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Abstract

We propose a new approach to non-parametric
density estimation that is based on regularizing
a Sobolev norm of the density. This method is
statistically consistent, and makes the inductive
bias of the model clear and interpretable. While
there is no closed analytic form for the associated
kernel, we show that one can approximate it us-
ing sampling. The optimization problem needed
to determine the density is non-convex, and stan-
dard gradient methods do not perform well. How-
ever, we show that with an appropriate initializa-
tion and using natural gradients, one can obtain
well performing solutions. Finally, while the ap-
proach provides pre-densities (i.e. not necessarily
integrating to 1), which prevents the use of log-
likelihood for cross validation, we show that one
can instead adapt Fisher divergence based score
matching methods for this task. We evaluate the
resulting method on the comprehensive recent
anomaly detection benchmark suite, ADBench,
and find that it ranks second best, among more
than 15 algorithms.

1. Introduction

Density estimation is one of the central problems in statisti-
cal learning. In recent years, there has been a tremendous
amount of work in the development of parametric neural
network based density estimation methods, such as Nor-
malizing Flows (Papamakarios et al., 2021), Neural ODEs
(Chen et al., 2018), and Score Based methods, (Song et al.,
2021). However, the situation appears to be different for non
parametric density estimation methods, (Wasserman, 2006),
(Hardle et al., 2004). While there is recent work for low
dimensional (one or two dimensional) data, see for instance
(Takada, 2008), (Uppal et al., 2019), (Cui et al., 2020),
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(Marteau-Ferey et al., 2020), (Ferraccioli et al., 2021) (see
also the survey (Kirkby et al., 2023)), there still are very few
non-parametric methods applicable in higher dimensions.

Compared to parametric models, non parametric methods
are often conceptually simpler, and the model bias (e.g.,
prior knowledge, type of smoothness) is explicit. This may
allow better interpretability and better regularization control
in small and medium sized data regimes.

Ideally, a function g produced by a density estimator should
satisfy the following properties: (i) It is non-negative, (ii) it
is integrable, and integrates to 1, (iii) it models well multidi-
mensional data, and (iv) it is computationally feasible.

As mentioned above, to the best of our knowledge currently
there are no non-parametric estimators that satisfy (iii) and
(iv). Moreover, note that even the requirements (i) and (ii)
are non-trivial in the sense that they are not natural in the
context of typical non-parametric constructions. Indeed,
some of the above mentioned estimators simply forego ei-
ther or both of these conditions even in 1d situations (see
also a detailed discussion in (Marteau-Ferey et al., 2020) on
this topic).

In this paper we develop the first non-parametric estimator
that satisfies all the properties above, with the exception
of integrating to 1 (but still integrable). Since many tasks
derived from density estimation do not require the precise
normalisation constant knowledge, this yields a practically
useful and theoretically well founded method.

Let S = {z;}.*, C R be a set of data points sampled
1.i.d from some unknown distribution. We study a density
estimator of the following form:

N

= a;gl;lnn -5 Zlog () + ||fH§_La )
ene i=1

Here H* is a Sobolev type Reproducing Kernel Hilbert
Space (RKHS) of functions, having a norm of the form

e = [, P@dera [ (DNP @)z, @)

where D represents a combination of derivatives of a certain
order. The density estimate is given by the function (f*)?.
Note that (f*)? is clearly non-negative, and || f||,,. < oo
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implies [, (f*)?(z)dz < oo. Thus, (f*)? is integrable
over R?, although not necessarily integrates to 1. In this
paper we refer to such functions as pre-densities. To convert
such functions to densities, it sufficient to multiply them by
the appropriate constant. Note also that (1) is essentially a
regularized maximum likelihood estimate, where in addi-
tion to bounding the total mass of (f*)2, we also bound the
norm of some of the derivatives of f*. The fact that H® is
an RKHS allows us to compute f* via the standard Repre-
senter Theorem. Observe that it would not be possible to
control only the L, norm of f* and maintain computabilty,
since Lo is not an RKHS. However, adding the derivatives
with any coefficient ¢ > 0 makes the space into an RKHS
which allows to control smoothness, hence, we call the ob-
jective SObolev Space REgularised Pre density estimator
(SOSREP).

The objective (1) has been introduced in (Good and Gaskins,
1971) and further studied in (Klonias, 1984), in the context
of spline based methods in one dimension. In this paper
we generalise this approach to arbitrary dimensions, which
requires resolving several theoretical and computational
issues.

On the side of the theory, generalising the existing 1d results,
we prove the asymptotic consistency of the SOSREP estima-
tor for the SDO kernels in any fixed dimension d, under mild
assumptions on the ground truth density generating the x;’s.
In addition, we present a family of examples in which the
SOSREP and the standard Kernel Density Estimator (KDE,
(Wasserman, 2006), with the same kernel) provably arbitrar-
ily differ. Thus, SOSREP is a genuinely new estimator, non
equivalent to KDE, and having some different properties.
We also show that examples as above occur naturally in real
datasets. Due to space constraints, the discussion of these
examples is deferred to the Supplementary Material, Section
F.

On the computation side, we resolve several issues: First,
for d > 1 the kernel corresponding to H“, which we call
the SDO kernel (Single Derivative Order; see Section 4),
no longer has an analytical expression. We show however
that it can, nevertheless, be approximated by an appropriate
sampling procedure.

Next, the problem (1) is not convex in f, and we find that
standard gradient descent optimization applied naively pro-
duces poor results. We show that this may be resolved by
an appropriate initialization, and further improved by using
a certain natural gradient optimisation rather than the stan-
dard one. Specifically, we will show that in our setup the
natural gradient preserves some positivity properties, which
are crucial for finding good solutions. Curiously, we believe
this is one of the very few instances where it is clear why
natural gradients perform better.

Further, note that as a result of consistency, it can also be
shown that the estimator ( f*)? becomes normalized, at least
asymptotically with IV (see Section 5). However, in general
computing or even estimating the normalization constant
is not straightforward in terms of numerical computation,
and is outside the scope of this paper !. Instead, we will
focus on the Anomaly Detection (AD) applications, which
do not require a normalization. A discussion of possible ap-
plications of SOSREP to another key task, that of generative
modelling, is given in Section 7.

Next, although the normalisation may not be required for the
main task itself, lack of normalisation may still introduces a
particular nuisance in the context of hyperparameter tuning,
as it prevents the utilization of the maximum likelihood mea-
sure to establish the optimal “bandwidth" parameter a. To
resolve this, instead of the likelihood we consider the Fisher
Divergence (FD), which uses log-likelihood gradients for
divergence measurement, thereby eliminating the need for
normalization. More specifically, we adapt the concept of
score-matching (Hyvérinen, 2005; Song et al., 2020; Song
and Ermon, 2019), a technique that has recently garnered
renewed interest, to our setting.

Finally, building on the above steps, we show that SOSREP
achieves the remarkable performance of scoring second
best on a recent comprehensive anomaly detection bench-
mark, (Han et al., 2022) for tabular data, which includes 47
datasets and 15 specialized AD methods.

Interestingly, it is worth noting that anomaly detection has
been regarded in the literature as a particularly difficult task,
especially for deep density estimators (Nalisnick et al., 2019;
Choi et al., 2019), and the difficulty persists even in the
presence of substantial amounts data. We believe that this
makes the good performance of a much more interpretable
method, such as SOSREP, even more remarkable.

The rest of the paper is organized as follows: Section 2
reviews related literature. Section 3 introduces the RSR
estimator and treats associated optimization questions. The
SDO kernel and the associated sampling approximation are
discussed in Section 4. Consistency results are stated in
Section 5. Section 6 contains the experimental results, and
Section 7 concludes the paper.

2. Literature and Related Work

As discussed in Section 1, a scheme that is equivalent to
(1) was studied in (Good and Gaskins, 1971) and (Klonias,
1984); see also (Eggermont et al., 2001). However, these
works concentrated solely on 1d case, and used spline meth-
ods to solve (3) in the special case that amounts to the use

"However, see Section 3.4, where an approach to an explicit
normalisation at fixed finite NV is discussed, along with other work
were similar normalisation considerations are employed
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of one particular kernel. More recently, an estimator that is
closely related to (1) was considered in (Ferraccioli et al.,
2021), but was restricted to the 2 dimensional case, both
theoretically and practically. In particular, to obtain solu-
tions, their approach involves discretizing (triangulating)
the domain of interest in R?. This would not be feasible in
any higher dimension. In contrast to these approaches, our
more general RKHS formulation in Section 3.1 allows the
use of a variety of kernels, and our optimisation algorithm
is suitable, and was evaluated on, high dimensional data.

The work that is perhaps the most closely related to ours
is (Marteau-Ferey et al., 2020), where the authors consider
quadratic functions and regularisation with a version of an
RKHS norm. The differences with respect to our work are
both in scope and in details of the construction that enable
computation. First, from a computational viewpoint, the
objective in (Marteau-Ferey et al., 2020) requires optimisa-
tion over a certain family of non-negative matrices. While
considering matrices has some advantages in terms of con-
vexity, for a dataset of size N this requires N2 parameters
to encode such a matrix (their Theorem 1), and O(N?) com-
putational cost per step ((Marteau-Ferey et al., 2020) top
of page 6). Further, their optimisation is a constrained one,
which makes the problem significantly more difficult. It
thus would be unpractical to apply their methods to some-
thing like the ADBench benchmark, and indeed, they have
only experimented with a 1-dimensional Gaussian exam-
ple with N = 50. In contrast, similarly to the standard
kernel methods, our objective only requires N parameters,
the optimisation step is O(NN?), and the optimisation can
be done with standard optimisers, such as GD or Adam.
Correspondingly, our evaluation is done on a state-of-the-
art outlier detection dataset. Second, while (Marteau-Ferey
et al., 2020) is concerned with non negative functions gener-
ally, we focus on density estimation much more closely. In
particular, we prove consistency of our estimator, which was
not shown in (Marteau-Ferey et al., 2020) for the estimator
introduced there. In addition, we prove, both theoretically
and through empirical evaluation, that our method is differ-
ent from KDE, which is the most common non parametric
density estimator.

The recent work (Tsuchida et al., 2024) may be viewed as
neural network based variant of the construction in (Marteau-
Ferey et al., 2020). Specifically, with slight simplification,
in this work densities of the form (v, o (Wt(z) + b)) are
considered, where t : R* — RP is a fixed feature extrac-
tor, W € R"*P and b € RP are linear and bias terms,
viewed as a shallow neural network, o is a non-linearity,
and v € R™. It is observed that for several possible choices
of ¢, o, the normalisation constant of such a density may be
analytically computed as a function of v, W, b, thus making
it an interesting density model, optimisable with maximum
likelihood. Note that o (Wt(x) + b) may be viewed as a

(learnable, but shallow) feature embedding into R™, and v
as the linear combination of features, thus highlighting the
analogy with the methods of (Marteau-Ferey et al., 2020)
and with the approach in this paper. However, note also that
the layer output dimension 7 here is involved in a trade-off:
For higher n, the density family is more expressive, but
the computation of the normalisation also becomes more
complex (see Section 3.4). We note that in (Tsuchida et al.,
2024) this approach was only evaluated as a density estima-
tor on low dimensional data, and thus, in particular in view
of the trade-off above, its behavior in higher dimensions is
not clear at the moment.

