var(x;) J(my) Var(x;)
Var [xz] - {Var(xl) J(ml)T J(ml) Var(xl) JT(ml):| s (52)

with J(m) the Jacobian of P at the mean, the EnKF estimates the joint variance empirically as
GEKF [x;] o~ X1 X(N)
Var L‘J o~ Var,2p {P(X(l)) PR (53)

where the latter includes a nugget term to maintain numerical stability. Although the relative quality
of these approximations is complex to characterize theoretically, empirical evidence supports the
superior performance of the EnKF approach in many high-dimensional problems.
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E MATHERON UPDATES FOR GAUSSIAN VARIATES

The pathwise update for Gaussian processes, known as the Matheron update (see, e.g., Wilson
et al.| (2021)); Doucet| (2010)), provides a method to generate samples from a conditional distribution
without directly computing its density. Suppose

[vﬂ ~N< [Zﬂ , [Ejjy EVYVVVVVD (54)

Then the conditional moments are given by

Ely [ w = w’] = my + Kuy Ky (w" —mu), (55)
Varly | w = w*] = Kyy — Kuy Ky Kyw- (56)

Proposition 6. For [‘ﬂ asin Equation the mapping
y' =y + Kuy Ky (w" — w) (57)

produces a random variable y* that has the same distribution as y conditioned on w = w?, i.e.,
y Sy | w=w).

Proof: Taking the expectation of Equation [57|gives

E [y*} = my + Kuy Ko (w* = my),
which matches Equation @ For the variance, since w* is fixed and w is Gaussian, one can show that
Var[y*] = Kyy — Kuy KuuKyw,

which is Equation[56] Thus, the mapping in Equation[57]indeed produces samples with the desired
conditional moments. O

Note that this update does not require explicit evaluation of the density of y and forms the basis for
pathwise (sample-based) updates in Gaussian process models.

F DIAGONAL MATRICES WITH LOW-RANK PERTURBATION

Suppose
K=V+sLLT,
where Lis a D x N matrix, V = diag(v) (with v a D-vector), and
se{-1,1}

specifies the sign of the low-rank update. We are primarily interested in such matrices when N < D;
in that case we call them Diagonal Matrix with Low-rank perturbation because their computational
properties are favourable. (In contrast, matrices without such exploitable structure we refer to as
dense.)

Throughout this section we assume that the matrices in question are positive definite and that all
dimensions are conformable. We refer to the matrix L as the component of the DLR matrix, and
the diagonal matrix V as the nugget term (by analogy with classic kriging). Note that if N > D
the name is misleading since the matrix is not truly low-rank; the identities below still hold but the
computational advantages are lost.

F.1 MULTIPLICATION BY A DENSE MATRIX

The product of an arbitrary dense matrix X with a DLR matrix can be computed efficiently by
grouping operations. In particular, if
K=V+sLLT,
then
KX = VX + sL(LTX).
This requires only O(D - dim(X)) operations for the diagonal term and O(DN dim(X)) for the

low-rank term, and it can be computed without forming the full dense matrix K. (In general the
product is not itself a DLR matrix.)
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F.2 ADDITION
The sum of two DLR matrices with the same sign is also a DLR matrix. Suppose
K=V+sLL", K=V +sL/L'T.
Then
K+K =V+V +s(LLT+1UT)
_ (v + V’) +s[L UL U],
Thus the sum is a DLR matrix with nugget V 4+ V' and component [L. L]

F.3 DLR INVERSES OF DLR MATRICES

Inverses of DLR matrices can themselves be written in DLR form and computed efficiently.

Proposition 7. Let
K=V+LL"

be a DLR matrix with positive sign (s = +1). Then its inverse is
K'=V!'-RRT,

where
R=V 'L choll (T+ L7V 'L) ).

Here chol(A) denotes a (conventional) Cholesky factor satisfying chol(A) chol(A)T = A.

Proof: The Woodbury identity gives
-1
K=V v (T4 LTV L) LTV
Defining R as above yields Equation [60}
Proposition 8. Let
P=U-RR"
be a DLR matrix with negative sign (s = —1). Then its inverse is given by
Pl=U"'+1LL",
where
L=U 'R chol( (I-RTU"'R) ).
Proof: Applying the Woodbury identity for a negative low-rank update, we have
- -1
(U-RRT)" =U'+U'R(I-RTU'R) RTU"

Defining L as above, we obtain Equation [61]

(58)

(59)

(60)

(61)

O

The computational cost of either inversion is O(N2D + N3): roughly O(N?) for constructing the
Cholesky factor and O(DN?) for the necessary matrix multiplications. The space cost is O(N D).

