

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCREASING INFORMATION EXTRACTION IN LOW-SIGNAL REGIMES VIA MULTIPLE INSTANCE LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In this work, we introduce a new information-theoretic perspective on Multiple Instance Learning (MIL) for parameter estimation with i.i.d. data, and show that MIL can outperform single-instance learners in low-signal regimes. Prior work (Nachman & Thaler, 2021) argued that single-instance methods are often sufficient, but this conclusion presumes enough single-instance signal to train near-optimal classifiers. We demonstrate that even state-of-the-art single-instance models can fail to reach optimal classifier performance in challenging low-signal regimes, whereas MIL can mitigate this sub-optimality. As a concrete application, we constrain Wilson coefficients of the Standard Model Effective Field Theory (SMEFT) using kinematic information from subatomic particle collision events at the Large Hadron Collider (LHC). In experiments, we observe that under specific modeling and weak signal conditions, pooling instances can increase the effective Fisher information compared to single-instance approaches.

1 INTRODUCTION

Hypothesis testing provides a formal framework for deciding between a null hypothesis H_0 and an alternative hypothesis H_1 , based on observed data. According to the Neyman-Pearson lemma (Neyman et al., 1997), the uniformly most powerful test statistic is the log-likelihood ratio (LLR), making it the optimal choice for distinguishing between competing models. Equation 1 shows the LLR when the number of events observed, N , is a Poisson random variable with mean rate $\nu(\theta)$. As shown, the LLR, denoted as $\Lambda(x|\theta_1, \theta_0)$, depends on the data x , the parameter of interest θ , the mean rate ν , and event likelihood $p(x_i|\theta)$.

$$\Lambda(x|\theta_1, \theta_0) = \underbrace{(\nu(\theta_0) - \nu(\theta_1) + N \ln(\frac{\nu(\theta_1)}{\nu(\theta_0)}))}_{\text{Rate Term}} + \underbrace{\sum_{i=1}^N \ln(\frac{p(x_i|\theta_1)}{p(x_i|\theta_0)})}_{\text{Shape Term (ML Target)}} \quad (1)$$

In high-energy particle physics, we usually have a well-defined means of calculating the expected event rate under some hypothesis, but the likelihood $p(x_i|\theta)$ for a single event is often intractable. (Brehmer et al., 2020) One common strategy is to generate Monte-Carlo simulations (Frederix et al., 2021) under different parameter values, and train ML models to approximate a function monotonically related to the LLR, using kinematic observables such as energy and momentum as input. However, the practical effectiveness of this method diminishes when the underlying signal is weak, causing even state-of-the-art classifiers to exhibit suboptimal performance in practice.

Since the signal levels are lower than for a given ML model to construct a reliable discriminant, we conceived the use of set (or "bag") of events in order to aggregate the faint signals to strong, coherent signatures. This set-based approach is conceptually related to what is colloquially known as "Multiple Instance Learning" (MIL), but it differs fundamentally in its objective.

The MIL is a form of data fusion (Lip & Ramli, 2012) and weakly supervised learning, where instead of each instance having its own label there is only a single label for a set (or a "bag") of instances. For example, as it was first proposed by Dietterich et al. (1997) for drug activity prediction, in a

054 binary classification problem, the bag would be labeled as positive if there is at least one positive
 055 case in the bag, and it would be labeled as negative if all instances are negative. The MIL has many
 056 use cases such as medical image analysis (Quellec et al., 2017), object detection (Yuan et al., 2021),
 057 image classification (Rymarczyk et al., 2021), and many others; a comprehensive review can be
 058 found in the work of Waqas et al. (2024).

059 In our work, the objective of the MIL classifier is not to identify a single "key" instance, but, as we
 060 will show in Section 3, to aggregate the subtle statistical signature that is distributed across every in-
 061 stance in the bag. While prior work has developed related approaches in both the weakly supervised
 062 and multi-event settings, our emphasis and results differ. In particular, the Classification without La-
 063 bels (CWoLa) paradigm (Metodiev et al., 2017) establishes that classifiers trained on mixed samples
 064 can recover the optimal fully supervised classifier under idealized conditions (i.e. sufficient amount
 065 of data and signal fraction). Likewise, Nachman & Thaler (2021) analyzed connections between
 066 per-instance and per-ensemble classifiers and demonstrated constructive mappings between them
 067 under IID assumptions.

068 However, in low-signal regimes, the equivalence implied by those theoretical constructions can fail
 069 in practice as the classifiers become suboptimal. Therefore, in this paper, we bring an information-
 070 theoretic perspective to the previous multi-event literature, and identify conditions under which set-
 071 based aggregation improves inference. To our knowledge, no prior work has rigorously character-
 072 ized MIL's impact on hypothesis testing in low-signal regimes, especially in the context of Fisher
 073 Information estimation. Concretely, our main contributions are:

- 074 • We provide a mathematical motivation for why MIL can help mitigate sub-optimality in
 075 low-signal regimes, and we derive how aggregation affects the *effective* Fisher information,
 076 thereby pushing the precision of parameter measurements closer to its theoretical limit.
- 077 • We present a counterexample equivalence between single-instance and multi-instance
 078 learners, and demonstrate that under certain low-signal, finite model/data regimes, MIL
 079 can yield better performance than single-instance learners that were previously assumed to
 080 be sufficient.
- 081 • We identify that learned models violate the second Bartlett identity (Bartlett, 1953), there-
 082 fore we provide a practical post-hoc calibration procedure to address this issue.
- 083 • We investigate the performance of this framework across multiple settings, providing in-
 084 sights into their respective strengths and limitations for this high-precision task.

085 The remainder of this paper is organized as follows: Section 2 provides the necessary background on
 086 our analysis case, giving a brief introduction to Standard Model (SM), and Standard Model Effective
 087 Field Theory (SMEFT) parameters. Section 3 details our theoretical framework, and in Section 4
 088 we provide our preliminary results to show under which conditions our results can be aligned with
 089 our theoretical predictions. Finally, in Section 5 we briefly summarize our research, and share our
 090 ideas for future work.

093 2 HYPOTHESIS STUDY: STANDARD MODEL VS STANDARD MODEL 094 EFFECTIVE FIELD THEORY

095 SMEFT provides a consistent quantum field theory framework that parameterizes the low-energy
 096 effects of new, high-energy phenomena on the known SM fields. This is achieved by extending the
 097 SM Lagrangian (\mathcal{L}_{SM}) with a series of higher-dimensional operators, \mathcal{O}_i :

$$100 \quad \mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^{d_i-4}} \mathcal{O}_i, \quad (2)$$

102 Where Λ is the new physics scale at which degrees of freedom are integrated out, leaving their
 103 low-energy effects encoded in effective operators. In essence, the Wilson coefficients quantify the
 104 strength of new, unobserved interactions; a nonzero value for any c_i would indicate a deviation from
 105 the SM and thus be a sign of new physics.

106 While there are many Wilson coefficients affecting different particle interactions, the goal of this
 107 paper is not to perform a comprehensive physics analysis, but to analyze the behavior of the analysis

108 tools themselves. Therefore, in this paper we will only focus on a single type of particle interaction
 109 as what physicists call "signal" events, i.e. the collision events which are sensitive to the new physics
 110 parameter. For our analysis, we choose to focus on Higgs to WW boson decay channel as our signal
 111 events, with the Wilson coefficient value c_{HW} set to a non-zero value. For our "background"
 112 events, we used Higgs to ZZ boson decay channel with no SMEFT effects. These background
 113 events are not influenced by the parameters of interest, but have similar experimental signatures to
 114 the signal, acting as a form of noise that complicates the classification task. Further details on the
 115 simulation process are provided in the Appendix B.1.

116 The analysis thus simplifies to a hypothesis test problem: a value of $c_{HW} = 0$ corresponds to the
 117 SM, while $c_{HW} \neq 0$ indicates physics beyond the SM. As it is detailed in Appendix B.2, we kept
 118 our implementation as simple as possible in order to make our analysis a general hypothesis testing
 119 problem. We analyzed the behavior of ML models in three different settings:

1. **Binary Classification:** Distinguishing between SM ($c_{HW} = 0$) and SMEFT ($c_{HW} \neq 0$)
 hypothesis using event kinematics.
2. **Multi-Class Classification:** Using event kinematics to predict the specific value of c_{HW}
 from a discrete set of possibilities.
3. **Parameterized Neural Networks** (Baldi et al., 2016): Training a neural network that takes
 both the event kinematics x and parameter value θ as input, i.e. $[x, \theta]$, and determine if
 the kinematics are consistent with that specific parameter value. After training, one can
 continuously change the θ value to find the "best match" for a given kinematic input.

130 3 MOTIVATION FOR MULTIPLE INSTANCE LEARNING FOR HYPOTHESIS 131 TESTS

133 In this section we mathematically derive **(i)** how MIL increases information content per prediction,
 134 and **(ii)** how a decrease in ML error, or an increase in model optimality, affects the Fisher Information
 135 extracted from the data. To simplify our mathematical arguments, we will focus on a single physical
 136 parameter of interest, though the argument can be readily generalized to an arbitrary number of
 137 parameters.

139 3.1 DISTINGUISHING THE INDISTINGUISHABLE

141 Let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$ be a vector containing single instance of high-energy particle collision event
 142 information, and $\theta \in \Theta \subset \mathbb{R}^p$ be the parameter of interest. The probability density function (PDF)
 143 of observing event \mathbf{x} given parameters θ is denoted by $p(\mathbf{x}|\theta)$.

144 The collision events are independent and identically distributed (i.i.d.), therefore the joint probability
 145 of a set of events $\{\mathbf{x}_i\}_{i=1}^N$ under a model parameterized by θ (SM or SMEFT) is the product of
 146 individual event probabilities is,

$$148 p(\{\mathbf{x}_i\}_{i=1}^N|\theta) = \prod_{i=1}^N p(\mathbf{x}_i|\theta). \quad (3)$$

151 The SM would correspond to $\theta_{SM} = 0$, while the SMEFT would correspond to $\theta_{SMEFT} \neq 0$. For
 152 small deviations from SM we can define a perturbation $\delta p(\mathbf{x}_i)$, where $\delta p(\mathbf{x}_i) \ll p(\mathbf{x}_i|\theta_{SM})$, such
 153 that the likelihood ratio of a given event $r(\mathbf{x}_i)$ would be,

$$154 r(\mathbf{x}_i) \approx \frac{p(\mathbf{x}_i|\theta_{SM}) + \delta p(\mathbf{x}_i)}{p(\mathbf{x}_i|\theta_{SM})} = 1 + \frac{\delta p(\mathbf{x}_i)}{p(\mathbf{x}_i|\theta_{SM})}. \quad (4)$$

156 Taylor expanding the log-likelihood ratio, denoted by $\lambda_i(\mathbf{x}_i|\theta_1, \theta_0)$, would give some small η_i :

$$158 \lambda_i(\mathbf{x}_i|\theta_1, \theta_0) \approx \frac{\delta p(\mathbf{x}_i)}{p(\mathbf{x}_i|\theta_{SM})} = \eta_i \quad (5)$$

161 Now, this might be problematic for an Event-By-Event (E_{BE}) classifier, because in order to make
 an accurate prediction the ML model has to accurately discern the small η_i values for different

samples, each treated as an independent case. On the other hand, for a bag of events $\mathcal{B} = \{\mathbf{x}_i\}_{i=1}^N$ the information available to bag-level (BAG) classifiers is:

$$\frac{1}{N} \ln r(\mathcal{B}) = \frac{1}{N} \sum_{i=1}^N \eta_i \rightarrow \mu_\eta, \quad \ln r(\mathcal{B}) \approx N\mu_\eta \quad (6)$$

To understand why bag-level classifiers are able to discern the observed data that the event-level classifiers fails to distinguish from each other, we can take a look at the Signal-to-Noise Ratio (SNR = μ/σ) of the inputs. Assuming homogeneity, since events are independent $\text{Var}(\ln r(\mathcal{B})) = N \text{Var}(\eta_i) = N\sigma_\eta^2$, and the SNRs are:

$$\text{SNR}_{\text{BAG}} = \frac{|\mathbb{E}[\ln r(\mathcal{B})]|}{\sqrt{\text{Var}(\ln r(\mathcal{B}))}} = \frac{N|\mu_\eta|}{\sqrt{N\sigma_\eta^2}} = \boxed{\sqrt{N} \frac{|\mu_\eta|}{\sigma_\eta}} \quad (7)$$

$$\text{SNR}_{\text{EVE}} = \frac{|\mathbb{E}[\ln r(x)]|}{\sqrt{\text{Var}(\ln r(x))}} = \boxed{\frac{|\mu_\eta|}{\sigma_\eta}} \quad (8)$$

We see that the SNR increases with \sqrt{N} for the bag-level classifiers, meaning that MIL provides increasing discriminative information as N grows, even if the individual η_i are small. As demonstrated by Nachman & Thaler (2021), bag-level and event-level predictors should produce the same results in the idealized i.i.d. setting because of the mathematical equivalence in Eq. 3. However, as we discuss in Section 4.1 and Appendix C.3, when the SNR is below a certain threshold learned models can fail to reach optimal discriminator performance given finite data. Since MIL increases the SNR, it can mitigate these finite sample/model-induced sub-optimality; therefore, MIL can improve performance and cause a practical breakdown of the theoretical equivalence. Section 4 presents empirical results that align with these predictions.

3.2 INCREASING THE EFFECTIVE FISHER INFORMATION

In essence, bag-level classifiers create summary statistics. The specific implementation of this summarization is left to the machine learning practitioner. Rather than showcasing the capabilities of some unique architecture, we utilized a basic neural network model to demonstrate the power of this methodology. The basic implementation is as follows:

- Use 3 layer, 64 neuron Multi-Layer Perceptron as an embedding function $\phi(\mathbf{x}_i)$ which takes the feature vector \mathbf{x}_i and maps it to an embedding vector \mathbf{e}_i .
- Take the average of the embedding vectors in a given bag: $\bar{\mathbf{e}} = \frac{1}{N} \sum_i^N \mathbf{e}_i$
- The logit of the final layer in the binary classifier and the log-probability ratio of multi-class classifier would yield the log-likelihood ratio Λ of the whole bag. (see Appendix B)

We would like to emphasize, we are *not* taking the average of the probabilities. We are taking the average of the embedding vectors, in order to create what we call *Asimov Vector* $\bar{\mathbf{e}}$.¹ The goal is to create an amalgamation of all of the events contained in the bag for a single prediction.

Now, let $\lambda_{\text{true}}(\mathbf{x}_i|\theta_1, \theta_0)$ be the true value of the LLR of a single event \mathbf{x}_i , and $\Lambda_{\text{true}}(\mathcal{B}_j|\theta_1, \theta_0)$ be the true LLR value for the bag of events \mathcal{B}_j , with number of events in the bag denoted by N_B . The true LLR $\Lambda_{\text{true}}(\mathcal{B}_j)$ would be the sum of the event LLRs $\lambda_{\text{true}}(\mathbf{x}_{jk})$,

$$\Lambda_{\text{true}}(\mathcal{B}_j) = \sum_{k=1}^{N_B} \lambda_{\text{true}}(\mathbf{x}_{jk}) \quad (9)$$

The ML model's prediction $\hat{\Lambda}_j = \Lambda_{\text{true}}(\mathcal{B}_j) + \epsilon_j$, would have an error ϵ_j . Samples are independent collision events, and for unbiased estimate of the $\Lambda_{\text{true}}(\mathcal{B}_j)$, the expected value is $\mathbb{E}_\theta[\epsilon_j] = 0$. But

¹Asimov Vector is named after Asimov Dataset (Cowan et al., 2011) which is named after Isaac Asimov, the author of the short story *Franchise*. In the story, the super-computer Multivac selects a single representative voter for the entire population, avoiding the need for an actual election.

216 the variance $\text{Var}_{\theta_0}(\epsilon_j) = \sigma_\epsilon^2(N_B)$ may be a function of N_B , the bag size. The test statistic T for the
 217 entire dataset D , with M number of bag of events would be:
 218

$$219 \quad T(D) = \sum_{j=1}^M \hat{\Lambda}(\mathcal{B}_j) = \sum_{j=1}^M (\Lambda_{\text{true}}(\mathcal{B}_j) + \epsilon_j) = \Lambda_{\text{true, dataset}}(D) + \sum_{j=1}^M \epsilon_j \quad (10)$$

222 If we define $I_B(\theta_0)$ as the Fisher Information of a bag of events, through similar calculations stated
 223 in Appendix A, one can show that
 224

$$225 \quad \mathbb{E}_{\theta_1}[T] \approx +\frac{1}{2} MI_B(\theta_0)(\Delta\theta)^2 \quad \mathbb{E}_{\theta_0}[T] \approx -\frac{1}{2} MI_B(\theta_0)(\Delta\theta)^2 \quad (11)$$

226 And the total variance $T(D)$ under θ_0 would be,
 227

$$228 \quad \text{Var}_{\theta_0}(T(D)) \approx MI_B(\theta_0)(\Delta\theta)^2 + M\sigma_\epsilon^2(N_B) \quad (12)$$

230 To study the relationship between the information latent in the dataset and the information ex-
 231 tractable by ML models, we calculate the $\text{SNR}^2 = (\Delta\mathbb{E}[T(D)])^2/\text{Var}_{\theta_0}(T(D))$. This relates the
 232 true Fisher Information of the whole dataset, $I_{\text{true, D}}(\theta) = MI_B(\theta_0)$, to the *effective* Fisher Infor-
 233 mation of the whole dataset, $I_{\text{eff, D}}(\theta)$:

$$235 \quad I_{\text{eff, D}}(\theta_0)(\Delta\theta)^2 \approx \frac{(MI_B(\theta_0)(\Delta\theta)^2)^2}{MI_B(\theta_0)(\Delta\theta)^2 + M\sigma_\epsilon^2(N_B)} \quad (13)$$

$$238 \quad I_{\text{eff, D}}(\theta_0) \approx \frac{M^2 I_B(\theta_0)^2 (\Delta\theta)^2}{MI_B(\theta_0)(\Delta\theta)^2 + M\sigma_\epsilon^2(N_B)} = \frac{MI_B(\theta_0)}{1 + \frac{M\sigma_\epsilon^2(N_B)}{MI_B(\theta_0)(\Delta\theta)^2}} \quad (14)$$

$$241 \quad \boxed{I_{\text{eff, D}}(\theta_0) = \frac{I_{\text{true, D}}(\theta)}{1 + \frac{\sigma_\epsilon^2(N_B)}{I_B(\theta_0)(\Delta\theta)^2}} = \frac{I_{\text{true, D}}(\theta)}{1 + \frac{\sigma_\epsilon^2(N_B)}{N_B I_1(\theta_0)(\Delta\theta)^2}}} \quad (15)$$

245 Here, $I_1(\theta_0)$ denotes the Fisher Information of a single event, such that $I_B(\theta_0) = N_B I_1(\theta_0)$. Since
 246 the calculations are similar in nature to the previous part, we would like to make a distinction: In
 247 Equation 15, $\sigma_\epsilon^2(N_B)$ refers to the variance of the ML model’s estimation error, not the variance of
 248 the log-likelihood ratios themselves.

