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ABSTRACT

In this work, we introduce a new information-theoretic perspective on Multiple
Instance Learning (MIL) for parameter estimation with i.i.d. data, and show
that MIL can outperform single-instance learners in low-signal regimes. Prior
work (Nachman & Thaler, 2021)) argued that single-instance methods are often
sufficient, but this conclusion presumes enough single-instance signal to train
near-optimal classifiers. We demonstrate that even state-of-the-art single-instance
models can fail to reach optimal classifier performance in challenging low-signal
regimes, whereas MIL can mitigate this sub-optimality. As a concrete application,
we constrain Wilson coefficients of the Standard Model Effective Field Theory
(SMEFT) using kinematic information from subatomic particle collision events at
the Large Hadron Collider (LHC). In experiments, we observe that under specific
modeling and weak signal conditions, pooling instances can increase the effective
Fisher information compared to single-instance approaches.

1 INTRODUCTION

Hypothesis testing provides a formal framework for deciding between a null hypothesis Hy and
an alternative hypothesis ;, based on observed data. According to the Neyman-Pearson lemma
(Neyman et al., [1997), the uniformly most powerful test statistic is the log-likelihood ratio (LLR),
making it the optimal choice for distinguishing between competing models. Equation [1| shows the
LLR when the number of events observed, IV, is a Poisson random variable with mean rate v/(6).
As shown, the LLR, denoted as A(xz|61,6), depends on the data x, the parameter of interest 6, the
mean rate v, and event likelihood p(z;|0).

Ae0.80) = (80) — w(80) + N 12020 4 3 21, M)
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—_—
Rate Term Shape Term (ML Target)

In high-energy particle physics, we usually have a well-defined means of calculating the expected
event rate under some hypothesis, but the likelihood p(z;|0) for a single event is often intractable.
(Brehmer et al.,2020) One common strategy is to generate Monte-Carlo simulations (Frederix et al.,
2021)) under different parameter values, and train ML models to approximate a function monoton-
ically related to the LLR, using kinematic observables such as energy and momentum as input.
However, the practical effectiveness of this method diminishes when the underlying signal is weak,
causing even state-of-the-art classifiers to exhibit suboptimal performance in practice.

Since the signal levels are lower than for a given ML model to construct a reliable discriminant,
we conceived the use of set (or ”bag”) of events in order to aggregate the faint signals to strong,
coherent signatures. This set-based approach is conceptually related to what is colloquially known
as "Multiple Instance Learning” (MIL), but it differs fundamentally in its objective.

The MIL is a form of weakly supervised learning, where instead of each instance having its own
label there is only a single label for a set (or a “bag”) of instances. For example, as it was first
proposed by [Dietterich et al.[|(1997) for drug activity prediction, in a binary classification problem,
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the bag would be labeled as positive if there is at least one positive case in the bag, and it would be
labeled as negative if all instances are negative. The MIL has many use cases such as medical image
analysis (Quellec et al.,2017)), object detection (Yuan et al.,|2021), image classification (Rymarczyk
et al., |2021)), and many others; a comprehensive review can be found in the work of [Waqas et al.
(2024).

In our work, the objective of the MIL classifier is not to identify a single “key” instance, but, as we
will show in Section[3] to aggregate the subtle statistical signature that is distributed across every in-
stance in the bag. While prior work has developed related approaches in both the weakly supervised
and multi-event settings, our emphasis and results differ. In particular, the Classification without La-
bels (CWoLa) paradigm (Metodiev et al.,2017) establishes that classifiers trained on mixed samples
can recover the optimal fully supervised classifier under idealized conditions (i.e. sufficient amount
of data and signal fraction). Likewise, [Nachman & Thaler (2021)) analyzed connections between
per-instance and per-ensemble classifiers and demonstrated constructive mappings between them
under IID assumptions.

However, in low-signal regimes, the equivalence implied by those theoretical constructions can fail
in practice as the classifiers become suboptimal. Therefore, in this paper, we bring an information-
theoretic perspective to the previous multi-event literature, and identify conditions under which set-
based aggregation improves inference. To our knowledge, no prior work has rigorously character-
ized MIL’s impact on hypothesis testing in low-signal regimes, especially in the context of Fisher
Information estimation. Concretely, our main contributions are:

* We provide a mathematical motivation for why MIL can help mitigate sub-optimality in
low-signal regimes, and we derive how aggregation affects the effective Fisher information,
thereby pushing the precision of parameter measurements closer to its theoretical limit.

* We present a counterexample equivalence between single-instance and multi-instance
learners, and demonstrate that under certain low-signal, finite model/data regimes, MIL
can yield better performance than single-instance learners that were previously assumed to
be sufficient.

* We identify that learned models violate the second Bartlett identity (Bartlett, |1953)), there-
fore we provide a practical post-hoc calibration procedure to address this issue.

* We investigate the performance of this framework across multiple settings, providing in-
sights into their respective strengths and limitations for this high-precision task.

The remainder of this paper is organized as follows: Section[2]provides the necessary background on
our analysis case, giving a brief introduction to Standard Model (SM), and Standard Model Effective
Field Theory (SMEFT) parameters. Section [3| details our theoretical framework, and in Section [4]
we provide our preliminary results to show under which conditions our results can be aligned with
our theoretical predictions. Finally, in Section [5] we briefly summarize our research, and share our
ideas for future work.

2  HYPOTHESIS STUDY: STANDARD MODEL VS STANDARD MODEL
EFFECTIVE FIELD THEORY

SMEFT provides a consistent quantum field theory framework that parameterizes the low-energy
effects of new, high-energy phenomena on the known SM fields. This is achieved by extending the
SM Lagrangian (Lgy) with a series of higher-dimensional operators,O;:

ci
Lsvierr = Lsv + a9 2)

Where A is the new physics scale at which degrees of freedom are integrated out, leaving their
low-energy effects encoded in effective operators. In essence, the Wilson coefficients quantify the
strength of new, unobserved interactions; a nonzero value for any ¢; would indicate a deviation from
the SM and thus be a sign of new physics.

While there are many Wilson coefficients affecting different particle interactions, the goal of this
paper is not to perform a comprehensive physics analysis, but to analyze the behavior of the analysis
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tools themselves. Therefore, in this paper we will only focus on a single type of particle interaction
as what physicists call ”’signal” events, i.e. the collision events which are sensitive to the new physics
parameter. For our analysis, we choose to focus on Higgs to WW boson decay channel as our signal
events, with the Wilson coefficient value cgyy is set to a non-zero value. For our “background”
events, we used Higgs to ZZ boson decay channel with no SMEFT effects. These background
events are not influenced by the parameters of interest, but have similar experimental signatures to
the signal, acting as a form of noise that complicates the classification task. Further details on the
simulation process are provided in the Appendix

The analysis thus simplifies to a hypothesis test problem: a value of cyyw = 0 corresponds to the
SM, while cyw # 0 indicates physics beyond the SM. As it is detailed in Appendix [B.2} we kept
our implementation as simple as possible in order to make our analysis a general hypothesis testing
problem. We analyzed the behavior of ML models in three different settings:

1. Binary Classification: Distinguishing between SM (cgw = 0) and SMEFT (cgw # 0)
hypothesis using event kinematics.

2. Multi-Class Classification: Using event kinematics to predict the specific value of cgy
from a discrete set of possibilities.

3. Parameterized Neural Networks (Baldi et al.,2016)): Training a neural network that takes
both the event kinematics « and parameter value € as input, i.e. [z,0], and determine if
the kinematics are consistent with that specific parameter value. After training, one can
continuously change the # value to find the “best match” for a given kinematic input.

3  MOTIVATION FOR MULTIPLE INSTANCE LEARNING FOR HYPOTHESIS
TESTS

In this section we mathematically derive (i) how MIL increases information content per prediction,
and (ii) how a decrease in ML error, or an increase in model optimality, affects the Fisher Information
extracted from the data. To simplify our mathematical arguments, we will focus on a single physical
parameter of interest, though the argument can be readily generalized to an arbitrary number of
parameters.

3.1 DISTINGUISHING THE INDISTINGUISHABLE

Let x € X C R be a vector containing single instance of high-energy particle collision event
information, and § € © C RP be the parameter of interest. The probability density function (PDF)
of observing event x given parameters 6 is denoted by p(x|0).