For a given K = V 4+ sLLT, the term
sI+LTVTIL

is conventionally referred to as the capacitance of the matrix.
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F.4 EXACT INVERSION WHEN THE COMPONENT IS HIGH-RANK

Suppose instead that the low-rank component is not low-rank at all (i.e. the D x N component
satisfies N > D). In this case the cost of computing the low-rank inversion—dominated by a O(N?)
Cholesky factorisation—exceeds the cost of naively inverting the dense D x D matrix (which is
O(D?)). In such circumstances it can be preferable to compute the full dense inverse and then recover
a DLR representation via spectral decomposition.

For example, if one computes P~ (with P as in Proposition , then since
P =U""4+LL",
one may obtain a low-rank factor by forming the spectral decomposition
Pl _U1=QAQT
and setting
L=QA"
(In the special case where U is a constant diagonal, more efficient methods may be available.)
A similar strategy applies for inverting a DLR matrix of the form
K=V+LLT,
by computing its dense inverse K~ and then recovering the low-rank representation from the identity

K '=V'-RRT.

F.5 REDUCING COMPONENT RANK

We can use the singular value decomposition (SVD) to reduce the rank of the component in a DLR
matrix in a way that minimizes the Frobenius norm error. Suppose
K=V+LLT,
where L is a D x M matrix and V = diag(v). Let the thin SVD of L be
L=YSzT,

with Y € RP*M S ¢ RM*M (diagonal with nonnegative entries), and Z € RM*M 5o that
Y'Y =1, and ZTZ = I,;. Then

LLT =YS?Y"'.
Any zero singular values can be removed exactly. Moreover, if we retain only the largest r singular
values (setting the others to zero), we obtain the best Frobenius-norm approximation of LLT of
rank r. (A conventional thin SVD of L costs O(DM?); if M is large one may consider randomized
methods.)

G GAUSSIANS WITH DLR PARAMETERS

We recall the two common parameterisations of the multivariate Gaussian used in section Section

In moments form, we write

x ~ N(m,K),
where m = E[x] and K = Var(x). In canonical form the same density is written as

x ~ Ng(n,P),
where

n=K'm, P=K.

(Up to normalizing constants the exponent in the density may be written either as —%(w —
m) K~ (z — m) or equivalently as —iz Pz + n'x.)
A given Gaussian ensemble is naturally associated with a moments-form Gaussian,

XUQ ~ N(m, K),
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where we write N . o

m = E[X], K = Var,»(X) = 021 + XX T,
introducing a parameter o2 to ensure invertibility of the covariance if needed, or more generally
substituting an arbitrary diagonal matrix for o2I.

By applying Proposition [/| to the DLR form of the covariance, one may compute the canonical
parameters cheaply. That is, writing

——1
K!'=Var,.(X)=P=0"2-RR',

we have
n=Pm.

Conversely, given n and P = ¢~ 21 — RR " one may recover m and K via
K=P!=6"21-RRT, m=P n=0"2n-RR"n,

using the alternative low-rank inverse formula (see Proposition [g).

H GENBP DETAILS

H.1 GENBP ALGORITHM

Here we detail the GEnBP algorithm, specifying the matrix operations needed to perform the Gaussian
updates while maintaining the DLR forms for the matrix parameters.

Algorithm 2: GEnBP

Require: Graph G, generative processes {P; };, observations ., and an ancestral ensemble
sample X .
Ensure: An observation-conditional sample X7%,.
1: while not converged do
2:  Sample an ensemble from the generative processes P; on G (using (Eq. E])).
3:  Convert G into the conditional graph G* by conditioning the observed factors (using
(Eq.8) and (Eq.[17)).
4:  Convert variables and factors to DLR canonical form. {Section
5 Propagate DLR messages on G*. {Section[H.2JAlgorithm 3}
6:  Conform the ancestral nodes to the belief: update the ensemble sample via a transforma-
tion 7" so that T'(X%,) ~ bg~(x.). {Section[3.3]}
7: end while
8: return Approximate posterior sample X7%,.

H.2 GENBP FACTOR-TO-VARIABLE MESSAGE

We now outline the steps for a GEnBP f; — x, factor-to-variable message when there is a single
incoming message x; — f;. The outgoing message is Gaussian with canonical parameters (nj, P}),
where P}, = U, — R;R’/ is in DLR form. Extending the algorithm to multiple incoming messages is
straightforward but verbose.