The paper (Sriperumbudur et al., 2017) studies density es-
timation in the extended exponential family. That is, the
densities are modeled as qo(z)e/(*), where qq is a fixed
known reference density on R?, and f varies in an RKHS .
In (Sriperumbudur et al., 2017) it is argued that maximum-
likelihood estimators are impractical due to the need to
compute the normalisation, and therefore a Fisher Diver-
gence (i.e. score-based) objective is used for the estimation.
In contrast, surprisingly, in this work we show that in fact
one can use a likelihood-like objective (1) to obtain a useful
consistent estimator. > We emphasize that both their and
our estimators produce unnormalised densities. The com-
putation of the estimator of (Sriperumbudur et al., 2017)
involves a solution of a certain linear system, which, while
conceptually simple problem, is a computationally difficult
due to the dimensions of this system. A number of variants
with better computational complexity were developed in
follow up work, see (Sutherland et al., 2018), (Dai et al.,
2019), and (Singh et al., 2018).

Another common group of non parametric density estima-
tors are the projection methods, (Wainwright, 2019). These
methods have mostly been studied in one dimensional set-
ting, see the survey (Kirkby et al., 2023). It is worth noting
that with the exception of (Uppal et al., 2019), the estima-
tors produced by these methods are not densities, in the
sense that they do not integrate to 1, but more importantly,
may take negative values. In the context of minmax bounds,
projection methods in high dimensions were recently an-
alyzed in (Singh et al., 2018), extending a classical work
(Kerkyacharian and Picard, 1993). However, to the best of
our knowledge, such methods have never been practically
applied in high dimensions.

Consistency of the SOSREP in one dimension was shown
in (Klonias, 1984), for kernels that coincide with SDO in
one dimension. Our results provide Ly consistency of the
SOSREP in any fixed dimension d. While our approach
generally follows the same lines as that of (Klonias, 1984),

Note that while we also use FD in the experiments, we only
use it to tune a single scalar parameter, which is computationally a
considerably simpler problem than learning the whole density.
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some of the estimates are done differently, since the corre-
sponding arguments in (Klonias, 1984) were intrinsically
one dimensional.

3. The SOSREP Desnity Estimator

In this Section we describe the general SOSREP Density
Estimation Framework, formulated in an abstract Reproduc-
ing Kernel Hilbert Space. We then introduce and resolve
issues related to the optimisation of the SOSREP objective,
and discuss connections between convexity, positivity, and
natural gradients.

3.1. The Basic Framework

Let X be a set and let H be a Reproducing Kernel Hilbert
Space (RKHS) of functions on &', with kernel k£ : X x
X — R. In particular, H is equipped with an inner product
(*,-)4, and for every x € X, the function k(x,-) = ky(-) :
X — R is in H and satisfies the reproducing property,
(kzy f)qy = f(z) forall f € H. The norm on A is denoted
by Hf||,2H = (f, f)4» and the subscript H may be dropped
when it is clear from context. We refer to (Scholkopf et al.,
2002) for a general introduction to RKHS theory.

Given a set of points S = {z1,...,25} C X, we define
the SOSREP estimator as the solution to the following opti-
mization problem:

1
A > log @) +1fl- @)

As discussed in Section 1, for appropriate spaces
H, the function (f*)? corresponds to a pre-density
(that is, [o.(f*)*(z)dz < oo, but not necessarily
Ja(f*)?(z)dz = 1). We now discuss a few basic proper-
ties of the solution to (3). First, by the Representer Theorem
for RKHS, the minimizer of (3) has the form

N
f@) = falz) = aiks,(x) 4)
=1

for some o = (aq,...,ay) € RY. Thus one can solve
(3) by optimizing over a finite dimensional vector .. Next,
it is worth noting that standard RKHS problems, such as
regression, typically use the term A ||h\|3{, where A > 0 con-
trols the regularization strength. However, due to the special
structure of (3), any solution with A # 1 is a rescaling by a
constant of a A = 1 solution. Thus considering only A = 1
in (3) is sufficient. In addition, we note that any solution
of (3) satisfies || f ||§_[ = 1. See Lemma 4 in Supplementary
Material for full details on these two points.

3.2. Convexity, Positivity, and Natural Gradients

Next, observe that the objective

L(f)

1
— > log f2(wi) + £,
1 : 2 2 ®
=% Zlog (fokai)z + 115

is not convex in f. This is due to the fact that the scalar
function a + —loga? from R to R is not convex and is
undefined at 0. However, the restriction of a — — log a? to
a € (0,00) is convex. Similarly, the restriction of L to the
positive cone of functions C = {f | f(z) >0 Vx € X}
is convex. Empirically, we have found that the lack of con-
vexity results in poor solutions found by gradient descent.
Intuitively, this is caused by f changing sign, which im-
plies that f should pass through zero at some points. If
these points happen to be near the test set, this results in
low likelihoods. At the same time, there seems to be no
computationally affordable way to constrain the optimiza-
tion to the positive cone C. Indeed, standard methods for
constrained problems, such as the projected gradient de-
scent, (Nesterov, 2003), would be costly due to the need to
compute the projections.

We resolve this issue in two steps: First, we use a non-
negative « initialization, c; > 0. Note that for f given by
(4), if the kernel is non-negative, then f is non-negative. Al-
though some kernels are non-negative, the SDO kernel, and
especially its finite sample approximation (Section 4.2) may
have negative values. At the same time, there are few such
values, and empirically such initialization tremendously im-
proves the performance of the gradient descent. Second, we
use the natural gradient, defined in the next section. One can
show that for non-negative kernels, C is in fact invariant un-
der natural gradient steps (supplementary material Section
H). That is, if for f, given by (4) we have f, € C, and o is
obtained by the natural gradient step (8), then f,- € C. This
does not seem to be true for the regular gradient. As a con-
sequence, at least for fully non-negative kernels, by using
natural gradient we can perform optimisation in C, without
the need for computationally costly constraints. As for the
SDO kerenl, although it is not completely non-negative, we
observe empirically that the use of natural gradient results
in a more stable algorithm and in performance improvement
compared to the standard gradient descent. A comparison
of standard and natural gradients w.r.t stability to negative
values is given in Section 6.3.

3.3. Explicit Form of Gradients

In this Section we explicitly compute the regular and the
natural gradients, both in the function space and in terms of
.
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We are interested in the minimization of L(f), defined
by (5). Using the representation (4) for x € X, we
can equivalently consider minimization in o € RY. Let
K = {k(zi,7j)}, ;< y € RV denote the empirical ker-
nel matrix. Then standard computations show that || f,, ”3—1 =
(Ka, a)pn and we have (fo(z1),..., fa(zn)) = Ko (as
column vectors). Thus one can consider L(f,) = L(a) as a
functional L : RN — R and explicitly compute the gradient
w.r.t a. This gradient is given in (6).

As detailed in 3.1, it is also useful to consider the Nat-
ural Gradient — the gradient of L(f) as a function of f,
directly in the space H. Briefly, a directional Fréchet deriva-
tive, (Munkres, 2018), of L at point f € H in direction
h € H is defined as the limit D, L(f) = lim. e~ "
(L(f +¢eh) — L(f)). As a function of h, D, L(f) can be
shown to be a bounded and linear functional, and thus by
the Riesz Representation Theorem, there is a vector, which
we denote VL, such that D, L(f) = (V L, h) for all
h € ‘H. We call VL the Natural Gradient of L, since its
uses the native space H. Intuitively, this definition paral-
lels the regular gradient definition, but uses the H inner
product to define the vector V¢ L, instead of the standard,
“parametrization dependent” inner product in RY, that is
used to define VL. For the purposes of this paper, it
is sufficient to note that similarly to the regular gradient,
the natural gradient satisfies the chain rule, and we have
Vs Hf||3_[ = 2fand Vy (g, f),, = g forall g € H. The
explicit gradient expressions are given below:

Lemma 1 (Gradients). The standard and the natural gradi-
ents of L(f) are given by

1 _
VoL =2 {Ka - NK (Ka) 1] € RY and

f—fo

(6)
ViL=2

| €

-1

where for a vector v € R%, v~! means coordinatewise

inversion.

If one chooses the functions &, as a basis for the space
Hg = span{ky,};.n C M, then cvin (4) may be regarded
as coefficients in this basis. For f = f, € Hg one can
then write in this basis V;L = 2 [a — 4 (Ka)~!] € RV,
Therefore in the a-basis we have the following standard and
natural gradient iterations, respectively:

1
o —a—2\ [Ka - 5K (Ka)l] and (7

o —a—2)\ {a;(KQ)_l} , (©))

where ) is the learning rate.

3.4. Normalisation

Let us now discuss the normalisation of densities f2 with
f given by (4). Since the normalising constant for such a
density is simply fRd (x)dx, we can write

f Ydx = Z oza]/ kv, (2)ky, (v)dz =<a,Ra>,

3, <N

Where R 6 RN*N s the matrix with entries K;; =
[ kq, x)dx. For the Gaussian kernel, these entries
may be computed analytically, but for other kernels the sit-
uation is less clear. Another significant issue is that the
operation (c, K o) involves summation and multiplication
of O(N?) terms, and as such is likely to be numerically
unstable for larger N. Due to these reasons, we believe that
normalisation requires further study, and is out of scope for
this work.

It is worth noting, however, that in (Marteau-Ferey et al.,
2020) a similar argument was used to achieve normalisa-
tion, with a small N and Gaussian kernels. Moreover, in
(Tsuchida et al., 2024) (see Section 2), the normalisation
constant also has a form <a, K a_> for an appropriate «. In
this case, however, the matrix K depends on the parame-
ters W, b instead of the inputs, and is of dimension n x n,
where n is the output size of the single hidden layer. We
note in particular that since every entry of K depends on the
parameters, the underlying computation graph of the auto-
differentiation engine would scale as n?, thus explaining
the expressivity-computational complexity trade-off of this
method, as discussed in Section 2.

4. Single Derivative Order Kernel
Approximation

In this Section we introduce the Single Derivative Order ker-
nel, which corresponds to norms of the form (2) discussed in
Section 1. In Section 4.1 we introduce the relevant Sobolev
functional spaces and derive the Fourier transform of the
norm. In Section 4.2 we describe a sampling procedure that
can be used to approximate the SDO.

4.1. The Kernel in Integral Form

For a function f : R? — C and a tuple x € (NU {0})*
let D¥ = Nifm denote the ~ indexed derivative. By
L1

.0z,

convention, for k = (0,0,...,0) we set D®f = f. Set
d d 2

also ! = [[;_y s, and |k]; = 375 4 k. Set || f]l7, =

[ |f(x)|? dz. Then, for m € N and a > 0 denote

115 = I£17, +a Z

Ili=m

IO Nz, ©

The norm || f ||§ induces a topology that is equivalent to that
of a standard Lo Sobolev space of order m. We refer to
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(Adams and Fournier, 2003), (Saitoh and Sawano, 2016)
for background on Sobolev spaces. However, here we are
interested in properties of the norm that are finer than the
above equivalence. For instance, note that for all a # 0 the
norms || f||, are mutually equivalent, but nevertheless, a spe-
cific value of a is crucial in applications, for regularization
purposes.

Let H* = {f:Rd—HC | Hf||z <oo} be the space of

functions with a finite || f Hz norm. Denote by

m!
(£ =000, +a Y D), (D),

Kl1=m

%l 10
the inner product that induces the norm || f ||Z
Theorem 2. Form > d/2 and any a > 0, the space H* ad-
mits a reproducing kernel k% (x, y) satisfying (k$, f);. =
f(x) forall f € H* and 2 € R?. The kernel is given by

e27ri(y—w,z>
by = | s =
Re 1+ a- (2m)%™ ||z

1
/Rd L+a- (2m)2m |z|*"
(1n

The proof of Theorem 2 follows the standard approach of
deriving kernels in Sobolev spaces, via computation and
inversion of the Fourier transform, see (Saitoh and Sawano,
2016). However, compact expressions such as (11) are only
possible for some choices of derivative coefficients. Since
the particular form (9) was not previously considered in the
literature (except for d = 1, see below), we provide the full
proof in the Supplementary Material.