The collision events are independent and identically distributed (i.i.d.), therefore the joint probability
of a set of events {x;}?; under a model parameterized by § (SM or SMEFT) is the product of
individual event probabilities is,

N
p({x:}/L110) = [ [ p(xil6). 3)

i=1
The SM would correspond to 853, = 0, while the SMEFT would correspond to 6s;grr # 0. For

small deviations from SM we can define a perturbation dp(x;), where dp(x;) < p(xi|fsnr), such
that the likelihood ratio of a given event r(x;) would be,

p(xi0snm) + dp(xi) op(xi)
r(xi) ~ =1+ . )
Bxa) 2~ T xalfsnn) P(xilfsar)
Taylor expanding the log-likelihood ratio, denoted by A;(x;/601, 6p), would give some small );:
1) X
poa)__,, 5)

Ai(x4]01,00) 8 ————
(xilfh, bo) p(xi|0sar)

Now, this might be problematic for an Event-By-Event (EBE) classifier, because in order to make
an accurate prediction the ML model has to accurately discern the small n; values for different
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samples, each treated as an independent case. On the other hand, for a bag of events B = {x;}¥;

the information available to bag-level (BAG) classifiers is:

N
1 1

~nr(B) = NZ"” . Inr(B) ~ N, (6)

i=1

To understand why bag-level classifiers are able to discern the observed data that the event-level
classifiers fails to distinguish from each other, we can take a look at the Signal-to-Noise Ratio
(SNR = /o) of the inputs. Assuming homogeneity, since events are independent Var(lnr(B)) =
N Var(n;) = Noy,,, and the SNRs are:

[E[lnr(B)]| N g ||
BAG \/Var(Inr(B)) \/N02 VN oy )
n

Var(lnr(x)) On

We see that the SNR increases with /N for the bag-level classifiers, meaning that MIL provides in-
creasing discriminative information as N grows, even if the individual 7; are small. As demonstrated
by Nachman & Thaler| (2021)), bag-level and event-level predictors should produce the same results
in the idealized i.i.d. setting because of the mathematical equivalence in Eq. [3| However, as we
discuss in Section [d.Tand Appendix [C.3] when the SNR is below a certain threshold learned mod-
els can fail to reach optimal discriminator performance given finite data. Since MIL increases the
SNR, it can mitigate these finite sample/model-induced sub-optimality; therefore, MIL can improve
performance and cause a practical breakdown of the theoretical equivalence. Section [4] presents
empirical results that align with these predictions.

3.2 INCREASING THE EFFECTIVE FISHER INFORMATION

In essence, bag-level classifiers create summary statistics. The specific implementation of this sum-
marization is left to the machine learning practitioner. Instead of showcasing the capabilities of
some unique architecture, we used a basic neural network model in order to demonstrate the power
of this methodology. The basic implementation is as follows:

» Use 3 layer, 64 neuron Multi-Layer Perceptron as an embedding function ¢(x;) which
takes the feature vector x; and maps it to an embedding vector e;.

» Take the average of the embedding vectors in a given bag: €; = % Z;V €ij

 The logit of the final layer in the binary classifier and the log-probability ratio of multi-class
classifier would yield the log-likelihood ratio A of the whole bag. (see Appendix

We would like to emphasize, we are not taking the average of the probabilities. We are taking the

. . . p— 1 .
average of the embedding vectors, in order to create what we call Asimov Vector €. || The goal is to
create an amalgamation of all of the events contained in the bag for a single prediction.

Now, let Apue(xi|61,60) be the true value of the LLR of a single event x;, and Age(B;]61,60) be
the true LLR value for the bag of events B;, with number of events in the bag denoted by Np . The
true LLR Ayye(BB;) would be the sum of the event LLRS Ayye (X ).

Np
Atrue(Bj) = Z )\Lrue(xjk) (9)
k=1

The ML models prediction ]\j = Awe(Bj) + €, would have an error ¢;. Samples are independent
collision events, and for unbiased estimate of the Ay (B;), the expected value is Egle;] = 0. But

' Asimov Vector is named after Asimov Dataset (Cowan et al., 2011) which is named after Isaac Asimov,
the author of the short story Franchise. In the story, the super-computer Multivac selects a single representative
voter for the entire population, avoiding the need for an actual election.
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the variance Varg, (¢;) = o2(Np) may be a function of Np, the bag size. The test statistic T for the
entire dataset D, with M number of bag of events would be:

M M
Z A(B Z Atme(Bj) + Ej) = Atrue, dataser (D) + Z €5 (10)
j=1 j=1

If we define I5(6p) as the Fisher Information of a bag of events, through similar calculations stated
in Appendix[A] one can show that

o, [T] = %1\413(90)(A9)2 +0 g, [T] & —%MIB(HO)(AH)Q +0 (D

And the total variance T'(D) under 6, would be,

Varg, (T(D)) ~ MIp5(60)(A6)? + Mo?(Np) (12)

We can calculate the SNR? = (ARE[T'(D)])?/Varg, (T'(D)) to find the relation between true Fisher
Information of the whole dataset, Iyye p(6) = MIp(6y), and effective Fisher Information of the
whole dataset, Iog p(6).

(M1Ip(60)(A0)?)?
Len.p(60) (A0)* =~ MIp(00)(A0)2 + Mo2(Np) "
(0 o — MO0 (A0 MIn(fo) (14)
oo l00) &~ T (00 (80)2 + Mo2(N5) — 11 T (A0
It p(60) = Lipue,p(0) Lirue.p(0) (15)

o2(N5) 2(N5)
+ T30y (A0 1+ N7 (00) (5077

Where I7(6y) is the Fisher Information of a single event, i.e. I5(6y) = Ngl1(6p).

Since the calculatrons are similar in nature to the previous part, we would like to make a distinction:
In Equation . (Np) refers to the variance of the ML model’s estimation error, not the variance
of the log- hkehhood ratios themselves. This subtle but important difference may have profound
impact on the analysis. If the ML models are well behaved and consistent in results, one can profile
the 02(Np) function with respect to N, and extrapolate the amount of increase or decrease of
effective Fisher Information. For desirable cases when 02(Np) is a sublinear function of Np, the
Effective Fisher Information would increase as one scales Np. And by profiling this behavior, it
may very well be possible to extrapolate the True Fisher Information. Moreover, for an unbiased

estimator of 6, the é(D) the Cramér—Rao bound (Rao, [1992) on the variance is,

1

Varg(0) > ——
9( ) - Itrue,D(o)

(16)

Therefore, one of the primary objectives of phenomenological studies, finding the tightest bounds
on a given parameter of interest may be achieved through this methodology. Since the standard error
of an efficient (or asymptotically efficient) estimator 0 is approximately \/1/ I p(60), as e, D(G)
approaches Iy p(#), the standard error of our effective estimator approaches its theoretrcal mini-
mum. Since the width of confidence intervals is proportional to the standard error, maximizing the
effective Fisher Information leads to the statistically tightest possible confidence intervals for the
parameters of interest.

4 RESULTS

4.1 BINARY CLASSIFICATION

To empirically validate the practical breakdown of the theoretical equivalence between event-level
and bag-level predictions, we designed a binary classification task in a challenging, low-signal
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ROC Curves: cyw = 0.1, Background Contamination=0% ROC Curves: cyw = 0.1, Background Contamination=80%
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=== Ensemble 1500 (MLP) 0.560+0.025

—— Bag N=1000 (MLP) 0.704+0.013

=== Ensemble 1-1000 (MLP) 0.589+0.036

---- Chance (AUC = 0.500)
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(a) Signal events + 0% Background events (b) Signal events + 80% Background events

Figure 1: Receiver Operating Characteristic (ROC) curves for binary classification of SMEFT
(cgw = 0.1) vs. SM with different levels of background event contamination with respect to
number of signal events in the bag. Additional contamination levels are shown in Figure @

regime. The ML models are tasked to differentiate between SM vs. SMEFT “’signal events” (i.e.,
events influenced by the parameter of interest) while background events are injected as additional
noise. For intuitive visualization of the results, we held the number of signal events in each bag
constant and increased the total bag size as we scaled the background contamination level. For ex-
ample, a bag with 100 signal events and 20% background contamination contains 120 events in total,
while 40% contamination corresponds to 140 events. Since background events do not give any use-
ful information, an optimal discriminator should yield the same ROC curves across all background
contamination levels.

For each bag size we trained five Multi-Layer Perceptron (MLP) models with different initializa-
tions seeds values. We also constructed ensemble predictions from the event-level classifiers (see
Appendix [C.3| for details of this procedure) and compared those to the bag-level classifiers. Figures
[T] and [6] show that the event-level models do not behave optimally in the low-SNR regime: ROC-
AUC systematically decreases as background contamination increases, while the bag-level (MIL)
classifiers retain substantially better discriminative performance. Furthermore, we also trained a
hyperparameter-optimized XGBoost model (Chen & Guestrin, 2016)), a strong baseline for tabular
data (Shwartz-Ziv & Armon, [2022), and observed a similar scaling behavior with respect to the
SNR (Figure [7). Although XGBoost outperforms the simple MLP at relatively high SNR, MIL
performance can match or even exceed XGBoost in the low-SNR regime. This model-independent
degradation of event-level performance, together with MIL’s resilience, validates our arguments
stated in Section [3.1]

4.2 MULTI-CLASS CLASSIFICATION

After investigating completely independent LLR prediction values at discrete cyy = 6) values
using binary classifiers (see Appendix [C.3), we move to multi-class classification in order to couple
the LLR predictions and investigate the model’s ability to perform precise parameter estimation.