Algorithm 3: GEnBP f; — x, Message (Single Incoming)

Require: Factor f; with canonical parameters:

k
* Precision matrix in DLR form: P = U — RR ", where

. n
¢ Information vector: n = {nz }
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T Uy
U= dlag([ukb,
-R= [Eﬂ with Ry € RP¢*Y and Ry, € RP+*N,

Require: Incoming message x;, — f; with canonical parameters:
¢ Information vector: n; € RDPx,
* Precision matrix in DLR form: P} = U} — R, R} ", where U = diag(u},) and
R/, € RP+*N,
Ensure: Outgoing message f; — x, with canonical parameters:
* Information vector: n},
» Precision matrix in DLR form: P}, = U, — RjR} .
1: Combine the information vectors for xi: 1y, <— 1y, + nj.
2: Combine the precision diagonals: @y < ug + uj.
3: Concatenate the low-rank components: Ry, < [Rr  R}].

4: Form the joint information vector: nyy < [ﬁi]

5: Form the joint precision diagonal: Up ¢ diag( [Zﬂ )
R, 0 }
R R;C :
7: Store DLR form joint precision matrix Py <— U — RHRE.
8: Invert to obtain the DLR joint covariance: Ky Pﬁl =Vn+ LHLH.
9: Compute the joint mean: my < Kpyng = Ving + LHLEnH.

10: Extract the marginal mean for x,: my < m[1:Dy].
11: Extract the marginal covariance for x;:

* Diagonal: V; < Vi[1:Dy, 1:Dy].
* Low-rank: Ly < Lyi[1: Dy, :].
* Store DLR-form K, < V, + L,L/ .
12: Reduce the rank of K, to N via SVD:
+ Compute SVD: L, = ASBT.
* Retain the top N components: L), = A 1N S[:N, 1N
* Store DLR covariance: K, < V, + L,L,T.
13: Compute the DLR marginal precision: P + K, ! = U}, — R/R, .
14: Compute the marginal information vector: nj <— Pym, = Uym, — R’eRZng.
15: return nj and P, = U, — R/R;".

6: Form the joint low-rank component: Ry [

H.3 ENSEMBLE RECOVERY

After belief propagation, suppose the belief for a query variable is b(x o) ~ Ny (x 2; m, K o) with
DLR covariance Kg = Vg + L ng@. To convert this belief into ensemble samples, we choose an
affine transformation 7 that maps the prior ensemble X o to an updated ensemble X'y, = T'(X 2) so
that the empirical distribution of the transformed ensemble approximates Ny (€ .2; m, K ) under a
metric d. (For brevity we suppress the subscript ().)

We restrict 7" to the family of affine transformations

Tr: X — pB+XT,
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with parameters g € R” and T € RY*¥, Minimizing the distance between the empirical moments
and the target moments yields

w = EX, (62)
— 2
T = arg min HVaraz (XT) — KH (63)
T r
— 2
= arg min HVMU? (T(X)) - (LLT +V) HF (64)
T

Since the cost depends only on TT T, the minimizers are nonunique. We therefore optimize over
M =TT in the space of N x N positive semidefinite matrices Mf :

M* = arg min L(M), (65)
MeM¥y
where
1 o . 2
L(M) == HiXMXT— LLT +V H , 66
(M) N -1 ( + ) F (66)

with V := V — ¢21. The gradient is given by

2 o[ XMXT .
VuL = X' ( —LLT — V) X.

N -1 N -1
An unconstrained solution M’ satisfies
XTXMXTX = (N - 1) ()“(TL(XTL)T + )“(T\b”().

This system can be solved at O(NN?) cost (using, e.g., pivoted LDL decomposition) and then projected

onto the PSD cone. Finally, we extract T via the SVD of M* = USU by setting T = U(S)/2.
With careful ordering, the total cost is O(N?® + DN? + DM?).

I ALTERNATIVE LINEARISATIONS AND LOW-RANK DECOMPOSITIONS

In response to a reader’s question, we investigate whether GEnBP is merely a low-rank decomposition
of the GaBP algorithm. We argue that it is not; rather, the relationship between the two is as illustrated

in Figure [[3]

Although both GEnBP and GaBP use Gaussian approximations, they do not employ the same
approximations. This is why, as shown in Section[d] GEnBP can surpass GaBP in accuracy as well as
speed. We noted in Appendix [C.3|that GaBP not only selects a particular Gaussian density family
(which it shares with GEnBP) but also uses specifically the §-method for approximating nonlinear
factors, as opposed to the sample approximation of GEnBP. This apparently minor difference has
significant implications, which we discuss below.