4.2. Kernel Evaluation via Sampling

To solve the optimization problem (3) in H“, we need to be
able to evaluate the kernel £ at various points. For d = 1,
closed analytic expressions were obtained in cases m =
1,2, 3 in (Thomas-Agnan, 1996). In particular, for m = 1,
k® coincides with the Laplacian kernel ky, (z, y) = e~ =¥l
However, for d > 1, it seems unlikely that there are closed
expressions. See (Novak et al., 2018) for a discussion of
this issue for a similar family of norms.

To resolve this, note that the form (11) may be interpreted
as an average of the terms e2™(¥:2) . 27i(z.2)  where z is
sampled from an unnormalized density w*(z) = (1 + a -
(27)2™ ||2||*™)~! on R%. This immediately suggest that
if we can sample from w®(z), then we can approximate
k“ by summing over a finite set of samples z; instead of
computing the full integral.

In fact, a similar scheme was famously previously em-
ployed in (Rahimi and Recht, 2007), in a different con-

. p2mi{y,z) e2mi{z,z) dy.

text. There, it was observed that by Bochners’s Theorem,
(Rudin, 2017), any stationary kernel can be represented
as k(z,y) = [v(z)e?™v:2) . e2mi{z.2) 4z for some non-
negative measure v. Thus, if one can sample z1,..., 27
from v, one can construct an approximation

T
k4 (z,y) = %Zcos ({zt, ) + bs) - cos ({z¢,y) + br)

(12)
where b; are additional i.i.d samples, sampled uniformly
from [0, 27]. In (Rahimi and Recht, 2007), this approxima-
tion was used as a dimension reduction for known analytic
kernels, such as the Gaussian, for which the appropriate v
are known. Note that the samples z;, b; can be drawn once,
and subsequently used for all x,y (at least in a bounded
region, see the uniform approximation result in (Rahimi and
Recht, 2007)).

For the case of interest in this paper, the SDO kernel,
Bochner’s representation is given by (11) in Theorem 2.
Thus, to implement the sampling scheme (12) it remains
to describe how one can sample from the density w®(z) on
R?. To this end, note that w®(z) is spherically symmetric,
and thus can be decomposed as z = rf, where 6 is sampled
uniformly from a unit sphere S?~! and the radius r is sam-
pled from a one dimensional density u*(r) = %
(see the Supplementary Material for full details on this
change of variables). Next, note that sampling 6 is easy.
Indeed, let gq,...,gq be i.i.d standard Gaussians. Then
0 ~ (g1,.--,94)/+/>; 9. Thus the problem is reduced
to sampling a one dimensional distribution with a single
mode, with known (unnormalized) density. This can be
efficiently achieved by methods such as Hamiltonian Monte
Carlo (HMC). However, we found that in all cases a fine
grained enough discretization of the line was sufficient.

4.3. Relations With Other Kernels

We now discuss the relation between SDO and the Laplacian,
Gaussian and Matérn kernels.

The SDO kernel with parameter m is defined by the norm
(9), which involves only derivatives of order m and we use
m = [d/2] in the experiments. On the other hand, it is

lz—y?
well known that the Gaussian kernel, k(z,y) = e~ 202

corresponds to a Sobolev space with a norm that is anal-
ogous to (9), but involves a summation over all orders of
derivatives (see (Williams and Rasmussen, 2006), Chap-
ter 6), and thus contains only infinitely smooth functions.
More recently, it has been shown that the Laplacian ker-

_ llz—yll

nel, k(z,y) = e~ 2 , corresponds to a Sobolev space
with a norm that involves all the derivatives up to order
m = [d/2], (see (Rakhlin and Zhai, 2019), Proposition 7).
This norm, however, explicitly includes lower order deriva-
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Figure 1: Anomaly Detection Results on ADBench, higher is Better. SOSREP is Second Best Among 18 Algorithms

tives (m << d/2) terms. Thus bounding the norm also
explicitly bounds the lower derivative magnitudes. In this
sense, the Laplace kernel penalises non-smoothness more
heavily than the SDO. In fact, SDO with m = [d/2] may
be viewed as the RKHS space with minimal smoothness re-
quirements in d dimensions. Indeed, m > d/2 is necessary
for the space to be an RKHS (otherwise (11) diverges, see
Supplementary Sec. D.1 and D.2 for additional details), and
no additional terms are present in the norm.

Finally, it is worth noting that the Matérn family of ker-
nels with a smoothness parameter v (Williams and Ras-
mussen, 2006) contains the Laplacian and Gaussian kernels
as two extremes, with v = % and v — oo, respectively. As
shown in (Fasshauer and Ye, 2011), in fact the correspond-
ing RKHS spaces have increasingly growing smoothness
order, from [d/2] to oo, when v = % + p, and p varies in
[0, 00).

In addition to the SDO kernel, we have evaluated the SOS-
REP with Gaussian and Laplace kernels on the Anomaly
Detection task and full results can be found in the Sup-
plementary Material N. While the Gaussain and Laplacian
kernels generally perform competitively and, in most cases,
SOSREP estimators are better than KDE estimators, the per-
formance of SDO is better. The precise reasons for this are
not clear at the moment, and we believe that a detailed study
of the interaction between the specific kernel and SOSREP
is of interest. However, it is out of the scope of the present
paper and is left as a future work.

5. Consistency

In this Section we describe the consistency result for the
SOSREP estimators with kernels of the form (11).

Recall from the discussion in Section 3.2 that the objective
L, given by (5), is convex when restricted to the positive
cone. Here we consider the following positive cone:

¢ =C = {f e span (K23 | f(a) >0 Vi gN}.

(13)
Compared to Section 3.2, belonging to C’ requires only
positivity on the data points z; rather than on all 2 € R?,
i.e. belonging to C’ is a weaker requirement. The convexity
of L still holds, however, due to similar considerations. In
addition, we restrict the cone to the span of z; since the
optimal solutions belong to that span, and our algorithms
operate inside the span too.

Note also that f € H! if and only if f € H® forevery a > 0.
With these remarks in mind, we can state the consistency
result:

Theorem 3. Let z1,...,zy be i.i.d samples from a com-
pactly supported density v2 on R%, such that v € H'. Set
a=a(N)=1/N,andletuy = u(z1,...,zn;a(N)) be
the minimizer of the objective (5) in the cone (13). Then
lun — vl converges to 0 in probability.

In words, when N grows, and the regularisation size a(N)
decays as 1/N, the SOSREP estimators u converge to v
in L2.

Note that since [[v][;, = 1 (as its a density), and since
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lun — v, — 0, it follows by the triangle inequality that
lunlly, — 1. That s, the estimator u becomes approxi-
mately normalized as N grows.

An overview and full details of the proof are provided in
Supplementary Material Sections M.1 and M.2.

6. Experiments

In this section, we present the evaluation of SOSREP on the
ADBench anomaly detection benchmark, and empirically
test the advantage of natural gradient descent for maintain-
ing a non-negative f. The evaluations of SOSREP with
different kernels on a 2-dimensional synthetic dataset are
presented in the Supplementary Material section J.1.

6.1. Anomaly Detection Results for ADbench

ADbench (Han et al., 2022) is a recent Anomaly Detection
(AD) benchmark evaluating 15 state-of-the-art algorithms
on 47 tabular datasets. Alongside these, we also evaluate
standard KDE estimators with Gaussian and Laplace kernels.
The performance of all these algorithms is compared to that
of SOSREP with the SDO kernel.

We focus on the classical unsupervised setup, in which at
train time there is no information regarding which samples
are anomalies. On test, anomaly labels are revealed only for
final algorithm evaluation. For all density-based approaches
(KDE,SOSREP), we employ the negative of the density as
the anomaly score. That is, low density values would be con-
sidered anomalies. In accordance with the ADbench paper,
we evaluate each dataset by calculating the average AUC-
ROC of that score across four runs, each with a different
random seed. The seed determines the train-test split of the
ADbench data, as well as the randomness of the algorithms.

In Figure 1, each algorithm is represented by a box plot
where the average AUC-ROC across all datasets is indicated
by an orange dot. The boundaries of the box represent
the 25th and 75th quantiles, while the line inside the box
denotes the median. The algorithms are sorted by their
average AUC-ROC. Additional evaluations are available in
the Supplementary Material, Section J.2. These include a
comparison of SOSREP using different kernels (Gaussian,
Laplace, and SDO) against other methods on a per-dataset
basis—contrary to the per-method analysis provided here.
Furthermore, evaluations that assess the relative ranks of
the algorithms, instead of the mean AUC-ROC, can also
be found in the same section. The results there are very
similar to those in Fig. 1. As discussed in (Han et al., 2022),
evaluation by rank may help mitigate potential evaluation
biases arising from variations in dataset difficulty.

For both AUC-ROC and rank evaluations, SOSREP
emerges as the 2nd best AD method overall. Notably, this
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Figure 2: For each HP a, we calculate the Fisher divergence
between the density learned on the training set and the
density inferred on the test set.

is achieved with the generic version of our method, without
any pre or post-processing specifically dedicated to AD. In
contrast, many other methods are specifically tailored for
AD and do include extensive pre and post-processing.

In addition to performing well on the standard ADBench
benchmark, and perhaps even more impressively, SOS-
REP excels also on the more demanding setup of duplicate
anomalies, which was also extensively discussed in (Han
et al., 2022). Here, SOSREP rises to the forefront as the
top AD method (with an average AUC-ROC of 71.6 for
X5 duplicates - a lead of 4% over the closest contender).
This scenario, which is analogous to numerous practical
situations, is a focal point for ADbench’s assessment of un-
supervised AD methods due to its inherent difficulty, leading
to substantial drops in performance for former leaders like
Isolation Forest. Detailed explanations are available in the
Supplementary Material Section J.3.

As for computational cost, the entire set of 47 datasets was
processed in 186 minutes using a single 3090RTX GPU and
one CPU, averaging about 4 minutes per dataset.

6.2. Fisher-Divergence Based Hyperparameter Tuning

As discussed in Section 1, dealing with unnormalized den-
sities adds some complexity to hyperparameter tuning. In-
deed, hyperparameter tuning typically involves the compari-
son of multiple models, for instance models with different
smoothness control (aka “bandwidth”) parameters ¢ > 0. In
probabilistic models, this would typically involve choosing
the model which gives the highest likelihood to the data
(note that the anomaly labels are not available at this stage).
However, due to the lack of normalisation, the likelihoods
are not computable. In this paper, instead of likelihoods we
compute the Fisher Diveregences between the model and
the data, as these do not require normalisation, and choose
the model with the parameter that yields the lowest diver-
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Figure 3: Fraction of negative values for natural versus «
gradient-based optimization across datasets. The X-axis
represents datasets from ADbench (see Supplementary Ma-
terial Section L for details).

gence (more precisely, we compute the FD up to an additive
constant which does not depend on the the model). Figure
2 illustrates the FD for SOSREP for different a values for
a single dataset. The x-axis shows the parameter values on
a logarithmic scale. For visual clarity, we also shifted our
version of FD to be strictly positive and applied a logarith-
mic transformation. One can see that the graph is somewhat
noisy, but typically there is one clear minimum value.

A detailed discussion of the stages involved in the FD com-
putation and the associated minimum selection can be found
in Section I of the supplementary material.