This task imposes stricter requirements on the learned likelihood approximation. For a parameter
estimator to follow the frequentist view of confidence intervals, two requirements must be met:

1. The maximum likelihood estimate point must vary with the inherent statistical variance of
the data. Let the Fisher Information calculated from the variance of maximum likelihood
estimate 6 be Iy g = 1/ Var(0).
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2. Since LLR, the A, is asymptotically x? distributed, concavity of the A(D, #) ~ A(D, 6) —
%(9 — )% 1.yry must be also equal to the Fisher Information.

As a consequence of the second Bartlett identity (Bartlett, [1953)), we know that an ideal, efficient
estimator must satisfy these two conditions, since they are the measurement of the same Fisher
Information: Ijyye =~ Ivig =~ Leury-

But our empirical investigation revealed an unexpected finding: the learned LLR function from our
simple MLP model systematically violates the second Bartlett identity, even for event-by-event clas-
sifiers. While the location of the LLR minimum correctly tracks the maximum likelihood estimate

(0), the learned curvature is consistently too shallow. This result means that the neural network
produces an estimator where the information contained in the variance of its score is greater than the
information contained in its average curvature, in other words I.yryv < Imrg, and

d’T dr

This underestimated curvature leads to confidence intervals that are too broad, resulting in significant
over-coverage (e.g., coverage exceeding 90% at the 1o level). To address this, we introduce a single
empirically determined calibration constant, c.;.c Which rescales the LLR curvature to restore correct
frequentist coverage. After this one-time calibration, the 1o confidence intervals correctly covered
the true parameter value in 68.3 £ 0.2% of pseudo-experiments. The details of this procedure and
the resulting values are provided in the Appendix [C]

Fisher Information vs. Bag Size
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Figure 2: The increase in effective Fisher Information with respect to bag size. Since different
1000 event chunks contain different levels of Fisher Information, the 1o variation of information
contained in different bags is also showcased with the bars.

To demonstrate the performance of this approach, we constructed 200 confidence intervals from
1000-event data chunks, using 20 ML models trained under identical settings with different initial-
ization seed values. As it is detailed in Appendix[C.4] to make the predictions of bag-level classifiers
with bag level < 10 more robust, by taking average of the predictions of 20 different ML models,
we also created what is called an ensemble model. The increase in effective Fisher Information with
respect to the bag size is shown in Figure%} For illustrative purposes, we fit the data using a simple
model for the error variance of the form o2 (Np) = C+/Np, where C is a free parameter of the fit.
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Even with this simplified ansatz solution of 02( Np), the apparent increase in effective Fisher Infor-
mation, and its diminishing return with respect to bag size shows another clear and strong evidence
supporting our theoretical claims.

4.3 PARAMETERIZED NEURAL NETWORKS

Finally, we investigated an alternative architecture, the Parameterized Neural Network (PNN), for
the parameter estimation task. Despite extensive experimentation on hundreds of training runs with
various stabilization techniques (see Appendix [C.5), we found that PNNS, in their standard imple-
mentation, are not well suited for this high-precision inference task.

Various aspects of PNN contribute to additional deviations from the true value in addition to the
models’ usual error. For example, the unconstrained nature of the PNN output often led to LLR
shapes devoid of any physical meaning, such as smoothed step functions rather than the expected
parabolic form. Furthermore, by its design, the output probabilities over the parameter of inter-
est, ¢y, are not normalized. Therefore, because of the nonlinearity of logit function in the LLR
calculations, the outliers create a disproportionate effect on the final decision where the maximum
likelihood estimate is, and the curvature of the LLR. Straightforward attempts to mitigate these is-
sues, for example, by artificially normalizing probabilities over the cgy values, did not lead to
stable or improved performance.

As shown in Figure [3a, the resulting ML error term, 02(Np), did not show a consistent or well-

behaved scaling with the bag size. We conclude that while the standard PNNs are effective for other
inference tasks, their architectural design may lack the necessary constraints and robustness for the
high-precision, curvature-sensitive measurements central to this work.

Fisher Information vs. Bag Size
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Figure 3: Inconsistent and unphysical predictions of Parameterized Neural Networks.

5 CONCLUSIONS AND OUTLOOK

In this work we presented a new information-theoretic perspective on Multiple Instance Learning
(MIL) for parameter estimation with i.i.d. data and validated our predictions by demonstrating a
practical breakdown of the theoretical equivalence between single-instance and multiple-instance
learners in low-signal regimes. Our analysis complements prior weakly-supervised and multi-event
results (e.g., [Metodiev et al.| (2017) and Nachman & Thaler| (2021)) by identifying concrete finite-
model and finite-sample mechanisms that can make aggregation beneficial in practice.

Our main contributions and findings are:

1. We developed an analytical framework that motivates the set-level aggregation strategy,
showed that the effective signal-to-noise ratio can scale like v/ N, and derived an expres-
sion that relates the model’s performance to the Fisher Information available in the dataset
under explicit assumptions.
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2. We provided empirical evidence supporting the theory:

* We demonstrate that the SNR increase from aggregation makes MIL more resilient to
performance degradation than its single-instance counterparts in low-signal regimes,
providing a concrete counterexample to the asymptotic equivalence between single-
instance and multiple-instance learners under finite-data/model conditions.

* We characterized the diminishing increase in effective Fisher information as we scaled
Npg.

3. We observed systematic deviations from the second Bartlett identity in learned models, i.e.
nominal network outputs underestimate LLR curvature. This finding highlights a critical
consideration for the application of ML in high-precision statistical inference and motivated
our development of a post-hoc calibration procedure.

4. We provided a comparison of different ML implementations for this parameter estimation
problem; showing their respective strengths, limitations, and proposed solutions to those
limitations.

This methodology is a general-purpose framework for having more precise detections of weak sig-
nals contained in a dataset. As physicists, our primary aim is to extract the maximal experimentally
available information from finite datasets. The methodology introduced here provides a pragmatic
route toward this goal. By treating an event collection as a single, permutation-invariant input, we
can amplify extremely weak per-event signals into a bag-level statistic that is amenable to inference.
Moreover, since the realized gain depends on the behavior of the ML-induced error term o2(Np),
if 02(Np) is shown (theoretically or empirically) to grow sublinearly with N, then aggregation
will systematically suppress ML-induced error. However, the general rules and conditions for such
sublinear scaling remain an open question.

The primary objective of this paper was to perform a comparative analysis of this methodology in
low-signal regime and to provide an initial characterization of its properties. Although we acknowl-
edge the theoretical and the empirical limitations of this paper (see Appendix [C.6] for a detailed
discussion), the information-theoretic perspective given in this paper shows a nontrivial and coun-
terintuitive result: Under certain conditions, aggregating instances into a set can allow an ML model
to extract more information per instance than is achievable by a model that processes each instance
individually.

This work opens several promising avenues for future research. We believe a deeper analysis of the
machine learning models themselves is a critical, and often overlooked, component of phenomeno-
logical studies. As for future work, our main questions are as follows:

* For a given ML architecture and intrinsic data dimensionality d, what is the SNR threshold
below which the model cannot perform optimally, and how does that threshold scale with
dataset size and model capacity?

» Can we develop a rigorous theoretical or empirical framework to characterize the variance
of the learned-error function o2(Ng)?

» Can we find robust training or architectural strategies that mitigate violation of the second
Bartlett identity without degrading predictive performance?

* How general are ML behaviors across architectures, datasets, and physics tasks? Which
behaviors are model- or problem-specific and which are universal?

* What is the theoretical information capacity of the Asimov vector €, and how does this
capacity depend on the aggregation operator and embedding dimension?

* How can MIL-specific architectures be designed or adapted to maximize set-level suffi-
ciency for statistical inference tasks?

DATA AND CODE AVAILABILITY

The anonymous repository for this paper can be found at this link: https://github.com/
aaa3270penReview/MIL_for_ HEP
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https://github.com/aaa327OpenReview/MIL_for_HEP
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A MATHEMATICAL PROOFS AND APPROXIMATIONS

A.1 FISHER INFORMATION AND IT’S RELATION TO LOG-LIKELIHOOD RATIO

For a set, or ”bag”, of independent particle collision events B = {Xi}i]\;p we have the likelihood
and log-likelihood as,

N
p(B16)=]]r(xi0), Inp(B | 0) = Zlnp xi | 6). (18)
=1

By definition, the Fisher Information is

2lnp(B | 6)].