Consider the joint density of a factor x = P(x1) to highlight these differences. For simplicity,
suppose that the input and output dimensions are equal, i.e. D1 = Do = D. Two alternatives for
covariance estimation have been discussed in this work.

GaBP uses propagation of errors:

Var x J(mq) Varx
Var {xl} ~ ! T (m1) Tl (67)
X2 Varx; J(my) J(my) Varxy J ' (my)
where J(m) denotes the Jacobian of P evaluated at m.
In contrast, GEnBP uses an empirical estimate:
v 0] e P ROy .
Tl T pE) L e
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Figure 13: Relationship between GEnBP and GaBP.

Here the empirical covariance Var,2; is computed using [N samples from the prior, with an inflation
term o1 to ensure invertibility.

As noted in Section [3.4] the cost of computing the empirical covariance in Equation [6§]is higher than
that of the propagation-of-errors estimate in Equation [67—both in time and space. There are two
main components to this cost:

Firstly, the cost of generating the ensemble (in GEnBP) versus computing the Jacobians (in GaBP).
In GEnBP, generating N samples from the prior incurs a cost that scales as O(N). In contrast,
computing the Jacobian in GaBP depends on the function but is generally O(D).

Secondly, the cost of performing the necessary matrix multiplications. The matrix product in
Equationinvolves three D x D matrices and hence costs O(D?). In Equation the empirical
covariance is computed at a cost of O(DN). (It would be O(D?N) if we were to calculate the full
covariance matrix; however, as argued in this paper, it suffices to compute the deviance matrices.)

For simplicity, suppose we are in a regime where N < D and the node degree K is small. In this
setting, the belief propagation steps in GEnBP are generally cheaper. One might then ask whether
GaBP could also benefit from low-rank belief updates in the SAEM setting.

Suppose we wished to construct a third option—a low-rank GaPB (LRGaBP)—which uses a low-rank
decomposition of the covariance matrix to perform approximate GaBP in the hope of achieving
efficiency similar to GEnBP. First, one would compute a rank /N decomposition of the prior covariance,
ie.

Varx; ~LL"T, LeRP*V,

perhaps by eigendecomposition. Naively, this operation is D?, or O(D?1og N + N2D + N3) using
the method of (Halko et al., 2010, 6.1).
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The joint variance arising from the propagation-of-errors (or 6-method (Dorfman) [1938))) can then be
written as

X1 [ Varx J(my) Varx;
Var ~
LJ _Varxl J(ml)T J(my) Varx JT(ml)
[ ot J(ma) LLT
B _LLT J(ml)T J(ml)LLT JT(ml)
L L T
B J(mQJ L(mln] : (69)

This is indeed a low-rank decomposition and is amenable to the same techniques as the other low-rank
methods outlined in Appendix@ However, it is not computationally competitive. Since J(m) is a
D x D matrix, the product J(m;) L costs O(D?N), in addition to the O(D) cost of computing the
Jacobian.

We summarise the costs of this hypothetical LRGaBP step in Table 3]

Notably, although the precise relationship between these algorithms depends on the problem structure,
we generally expect GEnBP to be more efficient than LRGaBP for high-dimensional problems at a
fixed N; in many cases GEnBP exhibits a lower exponent in D. Furthermore, since LRGaBP is an
approximation to GaBP, its accuracy is inherently bounded by that of GaBP, whereas GEnBP—being
a different approximation to the target estimand—is not subject to this limitation.

Nonetheless, the LRGaBP algorithm has not been pursued further given its computational inefficiency
and limited accuracy gains relative to GEnBP.

Table 3: Computational Costs for Gaussian Belief Propagation (GaBP), Ensemble Belief Propagation
(GEnBP), and the hypothetical Low-Rank Gaussian Belief Propagation (LRGaBP) for node dimension
D and ensemble size/component rank N.

Operation GaBP GEnBP LRGaBP
Time
Simulation o(1) O(N) O(1)
Error propagation O(D?) — O(D?N)
Jacobian calculation ~ O(D) — O(D)
Covariance SVD — O(N3+ N2D) O(D?*log N + N3+ N2D)
Space
Covariance Matrix ~ O(D?) O(ND) O(ND + D?)
Precision Matrix O(D?) O(ND) O(ND)
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