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ABSTRACT

Positron Emission Tomography (PET) is a crucial tool in medical imaging diag-
nostics but remains costly and less accessible than alternatives like X-Ray and
MRI. To address this, we propose MRI2PET, a 3D diffusion-based model that
generates AV45-PET scans from T1-weighted MRI images. MRI2PET incorpo-
rates style-transferred pre-training and a Laplacian pyramid loss to leverage un-
paired MRI data and structural correspondences between modalities while simul-
taneously emphasizing the crucial details. Using the ADNI dataset, we demon-
strate that MRI2PET produces realistic PET images and improves downstream
clinical classification. Notably, augmenting the original PET-only training data
with MRI2PET-synthesized scans increases AUROC from 0.688 + 0.014 to 0.780
£ 0.005 when classifying into one of cognitively normal, mild cognitive im-
pairment, and Alzheimer’s Disease groups. These results highlight MRI2PET
’s ability to generate high-quality, clinically informative PET scans from widely
available MRI, offering an accessible, cost-effective approach to enhance machine
learning performance and expand diagnostic imaging workflows.

1 INTRODUCTION

Positron Emission Tomography (PET) scans represent a cornerstone of advanced medical imag-
ing diagnostics. These molecular imaging studies provide crucial insights into metabolic processes
(Kapoor & Kasil[2020), enabling precise detection of cancer (Jerusalem et al., 2003} Pimiento et al.,
2016; | Vansteenkiste & Stroobants) 2000), detailed evaluation of brain function (Myers et al.,|1996),
and comprehensive assessment of cardiac health (Hartiala & Knuutil (1995} |Peretto et al., |2022).
Specifically, their ability to provide nuanced clinical details, such as precise tumor metabolic activity,
makes them invaluable for personalized treatment planning (Schrevens et al., [2004; |Vansteenkiste),
2003). However, the widespread clinical utilization of PET imaging faces significant barriers, in-
cluding high operational costs, limited availability of radiopharmaceuticals, and restricted access to
specialized facilities (Mac Manus & Hicks| [2010; [Madison). These limitations not only constrain
the medical value of PET imaging but also severely restrict the development of machine learning
models, as PET datasets remain substantially smaller compared to other, often less specific but more
broadly available, imaging modalities like Magnetic Resonance Imaging (MRI). Finding innovative
approaches to make the benefits of PET scans more accessible, even in a simulated capacity, would
significantly advance early diagnosis capabilities, enhance treatment planning protocols, and enable
the development of more robust Al-based clinical tools.

Recent advances in deep learning, particularly in generative models, offer a promising avenue for
simulating PET scans from readily available data. The image generation domain has grown rapidly
in recent years to the point of exceptional photorealism. This rise began largely with the introduction
of Generative Adversarial Networks (GANs) (Goodfellow et al.,[2020; |Gulrajani et al.,[2017; Karras
etal.,[2019). GANs use adversarial training between a generator which creates data indistinguishable
from real samples against a discriminator which tries to differentiate between real and generated
data. GANSs have gained widespread popularity for their ability to turn this simple training trick
into incredibly realistic images. However, they have run into a number of challenges such as mode
collapse and training instability.
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So, a more direct approach which has re-popularized older score-based models to impressive success
is the use of diffusion models (Ho et al., [2020; Song & Ermon, [2019; [Song et al., [2020; Song &
Ermon, 2020). Diffusion models iteratively refine an image out of random noise through a series
of small adjustments. They are a probabilistic model which has shown the ability to produce high-
quality and complex images. Furthermore, they have shown to scale effectively, with largely such
models yielding incredibly realistic results (Ramesh et al., [2021; |Rombach et al., 2022). Many of
these diffusion model approaches have even generated conditioned images (Batzolis et al. 2021}
Ramesh et al., 2021} |Tashiro et al.| [2021)) and 3D outputs (Hoogeboom et al.l [2022; Huang et al.,
2023520245 |Poole et al., [2022)) that can offer insights into our task at hand.

GANSs and diffusion models have also demonstrated remarkable capabilities in medical image gen-
eration (Alrashedy et al.| 2022; Khader et al., 2022} [Kim & Ye, |[2022; |Pinaya et al., [2022)). Notably,
conditional generation, where images are synthesized based on auxiliary information such as text
or other imaging modalities, holds particular relevance (Li et al.,|2019; [Van den Oord et al.| 2016
Yan et al.| [2016). Given that PET scans are typically part of a comprehensive diagnostic imaging
protocol, often following or complementing structural imaging modalities such as MRI to provide
additional functional and metabolic information (Goerres et al.,[2003; Meller et al., 2003)), leveraging
MRI as a conditioning input for PET synthesis is a logical and cost-effective approach. Potentially
democratizing access to PET-like diagnostic information without incurring the substantial costs and
logistical challenges associated with actual PET acquisition.