Z(6) = Vary 50

(19)

N
Since the reference point is fixed, and Z Inp(x; | f9) = 0, we can add the zero term to variance
=1

of the score, Vary

2 np(B | 90)] , and obtain

Z(0) = Varg| — Zlnp xi | 6) ~ 50 Zlnp Xi | 90)1 (20)
PR N
= Varg 20 ; Xi(0)]| = Varg{; 51(9)} , 21

where \; () is the log-likelihood ratio of event ¢ with respect to the reference parameter point 6,
and the score s; is

0 0
si(0) = 5ghi(0) = 55 np(xi | 6). (22)
Because the events are independent,
N
= Varg [ 3" 5i(6)] = NV Varg [s1(0)]. (23)
i=1

Assuming the regularity conditions that permit the interchange of differentiation and integration
hold, we can show that the expectation of the score is zero. Since p(x7 | #) is a probability density
function, its integral over the entire domain is 1. Therefore, Eg[s1(0)] = & [p(x1 | 0)dxs =

%(1) = 0. With this result, the variance of the score simplifies to,

Varg [s1(60)] = Eg [(51(9) —E, [51(9)})2} =By [(s1(0))2]. (24)

A.2 FISHER INFORMATION APPROXIMATIONS

Consider testing Hy : 8 = g versus Hy : 0 = 01 = 0y + A6 where Af is small. According to
Neyman-Pearson lemma, for a dataset D, the optimal test statistic is the LLR A(D|61,6,) . For
small A6, we can Taylor expand In p(D|6; ) around 6y:

dInp(D|6) A+ 19%Inp(D|6)

Inp(D|61) = Inp(D|by) + 50 " 598 o,

(A6)? (25)
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1

A(DI01,00) = Sp(00) A0 + 5 Hp (60)(A0)? (26)
where Sp(6p) is the score and Hp(6p) is the Hessian (second derivative) for the full dataset. The
E[Sp(60)|0o] = 0 under Hy, and thanks to the second Bartlett Identity we have E[0? In p/96?] =

—E[(01Inp/00)?] = —1(0). Therefore, if we take the expectation of A under Ho:

1
E[A]0o] ~ E[Sp(60)|00] A8 + §E[HD(90)|90](A9)2 (27)
1 1

=0+ 5 (=1(00))(A0)* = =5 1(60)(A0)* (28)

By definition, the Fisher Information is I(6p) = E[Sp(60)?|0]. To find the variance, we first
approximate the expectation of the squared LLR. By retaining only the lowest-order term in Af ,
we have:

1 2
A2 ~ (SD(QO)AH + 2HD(90)(A0)2> = SD(HO)Q(A9)2 (29)
The variance of A under H is therefore:
Var[Alfo] = E[A%|6o] — (E[A]6))? (30)
—— N——
~I(00)(A0)2  O((A)*)
Var[A|6y] ~ I(60)(Af)? (1)

Therefore, under Hy, the LLR distribution has mean E[A|6y] ~ —1I(6y)(A6)?/2 and variance
Var[A|0o] ~ I()(A8)2. Since Fisher Information is locally constant for small Af (because A
is asymptotically x? distributed, I(6;) ~ I(6y) ), through similar calculations shown above, one
can show that the mean E[A]6;] ~ +1(6p)(A6)?/2 and the variance Var[A|6;] ~ I(0y)(A0)?
under the H; hypothesis.

B IMPLEMENTATION

B.1 DATA GENERATION AND FEATURE SELECTION

The dataset used for this research is hadron-level high-energy collision events created by Monte
Carlo simulations using MadGraph5_aMC@NLO (v3.6.2) (Frederix et al., 2021)) interfaced with the
SMEFTsim (v3.0) UFO model (Brivio et al.,|2017) to incorporate EFT effects. We have generated
106 collision events for each parameter value in the set of ¢y values. We choose the ¢y values to
be in the range of [—10, 10] with increments of £1.0, and in the range of [—0.9, 0.9] with increments
of 0.1, resulting in a total of 39 discrete values.

The analysis focuses on a specific signal process sensitive to the cyry parameter and a corresponding
background process chosen for its similar kinematic signature:

Signal process:  Vector Boson Fusion (VBF) production of a Higgs boson, which subsequently
decays via H - WW — (vfly. The MadGraph5 command used is:

import model SMEFTsim_top_MwScheme_ UFO-massless
generate ud > ud h $$ w+t w— / z a QCD=0 NP=1 NPcHW=1,
h > e+ ve e- ve” / z QCD=0 NP=1 NPcHW=1

Background process:  We chose a kinematically similar irreducible process, a VBF production of
a di-boson (ZZ) pair, with one Z decaying leptonically (Z — £¢) and the other invisibly (Z — vv).
The generation is done with no EFT effects (cgw = 0). The MadGraph5 command used is:

import model SMEFTsim_top_MwScheme_UFO-massless

define vl = ve vm vt

define v1®™ = ve” vm~ vt~

generate u d > u d z z QCD=0 NP=0 NPcHW=0, (z > et e—-),
(z > vl v1l™) QCD=0 NP=0 NPcHW=0
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Both processes result in the same final state signature of two forward jets, two charged leptons,
and significant missing transverse energy, making them an ideal test case for a method designed to
distinguish between hypotheses based on subtle kinematic differences.

The run_param.dat parameter card file was modified for each run to set the specific value of
cw while keeping all other Wilson coefficients at their Standard Model value of zero.

The features used for model training are detailed in Table[I] They include both low-level four-vector
components for the final state particles and a set of high-level, physically-motivated engineered
variables.

Table 1: Features included in the training dataset. The features are categorized into low-level kine-
matic variables and high-level engineered features. For pairs of particles, the indices 0 and 1 (e.g.,
£y, £1) refer to the leading and subleading particles sorted by transverse momentum (pr), respec-
tively.

Feature Name Description Mathematical Definition

Low-Level Features

DT, Mis $i, 23, m;  Basic kinematic properties (transverse mo- -
mentum, pseudorapidity, azimuthal angle, en-
ergy, and mass) for each particle i €

{lo, 01,90, q1}.

Emiss | gymiss Missing transverse energy and its azimuthal PP = =2 P
angle, defined from the negative vector sum of
all visible transverse momenta.

Particle ID One-hot encoded flags indicating the type or -
charge of final state particles (e.g., electron vs.
positron, down-type vs. up-type quark).

High-Level (Engineered) Features

Mg, Myq Invariant mass of the di-lepton or di-quark sys- \/ B2 — [Psys|?

tem.

DT .06, PT,qq Transverse momentum of the di-lepton or di- [P + Dr 2]
quark system.

Adur, Adgq Signed difference in ¢ between the two parti- (Pa — Pp) 8.t Mg > M
cles, with the sign determined by their order-
ing in 7.

B.2 MACHINE LEARNING PIPELINE

To ensure a fair comparison and robust conclusions, a consistent training pipeline was used for all
models unless otherwise specified. The pipeline was implemented in TensorFlow (Abadi et al.
2015)) and experiment tracking was managed with wandb (Biewald, 2020).

B.2.1 NEURAL NETWORK MODEL ARCHITECTURE

The core architecture is a simple Multi-Layer Perceptron (MLP) with 11,201 trainable parameters,
chosen deliberately to demonstrate that the performance gains stem from the set-based aggregation
method rather than from architectural complexity. The network consists of:

1. A normalization layer, adapted to the training data.

2. Three fully-connected hidden layers with 64 neurons each. Each layer uses the ELU acti-
vation function (Clevert et al.,|2016)), Batch Normalization (loffe & Szegedy,[20135)), and is
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regularized with Dropout (rate=0.1) (Srivastava et al., 2014) and an L2 kernel regularizer
(1073).

3. A global average pooling layer operates across the events-in-bag” axis of the output em-
beddings from the final hidden layer. This produces a single, fixed-size summary vector for
the entire bag, which we call the Asimov Vector.

4. A final output is a single neuron with a sigmoid (for binary) or softmax (for multi-class)
activation function.

B.2.2 DATA HANDLING AND TRAINING PROCEDURE

The dataset was first partitioned at the event level to prevent data leakage: 20% was held out as
a final test set, with the remainder is then shuffled with the experiments seed value and split into
training (80%) and validation (20%) sets.

* Dynamic bags: As a simple data augmentation method we have created dynamic bags.
At the beginning of each training epoch, the events within the training set are randomly
shuffled and re-grouped into new, unique bags. Although it was essential for multi-class
classifiers to have for stable LLR profile predictions, dynamic bags did not have any mean-
ingful effect on performance for binary classifiers and PNNs in our case study.

* Training and optimization: Depending on the problem, binary cross entropy or categor-
ical cross entropy is used as the loss function. The models were trained using the Adam
optimizer, with an initial learning rate of 10~3, and reducing the learning rate up to 10™%,
if no improvements were seen for a predetermined PATIENCE number of epochs. Early
stopping is applied if there is no improvement after 2+PATIENCE epochs after the last
learning rate reduction, restoring the model weights from the epoch with the best valida-
tion loss. Validation loss was chosen as the monitor to determine the early stopping and
learning rate reduction point.

* Batching strategy: To maintain a consistent number of gradient updates per epoch
across experiments with different bag sizes (Np), the batch size was set dynamically as
floor (80000 / N_B). This provides a stable basis for comparing the training dynam-
ics.

We tracked all of the training runs and made sure that no model is stopped before reaching its
performance plateau.