249 The equation for the effective Fisher Information we derived captures the asymptotic behaviors of
 250 neural estimators in different signal regimes. In the high-signal regime, the error term in the denom-
 251 inator is negligible, and $I_{\text{eff}}(\theta) \approx I_{\text{true}}(\theta)$. Conversely, in the low-signal regime, the information
 252 contained in a single sample, $I_1(\theta_0)$, is low while the variance of the ML-induced error, $\sigma_\epsilon^2(N_B)$, is
 253 high; thus, their ratio becomes non-negligible when $N_B = 1$, reducing the effective information.

254 Furthermore, if the ML models are well behaved and consistent in results, one can profile the
 255 $\sigma_\epsilon^2(N_B)$ function with respect to N_B , and extrapolate the amount of increase or decrease of effective
 256 Fisher Information. For desirable cases when $\sigma_\epsilon^2(N_B)$ is a sublinear function of N_B , the effective
 257 Fisher Information would increase as one scales N_B . By profiling this behavior, it may very well be
 258 possible to extrapolate the *True* Fisher Information. Moreover, for an unbiased estimator of θ , the
 259 $\hat{\theta}(D)$, the Cramér–Rao bound (Rao, 1992) on the variance is,

$$261 \quad \boxed{\text{Var}_\theta(\hat{\theta}) \geq \frac{1}{I_{\text{true, D}}(\theta)}} \quad (16)$$

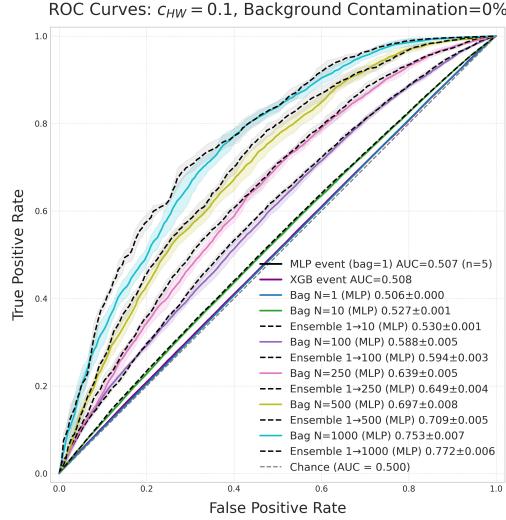
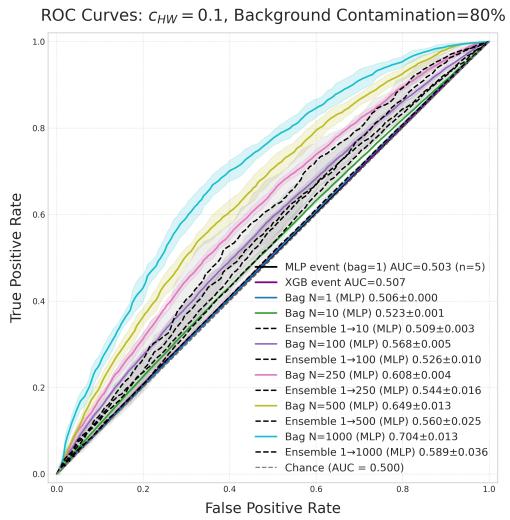
264 Therefore, one of the primary objectives of phenomenological studies, finding the tightest bounds
 265 on a given parameter of interest may be achieved through this methodology. Since the standard error
 266 of an efficient (or asymptotically efficient) estimator $\hat{\theta}$ is approximately $\sqrt{1/I_{\text{eff, D}}(\theta)}$, as $I_{\text{eff, D}}(\theta)$
 267 approaches $I_{\text{true, D}}(\theta)$, the standard error of our effective estimator approaches its theoretical mini-
 268 mum. Since the width of confidence intervals is proportional to the standard error, maximizing the
 269 effective Fisher Information leads to the statistically tightest possible confidence intervals for the
 parameters of interest.

270

4 RESULTS

271

4.1 BINARY CLASSIFICATION



(a) Signal events + 0% Background events

(b) Signal events + 80% Background events

293 Figure 1: Receiver Operating Characteristic (ROC) curves for binary classification of SMEFT
294 ($c_{HW} = 0.1$) vs. SM with different levels of background event contamination with respect
295 to number of signal events in the bag. Additional contamination levels are shown in Figure 6.

297 To empirically validate the practical breakdown of the theoretical equivalence between event-level
298 and bag-level predictions, we designed a binary classification task in a challenging, low-signal
299 regime. The ML models are tasked with differentiating between SM vs. SMEFT "signal events"
300 (i.e., events influenced by the parameter of interest) while background events are injected as
301 additional noise. For intuitive visualization of the results, we held the number of signal events in each
302 bag constant and increased the total bag size as we scaled the background contamination level. For
303 example, a bag with 100 signal events and 20% background contamination contains 120 events in
304 total, while 40% contamination corresponds to 140 events. Since background events do not pro-
305 vide any useful information, an optimal discriminator should yield the same ROC curves across all
306 background contamination levels.

307 For each bag size we trained five Multi-Layer Perceptron (MLP) models with different initializa-
308 tions seeds values. We also constructed ensemble predictions from the event-level classifiers (see
309 Appendix C.3 for details of this procedure) and compared those to the bag-level classifiers. The
310 details of training and optimization can be found in Appendix B.2. Figures 1 and 6 show that the
311 event-level models do not behave optimally in the low-SNR regime: ROC-AUC systematically de-
312 creases as background contamination increases, while the bag-level (MIL) classifiers retain substan-
313 tially better discriminative performance. Furthermore, we also trained a hyperparameter-optimized
314 XGBoost model (Chen & Guestrin, 2016), a strong baseline for tabular data (Shwartz-Ziv &
315 Armon, 2022), and observed a similar scaling behavior with respect to the SNR (Figure 7). Although
316 XGBoost outperforms the simple MLP at relatively high SNR, MIL performance can match or even
317 exceed that of XGBoost in the low-SNR regime. This model-independent degradation of event-level
318 performance, together with MIL's resilience, validates our arguments stated in Section 3.1.

320

4.2 MULTI-CLASS CLASSIFICATION

321 After investigating completely independent LLR prediction values at discrete $c_{HW} = \theta_k$ values
322 using binary classifiers (see Appendix C.3), we move to multi-class classification in order to couple
323 the LLR predictions and investigate the model's ability to perform precise parameter estimation.

This task imposes stricter requirements on the learned likelihood approximation. For a parameter estimator to follow the frequentist view of confidence intervals, two requirements must be met:

1. The maximum likelihood estimate point must vary with the inherent statistical variance of the data. Let the Fisher Information calculated from the variance of maximum likelihood estimate $\hat{\theta}$ be $I_{\text{MLE}} = 1/\text{Var}(\hat{\theta})$.
2. Since LLR, the Λ , is asymptotically χ^2 distributed, concavity of the $\Lambda(D, \theta) \approx \Lambda(D, \hat{\theta}) - \frac{1}{2}(\theta - \hat{\theta})^2 I_{\text{curv}}$ must be also equal to the Fisher Information.

As a consequence of the second Bartlett identity (Bartlett, 1953), we know that an ideal, efficient estimator must satisfy these two conditions, since they are the measurement of the same Fisher Information: $I_{\text{true}} \approx I_{\text{MLE}} \approx I_{\text{curv}}$.

But our empirical investigation revealed an unexpected finding: the learned LLR function from our simple MLP model systematically violates the second Bartlett identity, even for event-by-event classifiers. While the location of the LLR minimum correctly tracks the maximum likelihood estimate ($\hat{\theta}$), the learned curvature is consistently too shallow. This result means that the neural network produces an estimator where the information contained in the variance of its score is greater than the information contained in its average curvature, in other words $I_{\text{curv}} < I_{\text{MLE}}$, and

$$\mathbb{E} \left[-\frac{d^2 T}{d\theta^2} \right] < \text{Var} \left(\frac{dT}{d\theta} \right) \quad (17)$$

This underestimated curvature leads to confidence intervals that are too broad, resulting in significant over-coverage (e.g., coverage exceeding 90% at the 1σ level). To address this, we introduce a single empirically determined calibration constant, c_{cicc} which rescales the LLR curvature to restore correct frequentist coverage. After this one-time calibration, the 1σ confidence intervals correctly covered the true parameter value in $68.3 \pm 0.2\%$ of pseudo-experiments. The details of this procedure and the resulting values are provided in the Appendix C.

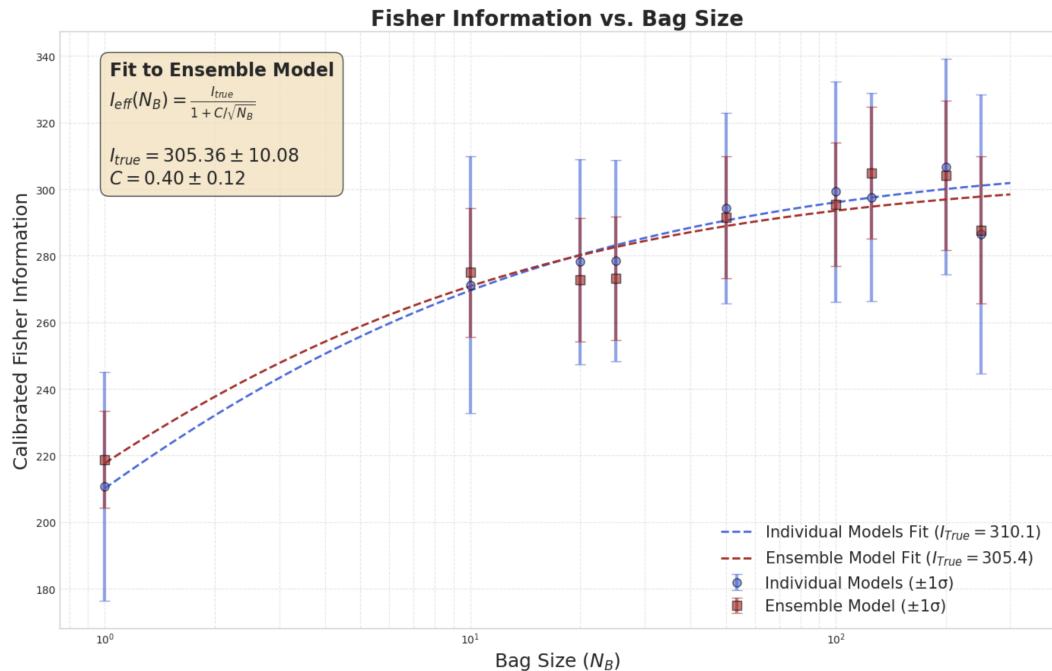


Figure 2: The increase in effective Fisher Information with respect to bag size. Since different 1000 event chunks contain different levels of Fisher Information, the 1σ variation of information contained in different bags is also showcased with the bars.

To demonstrate the performance of this approach, we constructed 200 confidence intervals from 1000-event data chunks, using 20 ML models trained under identical settings with different initialization seed values. As it is detailed in Appendix C.4, to make the predictions of bag-level classifiers with bag level < 10 more robust, by taking average of the predictions of 20 different ML models, we also created what is called an ensemble model. The increase in effective Fisher Information with respect to the bag size is shown in Figure 2. For *illustrative purposes*, we fit the data using a simple model for the error variance of the form $\sigma_\epsilon^2(N_B) = C\sqrt{N_B}$, where C is a free parameter of the fit. Even with this simplified ansatz solution of $\sigma_\epsilon^2(N_B)$, the apparent increase in effective Fisher Information, and its diminishing return with respect to bag size shows another clear and strong evidence supporting our theoretical claims.

4.3 PARAMETERIZED NEURAL NETWORKS

Finally, we investigated an alternative architecture, the Parameterized Neural Network (PNN), for the parameter estimation task. Despite extensive experimentation on hundreds of training runs with various stabilization techniques (see Appendix C.5), we found that PNNs, *in their standard implementation*, are not well suited for this high-precision inference task.

Various aspects of PNN contribute to additional deviations from the true value in addition to the models' usual error. For example, the unconstrained nature of the PNN output often led to LLR shapes devoid of any physical meaning, such as smoothed step functions rather than the expected parabolic form. Furthermore, by its design, the output probabilities over the parameter of interest, c_{HW} , are not normalized. Therefore, because of the nonlinearity of logit function in the LLR calculations, the outliers create a disproportionate effect on the final decision where the maximum likelihood estimate is, and the curvature of the LLR. Straightforward attempts to mitigate these issues, for example, by artificially normalizing probabilities over the c_{HW} values, did not lead to stable or improved performance.

As shown in Figure 3a, the resulting ML error term, $\sigma_\epsilon^2(N_B)$, did not show a consistent or well-behaved scaling with the bag size. We conclude that while the standard PNNs are effective for other inference tasks, their architectural design may lack the necessary constraints and robustness for the high-precision, curvature-sensitive measurements central to this work.

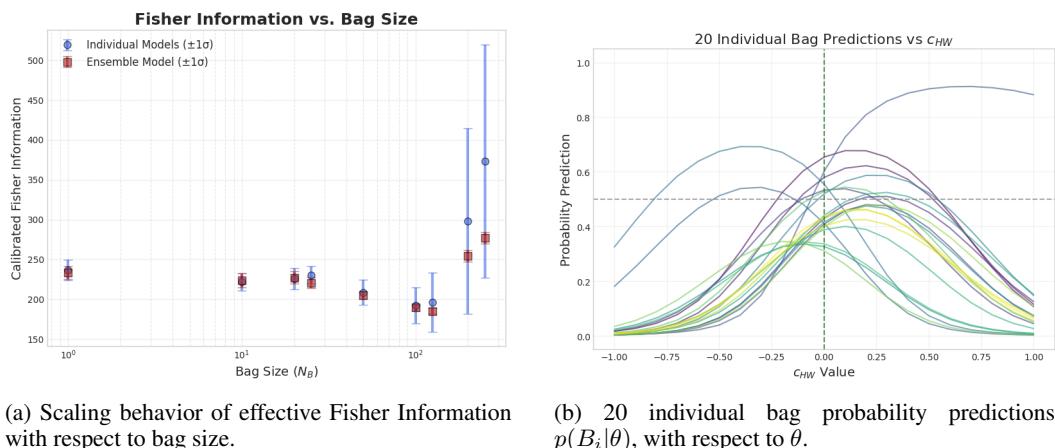


Figure 3: Inconsistent and unphysical predictions of Parameterized Neural Networks.

5 CONCLUSIONS AND OUTLOOK

In this work we presented a new information-theoretic perspective on Multiple Instance Learning (MIL) for parameter estimation with i.i.d. data and validated our predictions by demonstrating a practical breakdown of the theoretical equivalence between single-instance and multiple-instance learners in low-signal regimes. Our analysis complements prior weakly-supervised and multi-event

432 results (e.g., Metodiev et al. (2017) and Nachman & Thaler (2021)) by identifying concrete finite-
 433 model and finite-sample mechanisms that can make aggregation beneficial in practice.
 434

435 Our main contributions and findings are:

436 1. We developed an analytical framework that motivates the set-level aggregation strategy,
 437 showed that the effective signal-to-noise ratio can scale like $\sqrt{N_B}$, and derived an expres-
 438 sion that relates the model’s performance to the Fisher Information available in the dataset
 439 under explicit assumptions.

440 2. We provided empirical evidence supporting the theory:

441 • We demonstrate that the SNR increase from aggregation makes MIL more resilient to
 442 performance degradation than its single-instance counterparts in low-signal regimes,
 443 providing a concrete counterexample to the asymptotic equivalence between single-
 444 instance and multiple-instance learners under finite-data/model conditions.

445 • We characterized the diminishing increase in *effective* Fisher information as we scaled
 446 N_B .

447 3. We observed systematic deviations from the second Bartlett identity in learned models, i.e.
 448 nominal network outputs underestimate LLR curvature. This finding highlights a critical
 449 consideration for the application of ML in high-precision statistical inference and motivated
 450 our development of a post-hoc calibration procedure.

451 4. We provided a comparison of different ML implementations for this parameter estimation
 452 problem; showing their respective strengths, limitations, and proposed solutions to those
 453 limitations.

455 This methodology is a general-purpose framework for having more precise detections of weak sig-
 456 nals contained in a dataset. As physicists, our primary aim is to extract the maximal experimentally
 457 available information from finite datasets. The methodology introduced here provides a pragmatic
 458 route toward this goal. By treating an event collection as a single, permutation-invariant input, we
 459 can amplify extremely weak per-event signals into a bag-level statistic that is amenable to inference.
 460 Moreover, since the realized gain depends on the behavior of the ML-induced error term $\sigma_\epsilon^2(N_B)$,
 461 if $\sigma_\epsilon^2(N_B)$ is shown (theoretically or empirically) to grow sublinearly with N_B , then aggregation
 462 will systematically suppress ML-induced error. However, the general rules and conditions for such
 463 sublinear scaling remain an open question.

464 The primary objective of this paper was to perform a comparative analysis of this methodology in
 465 low-signal regime and to provide an initial characterization of its properties. Although we acknowl-
 466 edge the theoretical and the empirical limitations of this paper (see Appendix C.6 for a detailed
 467 discussion), the information-theoretic perspective given in this paper shows a nontrivial and coun-
 468 terintuitive result: Under certain conditions, aggregating instances into a set can allow an ML model
 469 to extract more information per instance than is achievable by a model that processes each instance
 470 individually.

471 This work opens several promising avenues for future research. We believe a deeper analysis of the
 472 machine learning models themselves is a critical, and often overlooked, component of phenomeno-
 473 logical studies. As for future work, our main questions are as follows:

474 • For a given ML architecture and intrinsic data dimensionality d , what is the SNR threshold
 475 below which the model cannot perform optimally, and how does that threshold scale with
 476 dataset size and model capacity?

477 • Can we develop a rigorous theoretical or empirical framework to characterize the variance
 478 of the learned-error function $\sigma_\epsilon^2(N_B)$?

479 • Can we find robust training or architectural strategies that mitigate violation of the second
 480 Bartlett identity without degrading predictive performance?

481 • How general are ML behaviors across architectures, datasets, and physics tasks? Which
 482 behaviors are model- or problem-specific and which are universal?

483 • What is the theoretical information capacity of the Asimov vector \mathbf{e} , and how does this
 484 capacity depend on the aggregation operator and embedding dimension?

486 • How can MIL-specific architectures be designed or adapted to maximize set-level suffi-
 487 ciency for statistical inference tasks?
 488

489 DATA AND CODE AVAILABILITY
 490

491 The anonymous repository for this paper can be found at this link: <https://github.com/>
 492 aaa327OpenReview/MIL_for_HEP

493 REFERENCES
 494

495 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
 496 Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
 497 Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
 498 Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
 499 Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
 500 Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
 501 tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
 502 ing on heterogeneous systems, 2015. URL <https://www.tensorflow.org/>. Software
 503 available from tensorflow.org.

504 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
 505 Next-generation Hyperparameter Optimization Framework. In *Proceedings of the 25th ACM
 506 SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '19, pp.
 507 2623–2631, New York, NY, USA, July 2019. Association for Computing Machinery. ISBN
 508 978-1-4503-6201-6. doi: 10.1145/3292500.3330701. URL <https://doi.org/10.1145/3292500.3330701>.