However, generating accurate and clinically relevant PET images from MRI presents several tech-
nical challenges that must be systematically addressed:

* Data Scarcity. The limited availability of paired MRI-PET data compared to the abundance of
MRI-only data presents a fundamental constraint that necessitates techniques that can effectively
utilize unpaired data.

* 3D Complexity. Unlike conventional 2D image generation tasks, PET scans represent com-
plex three-dimensional volumetric data with intricate spatial relationships that must be preserved
throughout the generation process.

* Structural Fidelity. PET and MRI scans exhibit structural similarity but differ fundamentally in
their functional content. Ensuring anatomical fidelity and accuracy without structural distortion
during generation is crucial.

To address these challenges, we propose MRI2PET, a novel 3D diffusion-based method for gener-
ating PET images from MRI scans. Our approach incorporates two key innovations:

* Style Transferred Pre-Training. We leverage the vast amount of MRI-only data by implementing
a style transfer technique that generates synthetic MRI-to-PET-like image pairs, enabling effective
pre-training of the diffusion model. Style transfer is a generative technique leveraging image clas-
sification models which involves “transferring” the style of one image (e.g., color, texture) onto
another while preserving the content structure. It was originally popularized in the domain of artis-
tic image generation, but we apply it here to create “PET-like” MRI images for pre-training. This
then allows the model to learn the fundamental structural relationships between MRI and PET,
maximizing the utilization of available data resources while mitigating the constraints imposed by
limited paired MRI-PET datasets.

* Laplacian Pyramid Loss Component. To enhance the fidelity and generation of important di-
agnostic details beyond general structural correspondence, we introduce a Laplacian pyramid loss
function. This loss component ensures that the generated PET images accurately capture the
multi-scale features present in real PET scans, improving diagnostic accuracy.

We evaluate MRI2PET using the publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, specifically on the task of generating AV45 PET scans from T1-weighted MRI
imaging. While the dataset contains various types of PET images such as FDG, Amyloid, and
Tau PET scans, we opt for AV45 as the most prevalent type of PET imaging within the dataset
and one which under the amyloid PET classification is known to provide value in the detection
and study of Alzheimer’s disease as opposed to more cancer-focused modalities like FDG PET.
Our comprehensive evaluation includes quantitative metrics, qualitative assessments, and clinical
case studies, demonstrating that MRI2PET can effectively model PET scans. We further show that
the generated images capture clinically relevant details, enabling their use for data augmentation
and improving the performance of downstream machine learning tasks. This capability to generate
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high quality, clinically relevant PET scans from MRI has the potential to expand the utility of cost-
effective, automated, and accessible imaging workflows and improve the quality, efficiency, and
availability of important patient diagnostics. It offers the potential to provide important PET-based
diagnostic findings to more people at an earlier date to allow for earlier diagnosis and more targeted
testing where relevant without waiting for the severity of the risk or condition to warrant the cost.

2 PROBLEM FORMULATION

We first introduce our data, problem, and task using notation utilized throughout this work.

Definition 1 (MRI Scan Imaging) We denote the MRI scan data as M € Rém:mmrm where d,y,
represents the depth or number of slices, and r,, represents the height and width resolution of the
image. Each pixel or variable in M is normalized to lie within a defined range (we use [0, 1]).

Definition 2 (PET Scan Imaging) We then similarly represent the PET scan data as P € R%-"»"»
where d,, represents the PET-specific depth and r, represents the PET-specific resolution of the
image. ‘P is normalized to lie within a standard normal distribution for use in diffusion models,
though it is subsequently converted to 0, 1] for visualization.

Task 1 (MRI to PET Generation) The task is then, given an MRI scan M, to generate the corre-
sponding PET scan ‘P for the same patient such that it closely mirrors the true PET results. This is
achieved by learning and sampling from P(P|M).

3 MRI2PET METHOD

Our proposed MRI2PET method, illustrated in Figure [I] employs a conditional diffusion modeling
framework enhanced by two critical innovations designed to address key challenges in synthesizing
PET images from MRI scans. These contributions are as follows:

(1) Style Transferred Pre-Training that makes use of the wealth of MRI images as compared to
the small number of PET scans by using the unpaired MRIs for pre-training. However, to better
simulate our final task, we use style transfer to convert them to PET-like MRI images for this stage.

