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ABSTRACT

Lifelong learning enables large language models (LLMs) to adapt to evolving infor-
mation by continually updating their internal knowledge. An ideal system should
support efficient, wide-ranging updates while preserving existing capabilities and
ensuring reliable deployment. Model editing stands out as a promising solution
for this goal, offering a focused and efficient way to revise a model’s internal
knowledge. Although recent paradigms have made notable progress, they often
struggle to meet the demands of practical lifelong adaptation at scale. To bridge this
gap, we propose ULTRAEDIT, a training-, subject-, and memory-free approach that
is well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT
fundamentally differs from traditional paradigms by computing parameter shifts in
one step using only a hidden state and its gradient, making the approach simple
yet efficient. To improve scalability in lifelong settings, ULTRAEDIT employs a
lifelong normalization strategy that continuously updates feature statistics across
turns, allowing it to adapt to distributional shifts and maintain consistency over time.
ULTRAEDIT achieves editing speeds over 7× faster than the previous state-of-the-
art method, which was also the fastest known approach, while using less than 1/4
the VRAM. This makes it the only method currently capable of editing a 7B LLM
on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH,
the largest dataset in the field to date with over 2M editing pairs, and demonstrate
that our method supports up to 2M edits while maintaining high accuracy. Com-
prehensive experiments on five datasets and six models show that ULTRAEDIT
consistently achieves superior performance across diverse model editing scenarios,
taking a further step towards safe and scalable lifelong learning. We will release
the code and dataset upon acceptance.

1 INTRODUCTION

Lifelong learning (also known as continual learning (Shi et al., 2024; Zheng et al., 2025b)) is
essential for enabling large language models (LLMs) to continuously adapt to evolving knowledge
and real-world dynamics. Despite its importance, scalable and reliable lifelong adaptation remains
challenging in practice (Wu et al., 2024a). Retraining is prohibitively expensive and slow, making it
unsuitable for frequent updates (Chen et al., 2023). Meanwhile, existing lifelong learning approaches
often suffer from catastrophic forgetting (Qin et al., 2022; Hu et al., 2022), or depend on retrieval-
augmented generation (RAG; Jimenez Gutierrez et al. (2024); Gutiérrez et al. (2025)), which may
potentially introduce conflicts between retrieved content and the model’s internal knowledge (Xie
et al., 2023). These limitations suggest that current paradigms may not fully meet the demands of
lifelong deployment, highlighting the need for more targeted and efficient mechanisms for continual
knowledge integration (Aljundi et al., 2019).

One promising solution is model editing (De Cao et al., 2021; Meng et al., 2023; Yao et al., 2023;
Li et al., 2025a), which enables targeted modifications to a model’s internal knowledge while
leaving unrelated information unaffected, making it especially suited for continual updates over
time (Hartvigsen et al., 2023; Hu et al., 2024). Some methods enhance this process by training
auxiliary networks (Mitchell et al., 2022a; Tan et al., 2024; Zhang et al., 2024b; Li et al., 2025c)
to guide how model parameters are adjusted in response to new information. Others rely on strong
structural assumptions, such as subject-centric representations (Meng et al., 2023; Gupta et al.,
2024a; Li et al., 2024) or carefully formatted input prompts (Zheng et al., 2023; Chen et al., 2024;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: (a) Average Efficacy and editing time of different solutions on 20K edits from ZsRE,
evaluated across GPT-J, Mistral, and LLaMA-3. (b) Variation in average Efficacy as edits accumulate.
Dashed lines represent performance on the ZsRE dataset across GPT-J, Mistral, and LLaMA-3, while
solid lines represent results on the WikiBigEdit dataset with LLaMA-3.

Zhong et al., 2023b; Youssef et al., 2025), which tie them to handcrafted data pipelines (Deng et al.,
2025; Zhong et al., 2025; Su et al., 2025) and limit both generalization and practical feasibility.
In addition, many approaches depend on external memory (Mitchell et al., 2022b; Yu et al., 2024;
Wang et al., 2024b) to store edits separately from model parameters; while this localizes changes and
avoids direct parameter overwriting, it still requires training to update memory entries and introduces
substantial overhead that grows with the number of edits, thereby reducing scalability in large-scale
or high-frequency editing scenarios (Bi et al., 2024; Zhang et al., 2025; Liu et al., 2025). To address
the issues mentioned above, we propose ULTRAEDIT: a simple yet efficient training-, subject-, and
memory-free method.

ULTRAEDIT introduces a lifelong normalization mechanism that continuously updates feature statis-
tics during editing. By incrementally calibrating the mean and variance of hidden states and gradients,
it balances update inputs and mitigates the overwriting of previously acquired knowledge. This
lightweight procedure relies only on simple linear algebra over editing features, avoiding both iterative
optimization-heavy and external memory. As a result, ULTRAEDIT supports efficient and large-scale
edits with strong stability and consistency, making it practical for real-world deployment (Zheng
et al., 2025a; Grimes et al., 2025; Iurada et al., 2025; Huang et al., 2025). Existing paradigms, by
contrast, are prone to the Edit Collapse phenomenon (Yang et al., 2024b; Wang et al., 2025), which
refers to a sharp decline in editing stability and effectiveness as the number of edits or editing turns
grows. As shown in Figure 1, ULTRAEDIT not only avoids this collapse but also achieves significantly
faster editing speeds while maintaining consistent performance in ultra-large-scale lifelong editing
scenarios. A comparison between ULTRAEDIT and other solutions is provided in Table 1.

To evaluate our method at its full potential and push the boundaries of large-scale model editing, we
introduce our benchmark ULTRAEDITBENCH, a factual QA benchmark constructed from Wikidata
triples, comprising over 2 million complete editing pairs. In addition to this new benchmark, we
evaluate the effectiveness and scalability of ULTRAEDIT on four widely used model editing datasets,
namely zsRE (Levy et al., 2017), FEVER (Thorne et al., 2018), WikiBigEdit (Thede et al., 2025), and
UnKE (Deng et al., 2025), across six diverse models including GPT (Wang & Komatsuzaki, 2021),
Mistral (Jiang et al., 2023), LLaMA (Grattafiori et al., 2024), Qwen (Yang et al., 2024a), Phi (Abdin
et al., 2024), and Gemma (Team et al., 2025). Our results show that ULTRAEDIT achieves new state-
of-the-art performance across most editing scenarios. In addition to its strong empirical performance,
ULTRAEDIT demonstrates remarkable efficiency: it achieves over 7× faster editing speeds and uses
less than one-forth of the GPU memory compared to prior leading baselines, as show in Figure 1 (a)
and Figure 2. Notably, it is the only method to date capable of reliably editing a 7B-scale model on a
standard 24GB consumer GPU, making it uniquely practical for real-world deployment. Moreover,
ULTRAEDIT demonstrates the ability to scale to 2 million edits while preserving model stability,
underscoring its promise for ultra-large-scale lifelong model editing. Our contributions are four-fold:

• We identify and analyze the shortcomings of three dominant model editing paradigms under
large-scale lifelong settings, providing insights for developing more advanced editing methods.

• We propose ULTRAEDIT, a novel training-, subject-, and memory-free editing solution that performs
stable updates through lifelong normalization. ULTRAEDIT achieves over 7× faster editing and 4×
less VRAM compared to previous state-of-the-art methods.
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Figure 2: VRAM usage over
the course of 20K edits on the
ZsRE dataset using different
methods with Mistral-7B.

Table 1: Comparison between the ULTRAEDIT and three prevailing
model editing solutions. !indicates "yes" or well-supported, while
%denotes "no" or badly-supported.

Solution Training-free Subject-free Memory-free Lifelong scalability

Locate-then-edit ! % ! %

Memory-based % % % %

Hypernetwork-based % ! ! %

ULTRAEDIT ! ! ! !

• We construct ULTRAEDITBENCH, currently the largest dataset for model editing, comprising more
than 2 Million editing pairs to facilitate research on lifelong ultra-large-scale model editing.

• Comprehensive experiments on five benchmarks and six models, demonstrating ULTRAEDIT’s
superior performance and scalability to 2 Million edits.