509 Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. Parameterized
 510 neural networks for high-energy physics. *The European Physical Journal C*, 76(5):235, April
 511 2016. ISSN 1434-6052. doi: 10.1140/epjc/s10052-016-4099-4. URL <https://doi.org/10.1140/epjc/s10052-016-4099-4>.

512 M. S. Bartlett. Approximate Confidence Intervals. *Biometrika*, 40(1-2):12–19, June 1953. ISSN
 513 0006-3444. doi: 10.1093/biomet/40.1-2.12. URL <https://doi.org/10.1093/biomet/40.1-2.12>.

514 Lukas Biewald. Experiment tracking with weights and biases, 2020. URL <https://www.wandb.com/>. Software available from wandb.com.

515 Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. MadMiner: Machine Learning-
 516 Based Inference for Particle Physics. *Computing and Software for Big Science*, 4(1):3, January
 517 2020. ISSN 2510-2044. doi: 10.1007/s41781-020-0035-2. URL <https://doi.org/10.1007/s41781-020-0035-2>.

518 Ilaria Brivio, Yun Jiang, and Michael Trott. The SMEFTsim package, theory and tools. *Journal
 519 of High Energy Physics*, 2017(12):70, December 2017. ISSN 1029-8479. doi: 10.1007/JHEP12(2017)070. URL [https://doi.org/10.1007/JHEP12\(2017\)070](https://doi.org/10.1007/JHEP12(2017)070).

520 Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In *Proceed-
 521 ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
 522 Mining*, KDD '16, pp. 785–794, New York, NY, USA, August 2016. Association for Comput-
 523 ing Machinery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. URL <https://dl.acm.org/doi/10.1145/2939672.2939785>.

524 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
 525 Learning by Exponential Linear Units (ELUs), February 2016. URL <http://arxiv.org/abs/1511.07289>. arXiv:1511.07289 [cs].

526 Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-
 527 based tests of new physics. *The European Physical Journal C*, 71(2):1554, February 2011. ISSN
 528 1434-6052. doi: 10.1140/epjc/s10052-011-1554-0. URL <https://doi.org/10.1140/epjc/s10052-011-1554-0>.

540 Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance
 541 problem with axis-parallel rectangles. *Artificial Intelligence*, 89(1):31–71, January 1997. ISSN
 542 0004-3702. doi: 10.1016/S0004-3702(96)00034-3. URL <https://www.sciencedirect.com/science/article/pii/S0004370296000343>.

543

544 R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, and M. Zaro. The automation of next-
 545 to-leading order electroweak calculations, October 2021. URL <http://arxiv.org/abs/1804.10017>. arXiv:1804.10017 [hep-ph].

546

547 Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
 548 reducing internal covariate shift. In *Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37*, ICML’15, pp. 448–456, Lille, France,
 549 July 2015. JMLR.org.

550

551 Chia Chin Lip and Dzati Athiar Ramli. Comparative Study on Feature, Score and Decision Level
 552 Fusion Schemes for Robust Multibiometric Systems. In Sabo Sambath and Egui Zhu (eds.),
 553 *Frontiers in Computer Education*, pp. 941–948. Springer, Berlin, Heidelberg, 2012. ISBN 978-3-
 554 642-27552-4. doi: 10.1007/978-3-642-27552-4_123. URL https://doi.org/10.1007/978-3-642-27552-4_123.

555

556

557 Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. Classification without labels: learning
 558 from mixed samples in high energy physics. *Journal of High Energy Physics*, 2017(10):174,
 559 October 2017. ISSN 1029-8479. doi: 10.1007/JHEP10(2017)174. URL [https://doi.org/10.1007/JHEP10\(2017\)174](https://doi.org/10.1007/JHEP10(2017)174).

560

561

562 Benjamin Nachman and Jesse Thaler. Learning from many collider events at once. *Phys. Rev. D*,
 563 103:116013, Jun 2021. doi: 10.1103/PhysRevD.103.116013. URL <https://link.aps.org/doi/10.1103/PhysRevD.103.116013>.

564

565

566 Jerzy Neyman, Egon Sharpe Pearson, and Karl Pearson. IX. On the problem of the most efficient
 567 tests of statistical hypotheses. *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, 231(694-706):289–337, January
 568 1997. doi: 10.1098/rsta.1933.0009. URL <https://royalsocietypublishing.org/doi/10.1098/rsta.1933.0009>. Publisher: Royal Society.

569

570

571 Gwenolé Quellec, Guy Cazuguel, Béatrice Cochener, and Mathieu Lamard. Multiple-Instance
 572 Learning for Medical Image and Video Analysis. *IEEE Reviews in Biomedical Engineering*,
 573 10:213–234, 2017. ISSN 1941-1189. doi: 10.1109/RBME.2017.2651164. URL <https://ieeexplore.ieee.org/document/7812612>.

574

575

576 C. Radhakrishna Rao. Information and the Accuracy Attainable in the Estimation of Statistical
 577 Parameters. In Samuel Kotz and Norman L. Johnson (eds.), *Breakthroughs in Statistics: Foundations and Basic Theory*, pp. 235–247. Springer, New York, NY, 1992. ISBN 978-1-
 578 4612-0919-5. doi: 10.1007/978-1-4612-0919-5_16. URL https://doi.org/10.1007/978-1-4612-0919-5_16.

579

580

581 Dawid Rymarczyk, Adriana Borowa, Jacek Tabor, and Bartosz Zielinski. Kernel Self-Attention
 582 for Weakly-supervised Image Classification using Deep Multiple Instance Learning. In *2021 IEEE Winter Conference on Applications of Computer Vision (WACV)*, pp. 1720–1729, Waikoloa,
 583 HI, USA, January 2021. IEEE. doi: 10.1109/wacv48630.2021.00176. URL <https://ieeexplore.ieee.org/document/9423289/>.

584

585

586 Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need.
 587 *Information Fusion*, 81:84–90, May 2022. ISSN 1566-2535. doi: 10.1016/j.inffus.2021.11.011. URL <https://www.sciencedirect.com/science/article/pii/S1566253521002360>.

588

589

590 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 591 Dropout: A Simple Way to Prevent Neural Networks from Overfitting. *Journal of Machine
 592 Learning Research*, 15(56):1929–1958, 2014. ISSN 1533-7928. URL <http://jmlr.org/papers/v15/srivastava14a.html>.

593

594 Muhammad Waqas, Syed Umaid Ahmed, Muhammad Atif Tahir, Jia Wu, and Rizwan Qureshi. Ex-
 595 ploring Multiple Instance Learning (MIL): A brief survey. *Expert Systems with Applications*, 250:
 596 123893, September 2024. ISSN 0957-4174. doi: 10.1016/j.eswa.2024.123893. URL <https://www.sciencedirect.com/science/article/pii/S0957417424007590>.

597 Tianning Yuan, Fang Wan, Mengying Fu, Jianzhuang Liu, Songcen Xu, Xiangyang Ji, and Qixiang
 599 Ye. Multiple Instance Active Learning for Object Detection. In *2021 IEEE/CVF Conference on*
 600 *Computer Vision and Pattern Recognition (CVPR)*, pp. 5326–5335, Nashville, TN, USA, June
 601 2021. IEEE. doi: 10.1109/cvpr46437.2021.00529. URL <https://ieeexplore.ieee.org/document/9577904/>.

604 A MATHEMATICAL PROOFS AND APPROXIMATIONS

607 A.1 FISHER INFORMATION AND IT'S RELATION TO LOG-LIKELIHOOD RATIO

609 For a set, or "bag", of independent particle collision events $\mathcal{B} = \{\mathbf{x}_i\}_{i=1}^N$, we have the likelihood
 610 and log-likelihood as,

$$612 p(\mathcal{B} | \theta) = \prod_{i=1}^N p(\mathbf{x}_i | \theta), \quad \ln p(\mathcal{B} | \theta) = \sum_{i=1}^N \ln p(\mathbf{x}_i | \theta). \quad (18)$$

615 By definition, the Fisher Information is

$$617 \mathcal{I}(\theta) = \text{Var}_\theta \left[\frac{\partial}{\partial \theta} \ln p(\mathcal{B} | \theta) \right]. \quad (19)$$

621 Since the reference point is fixed, and $\frac{\partial}{\partial \theta} \sum_{i=1}^N \ln p(\mathbf{x}_i | \theta_0) = 0$, we can add the zero term to variance

624 of the score, $\text{Var}_\theta \left[\frac{\partial}{\partial \theta} \ln p(\mathcal{B} | \theta_0) \right]$, and obtain

$$627 \mathcal{I}(\theta) = \text{Var}_\theta \left[\frac{\partial}{\partial \theta} \sum_{i=1}^N \ln p(\mathbf{x}_i | \theta) - \frac{\partial}{\partial \theta} \sum_{i=1}^N \ln p(\mathbf{x}_i | \theta_0) \right] \quad (20)$$

$$631 = \text{Var}_\theta \left[\frac{\partial}{\partial \theta} \sum_{i=1}^N \lambda_i(\theta) \right] = \text{Var}_\theta \left[\sum_{i=1}^N s_i(\theta) \right], \quad (21)$$

633 where $\lambda_i(\theta)$ is the log-likelihood ratio of event i with respect to the reference parameter point θ_0 ,
 634 and the score s_i is

$$637 s_i(\theta) = \frac{\partial}{\partial \theta} \lambda_i(\theta) = \frac{\partial}{\partial \theta} \ln p(\mathbf{x}_i | \theta). \quad (22)$$

639 Because the events are independent,

$$641 \mathcal{I}(\theta) = \text{Var}_\theta \left[\sum_{i=1}^N s_i(\theta) \right] = N \text{Var}_\theta [s_1(\theta)]. \quad (23)$$

644 Assuming the regularity conditions that permit the interchange of differentiation and integration
 645 hold, we can show that the expectation of the score is zero. Since $p(\mathbf{x}_1 | \theta)$ is a probability density
 646 function, its integral over the entire domain is 1. Therefore, $\mathbb{E}_\theta [s_1(\theta)] = \frac{\partial}{\partial \theta} \int p(\mathbf{x}_1 | \theta) d\mathbf{x}_1 =$
 647 $\frac{\partial}{\partial \theta} (1) = 0$. With this result, the variance of the score simplifies to,

648

649

650

$$\text{Var}_\theta[s_1(\theta)] = \mathbb{E}_\theta \left[(s_1(\theta) - \mathbb{E}_\theta[s_1(\theta)])^2 \right] = \mathbb{E}_\theta [(s_1(\theta))^2]. \quad (24)$$

651

A.2 FISHER INFORMATION APPROXIMATIONS

653

654

Consider testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta = \theta_1 = \theta_0 + \Delta\theta$ where $\Delta\theta$ is small. According to Neyman-Pearson lemma, for a dataset D , the optimal test statistic is the LLR $\Lambda(D|\theta_1, \theta_0)$. For small $\Delta\theta$, we can Taylor expand $\ln p(D|\theta_1)$ around θ_0 :

657

658

659

$$\ln p(D|\theta_1) \approx \ln p(D|\theta_0) + \frac{\partial \ln p(D|\theta)}{\partial \theta} \Big|_{\theta_0} \Delta\theta + \frac{1}{2} \frac{\partial^2 \ln p(D|\theta)}{\partial \theta^2} \Big|_{\theta_0} (\Delta\theta)^2 \quad (25)$$

660

661

662

$$\Lambda(D|\theta_1, \theta_0) \approx S_D(\theta_0) \Delta\theta + \frac{1}{2} H_D(\theta_0) (\Delta\theta)^2 \quad (26)$$

663

664

665

where $S_D(\theta_0)$ is the score and $H_D(\theta_0)$ is the Hessian (second derivative) for the full dataset. The $\mathbb{E}[S_D(\theta_0)|\theta_0] = 0$ under H_0 , and thanks to the second Bartlett Identity we have $\mathbb{E}[\partial^2 \ln p/\partial \theta^2] = -\mathbb{E}[(\partial \ln p/\partial \theta)^2] = -I(\theta)$. Therefore, if we take the expectation of Λ under H_0 :

666

667

668

$$\mathbb{E}[\Lambda|\theta_0] \approx \mathbb{E}[S_D(\theta_0)|\theta_0] \Delta\theta + \frac{1}{2} \mathbb{E}[H_D(\theta_0)|\theta_0] (\Delta\theta)^2 \quad (27)$$

669

670

$$= 0 + \frac{1}{2} (-I(\theta_0)) (\Delta\theta)^2 = -\frac{1}{2} I(\theta_0) (\Delta\theta)^2 \quad (28)$$

671

672

673

674

By definition, the Fisher Information is $I(\theta_0) = \mathbb{E}[S_D(\theta_0)^2|\theta_0]$. To find the variance, we first approximate the expectation of the squared LLR. By retaining only the lowest-order term in $\Delta\theta$, we have:

675

676

677

$$\Lambda^2 \approx \left(S_D(\theta_0) \Delta\theta + \frac{1}{2} H_D(\theta_0) (\Delta\theta)^2 \right)^2 \approx S_D(\theta_0)^2 (\Delta\theta)^2 \quad (29)$$

678

The variance of Λ under H_0 is therefore:

679

680

681

$$\text{Var}[\Lambda|\theta_0] = \underbrace{\mathbb{E}[\Lambda^2|\theta_0]}_{\approx I(\theta_0)(\Delta\theta)^2} - \underbrace{(\mathbb{E}[\Lambda|\theta_0])^2}_{\mathcal{O}((\Delta\theta)^4)} \quad (30)$$

682

683

$$\text{Var}[\Lambda|\theta_0] \approx I(\theta_0) (\Delta\theta)^2 \quad (31)$$

684

685

686

687

688

Therefore, under H_0 , the LLR distribution has mean $\mathbb{E}[\Lambda|\theta_0] \approx -I(\theta_0)(\Delta\theta)^2/2$ and variance $\text{Var}[\Lambda|\theta_0] \approx I(\theta_0)(\Delta\theta)^2$. Since Fisher Information is locally constant for small $\Delta\theta$ (because Λ is asymptotically χ^2 distributed, $I(\theta_1) \approx I(\theta_0)$), through similar calculations shown above, one can show that the mean $\mathbb{E}[\Lambda|\theta_1] \approx +I(\theta_0)(\Delta\theta)^2/2$ and the variance $\text{Var}[\Lambda|\theta_1] \approx I(\theta_0)(\Delta\theta)^2$ under the H_1 hypothesis.

689

690

B IMPLEMENTATION

691

692

B.1 DATA GENERATION AND FEATURE SELECTION

693

694

695

696

697

698

699

700

701

The dataset used for this research is hadron-level high-energy collision events created by Monte Carlo simulations using `MadGraph5_aMC@NLO` (v3.6.2) (Frederix et al., 2021) interfaced with the `SMEFTsim` (v3.0) `UFO` model (Brivio et al., 2017) to incorporate EFT effects. We have generated 10^6 collision events for each parameter value in the set of c_{HW} values. We choose the c_{HW} values to be in the range of $[-10, 10]$ with increments of ± 1.0 , and in the range of $[-0.9, 0.9]$ with increments of ± 0.1 , resulting in a total of 39 discrete values.

The analysis focuses on a specific signal process sensitive to the c_{HW} parameter and a corresponding background process chosen for its similar kinematic signature:

702 **Signal process:** Vector Boson Fusion (VBF) production of a Higgs boson, which subsequently
 703 decays via $H \rightarrow WW \rightarrow \ell\nu\ell\nu$. The `MadGraph5` command used is:
 704

```
705 import model SMEFTsim_top_MwScheme_UFO-massless
706 generate u d > u d h $$ w+ w- / z a QCD=0 NP=1 NPcHW=1,
707 h > e+ ve e- ve~ / z QCD=0 NP=1 NPcHW=1
```

708

709 **Background process:** We chose a kinematically similar irreducible process, a VBF production of
 710 a di-boson (ZZ) pair, with one Z decaying leptonically ($Z \rightarrow \ell\ell$) and the other invisibly ($Z \rightarrow \nu\nu$).
 711 The generation is done with no EFT effects ($c_{HW} = 0$). The `MadGraph5` command used is:

```
712 import model SMEFTsim_top_MwScheme_UFO-massless
713 define vl = ve vm vt
714 define vl~ = ve~ vm~ vt~
715 generate u d > u d z z QCD=0 NP=0 NPcHW=0, (z > e+ e-),
716 (z > vl vl~) QCD=0 NP=0 NPcHW=0
```

717

718 Both processes result in the same final state signature of two forward jets, two charged leptons,
 719 and significant missing transverse energy, making them an ideal test case for a method designed to
 720 distinguish between hypotheses based on subtle kinematic differences.

721 The `run_param.dat` parameter card file was modified for each run to set the specific value of
 722 c_{HW} while keeping all other Wilson coefficients at their Standard Model value of zero.

723 The features used for model training are detailed in Table 1. They include both low-level four-vector
 724 components for the final state particles and a set of high-level, physically-motivated engineered
 725 variables.

726

727 Table 1: Features included in the training dataset. The features are categorized into low-level kin-
 728 metric variables and high-level engineered features. For pairs of particles, the indices 0 and 1 (e.g.,
 729 ℓ_0, ℓ_1) refer to the leading and subleading particles sorted by transverse momentum (p_T), respec-
 730 tively.

731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901</th

756 B.2 MACHINE LEARNING PIPELINE
757758 To ensure a fair comparison and robust conclusions, a consistent training pipeline was used for all
759 models unless otherwise specified. The pipeline was implemented in TensorFlow (Abadi et al.,
760 2015) and experiment tracking was managed with wandb (Biewald, 2020).761 B.2.1 NEURAL NETWORK MODEL ARCHITECTURE
762763 The core architecture is a simple Multi-Layer Perceptron (MLP) with 11,201 trainable parameters,
764 chosen deliberately to demonstrate that the performance gains stem from the set-based aggregation
765 method rather than from architectural complexity. The network consists of:
766

- 767 1. A normalization layer, adapted to the training data.
- 768 2. Three fully-connected hidden layers with 64 neurons each. Each layer uses the ELU acti-
769 vation function (Clevert et al., 2016), Batch Normalization (Ioffe & Szegedy, 2015), and is
770 regularized with Dropout (rate=0.1) (Srivastava et al., 2014) and an L2 kernel regularizer
771 (10^{-3}).
- 772 3. A global average pooling layer operates across the "events-in-bag" axis of the output em-
773 beddings from the final hidden layer. This produces a single, fixed-size summary vector for
774 the entire bag, which we call the *Asimov Vector*.
- 775 4. A final output is a single neuron with a sigmoid (for binary) or softmax (for multi-class)
776 activation function.