6.3. Natural-Gradient vs Standard Gradient
Comparison

In the context of the discussion in Section 3.1, we conduct
an experiment to demonstrate that the standard gradient
descent may significantly amplify the fraction of negative
values in a SOSREP solution, while the natural gradient
keeps it constant. We have randomly chosen 15 datasets
from ADBench, and for each dataset we have used 50 non
negative « initializations. Then we ran both algorithms for
1000 iterations. The fraction of negative values of f, (on the
train set) was measured at initialization, and in the end of
each run. In Figure 3, for each dataset and for each method,
we show an average of the worst 5 fractions among the 50
initializations. Thus, for instance, for the ’shuttle’ data, the
initial fraction is negligible, and is unchanged by the natural
gradient. However, the standard gradient (“alpha GD” in
the figure in blue) for this dataset yields about 70% negative
values in the 5 worst cases (i.e., 10% of initializations). We
conclude that the natural gradient is better at preserving
non-negativity than standard gradient descent.

7. Conclusion

In this paper we have developed the theory and the opti-
misation methods for a multi dimensional unnormalised
density estimator. This is the first estimator, among those
broadly based on variants of functional space normalisation,
that is computationally tractable, can be applied in higher
dimensions, and performs well on a useful and difficult task.

In particular, we have shown that the estimator is asymp-
totically consistent, that it is possible to use sampling to
approximate the associated kernel, that it is possible to use
a version of natural gradient for optimisation, and Fisher
divergence for hyperparameter selection. We have found
that the combination of these techniques result in a model
that has excellent performance on a state-of-the-art outlier
detection benchmark.

The success of the approach on the ADBench benchmarks
indicates that it is capable of modelling complicated densi-
ties. It is thus natural to ask next whether the unnormalised
densities introduced in this paper can be used as a basis for
generative models. Generative modelling for tabular data
of small and intermediate sizes is an active and difficult
research area, and SOSREP estimators may provide an al-
ternative approach to the problem. Indeed, note that most
Markov Chain Monte Carlo methods (Metropolis-Hastings,
Langevin and Hamiltonian MC, etc.) work with unnor-
malised densities by design and can in principle be applied
to SOSREP estimated densities out of the box to generate
samples. We believe that evaluating such approaches, and
designing schemes to alleviate the “local minima” issues
common to MCMC, is an important and promising direction
for future research that is based on the present work.

All code necessary to replicate the results presented in this
paper, as well as the implementation needed to run SOSREP
with the kernels described herein, is publicly available. You
can access and download the code from our GitHub reposi-
tory at (https://github.com/bp6725/SOSREP). We hope this
will enable others in the community to verify and build upon
our work.
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A. Overview Of The Supplementary Material

This Supplementary Material is organized as follows:

* Some basic properties of the SOSREP objective and of the related minimization problem: Section B
¢ Derivation of the Gradients of the SOSREP objective: Section C

* Invariance of the non-negative function cone under natural gradient steps: Section H

* SOSREP vs KDE comparison: Sections F and G

* Derivation of the integral form of SDO kernel, proof of Theorem 3: Section D.1

* Additional details on sampling approximation procedure: Section D.2

¢ Details on the Fisher Divergence estimation for SOSREP Hyperparameter tuning : I

* Comparison of the raw AUC-ROC metric on ADBench data: Section J.2

* Discussion of an additional test regime, with duplicated anomalies: Section J.3

* On-the-fly hyperparameter tuning procedure that was used to save time by finding the first stable local minimum:
Section J.6

The code used for all the experiments in the paper will be publicly released with the final version of the paper.

B. Basic Minimizer Properties

As discussed in Section 3.1, the minimizer of the SOSREP objective (3) always has H norm 1. In addition, there is no
added value in multiplying the norm by a regularization scalar, since this only rescales the solution. Below we prove these
statements.

Lemma 4. Define

1
f:argglin—NZIOghQ(xi)—i- ||hH3_L (14)

Then f satisfies || f||* = 1. Moreover, if

1
! . 2 . 2 2
= arhgenqlim—ﬁ zi:logh () + A7 |||l (15)
for some A > 0, then f' = A71f.
Proof. Forany h € H and a > 0,
1 2
argmin — — log(ah)?(x;) + ||ah||” = 16
s 3 log(ah)* (1) + o] 16)
. 1 2 2 2072
arginm—NZIOgh (z;) —loga“ + a||h||". (17
Taking derivative w.r.t a we have
2a
—= +2a|h|* =0. (18)
a

Thus optimal a for the problem (3) must satisfy [|ak||> = a2 ||k||> = 1. To conclude the proof of the first claim, choose A in
(16) to be the minimizer in (14), h = f. Note that if || f||,, # 1, then we can choose a = || f ||,7T_[1 # 1 to further decrease the
value of the objective contradicting the fact that f is the minimizer.

12
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For the second claim, denoting g = \h,

argmm—— Zlog h2(x;) + A2 ||h))? (19)
heH
= A1 argmin —— logg i)+ gl + = log \? (20)
argmin Z lglI* Z
=\ argmln—— Zlogg (z:) + |lgl® 21
geEH

=\"11 (22)

O

C. Derivation of the Gradients, Proof Of Lemma 1

In this section we derive the expressions for standard and the natural gradients of the objective (5), as given in Lemma 1.

Proof Of Lemma 1. We first derive the expression for V,L in (6). Recall that Hf||§_[ = (o, Ka)py for a € RY,
where K;; = k(z;,z;). This follows directly from the form (4), and the fact that (k;, k,) = k(z,y) for all
x,y € H, by the reproducing property. For this term we have V,, (o, Ka) = 2K«. Next, similarly by using (4),
Vaof(z) = (k(x1,2),...,k(zy,)) for every € RY. Finally, we have

N N
VQ% Zlog 2z %foz(mi) 22f (23) - Vo f (z:) 23)
i= i=1
1 1 N
= N;f i) - Vaf (w:) (24)
= 2%K(f(;z:1),..,,f(x1\,))*1 (25)
— 1 -1

This yields (6).

For V¢ L, we similarly have V¢ || f H?{ = 2f, as discussed in section 3.3. Moreover,

N N
Zj log f*(w:) = V5 Z g (fizid3 27)
1N
=52 Fowi)a - Vi (foai)y, (28)
i=1
1 N
¥ 2 i)y @i (29)
L=1
This completes the proof. O

D. SDO Kernel Details

In Section D.1 we provide a full proof of Theorem 2, while Section D.2 contains additional details on the sampling
approximation of SDO.

13
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D.1. SDO Kernel Derivation

We will prove a claim that is slightly more general than Theorem 2. For a tuple a € R, define the norm

" il
1712 =>"a > S I DI, - (30)

=0 |k]1=l

where D" are the x-indexed derivative, as discussed in Section 4.1. The SDO norm is a special case with ag = 1, a,, = a,
and a; = 0 for 0 < [ < m. Let H® be the subspace of Ly of functions with finite norm,

H'={f€Lz | [Ifllz <oo} (31)

and let the associated inner product be denoted by

s I
(F9)a=D_a Y —((D"f),(D"g))y, (32)
=0 |kh=l
Define the Fourier transform
Ff(z) = / fw)e T4 dy, (33)
R4

and recall that we have (see for instance (Stein and Weiss, 1971), (Grafakos, 2008))

d
F(D*f)(2) = | ][] (2miz;)™ | Ff(2) forall z € R, (34)

Jj=1

The following connection between the Lo and the derivative derived norms is well known for the standard Sobolev spaces
((Williams and Rasmussen, 2006; Saitoh and Sawano, 2016; Novak et al., 2018)). However, since (30) somewhat differs
from the standard definitions, we provide the argument for completeness.

Lemma 5. Set for z € R4

(NI

va(z) = (1 + Zal - (2m)% ||z||2l> . (35)
=1

Then for every f € H® we have

IF12 = llva(z) - FIANZ, - (36)

14
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Proof.
m l'
G = e > 1D, (37)
=0 |kl1=l
e I!
=> a Y S IFD L, (38)
=0 |n\1*l ’
:/dz S > LiEneer (39)
[1=0  |x|i= 7 :
I 2 = l' d 2K 2
= [a[IFn @+ ¥ 5 TTems™ | 1716 (40)
i I=1 |sh=l ~ \j=1
2 | = l' d 2K
~ [eFner 1+ 5 T] ™ (1)
i =1 |sh=l =~ \j=1
:/dz\]-"[f] P |14+ - (2r)” L!,szﬁ“f (42)
i =1 lli=t  j=1
:/dz\]-"[f] @ |14 a0 @m0 2] 3)
L =1
O

Using the above Lemma, the derivation of the kerenl is standard. Suppose k® is the kernel corresponding to || f||, on H®. It
remains to observe that by the reproducing property and by Lemma 5, for all 2 € R¢

= (f. k%), (44)
= [ @ FN@FRIE ). @)
On the other hand, by the Fourier inversion formula, we have
f@) = [z FipE)Em), (46)
This implies that
[z Fn@ee = [ @ Fin@FREIEEE) @)

holds for all f € H®, which by standard continuity considerations yields
e—27ri(x,z)

Flhgl(z) = —5—~—

48
) )

vE

Using Fourier inversion again we obtain

L 2mi(y—x,z) J 2mi(y—x,z) J
UYax,y) = —————dz = z. 49
(=.9) /R v3(2) /R T+ ar- (2m)2 | 2] )

D.2. Sampling Approximation

As discussed in Section 4.2, we are interested in sampling points z € R? from a finite non negative measure with density
given by w(z) = (14 a - (27)2™ ||2||*™)~". With a slight overload of notation, we will also denote by w, the scalar
function w, : R — R,

w(r) = (14 a- (2m)*™r?™)~1, (50)
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First, note that w,(z) depends on z only through the norm ||z||, and thus a spherically symmetric function. Therefore, with
a spherical change of variables, we can rewrite the integrals w.r.t w2 as follows: For any f : R? — C,

/]R w(2) ()= = /0 dr /S 9 () A1 () (r6) 1)

o
=A4-1(1) / dr/ A9 [wa(r)r*='] - f(r0). (52)
0 gd-1
Here S9! the unit sphere in RY, @ is sampled from the uniform probability measure on the sphere, r is the radius, and
27Td/2
Ag_a(r) = -1 53
d-1(r) T (53)

is the d — 1 dimensional volume of the sphere or radius r in R%. The meaning of (52) is that to sample from w; 2, we can

sample 6 uniformly from the sphere (easy), and r from a density

d—1

_ d—1 _ r
C(’l") - wa(r)r - 1+a- (2ﬂ.)2mr2m

(54)

on the real line. Note that the condition m > d/2 that we impose throughout is necessary. Indeed, without this condition the
decay of ((r) would not be fast enough at infinity, and the density would not have a finite mass.

As discussed in Section 4.2, {(r) is a density on a real line, with a single mode and an analytic expression, which allows easy
computation of the derivatives. Such distributions can be efficiently sampled using, for instance, off-the-shelf Hamiltonian
Monte Carlo (HMC) samplers, (Betancourt, 2017). In our experiments we have used an even simpler scheme, by discretizing
R into a grid of 10000 points, with limits wide enough to accommodate a wide range of parameters a.