2 RELATED WORK

2.1 LIFELONG LEARNING

Lifelong learning, also known as continual learning, aims to develop models that can continuously
learn from a stream of tasks while preserving knowledge acquired in earlier stages (De Lange et al.,
2021; Shi et al., 2024). The primary challenge lies in overcoming catastrophic forgetting, where
new learning interferes with previously acquired knowledge. To address this challenge, existing
approaches generally fall into three categories: regularization-based methods (Kirkpatrick et al., 2017;
Zenke et al., 2017), which focus on preserving important parameters; replay-based methods (Rebuffi
et al., 2017; Shin et al., 2017), which revisit past information during training; and architecture-based
methods (Rusu et al., 2016; Mallya & Lazebnik, 2018), which dynamically adjust the model structure.

2.2 MODEL EDITING PARADIGM

Hypernetwork-based methods (Mitchell et al., 2022a; Tan et al., 2024; Li et al., 2025c) treat model
editing as a meta-learning problem by training a separate neural network to predict parameter shifts.
This auxiliary network operates independently from the base model and learns to project editing
inputs into effective weight updates. Once trained on a collection of edits, it enables quick application
of new updates without re-optimizing for each case. However, the hypernetwork remains fixed while
the underlying model continues to evolve as edits accumulate. This growing mismatch can lead to
degraded editing performance over time. Furthermore, the need for additional training data limits the
practicality of these methods in scenarios requiring rapid or continual updates.

Locate-then-edit methods (Dai et al., 2022; Meng et al., 2023; Wang et al., 2024a; Gupta et al.,
2024b; Fang et al., 2025; Pan et al., 2025) rely on the presence of an explicit subject or entity in
the input to identify which internal components of the model are primarily responsible for storing
the corresponding piece of knowledge. They then apply targeted perturbations, typically through
computationally intensive iterative optimization, to enforce the desired output while minimizing
side effects on unrelated behaviors and representations. Although effective for isolated edits, these
methods often become unstable in lifelong settings, as repeated updates to overlapping parameters
can accumulate and lead to interference or degradation of previously edited knowledge.

Memory-based approaches (Dong et al., 2022; Mitchell et al., 2022b; Zheng et al., 2023; Hartvigsen
et al., 2023; Yu et al., 2024; Wang et al., 2024b; Jiang et al., 2024) enhance the model with an external
memory that stores edits separately from the core parameters. New knowledge is incorporated by
adding or modifying memory entries, which localizes changes and minimizes side effects on the
base model. However, these methods still require training to update memory representations or
routing, and inference must be rerouted through the memory. In addition, they maintain one entry
per edit, causing memory consumption to grow linearly with the number of edits, which limits their
practicality in lifelong model editing with high-frequency or large-scale updates.
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Figure 3: This figure illustrates the lifelong editing workflow of ULTRAEDIT, where parameter shifts
are applied iteratively across turns using a lifelong normalization mechanism that maintains running
statistics of editing-instance features to ensure stable and consistent model behavior over time.

3 METHODOLOGY

3.1 PRELIMINARY

We consider a pre-trained language model fθ : X → Y with parameters θ. Model editing is the
task of modifying this model’s parameters to change its behavior on a specific input while leaving
the rest of its behavior intact. Formally, an editing instance is a pair (xe, ye) ∈ X × Y , where xe

is an edit query and ye is the ground-truth output for that input. The goal is to find a parameter set
θ′ such that the edited model fθ′ produces the desired output ye for the edit query xe (Efficacy). In
addition, the model should respond appropriately to a set of equivalent queries E(xe) ⊂ X , which
includes semantically similar variations of the original query (Generalization), while ensuring that
its behavior on a set of unrelated queries U(xe) ⊂ X , which are not associated with the edited
knowledge, remains unaffected (Specificity).

In a lifelong model editing scenario, the model is updated iteratively across a sequence of editing turns.
At each turn t, n editing instances {(x(t,i)

e , y
(t,i)
e )}ni=1 is applied to the current model fθ(t−1) , resulting

in a new model fθ(t) . Each turn of edits is performed on the model that has already incorporated all
previous edits, making stability across turns critically important.

3.2 ULTRAEDIT

Motivation A central challenge in lifelong editing is to update model parameters in a way that is
both targeted and stable. Prior paradigms highlight this trade-off in different ways: hypernetwork-
based methods generate parameter updates via an auxiliary network, but they require costly pretraining
and often generalize poorly; locate-then-edit methods directly modify causal mediators, typically
identified using the subject entity in the editing instance, which provides precision but relies on
per-case localization and iterative optimization; and memory-based approaches preserve past edits for
reuse, yet their external memory structures inevitably expand and become increasingly expensive to
maintain. These limitations make it difficult to support scalable, high-frequency updates in real-world
lifelong learning scenarios. ULTRAEDIT addresses this challenge by exploiting intrinsic signals
already present in each editing instance and combining them with closed-form optimization and
lifelong normalization. This lightweight and training-free design avoids external memory or iterative
procedures, while ensuring edits can be applied efficiently and consistently across long trajectories.

Principle At each editing turn t, ULTRAEDIT processes a batch of n editing instances by extracting
two complementary signals from a designated editable module (e.g., a transformer feedforward layer).
To capture where the edit should take place, a forward hook records the hidden state hi ∈ Rd at
the token position corresponding to the ground-truth answer (the unmasked label position). This
state reflects the model’s contextual representation of the target knowledge and does not introduce
information leakage, as the label is explicitly part of the editing target (Li et al., 2025c; Fang et al.,
2025). In parallel, a backward hook obtains the gradient vector ∇yi ∈ Rd′

with respect to the
same ground-truth output, derived from the supervised loss. This gradient specifies how the model
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Algorithm 1: ULTRAEDIT

Input: Model fθ, editing instances {(xi, yi)}ni=1, editable modulesM
Output: Edited model fθ′ = fθ + {∆θm}m∈M
foreach instance (xi, yi) do

Run forward pass to extract hidden state hi at each module m ∈M;
Run backward pass to compute gradient∇yi at each module;
Concatenate editing feature: zi ← [hi ∥∇yi];
Update running mean µ, variance σ using lifelong rules;
Cache zi for each module;

foreach module m ∈M do
Load cached feature vectors {zi}ni=1 for module m;
Normalize: ẑi ← zi−µ

σ+ε ;
Split: [h̃i ∥ ṽi]← ẑi;
Compute scaled update: vi = −η · ∥h̃i∥2 · ṽi;
Stack H ← [h⊤

1 , ..., h
⊤
n ]

⊤, V ← [v⊤1 , ..., v
⊤
n ]

⊤;
Compute optimal closed-form solution: ∆θm ← (H⊤H + I)−1H⊤V ;
Apply: θ′m ← θm +∆θm;

return Post-edited model fθ′

parameters should be adjusted to internalize the desired knowledge. By concatenating these two
signals, we construct a unified editing feature zi = [hi ∥∇yi] ∈ Rd+d′

that simultaneously encodes
the location (via hidden state) and direction (via gradient) of the update. This joint representation
serves as the foundation for our lifelong normalization strategy, which co-normalizes hidden states
and gradients across editing turns to stabilize learning dynamics and enable efficient parameter
updates through closed-form least-squares estimation.
Design Building on the joint feature zi = [hi ∥∇yi], we introduce a lifelong normalization
mechanism that maintains running statistics across editing turns, ensuring consistent gradient flow
over time. This approach mitigates internal covariate shift in lifelong learning and helps protect
previously acquired knowledge from being overwritten, a challenge commonly encountered in lifelong
learning. By normalizing editing features across turns, the mechanism stabilizes activations and
aligns learning dynamics, enhancing stability and compatibility for downstream parameter updates.

We begin by normalizing each feature vector using the current running statistics:

ẑi = Norm(zi) =
zi − µ

σ + ε
, (1)

where µ and σ are the running mean and standard deviation, and ε is a small constant (machine
epsilon) for numerical stability.