777 B.2.2 DATA HANDLING AND TRAINING PROCEDURE
778779 The dataset was first partitioned at the event level to prevent data leakage: 20% was held out as
780 a final test set, with the remainder is then shuffled with the experiments seed value and split into
781 training (80%) and validation (20%) sets.
782

- 783 • **Dynamic bags:** As a simple data augmentation method we have created dynamic bags.
784 At the beginning of each training epoch, the events within the training set are randomly
785 shuffled and re-grouped into new, unique bags. Although it was essential for multi-class
786 classifiers to have for stable LLR profile predictions, dynamic bags did not have any mean-
787 ingful effect on performance for binary classifiers and PNNs in our case study.
- 788 • **Training and optimization:** Depending on the problem, binary cross entropy or categor-
789 ical cross entropy is used as the loss function. The models were trained using the Adam
790 optimizer, with an initial learning rate of 10^{-3} , and reducing the learning rate up to 10^{-4} ,
791 if no improvements were seen for a predetermined PATIENCE number of epochs. Early
792 stopping is applied if there is no improvement after $2 * \text{PATIENCE}$ epochs after the last
793 learning rate reduction, restoring the model weights from the epoch with the best valida-
794 tion loss. Validation loss was chosen as the monitor to determine the early stopping and
795 learning rate reduction point.
- 796 • **Batching strategy:** To maintain a consistent number of gradient updates per epoch
797 across experiments with different bag sizes (N_B), the batch size was set dynamically as
798 $\text{floor}(80000 / N_B)$. This provides a stable basis for comparing the training dyn-
799 ics.

800 We tracked all of the training runs and made sure that no model is stopped before reaching its
801 performance plateau.
802803 B.2.3 BINARY CLASSIFICATION
804805 The binary classification task was designed to test the model's fundamental ability to distinguish
806 between two competing hypotheses in a low-signal environment. We define the null hypothesis, H_0 ,
807 as the Standard Model process and the alternative hypothesis, H_1 , as the SMEFT process with a
808 specific, non-zero Wilson coefficient ($c_{HW} \neq 0$).809 The training dataset was constructed from "bags" of events. A bag was labeled 1 (positive class) if
its signal events were drawn from the SMEFT signal sample (H_1). Conversely, a bag was labeled 0

(negative class) if its signal events were drawn from the corresponding SM signal sample (H_0). The model was then trained using a binary cross-entropy loss function to distinguish between these two categories of bags based on their aggregated kinematic information.

XGBoost training We trained a hyperparameter-optimized XGBoost baseline for binary classification. The hyperparameters were optimized with the sophisticated framework Optuna (Akiba et al., 2019) over a search space including `n_estimators`, `max_depth`, `learning_rate`, `min_child_weight`, `subsample`, and `reg_lambda` using stratified 3-fold cross-validation and 50 Optuna trials. For the task, we set `objective='binary:logistic'` for the model training, and we optimized AUC ("roc_auc") in the hyperparameter search. We used the histogram tree method for stability, and the best hyperparameters were refit on the training data and evaluated on the held-out test set.

B.2.4 MULTI-CLASS CLASSIFICATION

To investigate the model’s capability for parameter estimation, we framed the problem as a multi-class classification task. The goal is to identify the correct parameter value, θ , for a given bag of events from a discrete set of K possible hypotheses, $\theta_1, \theta_2, \dots, \theta_K$.

For this setup, a bag of events $\{\mathbf{x}_i\}_{i=1}^{N_B}$ where all events are Monte Carlo sampled from the distribution $p(\mathbf{x}_i|\theta_k)$ is assigned the integer class label k . During training, these integer labels are converted into a one-hot encoded vector of length K . For example, a bag corresponding to the third hypothesis, θ_3 , would be given the label $[0, 0, 1, 0, \dots, 0]$. For our analysis, we trained the model with the θ_k taking a value in the range of $[-1, 1]$ with increments of ± 0.1 .

The neural network’s final layer is equipped with a softmax activation function producing K output nodes, corresponding to the probability of the bag belonging to each class. The model is then trained to minimize the categorical cross-entropy loss between its prediction and the true one-hot encoded label.

B.2.5 PARAMETERIZED NEURAL NETWORKS

The Parameterized Neural Network (PNN) approach was investigated as an alternative method for parameter estimation. Unlike the multi-class classifier which assigns a bag to one of several discrete classes, the PNN is designed to learn a continuous functional relationship between the event kinematics \mathbf{x} , and the parameter of interest θ .

The training data for the PNN was structured as a set of labeled pairs. Each input sample given to the network consisted of both a bag of kinematic events and a single candidate value for the parameter c_{HW} . The model’s objective was framed as a binary classification task: to predict whether the kinematics in the bag are consistent with the paired c_{HW} value.

To achieve this, the training dataset was composed of:

- **Positive examples (label = 1):** A bag of events generated with a specific Wilson coefficient, θ_k , is paired with its true parameter value. The input is thus a tuple: $(\mathcal{B}_{c_{HW}=k}, \theta_{c_{HW}=k})$.
- **Negative examples (label = 0):** Two types of bags are generated: in one case, the bag of events generated under the SM hypothesis ($\theta_{SM} = 0$) is deliberately paired with a false, non-zero Wilson coefficient, θ_k ; in the other case, the bag of events generated under the SMEFT hypothesis ($\theta_{SMEFT} \neq 0$) is paired with $\theta_k = 0$. The inputs are the tuples: $(\mathcal{B}_{c_{HW}=0}, \theta_{c_{HW} \neq 0})$ or $(\mathcal{B}_{c_{HW} \neq 0}, \theta_{c_{HW}=0})$.

By training on a balanced set of these positive and negative examples with a binary cross-entropy loss, the network learns a function $f(x, \theta)$ that approximates the likelihood ratio. After training, this function can be used for inference: for a given bag of data events, the parameter θ can be scanned over a continuous range. The value of θ that maximizes the network’s output is taken as the maximum likelihood estimate for that bag, and the full scan of the output produces the profile of the LLR.

864 C DETAILED REPORT ON EXPERIMENTAL RESULTS AND PROCEDURES
865866 This section provides a comprehensive report on our analysis, with supplementary plots and discussions.
867869 C.1 ON THE INTERPRETATION OF MODEL DECISIONS
870871 In our analysis, we observed that the ML models, in their effort to minimize the global loss function,
872 can adopt decision strategies that are locally counterintuitive. Because the optimization objective is
873 the overall loss across all examples, the model may learn to accept a higher loss for certain types of
874 events or certain classes (e.g., at low c_{HW}) in exchange for a much larger gain on other, more easily
875 separable examples contained in the training dataset.876 This behavior is evident in the box plots of the probability predictions (Figures 10 and 18) and in
877 the plots of the individual predictions (Figures 11 and 19). Particularly for the event-level case
878 ($N_B = 1$), the model does not express high confidence at the true SM value ($c_{HW} = 0$). Instead,
879 the highest average predictions are often assigned to the most extreme c_{HW} values at the edge of
880 the training range. We interpret this not as a simple failure, but as an emergent strategy. Since the
881 kinematic differences are largest at these extreme points, the model can achieve the lowest loss by
882 confidently identifying them. The resulting output is not a "probability" in the classic sense, but an
883 emergent probability distribution prediction strategy for aggregate evaluation metrics.884 This underscores a critical point: one cannot naively interpret the nominal output of a classifier as a
885 true posterior probability without careful validation. As we demonstrate with the non-smooth profile
886 of the LLR values of multi-class classifiers (Section C.4) and the unphysical predictions of PNNs
887 (Section C.5), ML models will exploit any asymmetry or feature in the training setup to minimize
888 their objective, leading to powerful but sometimes unintuitive results.889 C.2 JUSTIFICATION OF THE ESTIMATOR CORRECTION AND INFORMATION MEASUREMENT
890891 Our investigation revealed that the raw Maximum Likelihood Estimate (MLE), $\hat{\theta}$, derived from the
892 ML models exhibits two non-ideal behaviors:
893894 1. The LLR curvature does not match the MLE variance ($I_{\text{curv}} \neq I_{\text{MLE}}$), violating the second
895 Bartlett identity.
896 2. The models are not unbiased estimators, i.e. $\mathbb{E}[\hat{\theta}] \neq \theta_{\text{true}}$.
897898 This section details the procedures used to correct for these effects and justifies why our primary
899 measurement of the effective Fisher Information remains sound.900 C.2.1 PROCEDURE 1: LLR CURVATURE CALIBRATION
901902 As it was explained in Section 4.2, and can be seen in Tables 2 and 3, the nominal predictions of the
903 ML models systematically violate the second Bartlett identity. To construct confidence intervals with
904 correct frequentist coverage, we apply a post-hoc calibration by introducing a confidence interval
905 calibration constant, c_{cicc} , which serves to rescale the LLR values: $\hat{\Lambda}_{\text{calib}}(\theta) = c_{\text{cicc}} \cdot \hat{\Lambda}(\theta)$.
906907 The Maximum Likelihood Estimate (MLE) point, $\hat{\theta}$, is the parameter value that minimizes $\hat{\Lambda}(\theta)$.
908 Since c_{cicc} is a positive constant, the value of θ that minimizes $\hat{\Lambda}(\theta)$ is the exact same value that
909 minimizes $\hat{\Lambda}_{\text{calib}}(\theta)$. Therefore, the MLE is invariant under calibration, and the Fisher Information
910 calculated from MLE is also invariant under such calibration. For test statistics $T(D) = \sum_{j=1}^M \hat{\Lambda}_j$,
911 we have,

912
$$I_{\text{MLE}}(T) \equiv \frac{1}{\text{Var}(\hat{\theta}(T))} \quad (32)$$

913

914 But Fisher Information calculated from the curvature of the parabolic fit scales linearly with the
915 calibration constant:
916

917
$$I_{\text{curv}}(T_{\text{calib}}) = \mathbb{E} \left[-\frac{d^2}{d\theta^2} (c_{\text{cicc}} \cdot T) \right] = c_{\text{cicc}} \cdot \mathbb{E} \left[-\frac{d^2 T}{d\theta^2} \right] = c_{\text{cicc}} \cdot I_{\text{curv}}(T) \quad (33)$$

918 By enforcing the Bartlett identity on our calibrated result (i.e., setting $I_{\text{curv}}(T_{\text{calib}}) = I_{\text{MLE}}(T)$), we
 919 can *empirically determine* the necessary correction factor:
 920

$$921 \quad c_{\text{cicc}} = \frac{I_{\text{MLE}}(T)}{I_{\text{curv}}(T)} = \frac{1/\text{Var}(\hat{\theta}(T))}{\mathbb{E}\left[-\frac{d^2T}{d\theta^2}\right]} \quad (34)$$

924 This procedure allows us to use the empirically measured I_{MLE} as our robust proxy for the effective
 925 Fisher Information (I_{eff}), as it correctly encapsulates all effects on the estimator's variance, while
 926 the curvature is separately corrected to ensure valid confidence intervals. Our goal is to measure
 927 how this quantity, $I_{\text{eff}} \approx I_{\text{MLE}}$, scales with the bag size N_B .
 928

929 C.2.2 PROCEDURE 2: POST-HOC BIAS CORRECTION

930 To report an unbiased central value for $\hat{\theta}$ and to validate our calibrated confidence intervals, we
 931 applied a mathematically justified and rigorous post-hoc correction for the observed bias.
 932

933 The models exhibited a small but consistent bias, defined as $b(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta_{\text{true}}$. Since our null
 934 hypothesis is centered at $\theta_{\text{true}} = 0$, this simplifies to $b(\hat{\theta}) = \mathbb{E}[\hat{\theta}]$. For a set of N number of
 935 MLEs ($\hat{\theta}_1, \dots, \hat{\theta}_N$) from the pseudo-experiments, we first estimate the bias as the sample mean,
 936 $\hat{b} = \frac{1}{N} \sum_i \hat{\theta}_i$. By the Law of Large Numbers, this sample mean is a consistent estimator of the true
 937 bias. We then define the corrected estimate, $\hat{\theta}'$, as:
 938

$$939 \quad \hat{\theta}'_i = \hat{\theta}_i - \hat{b} \quad (35)$$

941 The validity of using $I_{\text{MLE}} = 1/\text{Var}(\hat{\theta}')$ as our sensitivity measure, even after this correction, is
 942 justified by its negligible impact on variance. Since the variance of the corrected estimator, $\text{Var}(\hat{\theta}')$,
 943 is related to the variance of the original estimator, $\text{Var}(\hat{\theta})$, by the standard relation for deviations
 944 from a sample mean, we have the relation:
 945

$$946 \quad \text{Var}(\hat{\theta}') = \text{Var}\left(\hat{\theta} - \frac{1}{N} \sum_{i=1}^N \hat{\theta}_i\right) = \text{Var}(\hat{\theta}) \left(1 - \frac{1}{N}\right) \quad (36)$$

950 In our analysis, we constructed 200 confidence intervals. Since $N = 200$, the bias correction
 951 changes the variance only about 0.5%, which is a negligible effect. Furthermore, this bias correction
 952 procedure is applied for all bag sizes, therefore its overall affect on the scaling behavior of the
 953 ML models with respect to bag size is much more minuscule. Therefore this minor and consistent
 954 procedure does not affect the study of the overall scaling behavior of $I_{\text{MLE}} \approx I_{\text{eff}}$ with respect to bag
 955 size, and it ensures that our corrected estimator $\hat{\theta}'$ is asymptotically unbiased at the null hypothesis,
 956 as required for proper frequentist coverage testing.
 957

958 C.3 BINARY CLASSIFIERS

959 As explained in Section 4.1, we trained five MLP models at each bag size and background contami-
 960 nation level to study robustness and analyze variations in performance in different training runs. In
 961 high-energy physics, creating pure signal samples is often infeasible due to irreducible background
 962 processes. Therefore we need to understand if, when, and how the ML model performance degrades.
 963 Although a comprehensive study of background effects is beyond the scope of this work, we per-
 964 formed a targeted study to test the classifier's robustness to noise and determine if it could behave
 965 as an ideal discriminator.
 966

967 As demonstrated by Nachman & Thaler (2021), artificial bag-level predictions can be obtained from
 968 single-instance predictors by composing per-event likelihood contributions. Since events are i.i.d.,
 969 the joint probability of a set of events $\{\mathbf{x}_i\}_{i=1}^N$ under a model parameterized by θ is the product of
 970 individual event probabilities:
 971

$$970 \quad p(\{\mathbf{x}_i\}_{i=1}^N | \theta) = \prod_{i=1}^N p(\mathbf{x}_i | \theta). \quad (37)$$

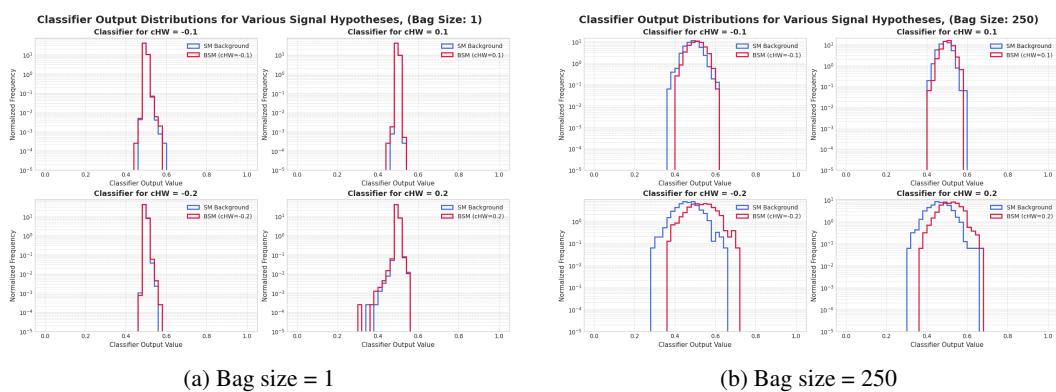
972 This likelihood-based approach can be implemented in a numerically stable manner by summing the
 973 per-event logits and mapping the result to a score with the sigmoid function.
 974

$$975 \quad 976 \quad 977 \quad p(\{\mathbf{x}_i\}_{i=1}^N | \theta) = \frac{1}{1 + \exp\left(-\sum_{i=1}^N \log\left(\frac{p_i}{1-p_i}\right)\right)} \quad (38)$$

978 Figures 6 and 7 compare single-instance MLP and XGBoost baselines against multiple-instance
 979 MLP models. MIL’s resilience to performance degradation at low SNR levels provides a strong
 980 evidence for the theoretical predictions stated in Section 3.
 981

982 **On the traditional histogram-based analysis** In the standard high-energy physics analysis
 983 paradigm, the nominal output of a classifier is not directly interpreted as a true event probability.
 984 Therefore the ML models are often employed as a dimensionality reduction tool. Its function is to
 985 map the high-dimensional feature vector of an event to a single discriminant value. The histogram
 986 of this classifier output value is then taken for both signal (BSM) and background (SM) simula-
 987 tions to create shape templates. The final physics measurement is extracted via a binned maximum
 988 likelihood fit that compares these templates to the distribution observed in the data.
 989

990 The statistical power of this entire procedure is contingent upon a discernible separation between the
 991 signal and background histogram shapes. In the low-signal regime studied here, per-event classifier
 992 outputs produce nearly overlapping histograms (Figure 4a), leaving little shape information for a fit
 993 to exploit.
 994



1007 Figure 4: Distributions of the ensemble classifier output for event-by-event ($N_B = 1$, left)
 1008 and set-based ($N_B = 250$, right) classification. Larger versions of these plots are shown in Figures 8 and 9.
 1009

1010 **Parameter estimation with binary classifiers** To extend the binary classification framework to-
 1011 wards parameter estimation, we attempted to construct a continuous LLR profile from our discrete
 1012 set of classifiers. For each c_{HW} value in the dataset (see Appendix B.1), an ensemble prediction
 1013 was first generated by averaging five independently trained models. Despite these measures, this
 1014 approach proved to be unstable, even at very large bag sizes. Since each binary classifier is trained
 1015 in isolation, there is no enforcement of continuity between adjacent c_{HW} points. This independence
 1016 resulted in extremely noisy LLR profiles unsuitable for robust confidence interval calculation,
 1017 motivating the transition to the inherently coupled prediction frameworks of multi-class classifiers and
 1018 PNNs.
 1019

1020 C.4 MULTI-CLASS CLASSIFIERS

1022 The discrete binary classification approach produces a test statistic from a set of independently
 1023 trained models. In order to couple the predictions for the *all* c_{HW} values which are analyzed for
 1024 the confidence interval calculations, we transitioned to a multi-class framework. Since the softmax
 1025 activation function is used in the final layer, the model is forced to learn the relative importance of
 each hypothesis θ_k , as the output probabilities must sum up to one.

1026
 1027 However, our straightforward implementation presents a challenge. The model treats each one-hot
 1028 encoded θ_k value as an independent category and has no "inductive bias" that informs it of the
 1029 ordinal relationship between the classes (e.g., that $c_{HW} = 0.1$ is next to $c_{HW} = 0.2$) or that the
 1030 resulting LLR profile should be locally parabolic. In the extremely low-signal regime of our study,
 1031 this makes it difficult for the network to learn a *smooth* function of θ . It is possible to design an
 1032 ML architecture where such an inductive bias is enforced, for instance, by constraining the output
 1033 to follow a specific functional form, but that is left for future work.