B.2.3 BINARY CLASSIFICATION

The binary classification task was designed to test the model’s fundamental ability to distinguish
between two competing hypotheses in a low-signal environment. We define the null hypothesis, Hy,
as the Standard Model process and the alternative hypothesis, H1, as the SMEFT process with a
specific, non-zero Wilson coefficient (cw # 0).

The training dataset was constructed from “bags” of events. A bag was labeled 1 (positive class) if
its signal events were drawn from the SMEFT signal sample (H). Conversely, a bag was labeled 0
(negative class) if its signal events were drawn from the corresponding SM signal sample (Hy). The
model was then trained using a binary cross-entropy loss function to distinguish between these two
categories of bags based on their aggregated kinematic information.

XGBoost training We trained a hyperparameter-optimized XGBoost baseline for binary classi-
fication. The hyperparameters were optimized with the sophisticated framework Optuna (Akiba
et al.l 2019) over a search space including n_estimators, max_depth, learning_rate,
min_child_weight, subsample, and reg_lambda using stratified 3-fold cross-validation
and 50 Optuna trials. For the task, we set objective='binary:logistic’ for the model
training, and we optimized AUC ("roc_auc”) in the hyperparameter search. We used the his-
togram tree method for stability, and the best hyperparameters were refit on the training data and
evaluated on the held-out test set.
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B.2.4 MULTI-CLASS CLASSIFICATION

To investigate the model’s capability for parameter estimation, we framed the problem as a multi-
class classification task. The goal is to identify the correct parameter value, 6, for a given bag of
events from a discrete set of K possible hypotheses, 61,65, ..., 0.

For this setup, a bag of events {xl}f\f‘l where all events are Monte Carlo sampled from the distribu-
tion p(x;|0y) is assigned the integer class label k. During training, these integer labels are converted
into a one-hot encoded vector of length /K. For example, a bag corresponding to the third hypoth-
esis, #3, would be given the label [0, 0, 1, O, ..., 0]. For our analysis, we trained the
model with the 6y, taking a value in the range of [—1, 1] with increments of £0.1.

The neural network’s final layer is equipped with a softmax activation function producing K output
nodes, corresponding to the probability of the bag belonging to each class. The model is then trained
to minimize the categorical cross-entropy loss between its prediction and the true one-hot encoded
label.

B.2.5 PARAMETERIZED NEURAL NETWORKS

The Parameterized Neural Network (PNN) approach was investigated as an alternative method for
parameter estimation. Unlike the multi-class classifier which assigns a bag to one of several dis-
crete classes, the PNN is designed to learn a continuous functional relationship between the event
kinematics x, and the parameter of interest 6.

The training data for the PNN was structured as a set of labeled pairs. Each input sample given to the
network consisted of both a bag of kinematic events and a single candidate value for the parameter
ciw. The model’s objective was framed as a binary classification task: to predict whether the
kinematics in the bag are consistent with the paired cgy value.

To achieve this, the training dataset was composed of:

* Positive examples (label = 1): A bag of events generated with a specific Wilson coefficient,
Oy, is paired with its true parameter value. The input is thus a tuple: (B.,,, =k, Oc iy =k )-

» Negative examples (label = 0): Two types of bags are generated: in one case, the bag of
events generated under the SM hypothesis (fsy; = 0) is deliberately paired with a false,
non-zero Wilson coefficient, 6;; in the other case, the bag of events generated under the
SMEFT hypothesis (dsyerr # 0) is paired with 8, = 0. The inputs are the tuples:

(BCHW:07 96HW750) or (BCst‘éU? GCHWZO)'

By training on a balanced set of these positive and negative examples with a binary cross-entropy
loss, the network learns a function f(x,#) that approximates the likelihood ratio. After training,
this function can be used for inference: for a given bag of data events, the parameter 6 can be
scanned over a continuous range. The value of § that maximizes the network’s output is taken as the
maximum likelihood estimate for that bag, and the full scan of the output produces the profile of the
LLR.

C DETAILED REPORT ON EXPERIMENTAL RESULTS AND PROCEDURES

This section provides a comprehensive report on our analysis, with supplementary plots and discus-
sions.

C.1 ON THE INTERPRETATION OF MODEL DECISIONS

In our analysis, we observed that the ML models, in their effort to minimize the global loss function,
can adopt decision strategies that are locally counterintuitive. Because the optimization objective is
the overall loss across all examples, the model may learn to accept a higher loss for certain types of
events or certain classes (e.g., at low cpy) in exchange for a much larger gain on other, more easily
separable examples contained in the training dataset.

This behavior is evident in the box plots of the probability predictions (Figures [0 and [T8)) and in
the plots of the individual predictions (Figures [T1] and [I9). Particularly for the event-level case
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(Np = 1), the model does not express high confidence at the true SM value (cyw = 0). Instead,
the highest average predictions are often assigned to the most extreme cgy values at the edge of
the training range. We interpret this not as a simple failure, but as an emergent strategy. Since the
kinematic differences are largest at these extreme points, the model can achieve the lowest loss by
confidently identifying them. The resulting output is not a “’probability” in the classic sense, but an
emergent probability distribution prediction strategy for aggregate evaluation metrics.

This underscores a critical point: one cannot naively interpret the nominal output of a classifier as a
true posterior probability without careful validation. As we demonstrate with the non-smooth profile
of the LLR values of multi-class classifiers (Section [C.4) and the unphysical predictions of PNNs
(Section [C.5), ML models will exploit any asymmetry or feature in the training setup to minimize
their objective, leading to powerful but sometimes unintuitive results.

C.2 JUSTIFICATION OF THE ESTIMATOR CORRECTION AND INFORMATION MEASUREMENT

Our investigation revealed that the raw Maximum Likelihood Estimate (MLE), 0, derived from the
ML models exhibits two non-ideal behaviors:

1. The LLR curvature does not match the MLE variance (1., 7 ImLE), violating the second
Bartlett identity.

2. The models are not unbiased estimators, i.e. E[f] # Oyye.

This section details the procedures used to correct for these effects and justifies why our primary
measurement of the effective Fisher Information remains sound.

C.2.1 PROCEDURE 1: LLR CURVATURE CALIBRATION

As it was explained in Section and can be seen in Tables [2and 3] the nominal predictions of the
ML models systematically violate the second Bartlett identity. To construct confidence intervals with
correct frequentist coverage, we apply a post-hoc calibration by introducing a confidence interval

calibration constant, cg.., which serves to rescale the LLR values: Acahb(ﬁ) = Ceice - A(G).

The Maximum Likelihood Estimate (MLE) point, 0, is the parameter value that minimizes A(6).
Since cgec 1S a positive constant, the value of # that minimizes f\(@) is the exact same value that
minimizes Aca]ib(ﬁ). Therefore, the MLE is invariant under calibration, and the Fisher Information
calculated from MLE is also invariant under such calibration. For test statistics T'(D) = Z;\il A,
we have,

1

M= o)

(32)
But Fisher Information calculated from the curvature of the parabolic fit scales linearly with the
calibration constant:

_&T
g

d2

Icurv Tcai =E|——
(Tearv) { 62

(Ccicc . T):| = Ccice * E |: :| = Ccicc * Icurv(T) (33)

By enforcing the Bartlett identity on our calibrated result (i.e., setting Ieyry (Teaiv) = Imie(T)), we
can empirically determine the necessary correction factor:

_ Iwe(T) _ 1/ Var(9(T))

Ceice = Icuw(T) E [_%]

(34)

This procedure allows us to use the empirically measured Iy g as our robust proxy for the effective
Fisher Information (I.f), as it correctly encapsulates all effects on the estimator’s variance, while
the curvature is separately corrected to ensure valid confidence intervals. Our goal is to measure
how this quantity, I =~ IyLg, scales with the bag size Np.
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C.2.2 PROCEDURE 2: PosT-HoC B1AS CORRECTION

To report an unbiased central value for 0 and to validate our calibrated confidence intervals, we
applied a mathematically justified and rigorous post-hoc correction for the observed bias.

The models exhibited a small but consistent bias, defined as b(6) = E[f] — Oyye. Since our null

hypothesis is centered at 6y, = 0, this simplifies to b(0) = E[é] For a set of N number of
MLEs (él, ey fy) from the pseudo-experiments, we first estimate the bias as the sample mean,
b= % > 6;. By the Law of Large Numbers, this sample mean is a consistent estimator of the true
bias. We then define the corrected estimate, i ,as:

00 =0; —b (35)

The validity of using Iy g = 1/ Var(@) as our sensitivity measure, even after this correction, is
justified by its negligible impact on variance. Since the variance of the corrected estimator, Var(6’),

is related to the variance of the original estimator, Var(é), by the standard relation for deviations
from a sample mean, we have the relation:

Var(0') = Var <é — %Z 91) = Var(f) (1 — ]1[) (36)

In our analysis, we constructed 200 confidence intervals. Since N = 200, the bias correction
changes the variance only about 0.5%, which is a negligible effect. Furthermore, this bias correction
procedure is applied for all bag sizes, therefore its overall affect on the scaling behavior of the
ML models with respect to bag size is much more minuscule. Therefore this minor and consistent
procedure does not affect the study of the overall scaling behavior of Iy g =~ Ieg With respect to bag
size, and it ensures that our corrected estimator 6 is asymptotically unbiased at the null hypothesis,
as required for proper frequentist coverage testing.