At each editing turn t, let {zi}ni=1 denote the concatenated feature vectors from n editing instances.
The turn-wise mean and variance are computed as z̄ = 1

n

∑n
i=1 zi and Var(z) = 1

n

∑n
i=1(zi − z̄)2,

respectively. We then compute the difference δ = z̄ − µ, accumulate squared deviations with
s2 ← s2 + n · Var(z) + Nn

N+n · δ
2, and update the sample count as N ← N + n.

The running mean and standard deviation are updated via:

µ← µ+
n

N + n
· δ, (2)

σ ←
√

s2

N + n− 1 + ε
. (3)

At the first turn, since no prior statistics exist, we initialize the running mean and standard deviation
as µ0 = z̄ and σ0 =

√
Var(z) + ε.

After normalization, the vector ẑi ∈ Rd+d′
is split into two components:

[h̃i ∥ ṽi] = ẑi, (4)

5
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Table 2: Results on three datasets across three models and bold values indicate the best results.
Eff. denotes Efficacy, Gen. denotes Generalization, and Spe. denotes Specificity. ∆ indicates the
performance difference between ULTRAEDIT and the previous best method. ULTRAEDIT* denotes
performance results under a ultra-large-scale edit setting.

Method
ZsRE FEVER WikiBigEdit

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Personas Reasoning

GPT-J

FT 15.11 13.55 2.61 14.02 13.98 9.26 21.90 17.56 8.47 13.91 9.24
WISE 34.13 33.14 26.81 93.95 92.86 57.03 49.88 45.39 30.00 40.52 21.01
AlphaEdit 50.23 43.31 12.54 1.89 1.87 1.85 69.66 55.03 21.20 42.60 0.07
RLEdit 73.34 68.93 22.00 14.26 13.74 14.11 66.18 60.97 32.20 55.78 25.94
ULTRAEDIT 78.03 72.42 27.05 97.45 96.37 79.72 73.84 66.57 37.17 56.90 29.27
ULTRAEDIT* 72.95 68.68 25.91 97.89 96.73 79.85 66.46 60.54 47.90 51.73 –
∆ +4.69 +3.49 +0.24 +3.94 +3.87 +22.82 +4.18 +5.60 +15.70 +1.12 +3.33

Mistral-7B-v0.3

FT 13.69 12.43 19.87 23.80 23.37 16.30 13.77 14.86 11.84 11.55 7.51
WISE 34.01 32.61 46.05 81.95 76.94 40.37 37.31 33.44 11.61 27.44 8.95
AlphaEdit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RLEdit 72.57 68.87 23.17 92.35 91.39 71.85 57.55 52.47 28.78 49.21 22.41
ULTRAEDIT 85.30 80.80 47.38 97.87 96.09 84.29 76.00 70.15 46.09 62.27 35.80
ULTRAEDIT* 81.13 76.78 48.06 98.23 96.97 83.43 71.78 65.63 55.40 56.11 –
∆ +12.73 +11.93 +2.01 +5.88 +5.58 +12.44 +18.45 +17.68 +26.62 +13.06 +13.39

LLaMA-3-8B-Instruct

FT 12.24 10.97 9.06 16.21 13.08 5.01 13.00 11.70 6.75 11.02 4.38
WISE 40.94 40.27 37.40 86.38 86.36 72.08 34.07 32.26 28.91 29.55 21.19
AlphaEdit 74.34 67.85 22.94 6.39 6.14 2.72 63.24 54.68 20.17 42.58 0.01
RLEdit 91.34 89.68 41.94 91.38 89.93 41.98 75.35 70.00 37.21 65.55 28.13
ULTRAEDIT 90.07 87.36 49.51 95.39 91.93 67.14 79.60 73.49 48.51 66.55 35.64
ULTRAEDIT* 87.80 85.48 46.74 97.18 94.64 68.62 68.99 63.59 52.28 55.04 –
∆ -1.27 -2.32 +7.57 +5.80 +4.71 -3.46 +4.25 +3.49 +15.07 +1.00 +7.51

where h̃i ∈ Rd is the normalized hidden state, and ṽi ∈ Rd′
the normalized gradient value.

To adaptively scale the influence of each editing sample, following (Mitchell et al., 2022a; Tan et al.,
2024; Li et al., 2025c), we employ a scaling mechanism based on the magnitude of its normalized
hidden state. Specifically, for each sample i, the scaled update direction is computed as:

vi = −η · ∥h̃i∥2 · ṽi, (5)

where η is a global scaling factor analogous to a learning rate. The scaling reflects the saliency of the
hidden representation and determines the strength of the corresponding edit.

Let H ∈ Rn×d be the matrix of unnormalized hidden state and V ∈ Rn×d′
the matrix of scaled

update vectors vi. The final parameter shift is obtained by solving a regularized least-squares problem
that minimizes both the reconstruction error and the update norm:

min
∆θ
∥H∆θ − V ∥2 + ∥∆θ∥2, (6)

where θ′ ∈ Rd×d′
is the target weight perturbation. The optimal closed-form solution is given by:

∆θ = (H⊤H + I)−1H⊤V, (7)

and the resulting edited model parameters are obtained by directly applying the shift, i.e., θ′ = θ+∆θ,
thereby completing the model editing process. ULTRAEDIT’s complete pipeline is illustrated in Figure
3, and the pseudocode of the ULTRAEDIT editing procedure in one turn is provided in Algorithm 1.
The practical applicability of ULTRAEDIT is discussed in the real-world lifelong application statement
provided in the Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results on ULTRAEDITBENCH across four models.

ULTRAEDITBENCH

Method
GPT-J Mistral-7B-v0.3 LLaMA-3-8B-Instruct Qwen2.5-7B-Instruct

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe.

FT 22.03 17.61 19.60 0.06 0.36 0.07 13.50 11.92 10.18 13.20 10.53 10.27
WISE 52.51 47.88 47.50 47.21 44.55 39.13 42.27 41.65 39.79 – – –
AlphaEdit 22.19 12.09 6.88 0.00 0.00 0.00 4.51 3.16 2.78 17.44 8.01 5.42
RLEdit 81.42 75.35 62.13 76.50 70.68 61.29 85.69 81.88 65.64 47.08 38.76 39.27
ULTRAEDIT 84.03 76.62 64.03 83.71 77.30 67.26 85.70 81.28 68.73 79.01 71.45 64.10
ULTRAEDIT* 81.65 76.80 76.44 81.70 77.25 77.09 83.45 79.11 78.05 80.70 75.78 76.01
∆ +2.61 +1.45 +14.31 +7.21 +6.62 +15.80 +0.01 -0.60 +12.41 +33.62 +37.02 +36.44

4 EXPERIMENTS

4.1 ULTRAEDITBENCH-2M CONSTRUCTION

We construct ULTRAEDITBENCH using entity–relation–object triples from the Wikidata5M (Wang
et al., 2021) knowledge base. For each triple, we treat the object as the ground-truth answer and use
the GPT-4o-mini model in a zero-shot setting to generate corresponding factual questions based on
the subject and relation. To promote linguistic diversity, we apply constraints on question length and
phrasing during generation. To ensure data quality, we perform random spot checks on a subset of
samples to verify factual accuracy, linguistic fluency, and alignment between questions and answers.

To support evaluation across key dimensions, the dataset is divided into three sample types:

• Editing instances require the subject entity to appear in the question. This design aligns with the
assumptions of many subject-dependent editing methods, which rely on identifying subject-centric
representations to apply updates. While ULTRAEDIT does not require this constraint, we include it
to ensure compatibility with prior paradigms and enable consistent evaluation of Efficacy.

• Equivalent instances are paraphrased variants of the editing instances that share the same answers.
They evaluate Generalization, which measures whether the edit transfers to semantically equivalent
rephrasings. We do not enforce whether the subject entity appears in the question.

• Unrelated instances contain questions unrelated to the editing fact and are used to assess Specificity,
that is, whether unrelated knowledge remains unaffected after editing. We do not enforce whether
the subject entity appears in the question.

For all three types, the answer is explicitly excluded from the question to prevent lexical leakage and
ensure that models must rely on internal knowledge rather than surface patterns. ULTRAEDITBENCH
comprises over 2 million complete editing pairs, each containing an editing instance, an equivalent
instance, and an unrelated instance. This construction enables ULTRAEDITBENCH to serve as a
comprehensive and controlled benchmark for evaluating the precision, generalization, and safety of
lifelong model editing methods. And for more details, please refer to Appendix D.1.