1033 As illustrated in Figure 5, this lack of inductive bias manifested as individual models producing
 1034 non-smooth LLR profiles, particularly for small bag sizes ($N_B \leq 10$). To mitigate this instability,
 1035 we created an ensemble model for each bag size by averaging the predictions of 20 models that were
 1036 trained on the same hyperparameters but with different initialization seed values. This ensembling
 1037 technique proved highly effective, producing the relatively stable and physically plausible LLR pro-
 1038 files required for parameter estimation. For both multi-class classifiers and PNNs, we observed that
 1039 the ensemble models were much more stable in terms of both their predictions, and the variations in
 1040 the Fisher information. (see Figures 2 and 3a)

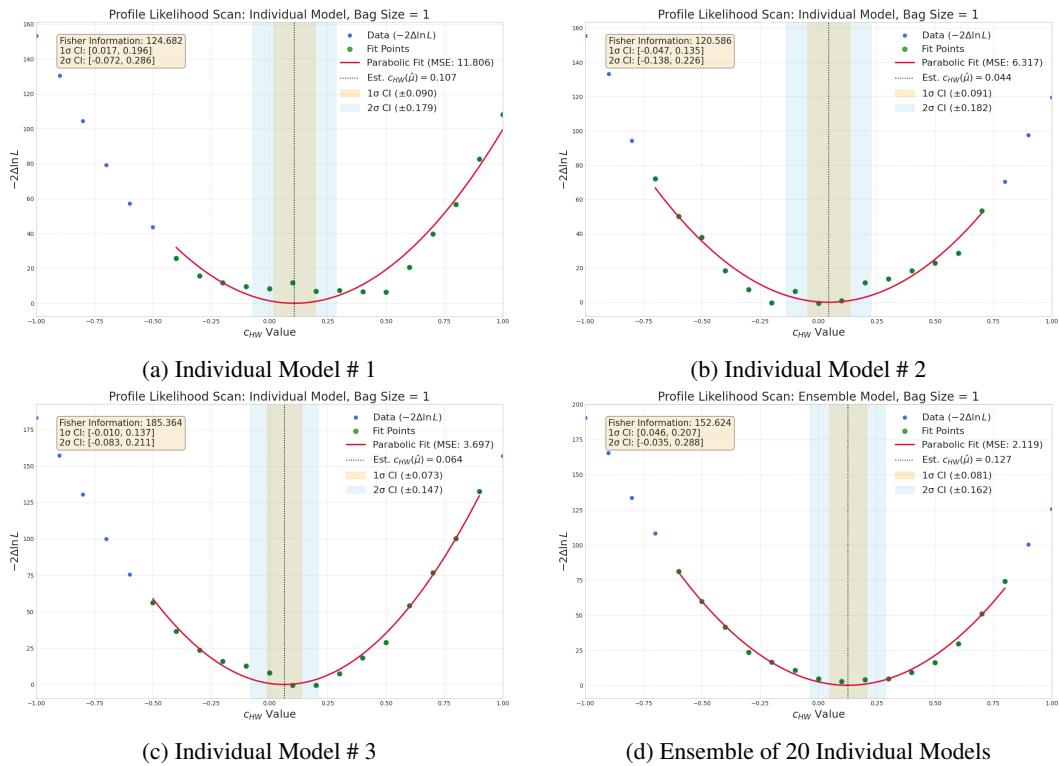


Figure 5: Multi-class classifier: LLR values, and the parabolic fits for the same 1000-event pseudo-experiment.

The final results for the ensemble multi-class models are summarized in Table 2. From left to right, the columns of the table are: the bag size, whether it is calibrated or uncalibrated, the confidence interval calibration constant (c_{cicc}), the percentage of the 1σ confidence interval that covers the true value, mean fisher information across all the confidence interval calculations, the bias constant \hat{B} (in θ values, and as it's defined in equation 35), and the Mean Square Error (MSE) between the parabola fit and its fit values (i.e. the $-2\hat{\Lambda}$'s).

Notes on the Analysis Procedure A few details are pertinent to the interpretation of Table 2. First, the coverage is calculated from 200 pseudo-experiments, meaning its statistical precision is limited to $\pm 0.5\%$. Second, the MSE of the fit naturally increases after calibration, as the c_{cicc} factor scales up the LLR values and thus the absolute deviations from the parabolic fit. Furthermore, the LLR is *locally parabolic* near the maximum likelihood estimate point. Therefore to ensure a robust

1080 parabolic fit to the LLR profile, we used a small fit window of $\pm 0.4 c_{HW}$ around the minimum
 1081 $-2\hat{\Lambda}$ point. For the $N_B = 1$ case, which exhibited much higher MSE, this window was expanded
 1082 to $\pm 0.7 c_{HW}$ to make the fit less susceptible to local fluctuations, resulting in a much more stable
 1083 information measurement. Figures 14 and 15 show two examples of confidence interval calculations
 1084 to validate our approach.
 1085

1086 Table 2: The results for the ensemble model of **multi-class classifiers**.
 1087

1088 Bag Size	1089 Calibration	1090 CI Const. (c_{cicc})	1091 Coverage (%)	1092 Mean Fisher Info.	1093 Bias (θ)	1094 MSE (Λ)
1095 1	Uncalibrated	1.0	75.5	164.6	0.098	1.939
	Calibrated	1.329	68.5	218.8	0.098	3.426
1096 10	Uncalibrated	1.0	75.0	209.0	0.007	0.073
	Calibrated	1.316	68.5	275.0	0.007	0.126
1097 20	Uncalibrated	1.0	74.5	200.2	0.009	0.063
	Calibrated	1.363	68.5	272.7	0.009	0.116
1098 25	Uncalibrated	1.0	76.0	200.8	0.014	0.085
	Calibrated	1.360	68.5	273.2	0.014	0.158
1099 50	Uncalibrated	1.0	77.5	190.4	0.021	0.029
	Calibrated	1.531	68.5	291.5	0.021	0.068
1100 100	Uncalibrated	1.0	81.0	151.1	0.025	0.014
	Calibrated	1.956	68.5	295.5	0.025	0.055
1101 125	Uncalibrated	1.0	82.0	137.7	0.020	0.010
	Calibrated	2.214	68.5	304.9	0.020	0.050
1102 200	Uncalibrated	1.0	89.0	101.8	0.029	0.006
	Calibrated	2.988	68.5	304.1	0.029	0.052
1103 250	Uncalibrated	1.0	91.5	80.4	0.024	0.004
	Calibrated	3.577	68.5	287.7	0.024	0.045

1109 C.5 PARAMETERIZED NEURAL NETWORKS

1110 Our investigation of the Parameterized Neural Network approach for this high-precision task
 1111 revealed significant instabilities. We identified two primary, interconnected challenges: the unphysical
 1112 nature of the LLR profile and an extreme sensitivity to the symmetry of the training data.
 1113

1114 The first issue stems from the PNN’s unnormalized output. Unlike a multi-class softmax, the PNN’s
 1115 outputs for different θ values are independent, making the absolute scale of the predicted probabili-
 1116 ties arbitrary. This means that a simple rescaling of the output can drastically alter the resulting
 1117 confidence interval, rendering the nominal LLR profile unreliable. We attempted a post-hoc correc-
 1118 tion, specifically by normalizing the probability outputs by their sum over the c_{HW} analysis range,
 1119 but it did not produce a stable or improved LLR profile, confirming that simple post-hoc rescaling
 1120 is insufficient to solve the problem.
 1121

1122 The second, more fundamental issue is the PNN’s sensitivity to training data asymmetries. The
 1123 training scheme, which pairs kinematic bags with θ values, effectively asks the model to solve many
 1124 independent binary classification tasks simultaneously, i.e. having a single model to take the place
 1125 of the discrete binary classifiers for all $\theta_{c_{HW}}$ values, as discussed in Section C.3. We found that
 1126 this makes the model highly susceptible to learning and exploiting any imbalance in how the ”true
 1127 match” (positive) and ”false match” (negative) examples are constructed.
 1128

1129 To address the model’s sensitivity to these training asymmetries, we systematically explored several
 1130 training configurations. We found that simpler, asymmetric schemes consistently led to critical
 1131 failure modes, such as extrapolation failure at the SM point or the memorization of a direct mapping
 1132 from the θ feature to the label, disregarding the kinematic data.
 1133

1134 Therefore, the analysis presented in this paper was performed using a fully symmetric training set,
 1135 constructed with both positive ($(\mathcal{B}_{c_{HW}=k}, \theta_{c_{HW}=k})$) and negative examples ($(\mathcal{B}_{c_{HW}=0}, \theta_{c_{HW}\neq 0})$ or
 1136 $(\mathcal{B}_{c_{HW}\neq 0}, \theta_{c_{HW}=0})$) for all θ_k . The negative examples for the $\theta_{c_{HW}=0}$ hypothesis were created

from a mixture of kinematics with c_{HW} values near zero: 20% each from $c_{HW} = \pm 0.2$, 30% each from $c_{HW} = \pm 0.1$; totaling enough bags to have 10^6 events for the negative samples, same as its positive counterpart. Despite this principled construction, a subtle but critical imbalance remained. Since most of the SM kinematics ($\mathcal{B}_{c_{HW}=0}$) the model sees in training are negative examples with label 0, the model learned this strong correlation. This, in turn, caused it to assign decreasingly low probabilities as it became more certain of the SM kinematics (Figure 18), resulting in incorrect predictions at the reference point (Figure 20).

The detailed numerical results for the ensemble PNN models are presented in Table 3. Unlike the multi-class classifiers, PNNs always have smooth profile LLRs. Therefore, for all bag sizes we set the fit range of the parabolic curve to be the constant value of $\pm 0.4 c_{HW}$ from the minimum $-2\hat{\Lambda}$ point.

Table 3: The results for the ensemble model of **Parameterized Neural Networks**.

Bag Size	Calibration	CI Const. (c_{cicc})	Coverage (%)	Mean Fisher Info.	Bias (θ)	MSE (Λ)
1	Uncalibrated	1.0	76.5	175.9	0.031	0.386
	Calibrated	1.325	68.5	233.2	0.031	0.679
10	Uncalibrated	1.0	75.0	174.2	0.034	0.018
	Calibrated	1.283	68.5	223.4	0.034	0.029
20	Uncalibrated	1.0	77.0	170.5	0.028	0.015
	Calibrated	1.331	68.5	226.9	0.028	0.027
25	Uncalibrated	1.0	77.5	165.2	0.028	0.013
	Calibrated	1.336	68.5	220.8	0.028	0.023
50	Uncalibrated	1.0	83.0	126.9	0.027	0.008
	Calibrated	1.614	68.5	204.9	0.027	0.020
100	Uncalibrated	1.0	89.5	94.0	0.039	0.006
	Calibrated	2.015	68.5	189.4	0.039	0.024
125	Uncalibrated	1.0	92.0	74.7	0.040	0.003
	Calibrated	2.480	68.5	185.1	0.040	0.021
200	Uncalibrated	1.0	100.0	33.9	0.054	0.000
	Calibrated	7.504	68.5	254.4	0.054	0.022
250	Uncalibrated	1.0	100.0	23.1	0.069	0.000
	Calibrated	11.982	68.5	276.9	0.069	0.016

C.6 FINAL REMARKS

In this work, we analyzed the behavior of several ML estimators on a simplified model for a parameter estimation problem. Below, we summarize the main theoretical and empirical limitations and clarify which aspects remain open for future study.

As stated in Section 2, the datasets used in our experiments are simplified relative to real LHC data. The signal-to-background ratios used here are simplified relative to the real LHC data. Detector effects (e.g. pile-up and correlated detector responses) can violate the i.i.d. assumptions; thus instance dependencies must be addressed before applying our pipeline to full experimental data.

Moreover, our detailed analysis confirms that while the set-based ML estimators are powerful, they are not "ideal" statistical tools out of the box. We identified several important behaviors that warrant further investigation. The nominal, per-bag predictions can be unphysical, only becoming meaningful when aggregated into a full test statistic. More fundamentally, we found a systematic violation of the second Bartlett identity, requiring a calibration (c_{cicc}) to ensure correct frequentist coverage.

Likewise, we calculated the confidence intervals, Maximum-Likelihood Estimate (MLE) point, and the resulting Fisher Information metric through parabolic curve fitting. However, the error propagation, i.e. the theoretical and empirical uncertainty induced by this fitting, as well as the effect of the post-hoc bias correction procedure stated in the Appendix C.2 was not rigorously derived in this work. Additionally, our analytic approximations for effective Fisher Information used first-order ex-

1188 pations. Higher-order corrections and heteroscedastic effects were not fully explored; adjustments
 1189 for heteroscedastic variance are necessary for the general case.

1190 Furthermore, when the bag size N_B becomes large, the number of available bags M for training and
 1191 testing necessarily decreases. Consequently, when N_B is large the number of independent bags M
 1192 shrinks, and averages such as $\frac{1}{M} \sum_j \epsilon_j$ may not approximate their expectation reliably; this weakens
 1193 asymptotic guarantees and complicates bias correction.

1194 These findings motivate a clear research agenda that focuses on refining this methodology. Future
 1195 work should focus on developing methods to mitigate these observed effects, for instance,
 1196 by designing novel loss functions or regularization terms that enforce the Bartlett identity during
 1197 training, or by creating architectures specifically designed to minimize parameter-dependent
 1198 bias. A rigorous characterization of the ML error term, $\sigma_\epsilon^2(N_B)$, also remains a critical open ques-
 1199 tion. While our illustrative ansatz, $\sigma_\epsilon^2(N_B) \propto C_1 \cdot \sqrt{N_B}$, is consistent with our observations, a
 1200 more complete model is needed. For example, if the error contains an additional linear component
 1201 ($\sigma_\epsilon^2(N_B) \propto C_1 \cdot \sqrt{N_B} + C_2 \cdot N_B$), the model could never reach the true Fisher Information. Since
 1202 both of these ansatz solutions would have similar scaling behavior with respect to bag size, without
 1203 proving that the $\sigma_\epsilon^2(N_B)$ is a sublinear function of N_B , a simple empirical analysis would not be
 1204 enough to determine whether we have reached the theoretical maximum Fisher Information for a
 1205 given dataset.

1206 As we have mentioned, the primary objective of this paper was to characterize this methodology
 1207 in low-signal regime, document its empirical behavior, and identify concrete failure modes. We
 1208 conclude not that ML models *will* universally attain theoretical efficiency, but that it is *possible* to
 1209 approach it *if* the required conditions hold. By understanding and modeling the asymptotic behavior
 1210 of machine learning components, a principled analysis can be created that closes the gap between
 1211 the effective information extracted and the true information latent in a dataset.

1213 D ADDITIONAL PLOTS.

1214 For binary-classification tasks, results are presented for individual models; for multi-class classifi-
 1215 cation and parameterized networks, results correspond to ensemble models.

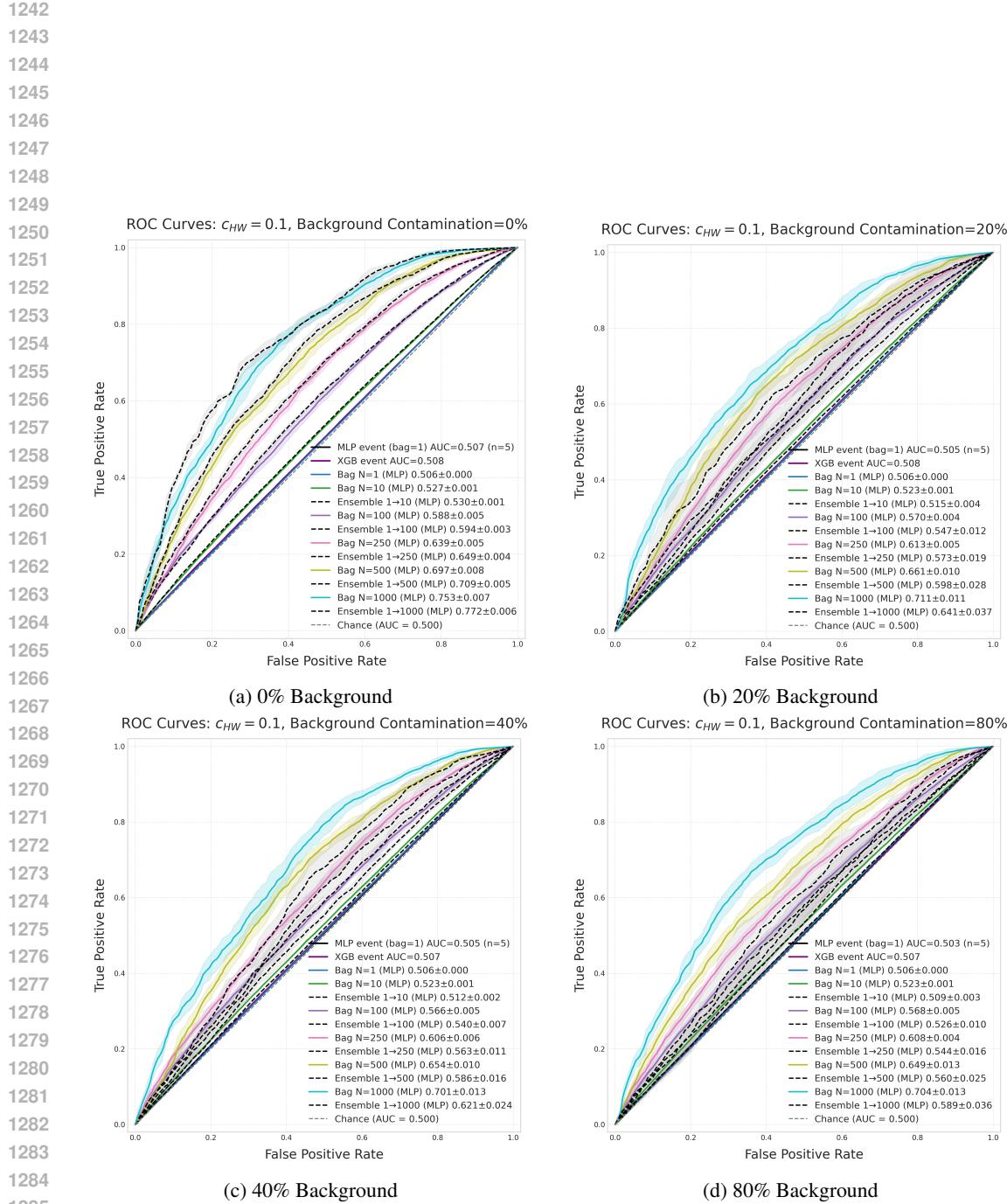


Figure 6: MIL vs. MLP: Receiver Operating Characteristic (ROC) curves for five individual binary classifiers, evaluated at various background contamination levels. The number of signal events is held constant while the total bag size increases with contamination level.