C.3 BINARY CLASSIFIERS

As explained in Section[4.1] we trained five MLP models at each bag size and background contami-
nation level to study robustness and analyze variations in performance in different training runs. In
high-energy physics, creating pure signal samples is often infeasible due to irreducible background
processes. Therefore we need to understand if, when, and how the ML model performance degrades.
Although a comprehensive study of background effects is beyond the scope of this work, we per-
formed a targeted study to test the classifier’s robustness to noise and determine if it could behave
as an ideal discriminator.

As demonstrated by Nachman & Thaler| (2021)), artificial bag-level predictions can be obtained from
single-instance predictors by composing per-event likelihood contributions. Since events are i.i.d.,
the joint probability of a set of events {x;}¥.; under a model parameterized by 6 is the product of
individual event probabilities:
N
p({xi}L110) = [T p(xil6). (37)

i=1

This likelihood-based approach can be implemented in a numerically stable manner by summing the
per-event logits and mapping the result to a score with the sigmoid function.

1

) = o s (15

(38)

Figures [6] and [7] compare single-instance MLP and XGBoost baselines against multiple-instance
MLP models. MIL’s resilience to performance degradation at low SNR levels provides a strong
evidence for the theoretical predictions stated in Section 3]
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On the traditional histogram-based analysis In the standard high-energy physics analysis
paradigm, the nominal output of a classifier is not directly interpreted as a true event probability.
Therefore the ML models are often employed as a dimensionality reduction tool. Its function is to
map the high-dimensional feature vector of an event to a single discriminant value. The histogram
of this classifier output value is then taken for both signal (BSM) and background (SM) simula-
tions to create shape templates. The final physics measurement is extracted via a binned maximum
likelihood fit that compares these templates to the distribution observed in the data.

The statistical power of this entire procedure is contingent upon a discernible separation between the
signal and background histogram shapes. In the low-signal regime studied here, per-event classifier
outputs produce nearly overlapping histograms (Figure {a), leaving little shape information for a fit
to exploit.

Classifier Output Distributions for Various Signal Hypotheses, (Bag Size: 1) Classifier Output Distributions for Various Signal Hypotheses, (Bag Size: 250)

Classifier for cHW = -0.1 Classifier for cHW = 0.1 Classifier for cHW = -0.1 Classifier for cHW = 0.1
=

=
=

Classifier Output Value a ut value Classifier Output Value Classifir Output Value

(a) Bagsize =1 (b) Bag size =250

Figure 4: Distributions of the ensemble classifier output for event-by-event (Np = 1, left) and set-
based (N = 250, right) classification. Larger versions of these plots are shown in Figures andE}

Parameter estimation with binary classifiers To extend the binary classification framework to-
wards parameter estimation, we attempted to construct a continuous LLR profile from our discrete
set of classifiers. For each cpyy value in the dataset (see Appendix , an ensemble prediction
was first generated by averaging five independently trained models. Despite these measures, this
approach proved to be unstable, even at very large bag sizes. Since each binary classifier is trained
in isolation, there is no enforcement of continuity between adjacent ¢y points. This independence
resulted in extremely noisy LLR profiles unsuitable for robust confidence interval calculation, mo-
tivating the transition to the inherently coupled prediction frameworks of multi-class classifiers and
PNNs.

C.4 MULTI-CLASS CLASSIFIERS

The discrete binary classification approach produces a test statistic from a set of independently
trained models. In order to couple the predictions for the all cyy values which are analyzed for
the confidence interval calculations, we transitioned to a multi-class framework. Since the softmax
activation function is used in the final layer, the model is forced to learn the relative importance of
each hypothesis 6y, as the output probabilities must sum up to one.

However, our straightforward implementation presents a challenge. The model treats each one-hot
encoded 6; value as an independent category and has no “inductive bias” that informs it of the
ordinal relationship between the classes (e.g., that cgyw = 0.1 is next to cgw = 0.2) or that the
resulting LLR profile should be locally parabolic. In the extremely low-signal regime of our study,
this makes it difficult for the network to learn a smooth function of 6. It is possible to design an
ML architecture where such an inductive bias is enforced, for instance, by constraining the output
to follow a specific functional form, but that is left for future work.

As illustrated in Figure [] this lack of inductive bias manifested as individual models producing
non-smooth LLR profiles, particularly for small bag sizes (Np < 10). To mitigate this instability,
we created an ensemble model for each bag size by averaging the predictions of 20 models that were
trained on the same hyperparameters but with different initialization seed values. This ensembling
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technique proved highly effective, producing the relatively stable and physically plausible LLR pro-
files required for parameter estimation. For both multi-class classifiers and PNNs, we observed that
the ensemble models were much more stable in terms of both their predictions, and the variations in
the Fisher information. (see Figures 2] and [3a)

Profile Likelihood Scan: Individual Model, Bag Size = 1 Profile Likelihood Scan: Individual Model, Bag Size = 1
Fisher Information: 124.682 ¢ Data(-2ainL) Fisher Information: 120.586 * Data(-2ainL)
1o Cl: , ® Fit Points 10 CI: [-0.047, 0.135] e Fit Points
20 CI: [-0.072, 0.286] —— Parabolic Fit (MSE: 11.806) 150 20 CI: [-0.138, 0.226] —— Parabolic Fit (MSE: 6.317)
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Figure 5: Multi-class classifier: LLR values, and the parabolic fits for the same 1000-event pseudo-
experiment.

The final results for the ensemble multi-class models are summarized in Table[2] From left to right,
the columns of the table are: the bag size, whether it is calibrated or uncalibrated, the confidence
interval calibration constant (c.ic.), the percentage of the 1o confidence interval that covers the true
value, mean fisher information across all the confidence interval calculations, the bias constant B (in
¢ values, and as it’s defined in equation[35)), and the Mean Square Error (MSE) between the parabola
fit and its fit values (i.e. the —2[\’5).

Notes on the Analysis Procedure A few details are pertinent to the interpretation of Table [2}
First, the coverage is calculated from 200 pseudo-experiments, meaning its statistical precision is
limited to +0.5%. Second, the MSE of the fit naturally increases after calibration, as the cjc. factor
scales up the LLR values and thus the absolute deviations from the parabolic fit. Furthermore, the
LLR is locally parabolic near the maximum likelihood estimate point. Therefore to ensure a robust
parabolic fit to the LLR profile, we used a small fit window of £0.4 cyy around the minimum
—2A point. For the Np = 1 case, which exhibited much higher MSE, this window was expanded
to £0.7 cgw to make the fit less susceptible to local fluctuations, resulting in a much more stable
information measurement. Figures[T4]and[T5]show two examples of confidence interval calculations
to validate our approach.

C.5 PARAMETERIZED NEURAL NETWORKS
Our investigation of the Parameterized Neural Network approach for this high-precision task re-

vealed significant instabilities. We identified two primary, interconnected challenges: the unphysical
nature of the LLR profile and an extreme sensitivity to the symmetry of the training data.
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Table 2: The results for the ensemble model of multi-class classifiers.

Bag Size  Calibration CI Const. (ccicc) Coverage (%) Mean Fisher Info. Bias (§) MSE (A)

I Uncalibrated 1.0 75.5 164.6 0.098 1.939
Calibrated 1.329 68.5 218.8 0.098 3.426

10 Uncalibrated 1.0 75.0 209.0 0.007 0.073
Calibrated 1.316 68.5 275.0 0.007 0.126

20 Uncalibrated 1.0 74.5 200.2 0.009 0.063
Calibrated 1.363 68.5 272.7 0.009 0.116

25 Uncalibrated 1.0 76.0 200.8 0.014 0.085
Calibrated 1.360 68.5 273.2 0.014 0.158

50 Uncalibrated 1.0 77.5 190.4 0.021 0.029
Calibrated 1.531 68.5 291.5 0.021 0.068

100 Uncalibrated 1.0 81.0 151.1 0.025 0.014
Calibrated 1.956 68.5 295.5 0.025 0.055

125 Uncalibrated 1.0 82.0 137.7 0.020 0.010
Calibrated 2214 68.5 304.9 0.020 0.050

200 Uncalibrated 1.0 89.0 101.8 0.029 0.006
Calibrated 2.988 68.5 304.1 0.029 0.052

250 Uncalibrated 1.0 91.5 80.4 0.024 0.004
Calibrated 3.577 68.5 287.7 0.024 0.045

The first issue stems from the PNN’s unnormalized output. Unlike a multi-class softmax, the PNN’s
outputs for different 6 values are independent, making the absolute scale of the predicted probabil-
ities arbitrary. This means that a simple rescaling of the output can drastically alter the resulting
confidence interval, rendering the nominal LLR profile unreliable. We attempted a post-hoc correc-
tion, specifically by normalizing the probability outputs by their sum over the cgy analysis range,
but it did not produce a stable or improved LLR profile, confirming that simple post-hoc rescaling
is insufficient to solve the problem.