4.2 EXPERIMENT SETUP

Dataset & Model We evaluate the effectiveness and scalability of ULTRAEDIT across five model
editing benchmarks: ZsRE, FEVER, WikiBigEdit, UnKE (unstructured long-text data) and our newly
constructed ULTRAEDITBENCH, on a diverse set of open-source models, including GPT-J, Mistral-
7B-v0.3, LLaMA-3-8B-Instruct, Qwen2.5-7B-Instruct, Phi-4-14B, and Gemma-3-27B-it. Detailed
descriptions of each dataset, along with their corresponding metrics, are provided in Appendix D.1.

Baseline We compare ULTRAEDIT against a comprehensive set of baselines, including Finetune
(FT), WISE (Wang et al., 2024b), AlphaEdit (Fang et al., 2025), RLEdit (Li et al., 2025c), among
others. Except for WISE, which is specifically designed for editing one samples per turn, all other
methods are evaluated under a consistent setting where each turn consists of 100 samples. We follow
mainstream methods (Fang et al., 2025; Li et al., 2025c) by adopting Exact Match as the primary
evaluation metric. In addition, we employ LLM-as-judge (Yang et al., 2025) as a complementary
evaluation. Further clarifications regarding the evaluation protocols are provided in the Appendix D.3.
Comprehensive information on all baseline methods is provided in Appendix D.2 and hyperparameter
configurations are presented in Appendix D.4.
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4.3 OVERALL RESULTS

We report the performance of ULTRAEDIT alongside the strongest representative methods from
each editing paradigm across multiple benchmarks and models. As shown in Table 2 and 3, UL-
TRAEDIT* is evaluated on 100K edits for ZsRE and FEVER, 500K for WikiBigEdit, and 2M for
ULTRAEDITBENCH, whereas all other methods are evaluated on 20K edits for ZsRE, FEVER, and
ULTRAEDITBENCH, and 17K for WikiBigEdit. ULTRAEDIT consistently leads across standard
metrics including Efficacy, Generalization, and Specificity, as well as two newly introduced metrics,
Personas and Multi-hop Reasoning, outperforming all baselines in nearly every setting. This holds
true under both the Exact Match and LLM-as-judge evaluation frameworks, for both instruct-tuned
and base models, and across diverse data structures of real-world editing instances. Full results for
all baseline methods are provided in Appendix E.1. Due to the fact that most existing methods are
several hundred times slower than ULTRAEDIT, and some require additional training data, scaling
them to larger numbers of edits is computationally impractical. Figure 1(b) shows that existing
methods degrade as the number of edits grows, indicating poor scalability to ultra-large editing. In
contrast, ULTRAEDIT remains robust and stable, sustaining millions of updates in lifelong settings.
For instance, on LLaMA-3-8B-Instruct with ZsRE, it maintains near-standard performance across all
metrics with only a slight drop under a 5× larger edit load. These results confirm that ULTRAEDIT
combines high-quality knowledge injection with long-term stability, providing a practical and scalable
solution for real-world model editing.

5 ANALYSIS

5.1 ABLATION STUDY

Table 4: Ablation study of ULTRAEDIT. Blue numbers
indicate a decrease, while Red numbers indicate an increase
compared to the full method.

Variant Efficacy Generalization Specificity

Original 84.47 80.19 41.31
w/o lifelong normalization 36.15↓ 48.32 35.25↓ 44.94 38.14↓ 3.17

w/ 25% module norm 77.38↓ 7.09 72.68↓ 7.51 42.40↑ 1.09

w/ 50% module norm 80.81↓ 3.66 76.07↓ 4.12 42.37↑ 1.06

w/ 75% module norm 83.64↓ 0.83 79.22↓ 0.97 41.64↑ 0.33

w/o normalization update 1.11↓ 83.36 1.02↓ 79.17 0.07↓ 41.24

w/ k · k̃ 74.27↓ 10.20 70.23↓ 9.96 42.18↑ 0.87

To assess the contribution of each
component in ULTRAEDIT, we con-
duct an ablation study on 20K edit-
ing instances from the ZsRE dataset
, with results averaged across three
backbone models as shown in Ta-
ble 4. When the lifelong normaliza-
tion mechanism is entirely removed,
we observe a drastic drop in both effi-
cacy and generalization, underscoring
the importance of aligning feature dis-
tributions across modules during edit-
ing. To further assess its effectiveness,
we apply lifelong normalization to a randomly selected 25%, 50%, and 75% subset of the editable
modules. The results show a clear upward trend in performance with increasing normalization
coverage, indicating cumulative and global benefits. Freezing the normalization statistics by dis-
abling online updates during editing causes a catastrophic collapse in all metrics, demonstrating
that dynamic calibration of activation statistics is essential for stability and consistent editing across
batches. In addition, we ablate the original norm-based scaling coefficient ∥k̃i∥2 by replacing it with
a direction-based inner product ki · k̃i. While both schemes involve inner products, our norm-based
formulation more faithfully captures per-sample saliency, whereas the alternative mixes magnitude
and alignment, resulting in less stable modulation across edits. Overall, the ablation results confirm
that both lifelong normalization and its dynamic updating mechanism are critical for ensuring stable,
accurate, and ultra-scalable editing.

5.2 LIFELONG SCALABILITY OF ULTRAEDIT

ULTRAEDIT is designed not only for editing accuracy but also for long-term scalability. As shown
in Figure 1(b) and Figure 4, it maintains strong performance across three key metrics—even as the
number of edits increases. As shown in Figure 1(b) and Figure 4, it maintains strong performance
across three key metrics as the number of edits increases. This robustness comes from a simple yet
effective lifelong normalization strategy that dynamically calibrates internal feature distributions as
the model evolves. Unlike many existing methods that degrade much earlier, ULTRAEDIT exhibits
progressive stabilization: as edits accumulate, its normalization mechanism regularizes the feature
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Figure 4: Variation in average generalization and
specificity as edits accumulate.

Figure 5: Efficacy of lifelong editing on Phi-4-
14B and Gemma-3-27B.

space and improves performance until reaching saturation. By continually adapting to the model’s
current state without requiring retraining, ULTRAEDIT is particularly well-suited for real-world,
lifelong editing scenarios that demand frequent and ongoing updates. Additionally, ULTRAEDIT
scales effectively to models with substantially larger parameter sizes. It preserves editing accuracy
on both standard language models such as Phi-4-14B and more complex multimodal models like
Gemma-3-27B, as shown in Figure 5. And full scalability evaluation is provided in Appendix E.2.

Figure 6: Performance of post-edited LLaMA-3 (20K ZsRE edits) across various benchmarks.

5.3 IMPACT ON THE GENERAL ABILITY OF POST-EDITED MODELS

We evaluate how lifelong editing affects the general ability of post-edited models on four represen-
tative benchmarks: SST (Socher et al., 2013), MMLU (Hendrycks et al., 2021), MRPC (Dolan &
Brockett, 2005), and NLI (Williams et al., 2018). Results for the original unedited model (Vanilla),
AlphaEdit, WISE, RLEdit, and ULTRAEDIT are shown in Figure 6. We observe that as the number of
edits increases, methods such as AlphaEdit and finetuning significantly degrade the general ability of
post-edited models across all benchmarks, suggesting cumulative interference in the lifelong setting.
WISE shows relatively stable performance by storing edits in an external memory component, trading
additional memory for reduced interference with the base model. RLEdit causes notable degradation
on NLI but remains more stable on other benchmarks. In contrast, ULTRAEDIT consistently preserves
the model’s general abilities even after 20K edits, showing almost no deviation from the vanilla
baseline across tasks. These findings confirm that ULTRAEDIT introduces the least interference to
general capabilities and does not increase the risk of hallucinations, making it well-suited for lifelong
model editing. For a detailed comparison with other baseline methods, as well as comprehensive
description of four benchmarks, please refer to Appendix E.3.