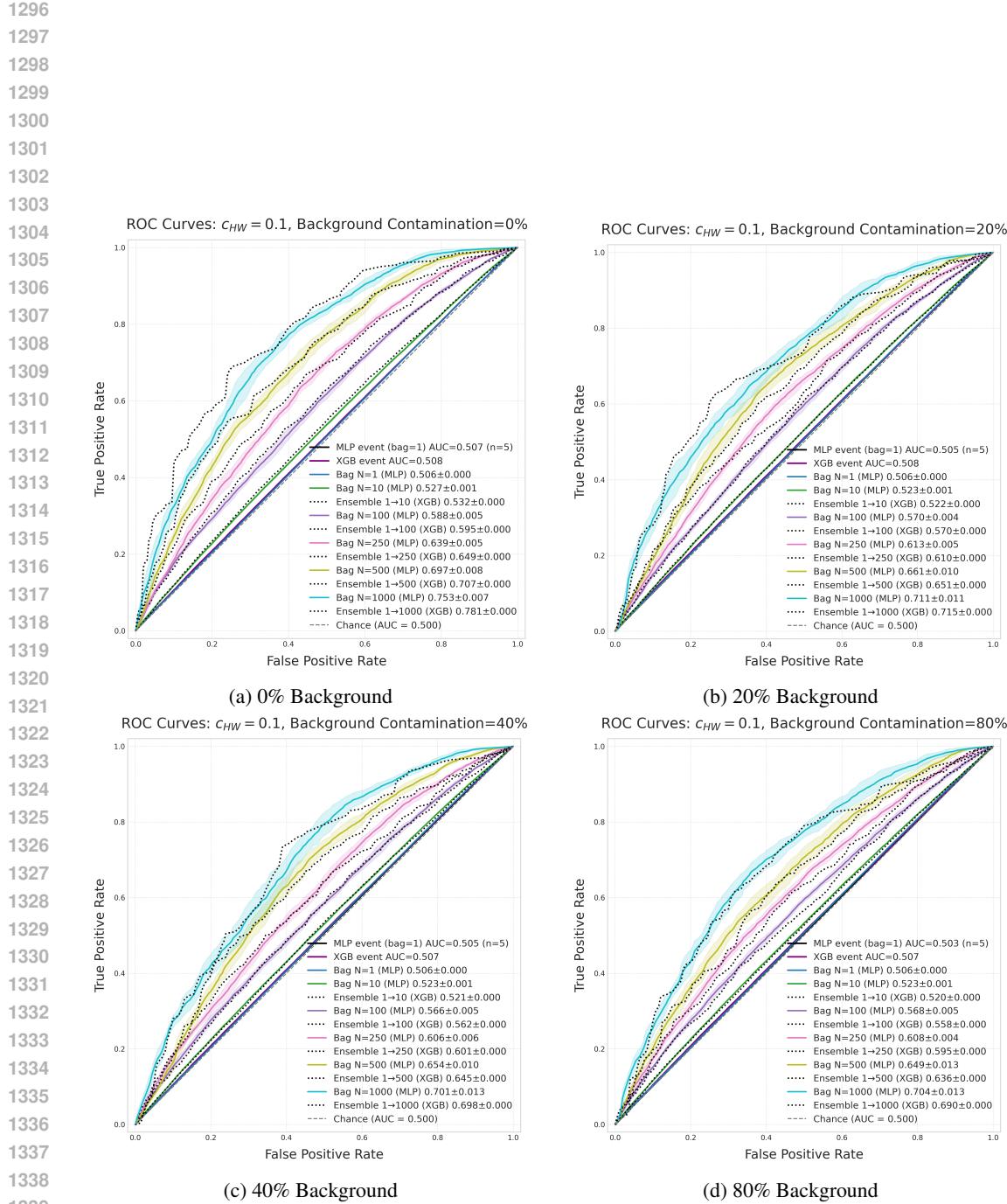


Figure 7: MIL vs. XGBoost: Receiver Operating Characteristic (ROC) curves for five individual binary classifiers, evaluated at various background contamination levels. The number of signal events is held constant while the total bag size increases with contamination level.

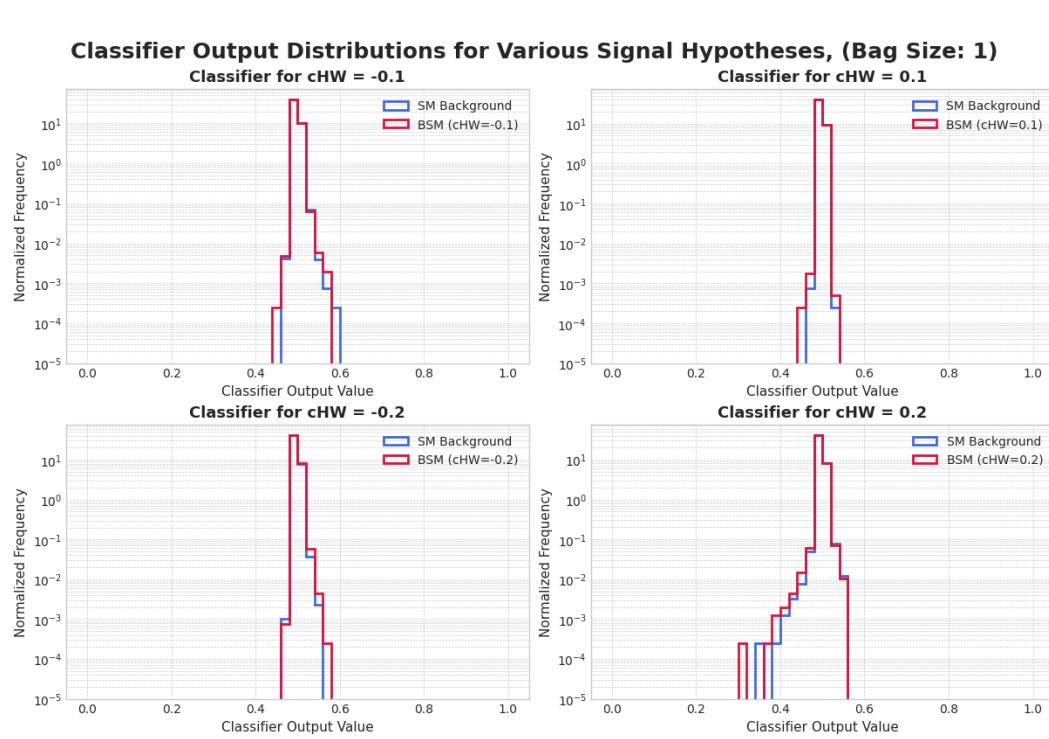


Figure 8: Distributions of the ensemble classifier output for event-by-event classification at selected c_{HW} values.

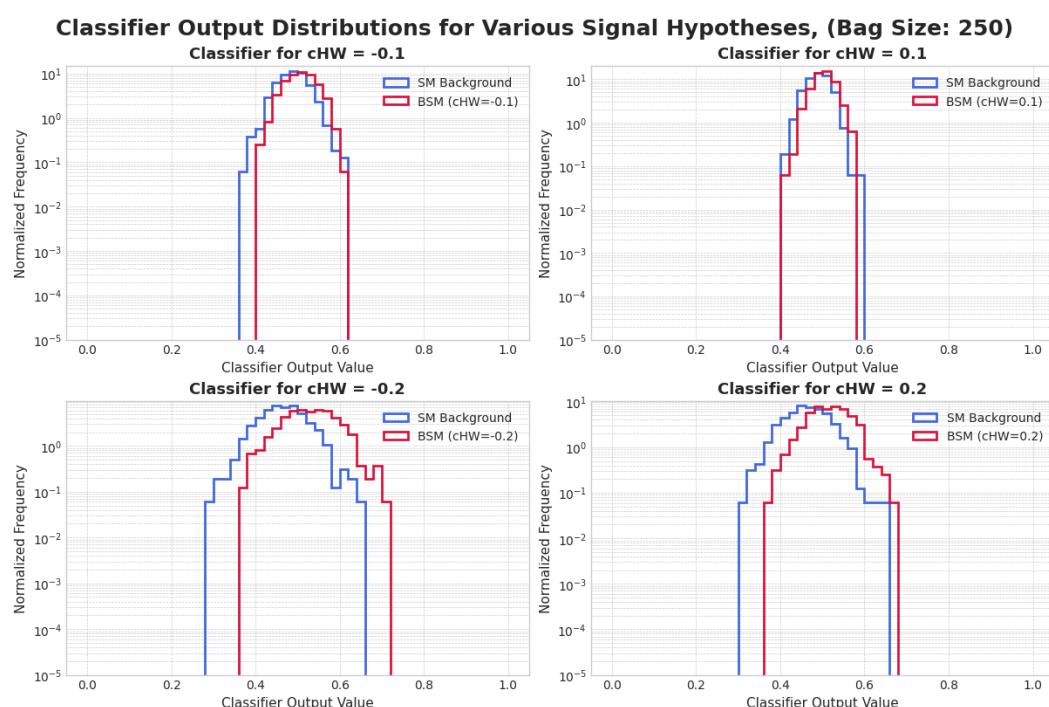


Figure 9: Distributions of the ensemble classifier output for set-based classification at selected c_{HW} values.

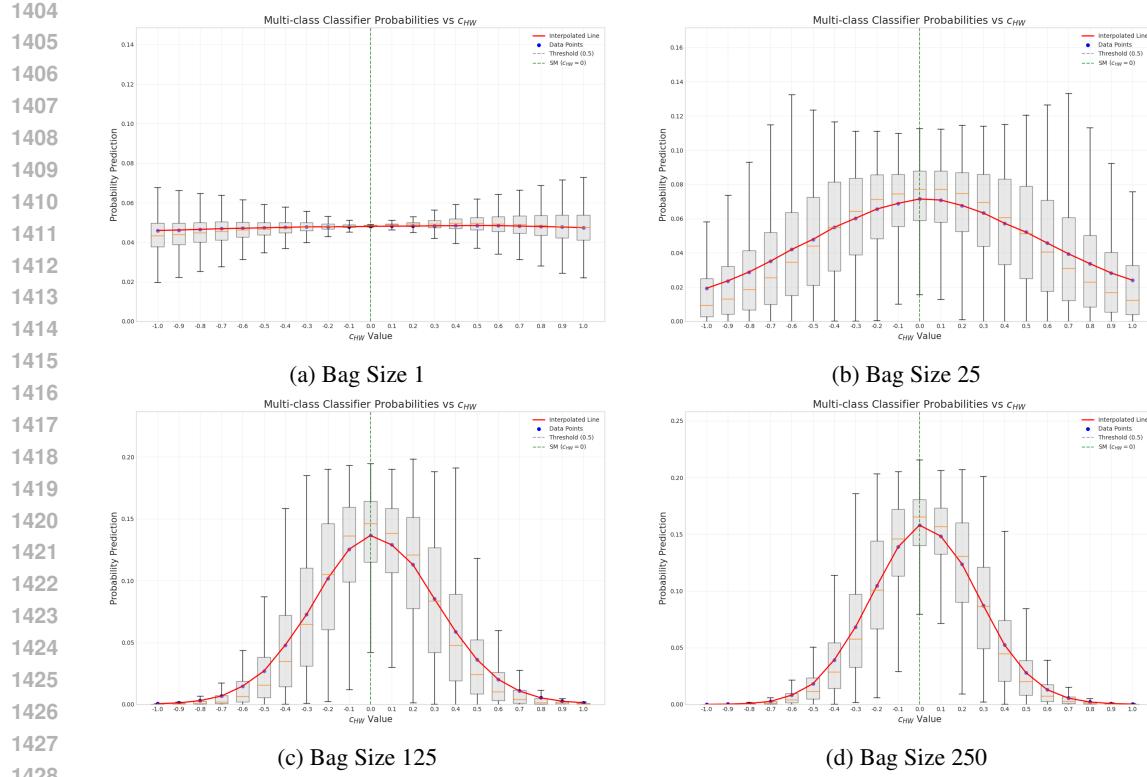
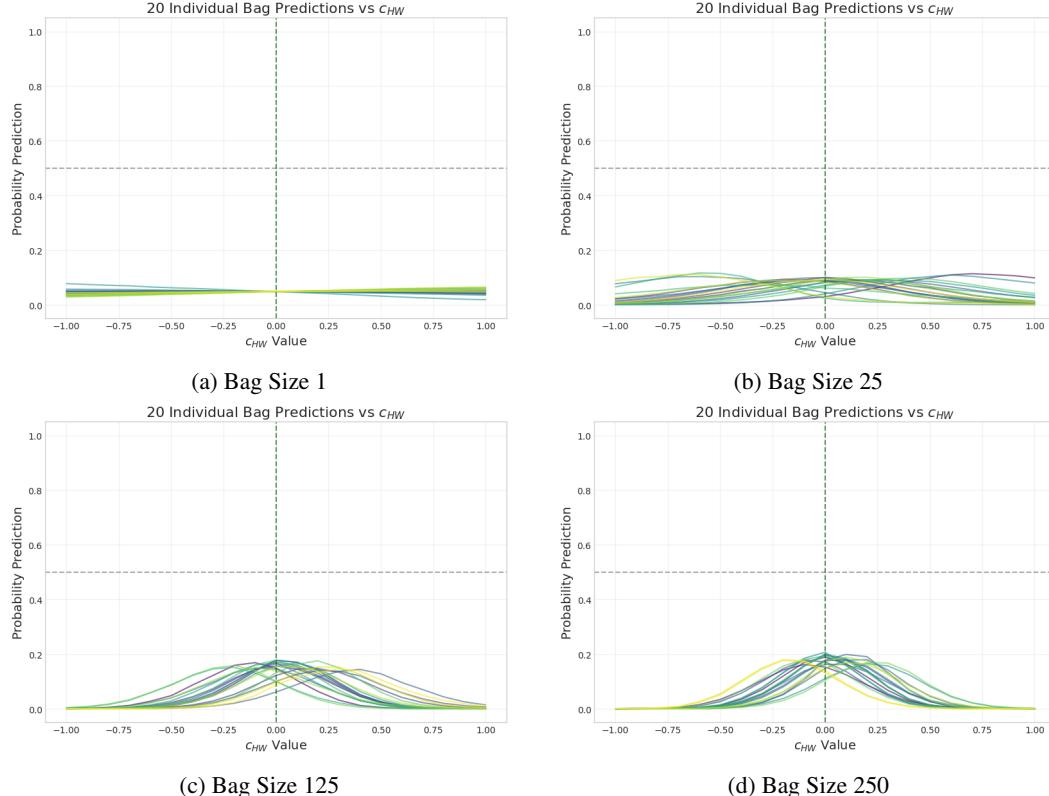
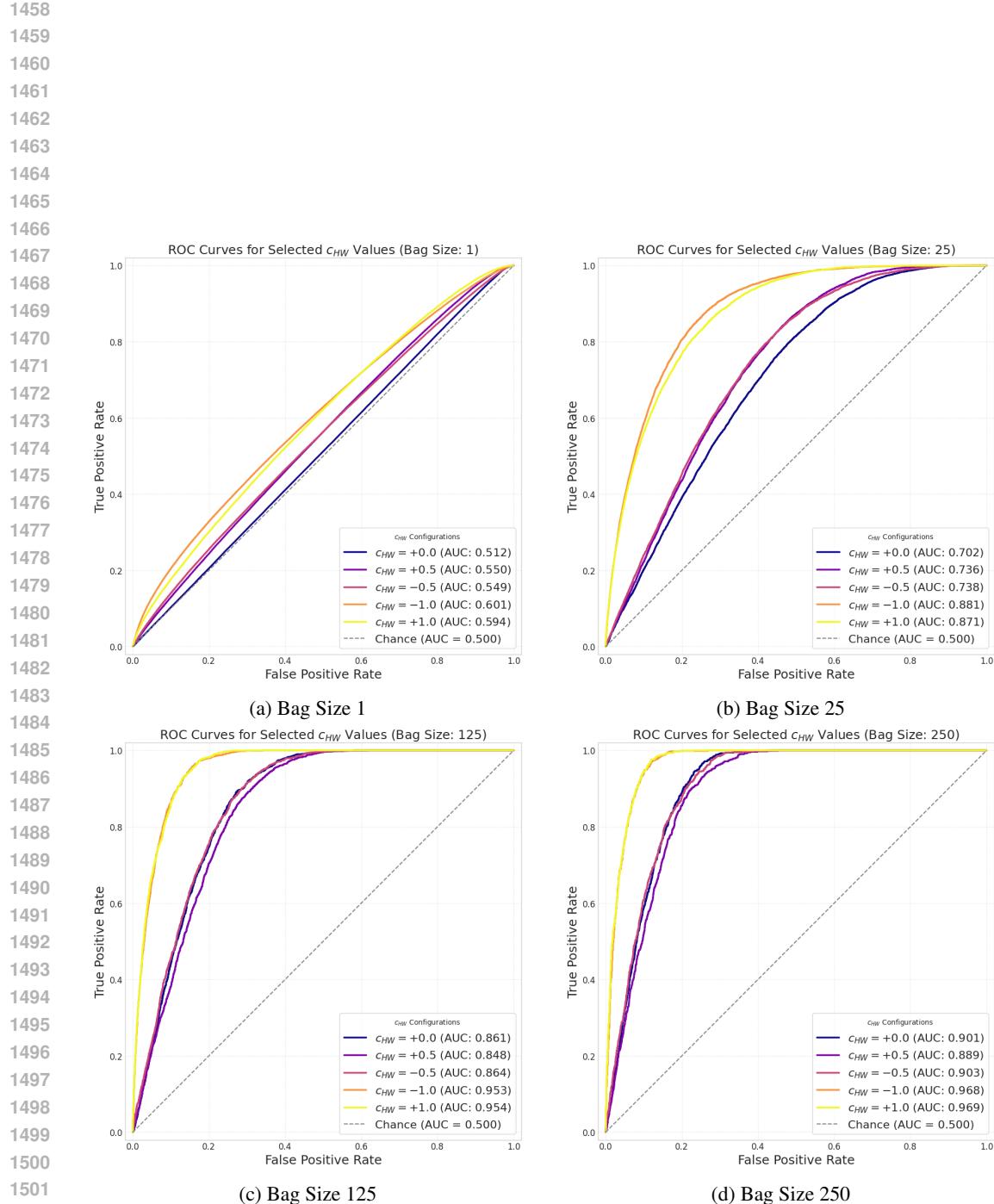
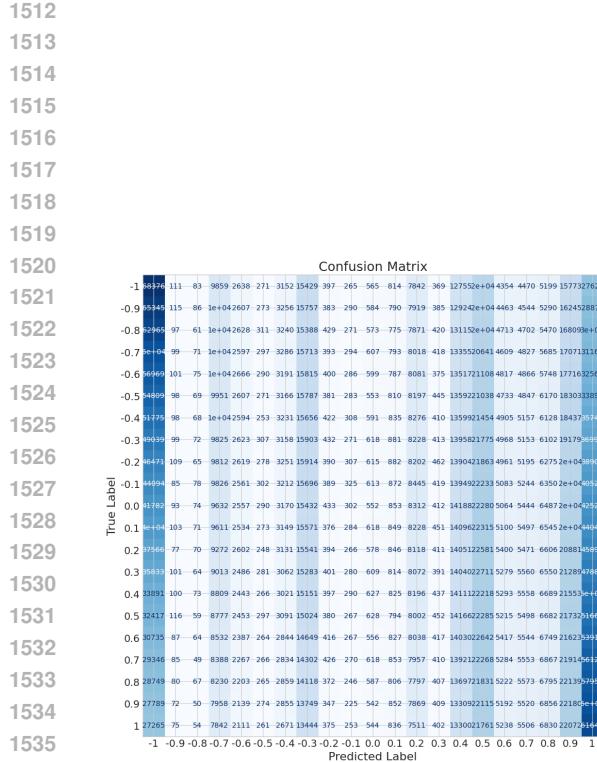


Figure 10: Multi-class classifier: The box plot of the probability predictions.

Figure 11: Multi-class classifier: Probability predictions of 20 *individual bags*.