(2) Laplacian Pyramid Loss Component that emphasizes the need to capture important details, be-
yond simple structural patterns, which are crucial to differentiate outcomes and provide downstream
utility. It does this using Laplacian pyramids which consist of image details at various resolutions
as calculated by the difference between true images and those which are downsampled then upsam-
pled. To enforce the learning of these details, we include an objective of similar Laplacian pyramids
between real and generated PET images.

We now proceed through the diffusion framework as well as these contributions in more detail.

3.1 (I) 3D DIFFUSION FRAMEWORK

We use a standard diffusion process to transform a sample from a simple Gaussian source distribu-
tion to one from the complex PET scan target distribution via a series of small diffusive adjustments.

Iterative Diffusion The forward noising pathway consists of repeatedly adding noise to an initial
PET image until it resembles a fully noisy sample from our source Gaussian distribution. The
PET image is then recovered by reversing the process and denoising the noisy sample step-by-step.
Formally, the noising process at diffusion step ¢ is represented by:

dP® = /&, POdt + /1 — a,dW® (1)

where P® denotes the noisy PET image at step ¢, ,/c; is the drift term that scales the image
intensity, /1 — « is the diffusion term that scales the noise, and dW® is an infinitesimal Wiener
process representing the random noise €. We discretize this continuous diffusion over 7' = 1000
noise steps, and we set &; by defining 5 as a 1000-step linear spacing between Sy, = 0.0015 and
Bena = 0.02 with @« = 1 — 8 and &; the cumulative product of the first ¢ values of «.
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Figure 1: Schematic illustration of the MRI2PET architecture. The method employs a 3D U-Net
diffusion model initially pre-trained on a large dataset of unpaired MRI images. Style transfer tech-
niques are utilized to generate PET-like MRI images, effectively simulating MRI-to-PET conditions
for pre-training. The model is subsequently fine-tuned on a smaller, paired MRI-PET dataset using
a Laplacian pyramid loss, emphasizing the preservation and enhancement of critical multi-scale im-
age details essential for clinical diagnostics.

Denoising with DDPM We conduct the reverse denoising process using a neural network which
serves as our denoising diffusion probabilistic model (DDPM). This model directs the denoising
process at each diffusion step given the noisy image and conditioning information (in our case, the
time step number and MRI image). It does this by predicting the error € between the provided noisy

image P and the true target image P. The generation process then takes an input image initialized
as pure Gaussian noise and iteratively feeds that image along with the corresponding MRI to the
trained model to repeatedly refine the output and generate realistic PET scan results.

We use a UNet autoencoder as our DDPM, as is standard within the domain for use with diffusion
models [Ronneberger et al.| (2015). UNet architectures consist of an encoding pathway, which em-
beds the input image into lower-dimensional space, and a subsequent decoding pathway which maps
that embedding back into the original dimensionality. Each step in either pathway is furthermore
connected via a skip connection to maintain spatial information as well as the relevant condition-
ing information. The only adaptations we make to the architecture here are replacing the standard
2D convolutions with 3D versions (representing our PET images as a single-channel 3D structure
rather than a multi-channel 2D structure) and replacing the standard complete attention with a linear
version in order to reduce the computational complexity to accommodate our computing resources.
Further details including the number of blocks in either pathway and dimensionality throughout are
provided in our supplement.

3.2 (II) STYLE TRANSFERRED PRE-TRAINING

One of the significant challenges in generating PET images from MRI scans is the limited availability
of paired MRI-PET datasets. Due to their cost and specificity, PET scan images are much rarer
than MRIs. So, to address the limited amount of image pairs, we leverage the abundant unpaired
MRI images for pre-training our model. However, our core task is a conditional generation task
going from MRI to PET images. So, we need to convert isolated MRI images into a conditional
setup. The obvious solution is to condition an MRI on itself (possibly with noise to prevent the
task from devolving into pure copying). However, we take this one step further to simulate our
desired task as closely as possible and ensure that the model learns features relevant to PET imaging.
Specifically, we employ style transfer techniques to convert these unpaired MRI images into PET-
like MRI images.
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We do this using a pre-trained VGG19 model to adapt the style (such as intensity patterns and
noise characteristics) of a randomly selected PET image within our dataset while preserving the
anatomical structure of the MRI. Since the pre-trained model only accepts 2D inputs, we do this one
slice at a time iteratively over the depth dimension of the content MRI style PET pair. This process
enables the MRI2PET model to be pre-trained on a large dataset that closely simulates the MRI to
PET generation task by training on these MRI to PET-like MRI image pairs. As such, the model
learns to recognize and generate features that are relevant to PET scans, even before being exposed
to actual paired MRI-PET data, significantly enhancing the model’s ability to generate realistic PET
images once fine-tuning on the limited paired dataset begins.