E. A Few Basic Properties of the Kernel

Proposition 6. The kernel (11) is real valued and satisfies

. cos (27 (y — 2.2))
K = dz. 55
(SC,Z/) /]Rd 1+a- (27T)2m ||Z||2m z ( )

Proof. Write e2™*W=%2) = cos(2n (y — x,2)) + isin(27 (y — x, 2)) and observe that sin is odd in z, while 1 + a -
(27)2™ || 2||*™ is even. O

Proposition 7. For all z,y € RY,
K'(z,y) = b2 K" (b 72, b2 y) (56)

Proof. Write u, = bz z and note that du = (b=w )%dz. We have

2 —
K (z,y) = / cos (27 {y x’,jz ) az (57)
rRe 14027 2|
cos (271' <b_ﬁ(y—x),u>) N

_ / - du b7 (58)

Re 1+ |[2mull
= b KN (b, b o y). (59)
O

Lemma 8. There is a function c¢(m) of m such that for every x € RY,
/(K‘l(ﬂc,y))2 dy = c(m)- a2, (60)
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SOSRE VS KDE SDO denisties

(a)
K Values Distribution and Two Clusters
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Figure 4: (a) Distribution of Kernel Values and SDO Kernel Values Inside and Between Clusters. (b) SOSREP and KDE
Loglikelihoods. the x-axis represents points in the data, arranged by clusters, y-axis shows the log-likelihood.

—2mi(z,z)

Proof. Recall that for fixed z and a, the Fourier transform satisfies F(k%)(z) = W, where kg (1) = K*(x, )
(see eq. (48)). We thus have
a2 an |12
kN, = IFEDIL, (61)
727r7,(m z) . —271-2(z z)
/ sdz (62)

1+a2w%w4|)

dz (63)

I
\

2
1+a2w%w4|)

1
g / ~d, (64)
(1+ @myzm 121
(65)
where we have used the variable change z = a~ 7 2 O

F. Difference between SOSREP and KDE Models

In this Section we construct an analytic example where the SOSREP estimator may differ arbitrarily from the KDE estimator
with the same kernel. Thus, the models are not equivalent, and encode different prior assumptions. Briefly, we consider a
block model, with two clusters. We’ll show that in this particular setting, in KDE the clusters influence each other more
strongly, i.e the points in one cluster contribute to the weight of the points in other cluster, yielding more uniform models. In
contrast, in SOSREP, rather surprisingly, the density does not depend on the mutual position of the clusters (in a certain
sense). Note that this is not a matter of bandwith of the KDE, since both models use the same kernel. We believe that this
property may explain the better performance of SOSREP in Anomaly Detection tasks, although further investigation would
be required to verify this.

Given a set of datapoints S = {x;}, for the purposes of this section the KDE estimator is the function
Jrae(@) = fraes(x) = g7 Z s (). (66)

Let fsosrep be the solution of (3). We will compare the ratios fiqe(2;)/ frae(x;) versus the corresponding quantities for
SOSREP, f2,srpp i)/ f20srep(2;) for some pairs x;, z;. Note that these ratios do not depend on the normalization
of frde and fZ,qprpp. and can be computed from the unnormalized versions. In particular, we do not require &, to be
normalized in (66).
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Consider a set S with two components, S = S; U Sa, with S; = {z1,...,2n} and S = {a,...2,} and with the
following kernel values:

k(wi, ;) = k(a),2%) =1 foralli < N,j <M

K= k(xl,xj)zv for?#j' 7
k(x}, ) =" fori # j
k(xi,2%) = Byy' for all 4, j

This configuration of points is a block model with two components, or two clusters. The correlations between elements in
the first cluster are 2, and are '? in the second cluster. Inter-cluster correlations are 3’. We assume that «y,, 3 € [0, 1]
and w.l.0.g take v > +/. While this is an idealized scenario to allow analytic computations, settings closely approximating
the configuration (67) often appear in real data. See Section F.1 for an illustration. In particular, Figure 4 show a two cluster
configuration in that data, and the distribution of k(z, ') values.

The KDE estimator for K is simply

fkde(xt) = m [1 + (N_ 1)72 +M5'YVI] ~
N (63)
2 /
N+M! +N+Mﬁw’

for x; € S1, where the second, approximate equality, holds for large M, N. To simplify the presentation, we shall use this
approximation. However, all computations and conclusions also hold with the precise equality. For z:; € S5 we similarly
have frae(7}) ~ 5257877 + warY'> and when M = N, the density ratio is

frae(ze) _ 7*+ By
frae(xy) %+ Byy

(69)

The derivation of the SOSREP estimator is considerably more involved. Here we sketch the argument, while full details
are given in Supplementary Material Section G. First, recall from the previous section that the natural gradient in the
« coordinates is given by 2 (6 — Nfl(Kﬁ)’l). Since the optimizer of (3) must satisfy VL = 0, we are looking for
B € RN+M gquch that 3 = (K3)~! (the term N~ can be accounted for by renormalization). Due to the symmetry of K
and since the minimizer is unique, we may take 5 = (a, ..., a,b,...,b), where a is in first N coordinates and b is in the
next M. Then 3 = (K /3)~! is equivalent to a, b solving the following system:

a 14+ (N - )7[2] + b 1M By 0

a
{b =a 'NByy + b7 - 1)

This is a non linear system in a, b. However, it turns out that it may be explicitly solved, up to a knowledge of a certain sign
variable (see Proposition 10). Moreover, for M = N, the dependence on that sign variable vanishes, and we obtain
Proposition 9. Consider the kernel and point configuration described by (67), with M = N. Then for every z; € S,z €
52’

fSOSREP(fU;S) _ 71
fsosrep(T}) v

In particular, the ratio does not depend on /.

It remains to compare the ratio (71) to KDE’s ratio (69). If = 0, when the clusters are maximally separated, the ratios
coincide. However, let us consider the case, say, § = % and assume that 4" < . Then in the denominator of (69) the larger
term is 37, which comes from the influence of the first cluster on the second. This makes the whole ratio to be of the
order of a constant. On the other hand, in SOSREP there is no such influence, and the ratio (71) may be arbitrarily large.
We thus expect the gap between the cluster densities to be larger for SOSREP, which is indeed the case empirically. One
occurence of this on real data is illustrated in Figure 4.

F.1. Evaluation of the Difference Between SOSREP and KDE for Real Data

We have performed spectral clustering of the “letter” dataset from ADBech ((Han et al., 2022)), using the empirical SDO
kernel as affinity matrix for both SOSREP and KDE. We then have chosen two clusters that most resemble the two block
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model (67) in Section F. The kernel values inside and between the clusters are shown in Figure 4a. Next, we train the
SOSREP and KDE models for just these two clusters (to be compatible with the setting of Section F. The results are similar
for densities trained on full data). The log of these SOSREP and KDE densities in shown in Figure 4b (smoothed by running
average). By adding an appropriate constant, we have arranged that the mean of both log densities is 0 on the first cluster.
Then one can clearly see that the gap between the values on the first and second cluster is larger for the SOSREP model,
yielding a less uniform model, as expected from the theory.

G. KDE vs SOSREP Comparison Proofs

In this section we develop the ingredients required to prove Proposition 9. In section G.1 we reduce the solution of the
SOSREP problem for the two block model to a solution of a non-linear system in two variables, and derive the solution of
this system. In section G.2 we use these results to prove Proposition 9.

G.1. Solution Of SOSREP for a 2-Block Model

As discussed in section F, any SOSREP solution f must be a zero point of the natural gradient, VL = 0. Using the
expressions given following Lemma 1, this implies 8 = %(K B)~1. Since we are only interested in f up to a scalar
normalization, we can equivalently assume simply 3 = (K/3)~!. Further, by symmetry consideration we may take
8 = (a,...,a,b,...,b), where a is in first N coordinates and b is in the next M. Then, as mentioned in section F,
B = (KB)~1is equivalent to a, b solving the following system:

a~ ! 2 1
1+ (N~ 1)7[ |+ 07 MByy )

a
{b =a Ny +b” —1)7"”]

It turns out that it is possible to derive an expression for the ratio of the squares of the solutions to this system in the general
case.

Proposition 10 (Two Variables SOSREP System). Let a, b be solutions of

= Hyja™' 4+ Hipb™ !
a 11a 1 + 2 X (73)
b = Hsia™ " + Hoob™
Then
2
—(H. Hys) — Hyy — H15)2 +4H,1 H.
ag/bg _ H121 (H21 + Hi2) ,0\/( 21 12)2 +4H11Hoo (74)
2Hy1Hoo + Hig [*(Hzl — Hi2) + py/(Ho1 — Hi)? + 4Hy1 Hao
for a p satisfying p € {+1, —1}.
Proof. Write v = a~', v = b~!, and multiply the first and second equations by v and v respectively. Then we have
1 =Hpu?>+H
11u° + 12U?21 (75)
1 = H21’U,’U + HQQ’U .
We write
v=(1- Hyu?) /Hiou. (76)
Also, from the first equation,
Higuv =1 — Hyu®. (77)
Substituting into the second equation,
2
Hy, (1— Hyu?)
1= 1—Hjyu™) + Hyp———— (78)
oy ( 11 ) 22 (ngu)Z

19



Sobolev Space Regularised Pre Density Models

Finally setting s = u? and multiplying by HZ,s,

H1225 = H21H128 (1 — Hlls) —|— H22 (1 — H11$)2 .

Collecting terms, we have

s2(H} Hog — Hy1HigHoy) + s(HyoHay — Hiy — 2Hy1 Hop) + Hoy = 0.

Solving this, we get

S =

(HyoHzy — H? — 2Hy 1 Ha) + \/(HioHoy — H7y — 2H )1 Hoo)? — 4(H7 Hoo — Hy1 HioHop) Hao

2(H% Has — Hi1H12Ho1)

The expression inside the square root satisfies

(HyoHzy — Hiy — 2Hy1 Hos)? — A(Hfy Hay — Hy1 HiaHa1) Hao

= (H12(Ha1 — Hiz) — 2H11Hyo)? — 4(H Hoy — HiyHiaHoy)Hos
= H{,(H2y — Hi2)® — AHy1 Hog Hi5(Hay — Hyz) 4 4H11 Hi2 Hay Hao
= H?y(Hoy — Hio)* +4H 1 Hop HY,

= H}, [(Ho1 — Hi2)? + 4Hy1 Hoo)

Thus, simplifying, we have

2 —(Hi2(H21 — Hi2) — 2H11Ho) + pHi2+/(Ho1 — Hi2)? + 4Hy1 Hoo
2H,1(Hy1Hoy — HioHoy) ’

where p € {+1, —1}.