6 CONCLUSION

We present ULTRAEDIT, a fast, stable, and scalable approach to lifelong model editing without
additional training, subject reliance, or external memory. Through lifelong normalization, it adapts to
evolving model states while maintaining high precision across editing turns. Experiments show that
ULTRAEDIT achieves over 7× faster editing with less than one-forth the VRAM of prior methods,
and supports up to 2M edits with stable performance. These efficiency gains make lifelong editing
feasible at ultra-large scale and broadly accessible, lowering barriers and enabling wider community
participation. To support further research, we release ULTRAEDITBENCH, the largest benchmark to
date, with over 2M editing pairs for evaluating ultra-scale, lifelong scenarios.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The supplementary materials
provide the code implementation of the proposed method as well as the newly introduced dataset.
The main experimental results are presented in Tables 2, 3, 14, 15, and 16, while ablation studies are
reported in Table 4. The details of hyperparameter settings are described in Appendix D.4. These
resources collectively facilitate the reproduction and verification of our results.
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Appendix
The appendix includes the following sections:

• Section A: The Use of LLMs
• Section B: Limitation
• Section C: Real-World Lifelong Application Statement.
• Section D: Implementation Details of Experiment.
• Section E: Full Experiment Results.
• Section F: Case Study.

A THE USE OF LLMS

In this work, different large language models (LLMs) were employed for distinct auxiliary purposes.
GPT-5 was used exclusively for polishing and refining the text of the paper. GPT-4o-mini was
applied during the construction of ULTRAEDITBENCH, where it generated factual questions from
subject–relation pairs under controlled settings. DeepSeek was employed as part of the evaluation
process, serving as an LLM-as-judge to provide consistency in automatic assessment. All core
research ideas, methodological designs, experiments, analyses, and conclusions were conceived and
carried out entirely by the authors.

B LIMITATION

Due to limited computational resources and the scale of certain datasets, we were unable to scale all
baselines to ultra-large-scale lifelong editing settings or to models with significantly larger parameter
counts. This reflects a broader limitation of current model editing research when applied to realistic
deployment scenarios.

C REAL-WORLD LIFELONG APPLICATION STATEMENT

ULTRAEDIT strictly adheres to a lifelong editing setting, where updates arrive sequentially and NO
future edits are known in advance. The proposed lifelong normalization mechanism does not need to
aggregate statistics across all editing turns; instead, it incrementally accumulates feature statistics
from previously observed samples up to the current turn using a causal running average, without
ever accessing future data. Importantly, each editing turn only requires the statistics from the last
turn, which are then updated iteratively, rather than storing or recomputing information from all past
samples. As detailed in equation 1–equation 3 in Section 3.2, the normalization statistics µ and σ are
computed in a running fashion and updated after each editing turn based on observed feature vectors.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

D.1 DATASET AND METRICS

ZsRE (Zero-shot Relation Extraction) dataset (Levy et al., 2017) is a widely adopted benchmark for
evaluating factual consistency and knowledge editing in language models. Each example in the dataset
comprises a question–answer pair that encapsulates a factual relation. To facilitate comprehensive
assessment of model editing capabilities, the dataset is augmented with two types of auxiliary samples:
(1) paraphrased variants of the original question, which test the model’s ability to generalize the
update, and (2) unrelated but structurally similar questions, which assess the specificity of the edit by
ensuring unrelated knowledge remains unaffected. This design enables precise evaluation of editing
accuracy, generalization to rephrased inputs, and the preservation of unrelated facts, making ZsRE
particularly well-suited for controlled knowledge update tasks. The dataset contains a total of 178,196
examples.

Following prior work (Meng et al., 2023; Fang et al., 2025; Li et al., 2025c), we evaluate various
model editing approaches on ZsRE using standard metrics. Given a large language model fθ, a target
editing pair (xe, ye), its paraphrased equivalent xe′ , and a set of unrelated knowledge pairs (xu, yu),
we assess the following three metrics:

Efficacy (Eff.) measures whether the model correctly incorporates the edit by verifying if the top-1
prediction for the edited input xe matches the target label ye:

E
{
ye = argmax

y′
Pfθ (y

′ | xe)

}
. (8)

Generalization (Gen.) evaluates whether the model successfully generalizes the edit to paraphrased
forms of the input, by checking if the top-1 prediction for xe′ remains consistent with ye:

E
{
ye = argmax

y′
Pfθ (y

′ | xe′)

}
. (9)

Specificity (Spe.) assesses the model’s ability to retain unrelated knowledge by ensuring the top-1
prediction for each unrelated input xu continues to match its original label yu:

E
{
yu = argmax

y′
Pfθ (y

′ | xu)

}
. (10)

FEVER (Fact Extraction and VERification) dataset (Thorne et al., 2018) is a large-scale benchmark
designed for evaluating factual consistency and claim verification in natural language. Each example
comprises a natural language claim accompanied by a label (Supported, Refuted, or Not Enough
Information) determined based on evidence retrieved from Wikipedia. The claims are either directly
extracted from Wikipedia or are semantically modified versions of actual content, while the supporting
evidence may span multiple sentences or even multiple documents. This setup enables fine-grained
assessment of a model’s ability to confirm, reject, or abstain from factual assertions. The dataset
contains a total of 114,422 examples. For consistency in evaluation, we adopt the same metric
definitions used in ZsRE.

WikiBigEdit (Thede et al., 2025) is a large-scale benchmark designed for lifelong knowledge
editing. The dataset contains a total of 506,035 editing pairs, all derived from real-world Wikidata
revisions collected across eight time steps over a six-month period. To support comprehensive
evaluation, WikiBigEdit defines five core metrics: Update, Rephrase, Locality, Personas, and
Multi-hop Reasoning. Among them, Update, Rephrase, and Locality correspond closely to the
standard editing criteria of Efficacy, Generalization, and Specificity, and are evaluated using the same
methodology as in ZsRE. Personas and Multi-hop Reasoning extend the evaluation scope to identity
conditioning and complex reasoning, respectively. A total of 490,519 examples support the first four
metrics, while 17,541 are specifically annotated for multi-hop reasoning, enabling focused evaluation
of a model’s ability to handle compositional queries and long-range dependencies. Reflecting realistic
and evolving knowledge dynamics, WikiBigEdit supports iterative assessment of a model’s capacity
to incorporate factual updates over time. Constructed via an automated data pipeline, the benchmark
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is continuously expandable as new Wikidata edits become available. Specifically, Personas evaluates
whether the model correctly answers identity-conditioned prompts xp, while Multi-hop Reasoning
measures the model’s ability to resolve compositional or chained queries xm. Their accuracy is
computed as:

Personas: E
{
yp = argmax

y′
Pfθ (y

′ | xp)

}
, (11)

Multi-hop Reasoning: E
{
ym = argmax

y′
Pfθ (y

′ | xm)

}
. (12)

ULTRAEDITBENCH comprises 2,008,326 editing pairs and adheres to the model editing evaluation
framework established in ZsRE. Inference results on different models across all datasets, including
ULTRAEDITBENCH are shown in Table 5. The results indicate that the knowledge in ULTRAED-
ITBENCH aligns well with the requirements of model editing tasks. The diversity verification of
ULTRAEDITBENCH is presented in Tables 6, 7, and 8. The average prompt length is 11.29 tokens per
sentence, and the Hapax Legomena Ratio reaches 56.45%. Together, these results demonstrate the
overall diversity of the dataset.

Table 5: Inference results on pre-edited models. ZsRE, FEVER, and ULTRAEDITBENCH use 20K
edits, while WikiBigEdit uses 17K.

Model
ZsRE FEVER WikiBigEdit ULTRAEDITBENCH

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Personas Reasoning Eff. Gen. Spe.

GPT-J 27.22 26.42 27.33 9.61 9.68 15.90 29.97 29.08 32.58 26.46 21.81 22.01 21.47 22.20
Mistral-7B-v0.3 44.46 43.55 48.08 0.41 0.50 1.98 39.14 38.21 41.62 35.54 29.93 30.83 29.94 31.11

LLaMA-3-8B-Instruct 36.76 35.83 38.93 0.02 0.02 0.26 24.92 35.46 38.87 32.70 26.42 27.29 26.40 27.24
Qwen2.5-7B-Instruct 34.32 33.39 38.06 0.57 0.60 2.17 30.97 30.40 34.50 28.43 22.09 26.03 25.22 26.35

Table 6: Domain diversity of ULTRAEDITBENCH

Type Person Organization Geography History Society Technology Arts Politcs Culture Others

Rate 45.13% 13.21% 6.67% 2.88% 1.27% 0.25% 0.17% 0.05% 0.01% 30.36%

Table 7: Languages of subjects in ULTRAEDITBENCH.