3.3 (III) LAPLACIAN PYRAMID LOSS COMPONENT

Finally, we add an additional loss component onto the standard mean squared error based training
objective which instructs the DDPM to accurately predict the noise. This additional objective aims
to enhance the model’s ability to capture important details at multiple resolutions within the gen-
erated images. It does so by leveraging the Laplacian pyramid, a multi-scale image representation
consisting of a set of residuals between increasingly blurred and lower-dimensional images.

Specifically, a Laplacian pyramid is constructed by first creating a Gaussian pyramid by iteratively
upsampling (through a 2x2 averaging pooling operation) the original image. The Laplacian pyramid
then takes each layer of the Gaussian pyramid and compares it to the layer below, upsampled via
bilinear interpolation back to the same size. So, it effectively compares the original image, scaled
to different, increasingly small resolutions, with blurrier versions of itself. The differences in these
comparisons are interpreted to be the details at a given resolution.

We then use the Laplacian pyramid to construct an additional loss component as follows:

1. Create a “predicted image” using the noise predictions of the DDPM along with its noised input.

2. Construct 5-step Laplacian pyramids for both the generated and target images

3. For each level in the pyramid, compute the mean squared error (MSE) between the corresponding
levels of the generated and target images.

4. Sum the MSE values across all levels to obtain the final Laplacian pyramid loss.

which can be formalized by

5
Liap(P,P) = > MSE(LapPyr(P);, LapPyr(P),) 2)
=1
where a given Laplacian Pyramid is calculated by

LapPyr(P) = { P, — Upsample(Downsample(P,))}7_, 3)

The total loss function for training the DDPM is then defined as a weighted combination of the
standard noise prediction loss and this Laplacian pyramid loss:

L = MSE(¢,&) + A1 (P, P) )

where e is the noise added to P to produce the model input P, & is the DDPM model’s prediction, P
is the predicted image based on that predicted noise as calculated by P= ﬁ - 7”07“ -€,and \is

the weighting factor, which we experimentally set to 0.25. This composite loss encourages the model
to not only minimize the pixel-wise differences but also to preserve structural and textural details
across multiple scales, leading to more accurate, detailed, and visually coherent image generation.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

We rigorously evaluate MRI2PET using the publicly available ADNI dataset (Mueller et al.| 2005)).
Our experimental framework addresses three primary research questions:

1. Can MRI2PET generate realistic PET images from MRI?
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Table 1: Quantitative Generation Quality

\ FID (}) SSIM (1) PSNR (1)
GAN 303.615 & 0.063 0.101 = 0.002 13.712 & 0.025
Vanilla Diffusion 63.844 £ 0.046 0.764 % 0.005 21.005 £ 0.137
cpe 287.531 & 0.067 0.021 % 0.000 7.780 % 0.040
DCL 269.323 £ 0.045 0.076 & 0.002 0.958 & 0.015
DiffAugment 309.005 % 0.052 0.055 == 0.001 7.901 = 0.028
MaskGAN 302.071 & 0.048 0.016 % 0.000 4.629 % 0.020
DDPM-PA 265.000 £ 0.051 0.035 + 0.000 8.108 & 0.041
wlo Style Transfer | 62.569 & 0.025 0.854 & 0.004 24615 £ 0.130
w/o Pre-Training 108.401 % 0.046 0.260 % 0.008 15.644 £ 0.134
wlo Loss 61213 £ 0.029 0.827 % 0.004 23.156 £ 0.120
MRIZPET 61735 £ 00327 0.857 £ 0004 24771 £ 0123~

2. Do synthetic PET images generated by MRI2PET replicate clinically meaningful patterns ob-
served in actual patient PET images?

3. Does augmenting datasets with MRI 2PET-generated PET images enhance performance in down-
stream machine learning tasks?

4.2 DATASET

We utilized publicly accessible paired MRI-PET scans from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, which included 2,492 image pairs defined as scans from the same patient
captured within one year (Mueller et al., 2005). Additionally, we incorporated 22,956 unpaired MRI
images drawn from ADNI, UK Biobank (Sudlow et al.,[2015)), and Parkinson’s Progression Markers
Initiative (PPMI) datasets (Marek et al.| 2018]).