Rewriting (76) again, we have

'()2 _ (1 — H11U2)2
H?,u?
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Further,
2 2
232 _ 2,2 _ (1 - Huw?)
1-— H11U2 2
=| ——— 90
( Hyou? (90)
1 Hy\?
_ _Hu 91
(H12u2 H12> (29)
2
_ (H11>2 2(Hi1Hao — HioHa) 1 ©92)
12 —(Hi2(Ho1 — Hia) — 2H11Hao) + pHiav/(H21 — Hi2)2 + 4H11 Hao
2
_ (H11>2 2(H11Hay — HigHo) + (Hio(Hy — Hiz) — 2H11 Hag) — pHia/(Hay — Hi)? + 4H11 Hag
12 —(Hy2(Ho1 — Hi2) — 2H11Has) + pHia\/(H21 — Hi2)? + 4Hq1 Hoo
93)
2 5 2
_ (H11> —2H12Ha1 + Hio(Ho1 — Hia) — pHizn/(Ha1 — Hi2)? + 4Hyi1 Hoo 94)
Hi —(Hi2(Ho1 — Haa) — 2H11Hao) + pHiav/(H21 — Hi2)2 + 4Hq1 Hoo
2
_ 2 —2Ho1 + Hoy — Hiz — py/(Ha1 — Hi2)2 + 4Hy1 Hao 95)
M —(Hi2(Ha1 — Hi2) — 2H11Haa) + pHio\/(H21 — Hi2)? + 4Hq1 Hoo
2
_ g2 —(Ha1 + Hiz) — py/(Ho1 — Hi2)? + 4H11 Hao 96)
H —(Hi2(Ho1 — Hi2) — 2H11 Hao) + pHi2+/(H21 — Hi2)2 + 4Hq1 Hoo
2
_ 2 —(Ho1 + Hia) — p\/(Ho1 — Hi2)? + 4Hy1 Hoo o7
=ty
2H1Ha + Hyg [—(Hm — Hiz) + py/(Ho1 — Hi2)? + 4H11H22]
O
G.2. Proof Of Proposition 9
Similarly to the case with KDE, we will use the following approximation of the system (72)
a =a 'Ny2+b 1 MpByy 98)
b = a_lNﬂ'w’ + b_lM'y’Q

Proof. Let f be the SOSREP solution. By definition, the ratio J{gf; is given by a?/b* where a, b are the solutions to
(98). That is, we take Hys = Hoy = By, Hi1 = 72, and Hys = 2 in Proposition 10. Note that we have removed the

dependence on [V, since it does not affect the ratio. By Proposition 10, substituting into (74),

—(Ha1 + Hia) — py/(Ha1 — Hi2)? + 4Hy1 Hoo

HYy (99)
2H 1 Hay + Hyo [—(Hm — Hi2) + py/(Ha1 — Hi2)? + 4H11H22]
_ g2 —Hy9 — pvVHi1Hoo 2
= Hy, (100)
Hy1Hap + Higpy/Hyi1Haa
4 ( —2B8vY — 2p7Y )2 (aon
27292 + 287 oy’
2
_ (vzw’) (B+p)° (102)
V) (14 Bp)?
It remains to note that ((ﬁ%”p); = 1forany S and p € {+1,—1}. O
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H. Invariance of C under Natural Gradient

Define the non-negative cone of functions C C H by
C={feH | f(z) >0 Vz e X}. (103)

As discussed in section 3.1, the functional L( f) is convex on C.

We now show that if the kernel £ is non-negative, then the cone C is invariant under the natural gradient steps. In particular,
this means that if one starts with initialization in C (easy to achieve), then the optimization trajectory stays in C, without a
need for computationally heavy projection methods. Note that this is unlikely to be true for the standard gradient. Recall
that the expression (6) for the natural gradient is given in Lemma 1.

Proposition 11. Assume that k(z,2’) > 0 for all z,2’ € X and that A < 0.5. If f € C, then also [’ = f —
A[f - FZE F @ik € C.

Proof. Indeed, by opening the brackets,

F=(1=2)\) f+2\

1L,
N>/ <xi>km],

i=1

which is a non-negative combination of functions in C, thus yielding the result. O

L. Fisher Divergence for Hyper-Parameters Selection

The handling of unnormalized models introduces a particular nuance in the context of hyperparameter tuning, as it prevents
the use of the maximum likelihood of the data in order to establish the optimal parameter. When confronted with difficulties
associated with normalization, it is common to resort to score-based methods. The score function is defined as

s(z;a) = Vg log pm(z;a), (104)

where p,,(z;a) is a possibly unnormalized probability density on R?, evaluated at 2 € R?, and dependent on the
hyperparameter a. Since the normalization constant is independent of z, and s is defined via the gradient in z, s is
independent of the normalization. As a result, distance metrics between distributions that are based on the score function,
such as the Fisher Divergence, can be evaluated using non-normalized distributions.

The Fisher Divergence (FD) is a similarity measure between distributions, which is based on the score function — the gradient
of the log likelihood. In particular, it does not require the normalization of the density. While the link between FD and
maximum likelihood estimation has been previously studied in the context of score matching (Lyu, 2012), to the best of our
knowledge, this represents the first application of FD for hyperparameter tuning.

The divergence between data and a model can be approximated via the methods of (Hyvirinen, 2005), which have been
recently computationally improved in (Song et al., 2020) in the context of score-based generative models, (Song and Ermon,
2019). In particular, we adapt the Hutchinson trace representation-based methods used in (Song et al., 2020) and (Grathwohl
et al., 2018) to the case of models of the form (3).

In this work, we employ this concept, leveraging it to identify the choice of parameters (in our case, a, the smoothness
parameter) that minimize the FD between the density learned on the training set and the density inferred on the test set.
Specifically, we apply score-matching ((Hyvérinen, 2005)), a particular approach to measuring the Fisher divergence
between a dataset sampled from an unknown distribution and a proposed distribution model.

L.1. Score Matching and Fisher Divergence

Given independent and identically distributed samples x1, ...,y € RP from a distribution pg(z) and an un-normalized
density learned, p;,(x; a) (where a is a parameter). Score matching sets out to reduce the Fisher divergence between pg and

Pm(+; @), formally expressed as

L(a) = 5 - By llsm(w50) — sa(e))
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As detailed in (Hyvérinen, 2005), the technique of integration by parts can derive an expression that does not depend on the
unknown latent score function s :

N
1 1
L(a;xy,...,2n) = N E [tr(vmsm(:vi;a)) +3- |$m (zi;0)|?| +C
i=1

In this context, C is a constant independent of a, tr(-) denotes the trace of a matrix, and Vs, (7;; a) = VZlog(py.(z:;a))
is the Hessian of the learned log-density function evaluated at x;.

1.2. The Hessian Estimation for Small «’s

Deriving the Hessian for small a values proves to be challenging. Note that small a values signify overfitting to the training
data, consequently, this leads to a density that is mainly close to zero between samples, thereby making the process highly
susceptible to significant errors in numerically calculating the derivatives. This situation results in a Hessian that is fraught
with noise. Hence, our strategy focuses on locating a stable local minimum with the highest possible a. In this context, we
define a stable local minimum as a point preceded and succeeded by three points, each greater than the focal point.

1.3. Approximating the Hessian Trace

Although this method holds promise, it’s worth noting the computational burden tied to the calculation of the Hessian trace.
To mitigate this, we rely on two techniques. First, we utilize Hutchinson’s trace estimator (Hutchinson, 1989), a robust
estimator that facilitates the estimation of any matrix’s trace through a double product with a random vector €:

Tr(H) = E. [¢"He] .

Here € is any random vector on R? with mean zero and covariance 7. This expression allows to reduce amount of computation
of Tr(H), by computing the products He directly, for a few samples of e, without the need to compute the full H itself. A
similar strategy has been recently employed in (Grathwohl et al., 2018) in a different context, for a trace computation of a
Jacobian of a density transformation, instead of the score itself.

In more detail, score computations can be performed efficiently and in a ’lazy’ manner using automatic differentiation,
offered in frameworks such as PyTorch. This allows us to compute a vector-Hessian product H e per sample without having
to calculate the entire Hessian for all samples, a tensor of dimensions N x (d x d), in advance. More specifically, we utilize
PyTorch’s automatic differentiation for computing the score function, which is a matrix of N x d. Subsequently, this is
multiplied by €. We then proceed with a straightforward differentiation V,s(z;) = + - (s (x; + h - €) — s (z;)) for small
step h, followed by a summation which is lazily calculated through PyTorch (see Algorithm 1).

Algorithm 1 Calculating Hutchinson’s Trace Estimator

Require: Score function s, small constant h, sample x, # of random vectors n
1: Initialize trace Estimator to 0
2: fori =1tondo
3:  Sample random vector e from normal distribution
4:  Calculate s(a;x + h * €)
5:  Calculate (s(a;x + h x €) — s(a; x))
6:  Compute (1/h) - (s(a;z + h*xe) —s(a;x)) - €
7 Add result to trace E stimator
8: end for
9

- Return traceEstimator

n

J. Experiments
J.1. Evaluation on 2D synthetic dataset with different kernels

This section presents the application of SOSREP using different kernels on a 2D toy dataset, following the methodologies
outlined in (Song and Ermon, 2019). Through these comparisons, we aim to enhance our understanding of what makes
SOSREP particularly effective, especially with the SDO kernel.
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Figure 5: Log densities learned by SOSREP with the Laplacian, Gaussian, and SDO kernels. Columns are different synthetic
datasets. For visualization, We subtracted the maximum from each log density and clipped the minimum value at -9,
following (Song and Ermon, 2019). Above each panel are shown the average log-likelihoods on a test set.

In Figure 5, we evaluate the SOSREP estimator using SDO, Gaussian, and Laplacian kernels on a number of 2D datasets.
These datasets were also used in (Song and Ermon, 2019) (Figure 2) to evaluate various state-of-the-art density estimation
methods. The top row in Figure 5 displays the ground truth data, with columns representing different datasets and rows
corresponding to the various kernels. The color intensity indicates the values of the log-likelihood. Additionally, the average
log-likelihood (1lk) was computed on a test set, details of which are provided below.

We adhered closely to the experimental protocol from (Song and Ermon, 2019), using their code to generate data. Exceptions
were the Mixture of Gaussians (MOG) and Square datasets, for which we developed our own code, as original code was
not available. All datasets were generated with N = 10000 samples. Like the method studied in (Song and Ermon, 2019),
SOSREP is not normalized. For log-likelihood computation (llk), the normalization constant was estimated using an
importance sampling procedure detailed in (Song and Ermon, 2019), Section 3.2, which we replicated for our experiments in
Figure 2. In 2D, such approximations are reasonably effective. For clarity in visualization, the maximum log-likelihood was
subtracted (setting the maximum 11k to 0) and clipped at —9. This adjustment was made solely for visualization purposes
and not for the 1k computation. The bandwidth parameter a for SOSREP was selected based on the best LLK from a
verification set using a grid search over a grid of 10 values.

As shown in Figure 2 and in comparison to Figure 2 of (Song and Ermon, 2019), SOSREP is one of the few methods that
consistently produces clean fits across all datasets. The only other method achieving similar results is "DKEF-G-15" and, to
a lesser extent, "DKEF-G".

It is noteworthy that almost all methods in Figure 2 of (Song and Ermon, 2019) assign a relatively high likelihood to the
center of the multi-ring dataset, whereas SOSREP shows a distinct drop in likelihood at this point. Moreover, SOSREP
accurately captures the sharp edges in the square and cosine datasets.
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Figure 6: Anomaly Detection Results on ADBench. Relative Ranking Per Dataset, Higher is Better. SOSREP is Second
Best Among 18 Algorithms

J.2. AUC-ROC Performance Analysis

In addition to AUC-ROC, we focus on a ranking system where raw AUC-ROC scores from each dataset are converted into
rankings from 1 to 18, with 18 indicating the best performance. This approach reduces bias from averaging AUC-ROC
scores across datasets, particularly as scores tend to be higher on easier datasets. This is crucial as no single AD method
consistently excels across all scenarios, a point elaborated in (Han et al., 2022).

In Figure 6, each algorithm is represented by a box plot. The average AUC-ROC ranking across all datasets is marked by
an orange dot. The 25th and 75th percentiles define the box boundaries, while the median is indicated by the internal line.
Algorithms are ordered based on the average AUC-ROC ranking.

Figure 7 presents a heatmap of the AUC-ROC values. In this visualization, circle sizes correlate with the AUC values and
the color gradient reflects deviations from SOSREP’s performance, providing a graphical representation of how AUC-ROC
levels compare with those of SOSREP.

J.3. Duplicate Anomalies.

Duplicate anomalies are often encountered in various applications due to factors such as recording errors (Kwon et al., 2018),
a circumstance termed as "anomaly masking” (Campos et al., 2016; Guha et al., 2016), posing significant hurdles for diverse
AD algorithms. The significance of this factor is underscored in ADbench (Han et al., 2022), where duplicate anomalies
are regarded as the most difficult setup for anomaly detection, thereby attracting considerable attention. To replicate this
scenario, ADbench duplicates anomalies up to six times within training and test sets, subsequently examining the ensuing
shifts in AD algorithms’ performance across the 47 datasets discussed in our work.