The second, more fundamental issue is the PNN’s sensitivity to training data asymmetries. The
training scheme, which pairs kinematic bags with 6 values, effectively asks the model to solve many
independent binary classification tasks simultaneously, i.e. having a single model to take the place
of the discrete binary classifiers for all 6.,,,, values, as discussed in Section [C.3} We found that
this makes the model highly susceptible to learning and exploiting any imbalance in how the true
match” (positive) and “false match” (negative) examples are constructed.

To address the model’s sensitivity to these training asymmetries, we systematically explored several
training configurations. We found that simpler, asymmetric schemes consistently led to critical
failure modes, such as extrapolation failure at the SM point or the memorization of a direct mapping
from the 6 feature to the label, disregarding the kinematic data.

Therefore, the analysis presented in this paper was performed using a fully symmetric training set,
constructed with both positive (B, =k, 0c =1 )) and negative examples ((Be,, =0 0cyyy 20) OF
(Begw£0, Ocw=0)) for all 8. The negative examples for the 6.,,,,=o hypothesis were created
from a mixture of kinematics with cgy values near zero: 20% each from cgy = £0.2, 30% each
from cgy = 40.1; totaling enough bags to have 10° events for the negative samples, same as its
positive counterpart. Despite this principled construction, a subtle but critical imbalance remained.
Since most of the SM kinematics (B, =o) the model sees in training are negative examples with
label 0, the model learned this strong correlation. This, in turn, caused it to assign decreasingly
low probabilities as it became more certain of the SM kinematics (Figure[I8), resulting in incorrect
predictions at the reference point (Figure 20).

The detailed numerical results for the ensemble PNN models are presented in Table 3] Unlike the
multi-class classifiers, PNNs always have smooth profile LLRs. Therefore, for all bag sizes we set

the fit range of the parabolic curve to be the constant value of +0.4 ¢y from the minimum —2A
point.
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Table 3: The results for the ensemble model of Parameterized Neural Networks.

Bag Size  Calibration CI Const. (ccicc) Coverage (%) Mean Fisher Info. Bias (§) MSE (A)

I Uncalibrated 1.0 76.5 175.9 0.031 0.386
Calibrated 1.325 68.5 233.2 0.031 0.679

10 Uncalibrated 1.0 75.0 174.2 0.034 0.018
Calibrated 1.283 68.5 223.4 0.034 0.029

20 Uncalibrated 1.0 77.0 170.5 0.028 0.015
Calibrated 1.331 68.5 226.9 0.028 0.027

25 Uncalibrated 1.0 77.5 165.2 0.028 0.013
Calibrated 1.336 68.5 220.8 0.028 0.023

50 Uncalibrated 1.0 83.0 126.9 0.027 0.008
Calibrated 1.614 68.5 204.9 0.027 0.020

100 Uncalibrated 1.0 89.5 94.0 0.039 0.006
Calibrated 2.015 68.5 189.4 0.039 0.024

125 Uncalibrated 1.0 92.0 74.7 0.040 0.003
Calibrated 2.480 68.5 185.1 0.040 0.021

200 Uncalibrated 1.0 100.0 33.9 0.054 0.000
Calibrated 7.504 68.5 254.4 0.054 0.022

250 Uncalibrated 1.0 100.0 23.1 0.069 0.000
Calibrated 11.982 68.5 276.9 0.069 0.016

C.6 FINAL REMARKS

In this work, we analyzed the behavior of several ML estimators on a simplified model for a param-
eter estimation problem. Below, we summarize the main theoretical and empirical limitations and
clarify which aspects remain open for future study.

As stated in Section 2] the datasets used in our experiments are simplified relative to real LHC data.
The signal-to-background ratios used here are simplified relative to the real LHC data. Detector
effects (e.g. pile-up and correlated detector responses) can violate the i.i.d. assumptions; thus
instance dependencies must be addressed before applying our pipeline to full experimental data.

Moreover, our detailed analysis confirms that while the set-based ML estimators are powerful, they
are not “ideal” statistical tools out of the box. We identified several important behaviors that warrant
further investigation. The nominal, per-bag predictions can be unphysical, only becoming meaning-
ful when aggregated into a full test statistic. More fundamentally, we found a systematic violation
of the second Bartlett identity, requiring a calibration (cc.) to ensure correct frequentist coverage.

Likewise, we calculated the confidence intervals, Maximum-Likelihood Estimate (MLE) point, and
the resulting Fisher Information metric through parabolic curve fitting. However, the error propa-
gation, i.e. the theoretical and empirical uncertainty induced by this fitting, as well as the effect of
the post-hoc bias correction procedure stated in the Appendix [C.2| was not rigorously derived in this
work. Additionally, our analytic approximations for effective Fisher Information used first-order ex-
pansions. Higher-order corrections and heteroscedastic effects were not fully explored; adjustments
for heteroscedastic variance are necessary for the general case.

Furthermore, when the bag size Np becomes large, the number of available bags M for training and
testing necessarily decreases. Consequently, when Np is large the number of independent bags M
shrinks, and averages such as ﬁ > ; € may not approximate their expectation reliably; this weakens
asymptotic guarantees and complicates bias correction.

These findings motivate a clear research agenda that focuses on refining this methodology. Fu-
ture work should focus on developing methods to mitigate these observed effects, for instance,
by designing novel loss functions or regularization terms that enforce the Bartlett identity dur-
ing training, or by creating architectures specifically designed to minimize parameter-dependent
bias. A rigorous characterization of the ML error term, af(N ), also remains a critical open ques-
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tion. While our illustrative ansatz, 02(Ng) o< C; - v/Ng, is consistent with our observations, a
more complete model is needed. For example, if the error contains an additional linear component
(62(Ng) x C1 - v/Np + C3 - Np), the model could never reach the true Fisher Information. Since
both of these ansatz solutions would have similar scaling behavior with respect to bag size, without
proving that the 02(Np) is a sublinear function of N, a simple empirical analysis would not be
enough to determine whether we have reached the theoretical maximum Fisher Information for a
given dataset.

As we have mentioned, the primary objective of this paper was to characterize this methodology
in low-signal regime, document its empirical behavior, and identify concrete failure modes. We
conclude not that ML models will universally attain theoretical efficiency, but that it is possible to
approach it if the required conditions hold. By understanding and modeling the asymptotic behavior
of machine learning components, a principled analysis can be created that closes the gap between
the effective information extracted and the true information latent in a dataset.

D ADDITIONAL PLOTS.

For binary-classification tasks, results are presented for individual models; for multi-class classifi-
cation and parameterized networks, results correspond to ensemble models.
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Figure 6: MIL vs. MLP: Receiver Operating Characteristic (ROC) curves for five individual binary
classifiers, evaluated at various background contamination levels. The number of signal events is
held constant while the total bag size increases with contamination level.

24



Under review as a conference paper at ICLR 2026

True Positive Rate

True Positive Rate

ROC Curves: cyw = 0.1, Background Contamination=0%

10

MLP event (bag=1) AUC=0.507 (n=5)
—— XGB event AUC=0.508

Bag N=1 (MLP) 0.506+0.000

Bag N=10 (MLP) 0.527+0.001
Ensemble 1-10 (XGB) 0.532+0.000
—— Bag N=100 (MLP) 0.588+0.005
Ensemble 1-100 (XGB) 0.595+0.000
~—— Bag N=250 (MLP) 0.639+0.005
Ensemble 15250 (XGB) 0.649+0.000
Bag N=500 (MLP) 0.697+0.008
Ensemble 1500 (XGB) 0.707+0.000
—— Bag N=1000 (MLP) 0.753+0.007

. Ensemble 11000 (XGB) 0.781+0.000
Chance (AUC = 0.500)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(a) 0% Background

ROC Curves: cyw = 0.1, Background Contamination=40%

10

MLP event (bag=1) AUC=0.505 (n=5)
XGB event AUC=0.507

Bag N=1 (MLP) 0.5060.000

Bag N=10 (MLP) 0.523+0.001
Ensemble 1-10 (XGB) 0.521+0.000
Bag N=100 (MLP) 0.566+0.005
Ensemble 1-100 (XGB) 0.562+0.000
Bag N=250 (MLP) 0.606+0.006
Ensemble 1-250 (XGB) 0.601+0.000
Bag N=500 (MLP) 0.654+0.010
Ensemble 1+500 (XGB) 0.645+0.000
Bag N=1000 (MLP) 0.701+0.013
Ensemble 11000 (XGB) 0.698+0.000
Chance (AUC = 0.500)