Type English German Italian French Indonesian Spanish Tagalog/Filipino Welsh Finnish Dutch Others

Rate 31.78% 7.82% 5.74% 4.52% 4.16% 3.46% 2.75% 2.57% 2.53% 2.36% 32.30%

Table 8: Answer length in ULTRAEDITBENCH.

Length 1 2 3 4 5 6 7 8 9 10

Rate 33.66% 36.53% 17.85% 6.12% 3.38% 1.27% 0.55% 0.31% 0.16% 0.07%

UnKE (Deng et al., 2025) consists of 1,000 unstructured long-text samples, but it only provides
editing instances and equivalent instances. To construct a more comprehensive benchmark, we take
another 1,000 samples from the long-text dataset AKEW (Wu et al., 2024b) as unrelated instances
and combine them with UnKE, forming the final UnKE dataset. In addition to the standard metrics of
efficacy, generalization, and specificity, we also adopt BERTScore and ROUGE-L from UnKE as two
additional evaluation metrics. BERTScore measures the semantic similarity between the generated
output ŷe and the target ye by computing token-level cosine similarities in the embedding space:

BERTScore(ye, ŷe) =
1

2

 1

|ŷe|
∑
c∈ŷe

max
r∈ye

cos(c, r) +
1

|ye|
∑
r∈ye

max
c∈ŷe

cos(r, c)

 . (13)
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c and r denote token embeddings from the generated output ŷe and the target ye, respectively. For
each token c in ŷe, we find the most similar token r in ye (by cosine similarity), and vice versa. The
final score averages these two directions, capturing both precision- and recall-oriented matching.

ROUGE-L evaluates the longest common subsequence (LCS) between the generated output ŷe and
the target ye. Let LCS(ye, ŷe) be their longest common subsequence length, then:

PLCS =
LCS(ye, ŷe)

|ŷe|
, RLCS =

LCS(ye, ŷe)

|ye|
, (14)

ROUGE-L(ye, ŷe) =
(1 + β2) · PLCS ·RLCS

RLCS + β2 · PLCS
, β = 1. (15)

Datasets such as Counterfact (Meng et al., 2022), MQuAKE (Zhong et al., 2023a), KnowEdit (Zhang
et al., 2024a), and QAEdit (Yang et al., 2025) are excluded from our evaluation, due to their limited
scale to support meaningful large-scale lifelong model editing.

We follow the LLM-as-judge template from (Yang et al., 2025), as shown in Table 9. For evaluation,
we employ DeepSeek-V3.1 (Non-thinking Mode) (Liu et al., 2024) as the third-party model, with
outputs truncated to 512 tokens.
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Table 9: LLM-as-judge template

Your job is to look at a question, a gold target, and a predicted
answer, and then assign a grade of either ["CORRECT",
"INCORRECT"].

↪→
↪→

The following are examples of CORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia Obama and Sasha Obama
Predicted answer 1: sasha and malia obama
Predicted answer 2: Malia and Sasha Obama are the names of Barack

Obama's children.↪→
```
These predicted answers are all CORRECT because:
- They fully contain the important information in the gold target.
- They do not contain any information that contradicts the gold

target.↪→

The following are examples of INCORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Malia and Sasha, Malia and Sasha, Malia and

Sasha, Malia and Sasha (repeated answer)↪→
```
These predicted answers are all INCORRECT because:
- A factual statement in the answer contradicts the gold target or

contain repeated answer.↪→

Here is a sample. Simply reply with either CORRECT or INCORRECT.

```
Question: {question}
Gold target: {target}
Predicted answer: {predicted_answer}
```

According to the gold target, please grade the predicted answer of
this question as one of:↪→

A: CORRECT
B: INCORRECT

Just return the letters "A" or "B", with no text around it.
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D.2 DESCRIPTION OF BASELINES

FT (Fine-Tuning) in model editing refers to the process of updating a pre-trained language model’s
parameters by optimizing them on a small set of new data containing the desired knowledge. This
approach aims to adjust the model’s behavior to reflect updated or corrected information without
retraining the model from scratch. In the context of model editing, fine-tuning typically involves
minimizing a loss function such as cross-entropy on carefully selected inputs and targets related to
the editing fact, while optionally applying regularization to avoid catastrophic forgetting. Despite its
simplicity and effectiveness, FT can lead to unintended changes in the model’s general abilities or
interfere with unrelated knowledge, especially when used repeatedly or with large learning rates.

MEND enables efficient post-hoc editing of large pre-trained models using only a single input-output
pair by training lightweight auxiliary networks that transform standard fine-tuning gradients into
localized, low-rank parameter updates. MEND leverages the inherent rank-1 structure of gradients in
neural networks to map input activations and output deltas through a small MLP, producing edits that
are reliable, local, generalizable, and scalable to models with over 10 billion parameters, all without
retraining or modifying the original model’s predictions on unrelated inputs.

MEMIT modifies factual associations in language models by identifying and updating critical MLP
layers responsible for knowledge recall, computing target hidden states for new facts, and applying
analytically derived weight updates that distribute edits across multiple layers. The method treats
MLPs as linear associative memories and performs batch updates to insert new associations while
preserving previously stored information, enabling efficient memory editing within the model’s
internal structure.

MALMEN is a scalable hypernetwork-based method for editing large language models, which
addresses the limitations of MEND by formulating parameter shift aggregation as a least squares
problem solved via the normal equation to prevent cancellation effects, and decoupling the training
of the hyper-network and language model to support arbitrary batch sizes, enabling efficient and
memory-economic editing of thousands of facts while maintaining strong locality and generalization.

RECT introduces a regularization-based approach to model editing that constrains the complexity
of edit updates by preserving only the top-k% of weight changes based on their relative change
magnitude, thereby mitigating overfitting and protecting the model’s general abilities. By identifying
and retaining the most impactful parameter updates while zeroing out less significant ones, RECT
reduces interference with original model knowledge and avoids degradation across downstream tasks.
This method ensures that the edited model maintains a balance between incorporating new factual
information and preserving its overall performance.

WISE proposes a dual-parametric memory approach for lifelong model editing, where pretrained
knowledge is kept in a main memory and all edits are stored in a separate side memory, which is a
copy of a Transformer layer’s value matrix. To determine which memory to use at inference, WISE
employs a routing mechanism based on activation differences, directing queries to side memory if
they relate to edited knowledge. To handle continuous edits without conflict, WISE introduces a
knowledge sharding technique that stores different edits in randomly masked subspaces of the side
memory, and then merges these using Ties-Merge to maintain consistency. This design allows WISE
to achieve high reliability, generalization, and locality simultaneously, overcoming the limitations of
traditional long-term or working memory editing methods.

PRUNE introduces a plug-and-play framework for sequential model editing by restraining the
condition number of the edited matrix, which is identified as the main factor causing degradation in
general abilities during repeated edits. It operates by analyzing the singular value decomposition of
accumulated edit updates and selectively reducing excessively large singular values through a restraint
function, thereby minimizing perturbations to the model’s original knowledge associations while
preserving the newly injected information. This method reduces overfitting from edit accumulation
and maintains model stability without interfering with editing efficacy, making it compatible with
various existing editing approaches.

AlphaEdit introduces a null-space constrained knowledge editing approach by projecting parameter
perturbations onto the null space of preserved knowledge, ensuring updates do not interfere with
existing information. This projection allows the editing process to focus solely on updating target
knowledge without trade-offs, eliminating the need for additional constraints in the optimization
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objective. The method achieves substantial improvements in editing performance and generalization
with minimal implementation overhead, maintaining the integrity of preserved knowledge and the
model’s overall capabilities during sequential edits.