As shown in ADBench, unsupervised methods are considerably susceptible to repetitive anomalies. In particular, as shown
in Fig. 7a in the main text there, performance degradation is directly proportional to the increase in anomaly duplication.
With anomalies duplicated six times, unsupervised methods record a median AUC-ROC reduction of -16.43%, where in
SOSRERP the drop is less then 2%. This universal performance deterioration can be attributed to two factors: 1) The inherent
assumption made in these methods that anomalies are a minority in the dataset, a presumption crucial for detection. The
violation of this belief due to the escalation in duplicated anomalies triggers the noticed performance downturn. 2) Methods
based on nearest neighbours assume that anomalies significantly deviate from the norm (known as "Point anomalies").
However, anomaly duplication mitigates this deviation, rendering the anomaly less distinguishable. Notice that while the
first factor is less of a problem for a density based AD algorithm ( any time the anomalies are still not the major part of the
data), the second factor could harmful to DE based AD algorithms as well. The evidence of SOSREP possessing the highest
median and its robustness to duplicate anomalies, along with a probable resistance to a high number of anomalies, not only
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Figure 7: Heatmap of AUC-ROC values. Circles size represents absolute value, and the color the shift from SOSREP.

emphasizes its superiority as a DE method but also underscores its potential to serve as a state-of-the-art AD method.

J.4. Comparison of SOSREP for Different Kernels

In this section, we evaluate the SOSREP density estimator with various kernels on the ADBench task. Specifically, we
consider the SDO kernel given by (11), the L, Laplacian kernel, and the Gaussain kernel. The Laplacian (aka Exponential)
kernel is given by

k(z,y) = (1/0") - e~ Iomvle (105)

for o > 0, where ||z — y|| is the Euclidean norm on RY. The Gaussian kernel is given by
k(z,y) = (1/061) e~ llz=yl?/(20%) (106)
Generally, in this task, we observe a similar behavior across all kernels, although the Gaussian kernel underperforms on a

few datasets.

Figure 17 presents the performance of each kernel on the ADBench benchmark (see section 6.1). Specifically, we plot the
test set AUC values on the Y-axis against the different datasets on the X-axis. Note that due to convexity, the results are
nearly identical for different initializations. Figures 16 and 15 display the ADbench results in a manner consistent with
Section 6.1. It is noteworthy that the Laplacian kernel also achieves impressive results. Furthermore, when considering
ranks and thus mitigating the impact of extreme AUC values, the Gaussian kernel demonstrates significantly improved
performance.

J.5. Per-dataset comparison of SOSREP for different kernels

Figure 12 presents the AUC-ROC results for SOSREP with the SDO kernel, compared to other algorithms in ADBench.
The datasets are displayed on the x-axis. For each dataset, the figure shows a box plot of the quantity

(AUC-ROC SOSREP) — (AUC-ROC other algorithm) (107)

where "other algorithm" varies over 17 other benchmark algorithms from ADBench. Positive values indicate an advantage
in performance for SOSREP. The datasets are ordered by the AUC-ROC of SOSREP.

Figures 13 and 14 present the same plots for the SOSREP with the Gaussian and Laplacian kernels, respectively.
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Figure 8: Anomaly Detection Results on ADBench. Mean Relative Ranking Per Dataset, Higher is Better.
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Figure 11: Evaluating SOSREP with vag'xl)us kernels on the ADbench benchmark.
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Figure 14: AUC-ROC results for SOSREP with the Laplace kernel compared to the other algorithms in ADBench.

J.6. Hyperparameter Tuning with On-the-fly Fisher-Divergence Minimization

A primary task at hand involves hyperparameter tuning to select the optimal a according to the Fisher-Divergence (FD)
procedure, as detailed in section I and Section 6.1. For efficient computation, we employ an on-the-fly calculation approach.
The process initiates with a a value that corresponds to the ’order’-th largest tested point. Subsequently, we explore one
larger and one smaller a value. If both these points exceed the currently tested point, we continue sampling. Otherwise,
we shift the tested point to a smaller value. To avoid redundant calculations, the results are continually stored, ensuring
each result is computed only once. This methodology provides a balance between computational efficiency and thorough
exploration of the hyperparameter space.

K. Algorithm Overview

In this section, we outline the procedure for our density estimation algorithm. Let X € R™*? represent the training
set and Y € RV *9 denote the test set for which we aim to compute the density. Initially, we establish the following
hyper-parameters: 1.NV,, the number of samples Z taken for the kernel estimation. (Notice N, is T" from (12)) 2.7;¢er5, the
number of iterations used in the gradient decent approximating the optimization for c. 3.7, the learning rate applied in the
gradient decent o optimization process. 4.1 ¢q_jzers, the number of iterations for the Hessian trace approximation. 5.h, the
step size employed for the Hessian trace. Then, we follow Algorithm 2.

L. Figure 3 - List of Datasets

Those are the datasets for which we compared the fractions of negative values for alpha optimization vs natural gradients
presented in Figure 3, ordered according to the X-axis in the figure :

1. Mnist

2. Shuttle
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Algorithm 2 Density Estimation Procedure with Hypeparameter Tuning

1: repeat

2:  Estimate the SDO kernel matrix via sampling as described in Section 3 and detailed in Algorithm 3.

3:  Determine the optimal o as described in Section 3 and detailed in Algorithm 4. optimal_o forms f := f* £

foptimal_o and the density estimator is F2 £ (f)2.

4:  Compute F?(Y') the density over Y as described in Section 3 and detailed in Algorithm 5.

5:  Assess the Fisher-divergence as described in Supplementary Material Section I and detailed in both Algorithm 6 and
Algorithm 1.

until For each smoothness parameter a.

: The density estimator F'2 corresponds to the a value that yields the minimal FD.

2

Algorithm 3 K (-) — R2*Y : Sampling the Multidimensional SDO Kernel

Require: X,Y, a

. g ..
1: 0 « Hgl‘zd,lg N(0,1)

[
L 1+a(2nr)2m

Z <+ r-07
b ~ UJ[0, 2]
samples < - - cos(X - Z 4 b) - (cos(Y - Z + b)"

using grid search.

Algorithm 4 Optimal_alpha(-) — R : Calculating the Optimal Alphas

Require: X, 1Ir, nijers

I K+ K(X,X)

2 a < [|agls- .-, Jan]] s i ~ N(0,1)

3: for i = 1in nigers do

& aca—2-Ir-((K-a)— (K - (1/(K - )))/Naw)
5: end for

Algorithm 5 F2(-) — R™ : Density over coordinates Y given observations X.
Require: X,Y

1: «a « Optimal_alpha(X,...)

2 e+ K(X)Y)

3: density + (e a)?

Algorithm 6 FD(-) — R : Fisher Divergence with Hessian Trace Approximation.

Require: X (Train set), Y (Test set), n¢q_iters, N
1: scores + VY log(F?(X,Y))
2: traces_sum < 0
3: for i = 1 in njers do
4 e~U{—1,0,1}57(X))
5. shifted_scores +— VY log(F?(X,Y + h-¢))
6:  traces_sum < traces_sum + »_((shifted_scores — scores) - €)/h
7: end for
8: traces «— traces_sum/niers
9: FD < Eltraces + 3 - [|scores||?]
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M. Consistency Theorem

In this Section we state and prove the consistency result for the SOSREP estimators.
Recall that for any a > 0, 1 is the RKHS with the norm given by (9) and the kernel k% (z, y) given by (11).
For any f € H! define the SOSREP loss

L) = 1) = 3 (5 Slog ) + 171w ). (108)

Note that f € H' if and only if f € H® for every a > 0. Recall from the discussion in Section 3.3 and that L is convex
when restricted to the open cone

¢ = (C%) = {f € span (ko Y | f(z:) > o}. (109)

Note that C’ depends on a since the kernel k., = kg, depends on a. Observe also that compared to Section 3.3, here we
require only positivity on the data points z; rather than on all 2 € R?, and we restrict the cone to the span of z; since all the
solutions will be obtained there in any case. This of course does not affect the convexity.

The consistency result we prove is as follows:

Theorem 12. Let xq,...,zy be ii.d samples from a compactly supported density v2 on R?, such that v € H!. Set
a=a(N)=1/N,and let uy = u(z1,...,2n;a(N)) be the minimizer of the objective (108) in the cone (109). Then
lun — v, converges to 0 in probability.

In words, when N grows, and the regularisation size (V) decays as 1/N, the the SOSREP estimators u converge to v in
Lo.

As discussed in the main text, note also that since ||v||, = 1 (as its a density), and since |luy — v||, — 0, it follows by
the triangle inequality that [[ux ||, — 1. That is, the estimator u becomes approximately normalized as V' grows.

In Section M.1 below we provide an overview of the proof, and in Section M.2 full details are provided.

M.1. Overview Of The Proof

As discussed in Section 2, consistency for the 1 dimensional case was shown in (Klonias, 1984) and our approach here
follows similar general lines. The differences between the arguments are due to the more general multi dimensional setting
here, and due to some difference in assumptions.

To simplify the notation in what follows we set ||-[|, := ||||3ya » (-, ), := (-, *)3a- Recall that £*(x, y) denotes the kernel
corresponding to H,

The first step of the proof is essentially a stability result for the optimization of (108), given by Lemma 13 below. In this
Lemma we observe that L is strongly convex and thus for any function v, we have

[u = vll3e < IVLO) 30 5 (110)

where u is the true minimizer of L in C’ (i.e. the SOSREP estimator). This is particular means that if one can show that the
right hand side above is small for the true density v, then the solution u must be close to v. Thus we can concentrate on
analyzing the simpler expression ||V L(v)||,,. rather than working with the optimizer v directly. Remarkably, this result is a
pure Hilbert space result, and it holds for any kernel.

We now thus turn to the task of bounding ||V L(v)||;,.. As discussed in Section 3.3, the gradient of L in H® is given by

1 —1
VL(f) = =5 D_ f@i) Tha + f. (111)
Opening the brackets in ||V L(v) ||§_La we have
_1 -1 2
VL), =z Zv (zi)v™ (@) k(zi, 25) N Zv (i) (kzysv), + 0I5 (112)
= Zv‘l (i)™ (s k(i ay) =2+ [oll3. (113)
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By definitions, we clearly have ||v||i — 1 — 0 when a — 0. Thus we have to show that the first term in (113) concentrates
around 1. To this end, we will first show that the expectation of

N2 Z v @) k(@ ) (114)

(with respect to z;’s) converges to 1. This is really the heart of the proof, as here we show why v approximately minimizes
the SOSREP objective, in expectation, by exploiting the interplay between the kernel, the regularizing coefficient, and the
density v. This argument is carried out in Lemmas 14, 16, and 17.

Once the expectation is understood, we simply use the Chebyshev inequality to control the deviation of (114) around its
mean. This requires the control of cross products of the terms in (114) and can be achieved by arguments similar to those
used to control the expectation. This analysis is carried out in Propositions 18 - 20, and Lemma 21.

One of the technically subtle issues throughout the proof is the presence of the terms v~ (z;), due to which some higher
moments and expectations are infinite. This prevents the use of standard concentration results and requires careful analysis.
This is also the reason why obtaining convergence rates and high probability bounds is difficult, although we believe this is
possible.

M.2. Full Proof Details
Throughout this section let L, be the L, space of the the Lebesgue measure on R? L, =
{f:Rd—>(C| fRd\dexgoo}.