All MRI scans underwent standard preprocessing steps, including template registration, skull strip-
ping, and bias correction. MRI images were then resampled to a 64x144x144 voxel dimensionality
using windowed sinc interpolation and normalized to a [0, 1] intensity range.

PET images required handling temporal sequences, where applicable. Each frame was rigidly regis-
tered first to the initial frame, and subsequently to the temporal mean. The final PET image was the
temporal mean, which was affine-registered to its corresponding MRI, resampled to a 32x128x128
voxel dimensionality via windowed sinc interpolation, and normalized.

For pre-training involving MRI outputs, MRI images were further resampled to PET dimensions
(32x128x128) using quintic interpolation. We split the paired dataset randomly, reserving 20% for
testing. The remaining paired data, combined with unpaired MRI scans, were further split into
training (90%) and validation (10%) sets.

We pre-trained MRI2PET on the unpaired MRI dataset for 250 epochs, then fine-tuned on the paired
MRI-PET dataset for 5,000 epochs. Training utilized the PyTorch framework (Paszke et al.,|2019),
with a batch size of 128, a learning rate of 0.0001, and the Adam optimizer.

4.3 BASELINES

We benchmark MRI2PET against a suite of baselines to comprehensively validate performance:
External Baselines:

GAN: Conditional Wasserstein GAN (Gulrajani et al.,2017) trained on the limited paired data.
Vanilla Diffusion: Standard conditional diffusion model trained on limited paired data.

CDC: Few-shot GAN with cross-domain correspondences. (Ojha et al., 2021)

DCL: Few-shot GAN optimizing diversity. (Zhao et al., [2022)

DiffAugment Differentiable augmentation GAN. (Zhao et al., [2020)

MaskGAN: GAN with masked discriminator features. |Zhu et al.| (2024)

DDPM-PA: Few-shot diffusion model with pairwise adaptation. [Zhu et al.| (2022)

Ablation Studies:

1. MRI2PET w/o Style Transfer: MRI-to-MRI noise-conditioned pre-training without style trans-
fer.

Nk LD =
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Figure 2: Qualitative comparison of axial brain slices from five randomly selected test patients

2. MRI2PET w/o Pre-Training: Direct training without pre-training.
3. MRI2PET w/o Loss: Training without additional Laplacian pyramid loss.

These rigorous comparative analyses were designed to highlight the contribution of each method-
ological innovation and validate MRI2PET’s overall effectiveness.

4.4 MRI2PET GENERATES REALISTIC PET IMAGES FROM MRI SCANS

The primary aim of MRI2PET is the generation of realistic PET images from MRI data. We quan-
titatively assessed image quality using three established metrics: Fréchet Inception Distance (FID),
Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR). FID evalu-
ates the similarity between distributions of real and synthetic images based on features extracted
by a pre-trained Inception v3 model. Given that Inception v3 requires 2D inputs, we performed
axial slicing of our 3D datasets. SSIM and PSNR were computed in 3D to evaluate structural detail
preservation and noise levels, respectively. Results are summarized in Table [T] averaged over all of
the images in our held-off test dataset.

MRI2PET significantly outperformed baseline methods across all metrics, particularly in SSIM and
PSNR, indicating superior structural preservation, reduced noise, and enhanced visual quality in
the generated PET images. While FID scores between MRI2PET and Vanilla Diffusion were sim-
ilar, MRI2PET showed clear superiority over other baselines, with a notable improvement of more
than 12% in SSIM and PSNR compared to the next-best external baseline. Ablation studies further
clarified the roles of the individual contributions: removal of style-transferred pre-training signifi-
cantly degraded performance, confirming its importance for effectively utilizing unpaired MRI data.
Similarly, omitting Laplacian pyramid loss negatively impacted the quality of generated images,
underscoring its crucial role in capturing detailed, multi-scale image features essential for clinical
diagnostic accuracy. Collectively, these findings highlight the complementary strengths of these
enhancements and their combined necessity for optimal performance.

Qualitative evaluations of axial slices from randomly selected test patients further reinforced these
findings (Figure [2). MRI2PET consistently preserved patient-specific anatomical details such as
brain size, shape, and orientation, closely mirroring real PET images and outperforming baselines.

Notably, structural intricacies, including distinct anatomical variations such as larger or smaller
brain sizes and unique shape characteristics (e.g., horizontally elongated brains), were effectively
captured. Moreover, MRI2PET reliably aligned physiological details between MRI and PET slices,
demonstrating precise vertical alignment across modalities, which further validates the anatomical
accuracy of generated images. These results provided a stark visual contrast compared to base-
line methods, particularly highlighting MRI2PET ’s substantial improvements over GAN-based and
diffusion-based methods that consistently struggled with the complexities inherent in 3D image gen-
eration tasks.