RLEdit formulates lifelong model editing as a reinforcement learning problem by treating the
hypernetwork as an agent that generates parameter updates based on the current state of the language
model and input knowledge, where the update is considered an action and the editing performance
defines the reward. It trains the hypernetwork offline using accumulated rewards across a sequence of
edits, incorporating a reward function that balances knowledge injection, preservation of unrelated
information, memory backtracking for prior edits, and regularization to constrain update magnitude.
This design enables the hypernetwork to adaptively produce edits that are compatible with dynamically
evolving model parameters over long editing trajectories.

We exclude AnyEdit (Jiang et al., 2025) since it is not designed for lifelong editing. In addition,
MoKE (Cheng et al., 2025) and SMEdit (Li et al., 2025b) are omitted because their source code is
not publicly available, making reproduction and fair evaluation infeasible.

D.3 EVALUATION STATEMENT

We evaluate the model after completing all editing turns and compute the metrics on the entire set of
edited samples at once, rather than reporting per-turn performance. This evaluation protocol ensures
that the reported results reflect the final performance of the model after lifelong editing, rather than
the transient performance at individual turns. Consequently, our evaluation setting is both fair and
consistent with the true goal of lifelong editing. We also ensure that all selected samples are distinct
to avoid interference from contradictory edits. Moreover, we find that varying the order of edits
within the same dataset has little impact on performance; however, for fair comparison, all methods
follow the same editing order.
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D.4 HYPERPARAMETER SETTING

All experiments are conducted on a single NVIDIA A800 GPU, and ULTRAEDIT introduces only
two hyperparameters: the learning rate η and the editable module. In all settings, η is set to 1e-6.
Regarding the selection of editable modules, we strictly follow the parameter settings used in RLEdit
for fair comparison. For WikiBigEdit and ULTRAEDITBENCH, which are not used in their work,
the editable modules are aligned with those used for ZsRE. The details of the editable modules are
shown in Table 10, where the numbers indicate the corresponding layer indices.

Table 10: Editable Module settings of ULTRAEDIT across different models and datasets

Dataset Model Editable Module

ZsRE

GPT-J [18-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_proj

LLaMA-3-8B-Instruct [11-15].mlp.gate_proj, [18-24].mlp.up_proj
Qwen2.5-7B-Instruct [18-26].mlp.gate_proj,[18-26].mlp.up_proj

FEVER

GPT-J [25,26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_proj

LLaMA-3-8B-Instruct [22-30].mlp.gate_proj, [22-30].mlp.up_proj
Qwen2.5-7B-Instruct [18-26].mlp.gate_proj,[18-26].mlp.up_proj

WikiBigEdit

GPT-J [19-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_proj

LLaMA-3-8B-Instruct [11-15].mlp.gate_proj, [18-24].mlp.up_proj
Qwen2.5-7B-Instruct [19-26].mlp.gate_proj,[19-26].mlp.up_proj

Phi-4-14B [30-38].mlp.down_proj
Gemma-3-27B-it [52-60].mlp.gate_proj,[52-60].mlp.up_proj

ULTRAEDITBENCH

GPT-J [18-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_proj

LLaMA-3-8B-Instruct [11-15].mlp.gate_proj, [18-24].mlp.up_proj
Qwen2.5-7B-Instruct [18-26].mlp.gate_proj,[18-26].mlp.up_proj

Phi-4-14B [30-38].mlp.down_proj
Gemma-3-27B-it [52-60].mlp.gate_proj,[52-60].mlp.up_proj

UnKE

GPT-J [18-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_proj

LLaMA-3-8B-Instruct [11-15].mlp.gate_proj, [18-24].mlp.up_proj
Qwen2.5-7B-Instruct [18-26].mlp.gate_proj,[18-26].mlp.up_proj

For methods that require additional training data, such as MEND, MALMEN, RLEdit and WISE, we
follow the experimental setup described in RLEdit. Specifically, for the ZsRE and FEVER datasets,
the training set for MEND and MALMEN contains the total number of samples excluding the editing
examples. For large-scale datasets like WikiBigEdit and ULTRAEDITBENCH, the size of the training
set is equal to the number of editing examples. In all RLEdit and WISE experiments, the training and
editing set sizes are always matched.

E FULL EXPERIMENTAL RESULTS

E.1 EXTENDED BASELINE COMPARISON

This section presents a comprehensive comparison of ULTRAEDIT against baseline methods across
five datasets and four model architectures. Results on UnKE are reported in Tables 11 and 12, while
Table 13 presents the evaluation on zsRE using LLM-as-judge. Detailed results in Tables 14, 15, and
16 further highlight the strong performance of ULTRAEDIT across diverse editing scenarios.
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Table 11: Results across GPT-J and Mistral on UnKE. "*" indicates results from editing 1,000
instances; all others are based on 500 instances.

UnKE

Method
GPT-J Mistral-7B-v0.3

Eff. Gen. Spe. Bert Score Rouge-L Eff. Gen. Spe. Bert Score Rouge-L

FT 46.93 46.49 50.49 51.02 11.85 70.87 70.43 70.85 70.95 13.39
WISE 91.26 89.81 65.07 85.60 42.01 89.77 88.78 70.68 79.61 35.64
AlphaEdit 75.96 63.20 77.19 78.83 35.60 81.39 76.78 78.40 82.90 39.49
RLEdit 86.53 84.94 56.35 79.97 33.68 46.63 44.35 15.29 33.80 6.93
ULTRAEDIT 91.34 89.84 64.53 81.27 36.43 92.94 90.46 65.89 74.68 30.09
ULTRAEDIT* 92.49 91.15 65.93 83.02 43.28 62.79 61.72 38.06 46.69 7.04
∆ +1.23 +1.34 -11.26 -2.58 +1.27 +3.17 +1.68 -12.51 -8.22 -9.40

Table 12: Results across LLaMA-3 and Qwen2.5 on UnKE.

UnKE

Method
LLaMA-3-8B-Instruct Qwen2.5-7B-Instruct

Eff. Gen. Spe. Bert Score Rouge-L Eff. Gen. Spe. Bert Score Rouge-L

FT 67.09 66.39 67.31 64.65 6.89 45.72 45.44 32.55 47.67 12.12
WISE 83.95 82.93 58.08 80.43 32.02 - - - - -
AlphaEdit 71.07 68.31 69.17 81.39 37.37 39.98 37.78 25.14 64.72 23.36
RLEdit 91.91 91.03 62.23 85.76 56.78 92.65 91.59 63.17 84.03 51.68
ULTRAEDIT 93.05 91.43 65.62 84.29 45.33 86.39 84.33 61.11 81.14 32.22
ULTRAEDIT* 94.09 92.68 73.64 85.84 50.92 88.84 87.01 72.17 82.02 36.31
∆ +2.18 +1.65 +4.47 +0.08 -5.86 -3.81 -4.58 +9.00 -2.01 -15.37

Table 13: Evaluation on zsRE using LLM-as-judge across three models. We exclude GPT-J due to its
limited capability in instruction-shot.

Method
Mistral-7B-v0.3 LLaMA-3-8B-Instruct Qwen2.5-7B-Instruct

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe.

FT 0.18 0.22 0.14 0.03 0.02 0.00 0.43 0.29 0.10
WISE 0.90 1.03 0.13 8.90 8.40 12.23 - - -
AlphaEdit 0.00 0.00 0.00 58.47 56.36 24.64 0.08 0.08 0.00
RLEdit 7.75 5.50 0.00 47.09 44.31 24.46 17.11 15.67 15.52
ULTRAEDIT 24.49 21.97 19.95 52.85 49.77 40.13 32.65 30.45 33.60
∆ +16.74 +16.47 +19.81 -5.62 -6.59 +15.49 +15.54 +14.78 +18.08

Table 14: Extended results across four models on ULTRAEDITBENCH.

ULTRAEDITBENCH

Method
GPT-J Mistral-7B-v0.3 LLaMA-3-8B-Instruct Qwen2.5-7B-Instruct

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe.