Next, we observe that L( f) is strongly convex with respect to the norm ||-||,,. (see (Nesterov, 2003) for an introduction to
strong convexity). As a consequence, we have the following:

Lemma 13. Let u be the minimizer of L in C’. Then for every v € C’,

[ = vllga < VL) l34a - (115)

Proof. The function f — || f ||Ha is 2-strongly convex with respect to ||- ||3{u Since L(f) is obtained by adding a convex
function, and multiplying by 3, it follows that L(f) is 1-strongly convex. Strong convexity implies that for all u,v € C’ we
have

(VL(v) = VL(u),v —u), > [lv—ul?, (116)

see (Nesterov, 2003), Theorem 2.1.9. Using the Cauchy Schwartz inequality and the fact that u is a local minimum with
VL(u) = 0, we obtain

IVL(©), - llu =, = (VL(v),0 = u), = |l = ull; (117)

yielding the result. O

Now, suppose the samples x; are generated from a true density (f*)2. Let v := f* be the square root of this density. Then,
to show that the estimator u is close to v, it is sufficient to show that |V L(v)||, is small. We write VL(v) explicitly:

IVL@)Ilz = 7 Z o™ (x5 k(s x5) Z @) (kay, 0), + 0| (118)

-~ ﬁxv_l(xi)v_l(xj)k(xi,xj) =2+ |lv]l2. (119)

Since v is a fixed function in H!, it is clear from definition (9) that ||v||§ —1—0asa— 0. Thus, to bound ||V L(v)| i it
suffices to bound

N2 Zv_l i) v (x5)k(zi,25) — 1 (120)
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with high probability over z;, when N is large and a is small.
Note that the form (11) of the kernel k* implies that this is a stationary kernel, i.e. k*(z,y) = ¢%(x — y) with

eZTri(—a:,z)
¢°(z) = / dz. (121)

re 14 a-(2m)2m ||2)*"

Lemma 14. Let k%(x, y) be the SDO kernel defined by (11). For any function v € Ly, and = € R set

(Ka)(z) = / K (. y)o(y)dy. (122)

Then K, is a bounded operator from Ly to Lo, with HKaHOP < 1 for every a > 0. Moreover, for every v € Lo,
[ Kov — v, — 0 witha — 0.

Proof. Note first that K, given by (122), is a convolution operator, i.e. K,v = ¢* * v = [ ¢*(x — y)v(y)dy. Further, by
the Fourier inversion formula, the Fourier transform of ¢g¢ satisfies F¢%(z) = W (see Section D.1 for further
details), and recall that F(g® * v) = Fg* - Fuv. Since |Fg®*(z)| < 1 for every z and a > 0, this implies in particular that

K, has operator norm at most 1. Next, by the Plancharel equality we have

K — o], = |F (a0~ ), N
2
1

N . 124
-

2
) ]:(U) | . (27T)2m ||ZH2m (125)

1_|_a(27r)2mHZH2m Lo

2 a- (2m)>™ ||z|*" 2

) . | J 126
/| (v)(2)] <1+a'(27r)2m ||Z||2m> z (126)

Fix ¢ > 0. For a radius r denote by B(r) = {z | ||z|| <} the ball of radius r, and let B°(r) be its complement. Since
[|F@)(2)* dz < oo, there is r > 0 large enough such that JBe(r) |F(v)(2)]> dz < e. We bound (126) on B(r) and B¢(r)

separately. Choose a > 0 such that a < ((27r)2mr2m)_1 g3 |[v]|7., - Then

m|, 2m 2
/|]:(v)(z)|2~< a (2m)*" |l ) dz (127)

L+a- (2m)2m |||

2m 2m 2 2m 2m 2
_ - o [ a (@2m)* 2] p / = 2 [ _a-(2m)*™ |2 d 128
B(r) FR)E) (1 +a-(2m)2m ||z]*™ o Be(r) F o))l 1+a-(2m)2m ||z|*™ ¢ (128)

<eololzt [ 1F@ERE [ IFe)E)R: (129)
B(r) Be(r)
<ete. (130)
This completes the proof. ]

Assumption 15. Assume that the density v? is compactly supported in R¢, and denote the support by B = supp(v?).

Note in particular that this implies that B is of finite Lebesgue measure, A(B) < oo.

We treat the components with i # j and 7 = j in the sum (120) separately. In the case i = j set Y; = v 2(x;)k(z;, 2;) =
9a(0)v=2(z;), where g* was defined in (121). Note that the variable Y; has an expectation, but does not necessarily have
higher moments. Nevertheless, it is still possible to bound the sum using the Marcinkiewicz-Kolmogorov strong law of large
numbers, see (Loeve, 1977), Section 17.4, point 4°. We record it in the following Lemma, where we also allow a to depend
on N, denoting a = a(N), and assume that a(N') does not decay too fast with N.
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Lemma 16. Assume that limy oo a2 (N) /N = 0. Then

g“™(0)

—z Zv_Q(xi) -0 (131)

almost surely, with N — oo.

Note that since 2m > d by construction of the kernels, a(IN) = 1/N satisfies the above decay assumption.

Proof. We have
Ev2(z) = /U—Q(x) (@)1 (2)dz = A(B) < oo, (132)

Thus the Marcinkiewicz-Kolmogorov law implies that
1
NZU—Q(@) — A\(B) (133)

almost surely. Next, recall that by Proposition 7, we have ¢%(0) = a~ 2w ¢g*(0). Our decay assumption on a(N) implies
then that g*(N)(0) /N — 0, which together with (133) completes the proof. O

Next, for i # 7, set Y = v~ (z;)v =1 (2))k(zs, x;5).
Lemma 17. For every a > 0 we have |[EY;;| < 1, and moreover EY;; — 1 when a — 0.

Proof. Recall that v? is a density, i.e. Ik v?(z)dz = 1, and that the operator K was defined in (122). We have

EY;; — 1] = /v_l(ac)v_l(y)k‘“(x, y)v? (z)v? (y)dedy — /vz(x)da? (134)
= /ka(ac7 y)v(z)v(y)dedy — /1)2 (z)dx (135)
= /dx cv(x) [(Kqv)(x) — v(x)]’ (136)
< lvllz, I(Kav) =2l , (137)
= ||(Kqv) — vHL2 . (138)
The second statement now follows from Lemma 14. For the first statement, write
[EY;j| = (Kov,v)p, < [[Kavly, vl <1, (139)
where we have used the Cauchy-Schwartz inequality and the first part of Lemma 14. O

It thus remains to establish that ﬁ Do oy (Y;; — EY;;) converges to 0 in probability. We will show this by bounding the
second moment,

—E Z(}Q—EY,) = Z (EY;; Yy j — EY;;EYr ;1) (140)
i#j i1 5

and then using the Chebyshev inequality. Observe that there are three types of terms of the form (EY;;Y; ;, — EY;;EY; /)
on the right hand side of (140). The first type is when {7, j} = {¢’, j'} as sets. Second is when |{4,j} N {#,j'}| = 1, and
the third is when {i, j} and {¢’, j'} are disjoint. In the following three propositions, we bound each type of terms separately.

Proposition 18. There is a function of m, ¢(m) > 0, such that

EY;; < A(B)a~ 77 ¢(m) < . (141)
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Proof. Write

EY; = / v (@)o 2 (y) (K (z,y))*v? (2)v* (y) dady

1y (2) 1y () (K (z,y))*dody

2
< [ Iypy(2) k37, dz

=t

B)a~ o c(m),
where we have used Lemma 8 to compute ||k ”iz

For the |[{i,7} N {i, j'}| = 1 case we have
Proposition 19. Let 1, j, t be three distinct indices. Then

[EY;; Y| < 1.

Proof.
EY;;Y; = /v_l(xi)v_l(xj)k“(xi,xj)v_l(xj)v_l(xt)k“(xj,xt)UQ(xi)UQ(xj)v2(:rt)dxidxjdmt

:/v(mi)k“(mi,mj)v(mt)k’“(xhxj)ll{B}(xj)dxidxjdxt
_ / (Kav)(2;) L (2)da;

< [ (Kav)?(ay)d,

2
= [[Kavllz,

<1,
where we have used Lemma 14 on the last line.

Finally, for the disjoint case,
Proposition 20. Let i, j,1’, j' be four distinct indices. Then

E(Yij — EYi;)(Yirj — EYij) = 0.
Proof. When i, j, i, j’ are distinct, Y;; and Y;/ ;s are independent.

We now collect these results to bound (140).
Lemma 21. There is a function ¢/(m, B) > 0 of m, B, such that, choosing a(N) = 1/N, we have

for every N > 0.

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)
(152)

(153)

(154)

Proof. Observe first that all the expressions of the form EY;;EY;;, are bounded by 1, by Lemma 17. Next, note that there

are O(N?) terms of the first type. Since 2m > d, we have a~ 2% = a~ 2w (N) < N, and thus, the overall contribution of
such terms to the sum in (154) is O(N~* - N - N2) = O(1/N). Similarly, there are O(NN3) terms of the second type, each
bounded by constant, and thus the overall contribution is O(N~* - N3) = O(1/N). And finally, the contribution of the

terms of the third type is 0.
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We now prove the main consistency Theorem.

Of Theorem 3. First, observe that by definition ||u — v|| . < ||u — vl|, for any u,v € H'. Next, by Lemma 13 and using
(119), we have

1 _ _
luy = vz, < luy = vy < 575 Do~ @)™ (@))k(ai ;) = 2+ |l (155)
4,7

Clearly, by definition (9), we have ||v\|§ —1—0asa— 0. Write

N2 - N
[ -EYi1o—1]. (156)

1 _ _ 1 1
N2 ZU 1(302‘)” 1($j)k’(xi733j) —-1= N2 ZYi + N2 Z(Yij - EY;;) + Nz
] i i#£]
The last term on the right hand side converges to 0 deterministically with a and N, by Lemma 17. The first terms converges
strongly, and hence in probability, to 0, by Lemma 16. And finally, the middle term converges in probability to 0 by Lemma

21 and by Chebyshev inequality. O

N. Comparison of SOSREP for Different Kernels

In this section, we evaluate the SOSREP density estimator with various kernels on the ADBench task. Specifically, we
consider the SDO kernel given by (11), the L, Laplacian kernel, and the Gaussain kernel. The Laplacian (aka Exponential)
kernel is given by

k(z,y) = (1/o") - lemvle (157)

for o > 0, where ||z — y|| is the Euclidean norm on R?. The Gaussian kernel is given by
k(z,y) = (1/o%) - e~ lz=vl?/2o%), (158)

Generally, in this task, we observe a similar behavior across all kernels, although the Gaussian kernel underperforms on a
few datasets.

Figure 17 presents the performance of each kernel on the ADBench benchmark (see section 6.1). Specifically, we plot the
test set AUC values on the Y-axis against the different datasets on the X-axis. Note that due to convexity, the results are
nearly identical for different initializations. Figures 16 and 15 display the ADbench results in a manner consistent with
Section 6.1. It is noteworthy that the Laplacian kernel also achieves impressive results. Furthermore, when considering
ranks and thus mitigating the impact of extreme AUC values, the Gaussian kernel demonstrates significantly improved
performance.
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Figure 15: Anomaly Detection Results on ADBench. Mean Relative Ranking Per Dataset, Higher is Better.
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Figure 16: Anomaly Detection Results on ADBench. Mean AUC Per Dataset, Higher is Better.
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Figure 17: Comparing SOSREP results on ADBench for different kernels.

Figure 18: Evaluating SOSREP with vagié)us kernels on the ADbench benchmark.
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