4.5 MRI2PET CAPTURES CLINICALLY RELEVANT PATTERNS

To examine MRI2PET ’s ability to capture clinically meaningful patterns, we conducted de-
tailed case-study analyses. In patients exhibiting significant brain atrophy (Figure [3a), MRI2PET-
generated PET images accurately reflected regions of decay observed in corresponding MRIs,
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(a) Detailed axial slices of three Alzheimer’s (b) Two distinct test patients with two scans each, illustrating
patients from the test set exhibiting severe  longitudinal Alzheimer’s progression with increased brain at-
brain atrophy. rophy in the second set of imaging.

Figure 3: Case studies depicting (a) severe brain atrophy in three patients and (b) longitudinal
Alzheimer’s progression across two patients.

demonstrating sensitivity to disease-specific anatomical changes. For instance, specific areas of
notable atrophy, such as reduced cortical thickness or enlarged ventricles, were reliably replicated in
the synthetic PET images, highlighting MRI2PET ’s precision in capturing disease-associated mor-
phological alterations. This speaks to the patient-specific and clinically relevant quality of MRI2PET
’s generations, even as the atrophy itself may not be central to the downstream utility and usage of
the PET imaging.

In longitudinal case studies involving Alzheimer’s disease progression (Figure [3b), MRI2PET ef-
fectively captured deterioration patterns over time. Notably, increased prominence and depth of
temporal sulci—a hallmark feature of progressive Alzheimer’s disease—were accurately reflected
in sequential PET scans generated by MRI2PET. This temporal sensitivity to progressive anatomical
degradation underscores MRI2PET ’s potential utility for monitoring disease progression, facilitat-
ing timely interventions, and enabling more precise longitudinal clinical evaluations. These case
studies collectively confirm MRI2PET ’s robust capability in replicating disease-specific temporal
and anatomical patterns, significantly contributing to its potential clinical utility in diagnostics and
patient monitoring.

4.6 MRI2PET ENHANCES DOWNSTREAM MACHINE LEARNING TASKS

We further assessed MRI2PET’s practical utility beyond visual realism by examining its impact on
downstream machine learning tasks, specifically Alzheimer’s disease classification and Mini-Mental
State Examination (MMSE) score prediction, leveraging clinically relevant patient labels from the
ADNI dataset. For Alzheimer’s disease classification, we utilized the ADNI dataset’s disease labels
categorizing patients into cognitively normal, mildly cognitively impaired, or Alzheimer’s disease
groups as a multi-class classification problem. The MMSE task employed scores from a standard
cognitive examination, restricted to scores of 20 or above (out of a maximum of 30) to maintain focus
on patients with mild or no cognitive impairment. Information regarding these MMSE distributions
can be found in the demographics tables in the supplemental material. We systematically evaluated
three model types trained with distinct raw imaging inputs: MRI-only, PET-only, and MRI-PET
paired data. Training involved multiple data configurations to comprehensively assess MRI2PET ’s
synthetic image utility:

* Real MRI: Large, unpaired MRI dataset.
* Real Limited MRI: Limited MRI data from paired MRI-PET scans.
* Real PET: Limited PET data without MRI pairing.
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Table 2: Performance results of downstream Alzheimer’s Disease classification tasks

| Accuracy (1) F1 Score (1) Balanced Accuracy (1) AUROC (1)
Real MRI 0.520 £ 0.014 0.497 £ 0.016 0.506 £+ 0.014 0.704 £+ 0.012
Real Limited MRI 0.449 + 0.009 0.369 + 0.020 0.401 £0.012 0.611 £0.014
Real PET 0.542 + 0.009 0.473 £ 0.020 0.498 £ 0.013 0.688 £+ 0.014
MRI2PET Generated PET 0.542 + 0.009 0.468 £+ 0.019 0.496 £+ 0.012 0.685 + 0.012
Real Paired 0.559 + 0.006 0.518 &£ 0.006 0.526 £ 0.007 0.723 + 0.004
MRI2PET Augmented Paired 0.605 + 0.007*** 0.595 + 0.008"** 0.594 + 0.008*** 0.780 + 0.005***

Table 3: Performance results of downstream Alzheimer’s Disease classification tasks

‘ MSE ({) Pearson Correlation (1)
Real MRI 5.538 £0.148 0.356 £ 0.034
Real Limited MRI 6.271 £+ 0.027 0.110 4+ 0.014
Real PET 5.880 £ 0.113 0.225 £ 0.035
MRI2PET Generated PET 6.148 £ 0.066 0.148 £ 0.026
Real Paired 5.601 £ 0.133 0.294 £ 0.038
MRI2PET Augmented Paired | 4.982 + 0.116** 0.458 + 0.024***

* Synthetic PET: Limited synthetic PET images generated by MRI2PET.