0.0 0.2 04 0.6 0.8 1.0
False Positive Rate

(c) 40% Background

True Positive Rate

True Positive Rate

ROC Curves: cyw = 0.1, Background Contamination=20%

1.0

MLP event (bag=1) AUC=0.505 (n=5)
—— XGB event AUC=0.508

—— Bag N=1 (MLP) 0.506+0.000

~—— Bag N=10 (MLP) 0.523+0.001
Ensemble 1+10 (XGB) 0.522+0.000
~—— Bag N=100 (MLP) 0.570+0.004
Ensemble 1100 (XGB) 0.570+0.000
—— Bag N=250 (MLP) 0.613+0.005
Ensemble 1250 (XGB) 0.610+0.000
Bag N=500 (MLP) 0.661+0.010
Ensemble 1500 (XGB) 0.651+0.000
—— Bag N=1000 (MLP) 0.711+0.011

- Ensemble 11000 (XGB) 0.715+0.000
Chance (AUC = 0.500)

°

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(b) 20% Background

ROC Curves: cyw = 0.1, Background Contamination=80%

10

MLP event (bag=1) AUC=0.503 (n=5)
—— XGB event AUC=0.507

—— Bag N=1 (MLP) 0.506+0.000

—— Bag N=10 (MLP) 0.523+0.001
Ensemble 1-10 (XGB) 0.520+0.000
—— Bag N=100 (MLP) 0.568+0.005
Ensemble 1-100 (XGB) 0.558+0.000
—— Bag N=250 (MLP) 0.608+0.004
Ensemble 1-250 (XGB) 0.595+0.000
Bag N=500 (MLP) 0.649+0.013
Ensemble 1+500 (XGB) 0.636+0.000
~— Bag N=1000 (MLP) 0.704£0.013
Ensemble 11000 (XGB) 0.690+0.000
Chance (AUC = 0.500)

00 02 04 06 08 10
False Positive Rate

(d) 80% Background

Figure 7: MIL vs. XGBoost: Receiver Operating Characteristic (ROC) curves for five individual
binary classifiers, evaluated at various background contamination levels. The number of signal
events is held constant while the total bag size increases with contamination level.
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Classifier Output Distributions for Various Signal Hypotheses, (Bag Size: 1)
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Figure 8: Distributions of the ensemble classifier output for event-by-event classification at selected
cyw values.
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Figure 9: Distributions of the ensemble classifier output for set-based classification at selected ¢y
values.
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Figure 10: Multi-class classifier: The box plot of the probability predictions.
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Figure 11: Multi-class classifier: Probability predictions of 20 individual bags.
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ROC Curves for Selected cyy Values (Bag Size: 1)

1.0

0.8

o
)

True Positive Rate
°
IS

caw Configurations
cHw = +0.0 (AUC: 0.512)
chw = +0.5 (AUC: 0.550)
caw =—0.5 (AUC: 0.549)
cHw =—1.0 (AUC: 0.601)
cHw = +1.0 (AUC: 0.594)
---= Chance (AUC = 0.500)

08 10

0.2

0.0
0.4 0.

0.0 0.2 6
False Positive Rate

(a) Bag Size 1
ROC Curves for Selected ¢y Values (Bag Size: 125)

1.0

0.8

True Positive Rate
°
IS

G Configurations
—— chw =+0.0 (AUC: 0.861)
—— cuw =+0.5 (AUC: 0.848)
cHw = —0.5 (AUC: 0.864)
cHw = —1.0 (AUC: 0.953)
CcHw = +1.0 (AUC: 0.954)
---= Chance (AUC = 0.500)

0.2

0.4 0. 0.8 10

0.0 0.2 6
False Positive Rate

(c) Bag Size 125

True Positive Rate

ROC Curves for Selected ¢y Values (Bag Size: 25)

0.8

o
)

o
S

CcHw Configurations
cHw = +0.0 (AUC: 0.702)
cHw = +0.5 (AUC: 0.736)
cHw = —0.5 (AUC: 0.738)
cHw = —1.0 (AUC: 0.881)
cHw = +1.0 (AUC: 0.871)
---= Chance (AUC = 0.500)

08 10

0.2

0.4 0.

0.0 0.2 6
False Positive Rate

(b) Bag Size 25
ROC Curves for Selected cyw Values (Bag Size: 250)

1.0

0.8

o
o

True Positive Rate
°
2

G Configurations
—— chw =+0.0 (AUC: 0.901)
—— cuw =+0.5 (AUC: 0.889)
cHw = —0.5 (AUC: 0.903)
cHw = —1.0 (AUC: 0.968)
CcHw = +1.0 (AUC: 0.969)
--== Chance (AUC = 0.500)

0.2

0.4 0. 0.8 10

0.0 0.2 6
False Positive Rate

(d) Bag Size 250

Figure 12: Multi-class classifier: ROC curves for selected cgyy values.
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Figure 13: Multi-class classifier: The confusion matrices. As shown in Figures
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striped pattern in the confusion matrices did not have a profound impact on the log-likelihood ratio
calculations.
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Figure 14: Multi-class classifier: Example of the confidence interval calculations, comparing the
results before (right panels) and after (left panels) curvature calibration for the same 1000-event
pseudo-experiment. As it is explained in Appendix [C.4] since profile of likelihood is not perfectly
smooth, number of fit points for bag size 1 is slightly larger to get a better estimate and increase its
overall performance across all calculations.
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Figure 15: Multi-class classifier: Another example of the confidence interval calculations, com-
paring the results before (right panels) and after (left panels) curvature calibration for the same

1000-event pseudo-experiment.
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Figure 16: Multi-class classifier: Confidence interval coverages, with 50 of the 200 total pseudo-
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experiments shown. Since 32> = \/ Vars (0) \/ Toos (0) — 0.847, this shows that increasing the

bag size from 1 to 125 yields an approximately 15.3% tighter constraint.
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Figure 17: Violin plots showcasing the distribution of discrete cgyy values (0.1 ¢y ) where the
predicted probability is the highest.
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Figure 18: Parameterized Neural Network: The box plot of the probability predictions. As it’s
shown, the probability predictions for SM kinematics systematically decrease as the bag size in-

creases.
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Figure 19: Parameterized Neural Network: Probability predictions of 20 individual bags.

34



Under review as a conference paper at ICLR 2026

True Positive Rate

True Positive Rate

ROC Curves for Selected cyy Values (Bag Size: 1)
1.0

0.8

0.6

0.4

caw Configurations
cHw = +0.0 (AUC: 0.499)
chw = +0.5 (AUC: 0.545)
cHw = —0.5 (AUC: 0.552)
cHw = —1.0 (AUC: 0.605)
chw = +1.0 (AUC: 0.595)
---= Chance (AUC = 0.500)

0.2

0.0
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(a) Bag Size 1
ROC Curves for Selected ¢y Values (Bag Size: 125)
1.0

0.8

0.6

0.4

G Configurations
cHw = +0.0 (AUC: 0.462)
cHw = +0.5 (AUC: 0.922)
cHw = —0.5 (AUC: 0.964)
cHw = —1.0 (AUC: 1.000)
cHw = +1.0 (AUC: 0.999)
Chance (AUC = 0.500)

0.2

0.2

0.4 0.6
False Positive Rate

(c) Bag Size 125

0.8

ROC Curves for Selected ¢y Values (Bag Size: 25)

1.0 -
0.8
3
‘6 0.6
S
3
=
S
)
jo}
a
Y 04
= |
caw Configurations
—— chw = +0.0 (AUC: 0.487)
0.2 —— cuw = +0.5 (AUC: 0.760)
—— cuw =—0.5 (AUC: 0.797)
chw = —1.0 (AUC: 0.947)
chw = +1.0 (AUC: 0.929)
00 ---= Chance (AUC = 0.500)
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
(b) Bag Size 25
ROC Curves for Selected cyw Values (Bag Size: 250)
1.0
0.8
Q
% 0.6
o
[
=
S
@
o
a
Y oa
E

G Configurations
CcHw = +0.0 (AUC: 0.443)
cHw = +0.5 (AUC: 0.937)
cHw = —0.5 (AUC: 0.983)
cHw = —1.0 (AUC: 1.000)
CcHw = +1.0 (AUC: 1.000)
Chance (AUC = 0.500)

0.2

0.2

0.4 0.6
False Positive Rate

(d) Bag Size 250

0.8

Figure 20: Parameterized Neural Networks: ROC curves for selected cgy values.
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Figure 21:
same data.
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Figure 22: Parameterized Neural Network: Confidence interval coverages, with 50 of the 200 total
pseudo-experiments shown.
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Distribution of cyy Values Where The Probability Is Peaked
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Figure 23: Parameterized Neural Network: Violin plots showcasing the distribution of discrete czy
values (0.1 cgy) where the predicted probability is the highest.
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Kinematic Distributions for Different cyw Values
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Figure 24: The dataset: A selection of kinematic distributions, comparing the Standard Model (SM,
cgw = 0.0) to various SMEFT signals. Note the nearly perfect overlap between the SM and
the weak signal (cgyw = 0.1) distributions, which motivates the need for the advanced statistical
aggregation method presented in this work.
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