MEND 1.71 1.71 1.83 0.00 0.00 0.00 0.00 0.00 0.00 3.48 3.45 3.43
MEMIT 0.25 0.18 0.20 0.00 0.00 0.00 0.74 0.45 0.21 0.82 0.32 0.69
MALMEN 0.76 0.48 0.78 2.42 2.48 3.47 40.64 34.18 37.29 4.36 3.48 4.38
RECT 0.09 0.06 0.08 0.00 0.00 0.00 0.55 0.09 0.00 1.86 1.55 1.84
PRUNE 0.32 0.27 0.28 0.00 0.00 0.00 1.21 0.85 0.32 0.27 0.06 0.14
ULTRAEDIT 84.03 76.62 64.03 83.71 77.30 67.26 85.70 81.28 68.73 79.01 71.45 64.10
ULTRAEDIT* 81.65 76.80 76.44 81.70 77.25 77.09 83.45 79.11 78.05 80.70 75.78 76.01
∆ +82.32 +75.09 +74.61 +81.29 +74.82 +73.62 +45.06 +47.10 +40.76 +76.34 +72.30 +71.63
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Table 15: Extended results on three datasets across three models.

Method
ZsRE FEVER WikiBigEdit

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Personas Reasoning

GPT-J

MEND 2.52 2.55 0.19 52.80 51.44 45.42 0.02 0.01 0.02 0.02 0.02
MEMIT 0.00 0.00 0.00 5.54 5.03 5.46 1.59 1.59 0.50 0.80 0.00
MALMEN 0.02 0.01 0.02 1.33 1.25 2.92 0.00 0.01 0.01 0.00 0.00
RECT 0.03 0.03 0.12 18.12 18.08 12.27 2.13 1.99 0.59 2.06 0.00
PRUNE 0.00 0.00 0.01 5.25 4.72 5.20 2.36 2.32 1.01 1.86 0.00
ULTRAEDIT 78.03 72.42 27.05 97.45 96.37 79.72 73.84 66.57 37.17 56.90 29.27
ULTRAEDIT* 72.95 68.68 25.91 97.89 96.73 79.85 66.46 60.54 47.90 51.73 –
∆ +75.51 +69.87 +26.86 +45.09 +45.29 +34.43 +71.48 +64.25 +46.89 +54.84 +29.25

Mistral-7B-v0.3

MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
MEMIT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MALMEN 0.00 0.00 0.00 18.42 17.43 12.09 0.00 0.00 0.01 0.00 0.00
RECT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PRUNE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ULTRAEDIT 85.30 80.80 47.38 97.87 96.09 84.29 76.00 70.15 46.09 62.27 35.80
ULTRAEDIT* 81.13 76.78 48.06 98.23 96.97 83.43 71.78 65.63 55.40 56.11 –
∆ +85.30 +80.80 +48.06 +79.81 +79.54 +72.20 +75.99 +70.15 +55.39 +62.26 +35.80

LLaMA-3-8B-Instruct

MEND 0.00 0.00 0.00 36.19 36.19 24.31 0.01 0.01 0.10 0.01 0.00
MEMIT 0.14 0.14 1.40 0.02 0.02 0.02 0.02 0.02 0.09 0.02 0.00
MALMEN 0.20 0.12 0.09 94.50 91.26 67.76 0.00 0.00 0.00 0.00 0.00
RECT 0.00 0.00 0.00 0.01 0.00 0.00 0.21 0.24 0.06 0.29 0.00
PRUNE 0.00 0.00 0.24 0.02 0.02 0.00 0.02 0.02 0.09 0.02 0.00
ULTRAEDIT 90.07 87.36 49.51 95.39 91.93 67.14 79.60 73.49 48.51 66.55 35.64
ULTRAEDIT* 87.80 85.48 46.74 97.18 94.64 68.62 68.99 63.59 52.28 55.04 –
∆ +89.87 +87.22 +48.11 +2.68 +3.38 +0.86 +79.39 +73.25 +52.18 +66.26 +35.64

Table 16: Results on three datasets across Qwen2.5.

Qwen2.5-7B-Instruct

Method
ZsRE FEVER WikiBigEdit

Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Personas Reasoning

FT 14.02 10.91 3.39 26.09 24.62 21.36 10.35 7.59 3.68 5.55 5.84
MEND 15.00 14.41 0.47 76.43 77.66 40.39 0.00 0.00 0.00 0.00 0.00
MEMIT 0.02 0.02 0.17 0.08 0.12 0.15 0.54 0.33 0.38 0.32 0.00
MALMEN 0.00 0.00 0.00 0.06 0.06 0.07 0.06 0.02 0.02 0.00 0.00
RECT 0.00 0.00 0.00 3.36 3.10 3.20 2.34 2.29 0.83 0.78 0.00
PRUNE 0.01 0.02 0.07 0.08 0.15 0.11 2.34 2.34 0.97 1.37 0.00
AlphaEdit 16.32 13.96 1.66 32.78 31.19 22.12 20.31 15.49 2.17 9.01 0.23
RLEdit 84.70 82.79 38.26 0.00 0.00 0.00 2.83 1.81 0.43 1.45 0.39
ULTRAEDIT 82.03 77.08 45.51 97.97 93.91 68.86 73.37 65.86 45.12 54.65 32.74
ULTRAEDIT* 78.39 74.72 49.27 97.49 94.83 68.99 66.34 60.42 51.74 50.53 –
∆ -2.67 -5.71 +11.01 +21.54 +17.17 +28.60 +53.06 +50.37 +48.06 +45.64 +26.90
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E.2 SUPPLEMENTARY LIFELONG SCALABILITY EVALUATION

Figure 7 shows a comparison of ULTRAEDIT and baseline methods as the number of edits gradually
increases. The results demonstrate that ULTRAEDIT maintains stable performance, highlighting its
lifelong scalability with respect to the number of edits.

Figure 7: Performance comparison of different baselines as ZsRE edits accumulate in LLaMA-3.

The Generalization and Specificity performance of ULTRAEDIT on larger-parameter models is shown
in Figure 8, demonstrating the method’s scalability with respect to model size.

Figure 8: Generalization and Specificity of lifelong editing on Phi-4-14B and Gemma-3-27B.

E.3 ADDITIONAL RESULTS ON POST-EDITED MODEL EVALUATION

We begin by introducing the four evaluation benchmarks used in our study:

SST (Stanford Sentiment Treebank) is a sentiment analysis benchmark composed of movie reviews
annotated with fine-grained sentiment labels. It evaluates a model’s ability to capture subtle emotional
cues in natural language.

MMLU (Massive Multitask Language Understanding) is a comprehensive benchmark spanning a
wide range of academic and professional subjects. It assesses a model’s general knowledge and
reasoning ability across diverse domains.

MRPC (Microsoft Research Paraphrase Corpus) contains sentence pairs annotated for semantic
equivalence. This benchmark tests whether a model can accurately identify paraphrases, reflecting its
understanding of meaning preservation.

NLI (Natural Language Inference) tasks involve determining the logical relationship between a
premise and a hypothesis, namely entailment, contradiction, or neutrality. They evaluate a model’s
capacity for logical reasoning and inference.
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Figure 9 provides a full comparison between ULTRAEDIT and baselines, further confirming its
minimal effect on the model’s inherent abilities.

Figure 9: Performance of post-edited LLaMA-3 (20K ZsRE edits) across various benchmark.

F CASE STUDY

Table 17: Case study of applying ULTRAEDIT to LLaMA3-8B on ULTRAEDITBENCH.!indicates
the post-edited output exactly matches the ground-truth answer, while% denotes mismatch.

Prompt Pre-edited Output Ground truth Post-edited Output

What is the country of citizenship
for Olivier Renard?

Oliviergium belgie belgie!

What type of place is mechanics-
ville, delaware?

Mechanics community community!

What type of ecological system
does goobang creek belong to?

Goine riverine riverine!

What is the profession of shamsula-
nuar nasarah?

Shician Politician Politician!

What type of sport was featured du-
ring the 2003 Canadian Open?

The volleyball indoor tennis indoor tennis!

What is the place of birth of jyotsna
radhakrishnan?

Jwaitali kuwet malwet%

Which location shares a border with
guipronvel?

Guzguer plouguin Saintouguin%
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