Figure 12: Multi-class classifier: ROC curves for selected c_{HW} values.



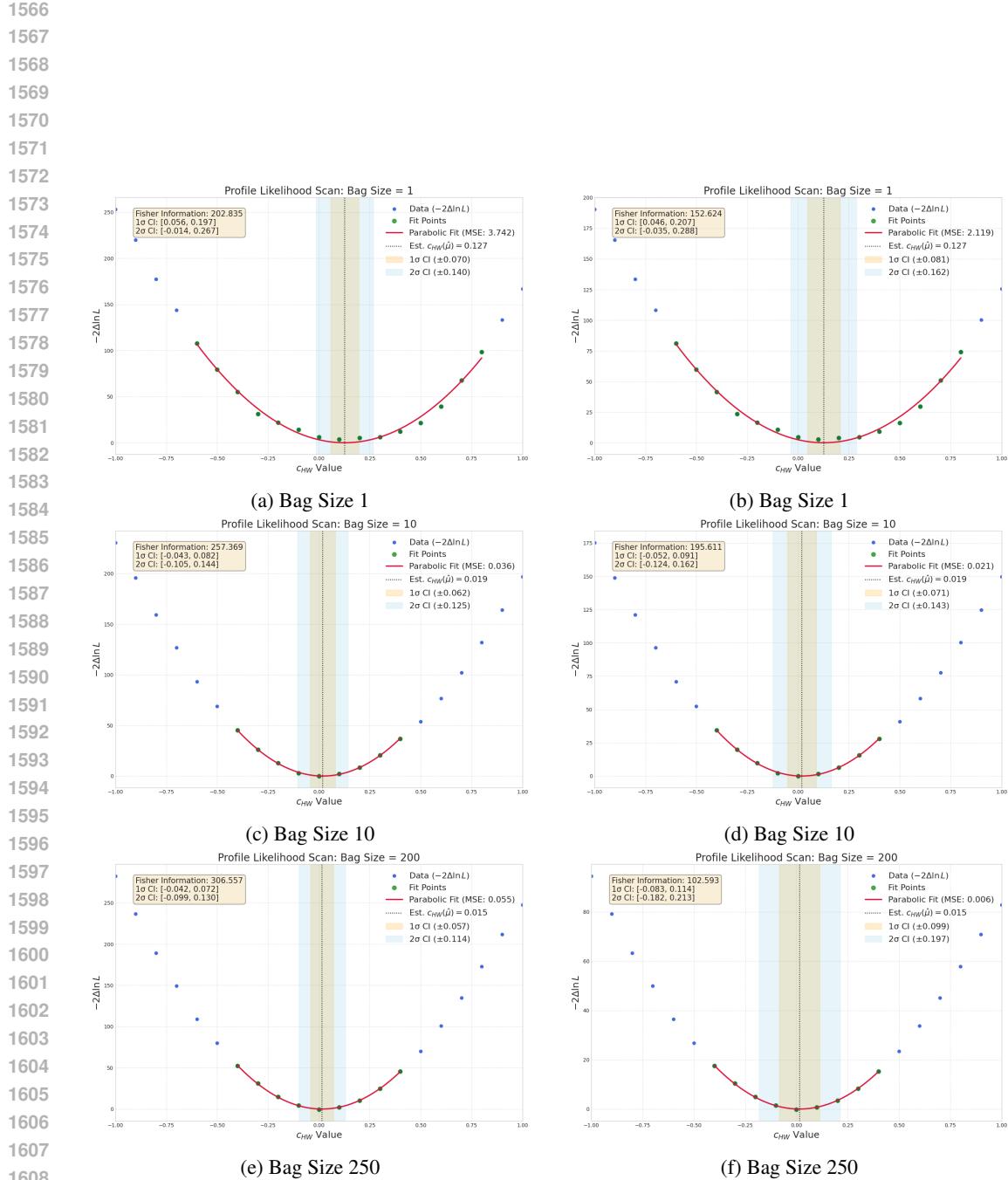
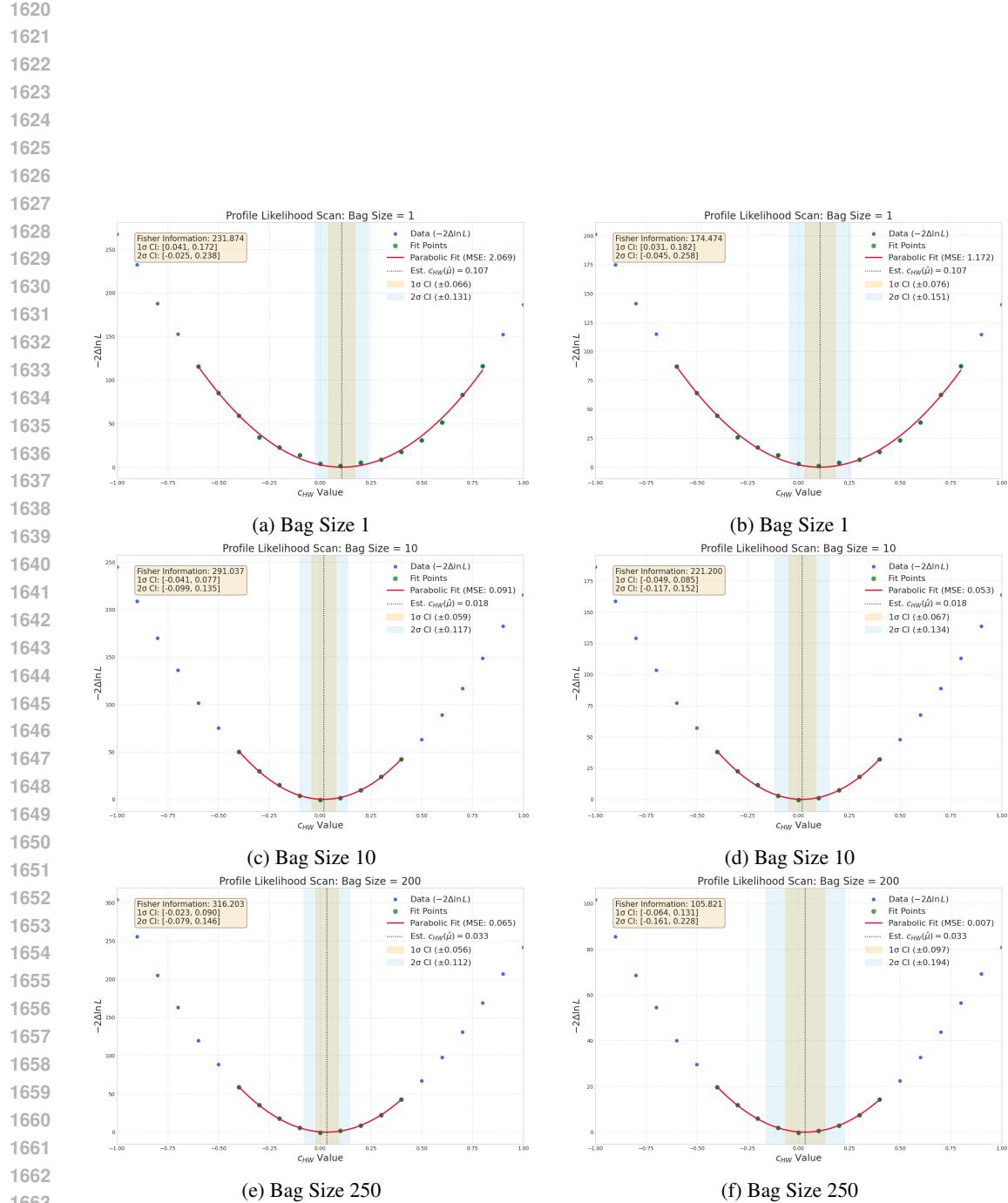


Figure 14: Multi-class classifier: Example of the confidence interval calculations, comparing the results before (right panels) and after (left panels) curvature calibration for the same 1000-event pseudo-experiment. As it is explained in Appendix C.4, since profile of likelihood is not perfectly smooth, number of fit points for bag size 1 is slightly larger to get a better estimate and increase its overall performance across all calculations.



1664 Figure 15: Multi-class classifier: Another example of the confidence interval calculations, com-
1665 paring the results before (right panels) and after (left panels) curvature calibration for the same
1666 1000-event pseudo-experiment.

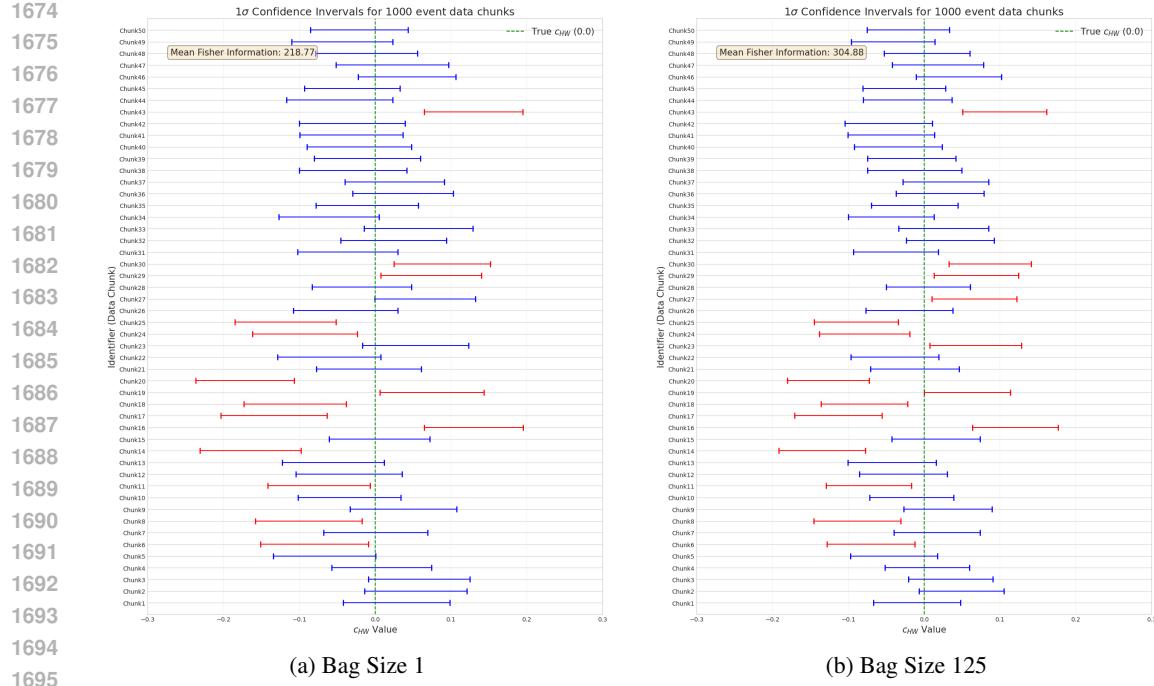


Figure 16: Multi-class classifier: Confidence interval coverages, with 50 of the 200 total pseudo-experiments shown. Since $\frac{\sigma_{125}}{\sigma_1} = \sqrt{\frac{\text{Var}_{125}(\hat{\theta})}{\text{Var}_1(\hat{\theta})}} \approx \sqrt{\frac{I_1(\hat{\theta})}{I_{125}(\hat{\theta})}} = 0.847$, this shows that increasing the bag size from 1 to 125 yields an approximately 15.3% tighter constraint.

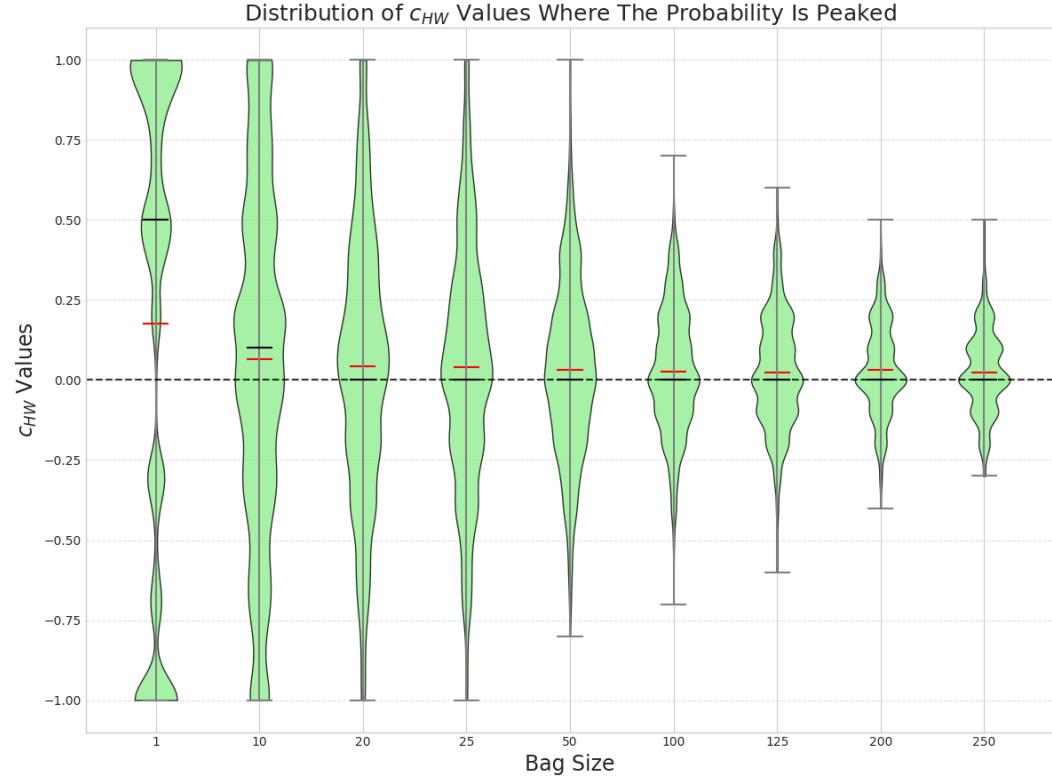


Figure 17: Violin plots showcasing the distribution of discrete c_{HW} values ($\pm 0.1 c_{HW}$) where the predicted probability is the highest.

1728

1729

1730

1731

1732

1733

1734

1735

1736

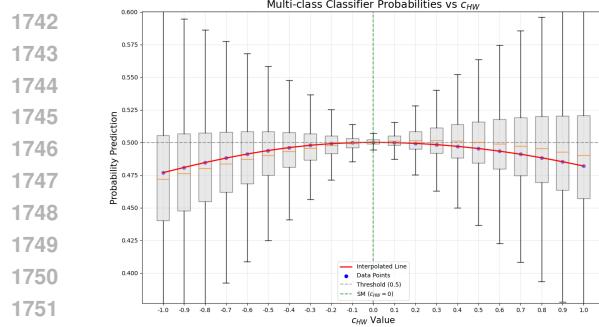
1737

1738

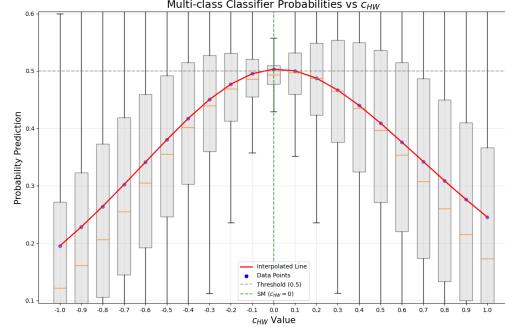
1739

1740

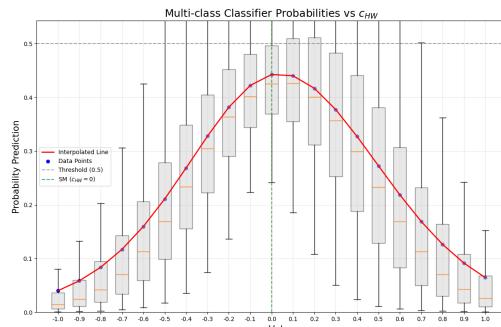
1741



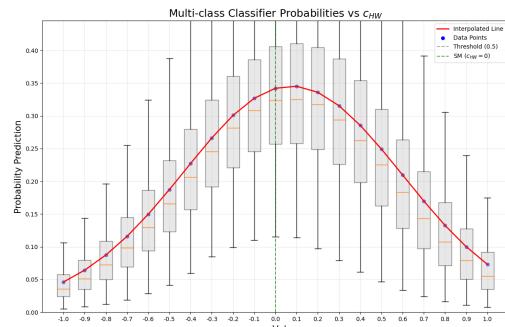
(a) Bag Size 1



(b) Bag Size 25



(c) Bag Size 125



(d) Bag Size 250

Figure 18: Parameterized Neural Network: The box plot of the probability predictions. As it's shown, the probability predictions for SM kinematics systematically decrease as the bag size increases.