* Real Paired: Limited real MRI-PET pairs.

* Augmented Paired: Real MRI-PET pairs augmented by additional synthetic PET images paired
with previously unpaired MRIs.

Performance across these datasets is detailed in Table 2] (classification) and Table [3] (MMSE regres-
sion) where we train 25 different models on the original training and validation datasets (the same
as MRI2PET was trained on) using different random seeds for each task-model type pair and report
the mean metrics results along with the standard errors over those runs, calculated on the test dataset
(which is paired and so can be used for any type of input). The synthetic PET dataset alone closely
approximated results achieved with real PET data, confirming MRI2PET’s capability to generate
clinically informative synthetic scans. Crucially, training with augmented paired datasets resulted in
the highest performance improvements, surpassing both real paired and individual modality datasets
across accuracy, F1 score, balanced accuracy, AUROC (classification), and mean squared error,
and Pearson correlation (MMSE regression). Specifically, the augmented paired dataset achieved
classification accuracy of 0.605 £ 0.007 and F1 scores of 0.595 + 0.008, representing substan-
tial improvements over all other configurations. Similarly, MMSE prediction with augmented data
demonstrated significantly reduced error (4.982 £ 0.116 MSE) and increased correlation (0.458 +
0.024), clearly outperforming alternative approaches. These findings underscore MRI2PET’s capa-
bility to effectively expand available imaging data, significantly enhancing the robustness, accuracy,
and predictive power of downstream machine learning models, demonstrating real-world clinical
utility beyond simple data augmentation. Finally, examining the MMSE predictions offered addi-
tional validation. Using a regression model trained exclusively on real PET images, we compared
predictions for real and MRI2PET-generated PET scans, revealing a notable positive correlation (r
= 0.273). This further affirms MRI2PET ’s ability to capture diagnostically relevant information
within generated PET scans.

5 CONCLUSION

In this study, we introduced MRI2PET, an innovative diffusion-based generative method designed
to simulate PET scan imaging from MRI data. MRI2PET specifically addresses significant tech-
nical challenges—including the scarcity of paired MRI-PET data, the inherent complexity of 3D
volumetric data, and the structural-functional relationships between MRI and PET modalities—by
integrating two novel components: a style-transfer-based pre-training strategy and a Laplacian pyra-
mid training objective. Through extensive evaluation using the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset, MRI2PET consistently outperformed various generative baselines,
demonstrating superior quantitative performance metrics (FID, SSIM, PSNR) and producing quali-
tatively realistic PET images that closely reflect patient-specific anatomical details.
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Beyond the general fidelity and realism of the generated PET images, MRI2PET effectively cap-
tured clinically meaningful details, such as brain atrophy and specific patterns associated with
Alzheimer’s disease progression. This capability significantly enhanced its practical utility in down-
stream machine learning applications. Models trained on datasets augmented by synthetic PET im-
ages from MRI2PET substantially outperformed those trained solely on real datasets, underscoring
the method’s potential to effectively compensate for missing PET imaging data and thereby boost
diagnostic and predictive modeling performance.

So, MRI2PET represents a promising and clinically relevant advancement toward simulating PET
imaging outcomes from MRI data, delivering immediate practical utility and opening avenues for
further methodological refinements and enhanced interpretability in a variety of medical settings.
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Table 4: Number of MRI Images by dataset

Total ADNI PPMI UKBiobank
22,956 11,453 1,956 9,547

Train Validation Test
Number of PET Scans 2,017 225 250
Number of Patients 1,068 205 232
Percent Male 51.2% 55.9% 48.7%
Average Age at Intake | 71.93 £7.12 7136 +6.40 71.06 + 6.66
Number of CN 393 89 98
Number of MCI 355 63 67
Number of AD 306 52 66
Average MMSE 2575 £5.03 2637 +455 25621556
Number MMSE 20+ 905 182 195
Average MMSE 20+ 2716 £2.75 2746 +£245 2728 £2.76

Table 5: Dataset Statistics and Demographics of the ADNI PET Dataset

A EXPERIMENTAL DETAILS

To conduct our experiments, we train each compared method and generate PET scan images based
on each MRI scan in our test dataset. We also generate PET results based on all MRI images from
the ADNI dataset in our other splits with just our MRI2PET model. We then perform a variety of
analyses comparing the similarity in terms of quantitative correspondence, visual adherence, and
downstream utility of these generated PET scans to the true PET results. We report 95% confidence
intervals for each experimental value for each metric, calculated by performing 100 bootstraps of
the test set. We present the best values in bold for each metric, and we bold any other values whose
means fall into that best value’s confidence interval. We also provide asterisks along with each
tabular result, referring to p-value significance based on a two-tailed t-test comparing augmented
results to the nearest baseline approach with * signifying p < 0.05, *x* signifying p < 0.01, and
* x % signifying p < 0.001. We perform all experimentation using Nvidia A100 GPUs on a large
computing cluster.

B DATASET STATISTICS

To provide more detailed information regarding our datasets and offer context for our experiments,
we provide more detailed count and demographic information in a pair of tables. First, we provide a
count of where the MRI images were found across our three datasets in Table[d Then, we provide a
variety of demographics and counts, especially pertaining to our downstream experiments and their
labels in Table ??.

C A POSSIBLE BIOLOGICAL EXPLANATION FOR GENERATIVE QUALITY

We conclude with an intriguing qualitative observation and a hypothesis which bridges the bio-
logical and generative mechanisms regarding variations in generative image quality across different
patient samples. Synthetic PET images generated by MRI 2PET exhibited notably greater clarity and
anatomical accuracy in patients presenting clear structural brain atrophy on MRI scans, in contrast
to cases without evident MRI-detectable decay. Further analysis revealed a consistent pattern: PET
images generated for patients at later stages of Alzheimer’s disease (characterized by pronounced
atrophy visible on MRI) were significantly more precise and detailed than those at earlier stages
without obvious structural changes, a pattern demonstrated in Figure 4]

To explain this observation, we proposed a biological hypothesis rooted in the known pathological
progression of Alzheimer’s disease, particularly involving amyloid-beta (A) plaque accumulation.
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Figure 4: A large number of images for Alzheimer’s patients throughout the test dataset. Each
triplet has the real MRI on the left, real PET in the middle, and generated PET on the right. They are
broadly sorted into patients with clear brain decay based on the MRI on the right half of the image
and patients without clear decay on the left. Notably, the generated image quality on the left is less
sharp as regardless of the internal content or quality of the real MRI and PET images, those images
have a general blurriness, though there are exceptions in quality on either side.

Amyloid-beta plaques typically accumulate prior to the structural atrophy visible through MRI,
which is itself driven by neuronal loss and tau disease pathology. Thus, patients at early disease
stages—who might exhibit substantial underlying amyloid pathology yet no visible structural MRI
abnormalities—can present multiple plausible metabolic patterns detectable by PET. The generative
uncertainty associated with these multiple potential outcomes may lead MRI2PET to produce less
distinct, blurred synthetic images as the model implicitly averages across these scenarios rather than
clearly delineating one distinct outcome.

Although this averaging behavior is suboptimal from a purely generative modeling perspective,
where distinct scenario generation would be preferable, it significantly highlights MRI2PET °’s re-
sponsiveness to underlying biological processes. Indeed, this phenomenon suggests that MRI2PET
is implicitly sensitive to biologically meaningful variations related to early Alzheimer’s pathology
that structural MRI alone cannot reveal. Recognizing this biological underpinning provides valuable
insights into possible avenues for future model refinement, such as explicitly modeling uncertainty
or incorporating early-stage biomarkers.

Therefore, while the observed variability in generative quality indicates opportunities for technical
improvement, it also underscores MRI2PET ’s potential utility as a tool for capturing subtle patho-
logical insights, potentially facilitating earlier diagnosis and more precise differentiation among
various Alzheimer’s disease stages.

It also underscores important limitations to be aware of within the core task setup. Generating PET
images based on MRI scan results can by definition inject no additional information than is already
available within that MRI. This does not reduce the value or potential applications. There may be
lots of information that is not readily discerned from looking at the MRI itself; we have shown in
this paper that we succeed in injecting utility through the augmentation of MRI-PET datasets, and
the ability to simulate a specific instantiation within the range of potential corresponding outcomes,
especially a physiologically meaningful one, offers clearly valuable applications. However, it does
mean that this value and these applications should be conditioned, and this setup should be noted.
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