1769

1770

1771

1772

1773

1774

1775

1776

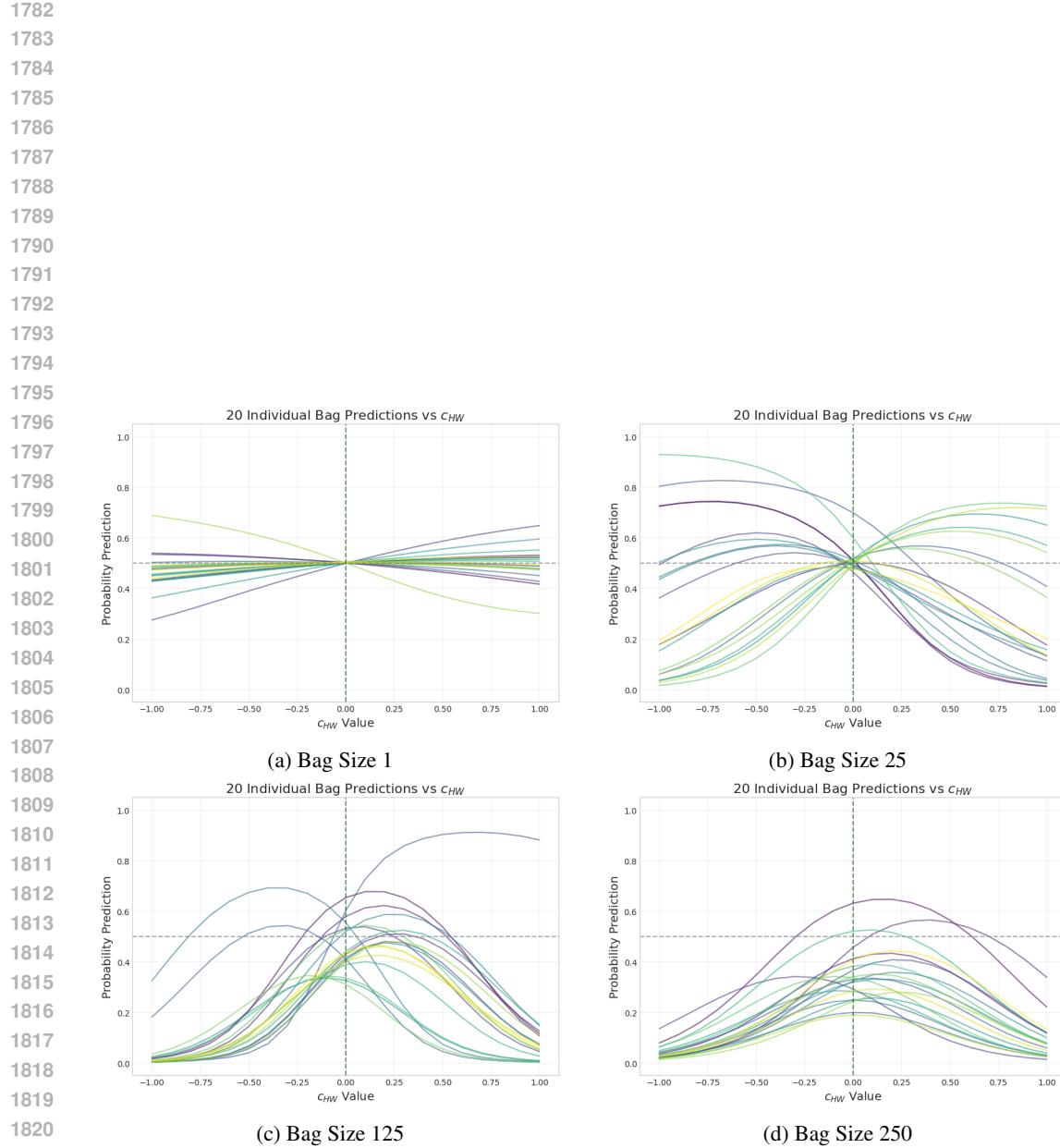
1777

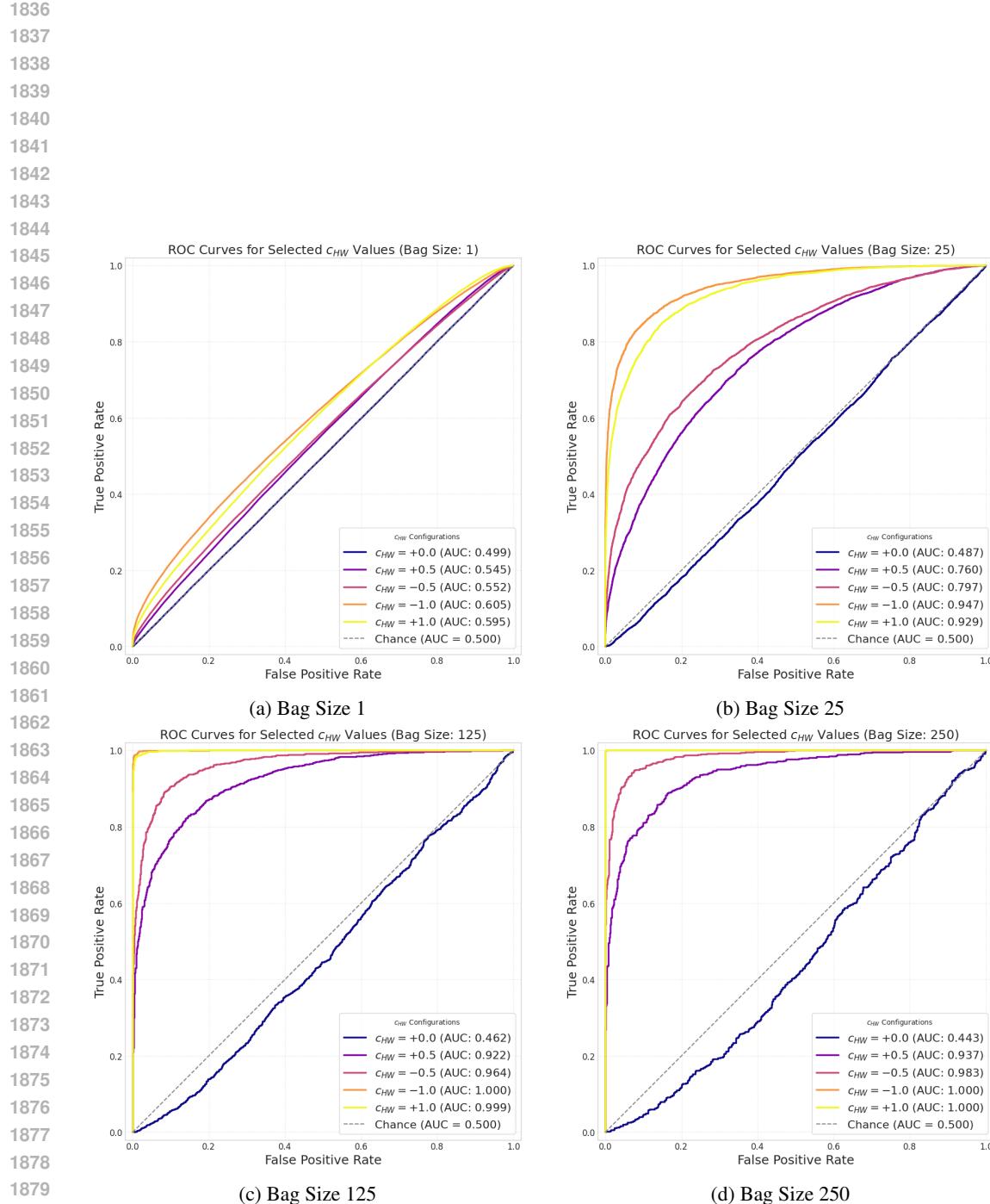
1778

1779

1780

1781

Figure 19: Parameterized Neural Network: Probability predictions of 20 *individual bags*.

Figure 20: Parameterized Neural Networks: ROC curves for selected c_{HW} values.

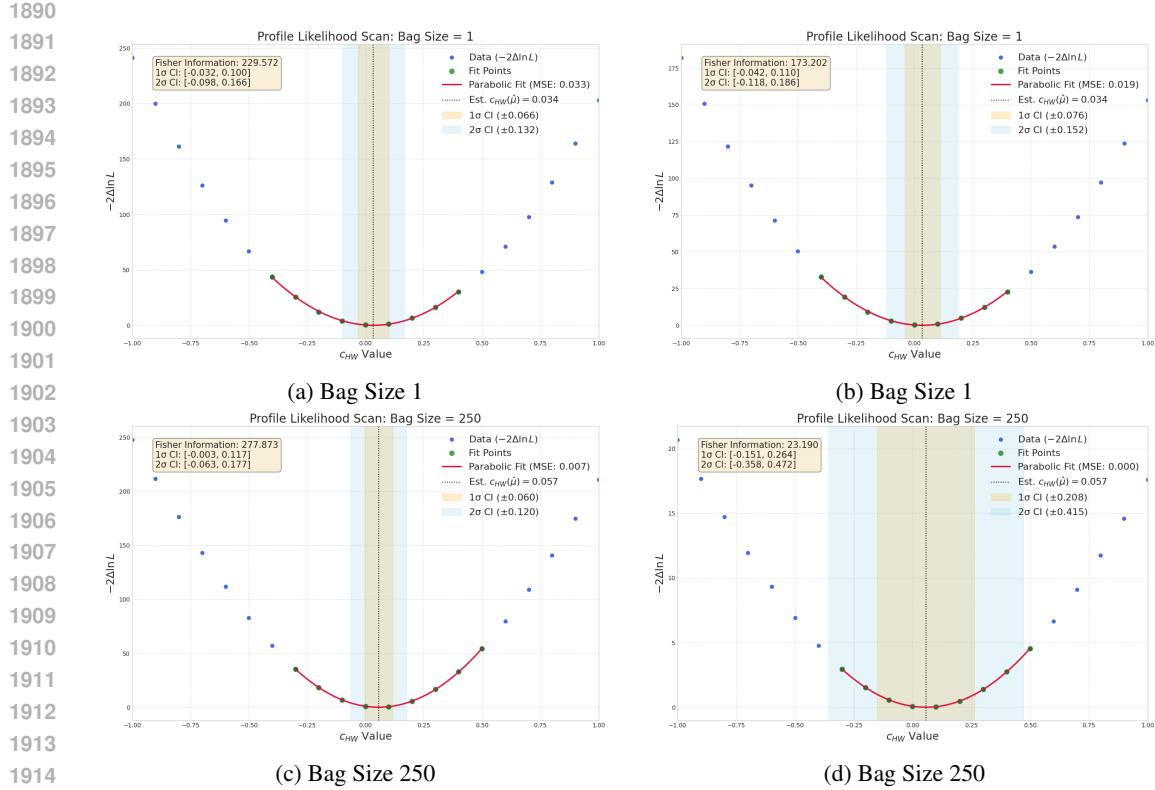


Figure 21: Parameterized Neural Network: Example of the confidence interval calculations on the same data. Right side shows before calibration, left side shows after calibration.

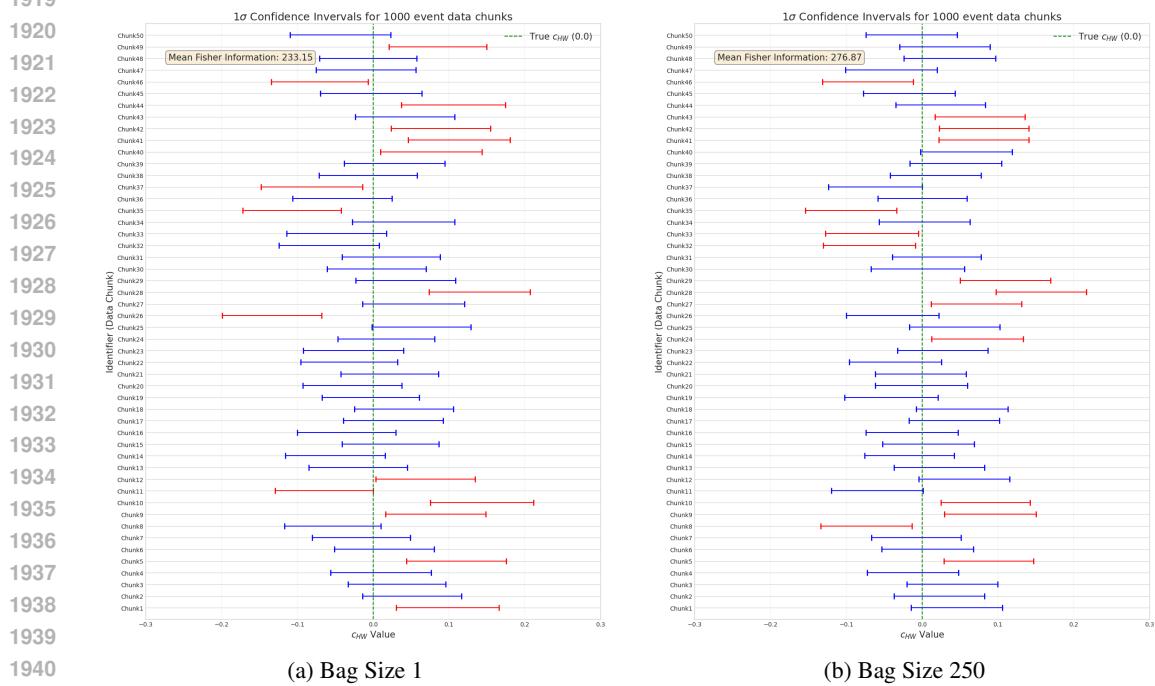


Figure 22: Parameterized Neural Network: Confidence interval coverages, with 50 of the 200 total pseudo-experiments shown.

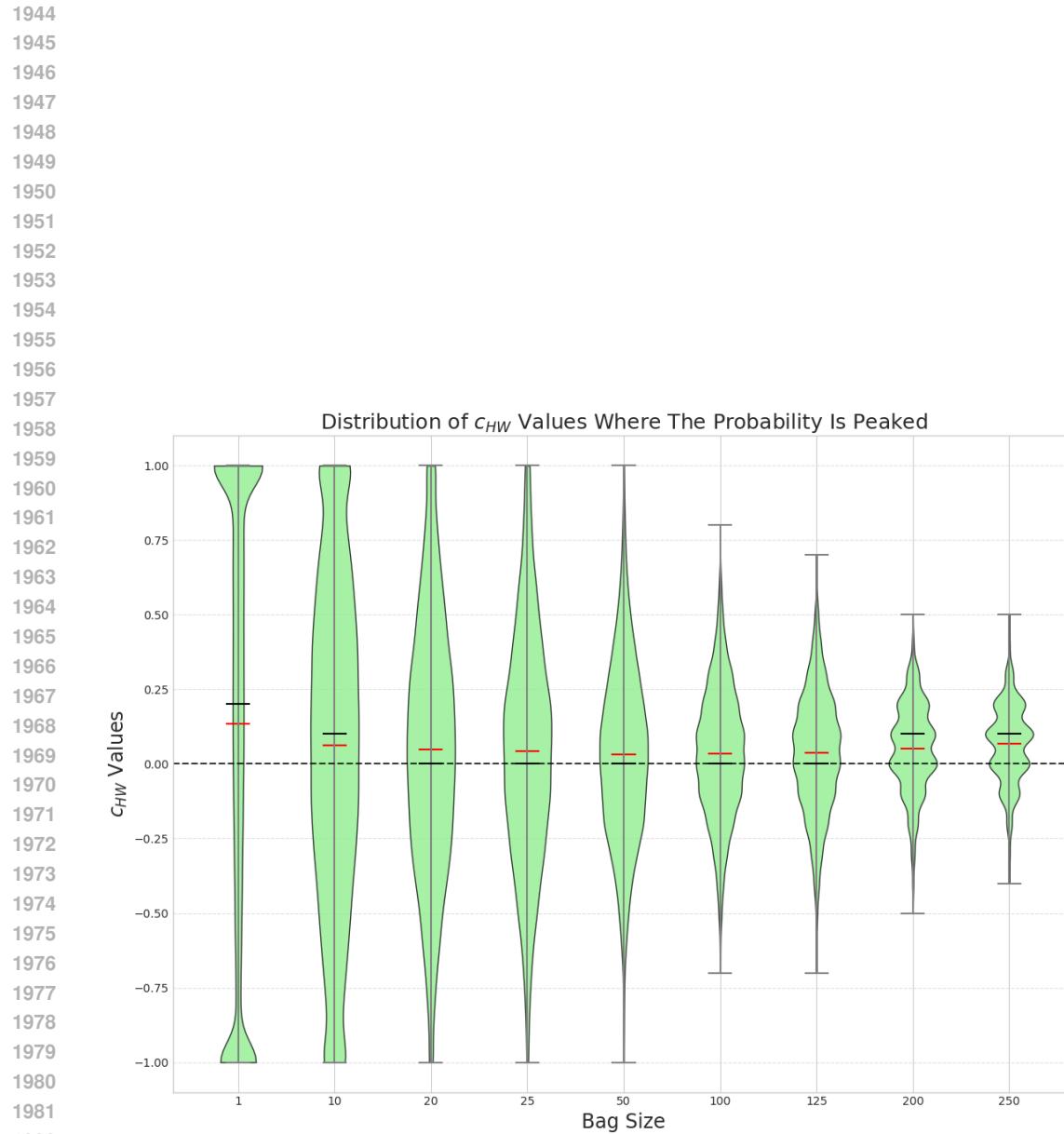


Figure 23: Parameterized Neural Network: Violin plots showcasing the distribution of discrete c_{HW} values ($\pm 0.1 c_{HW}$) where the predicted probability is the highest.

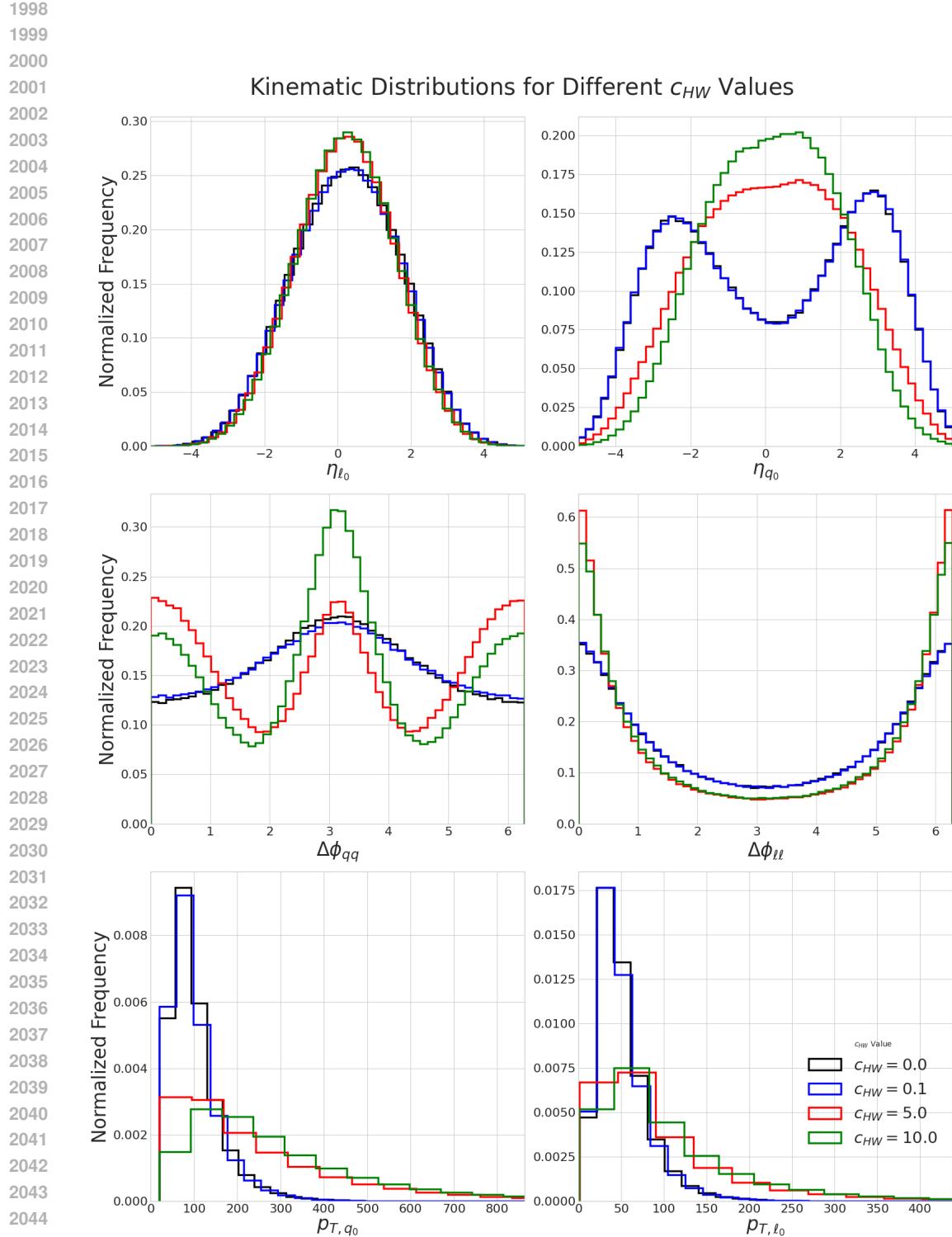


Figure 24: The dataset: A selection of kinematic distributions, comparing the Standard Model (SM, $c_{HW} = 0.0$) to various SMEFT signals. Note the nearly perfect overlap between the SM and the weak signal ($c_{HW} = 0.1$) distributions, which motivates the need for the advanced statistical aggregation method presented in this work.