
Biomedical Question Answering via Multi-Level Summarization on a Local
Knowledge Graph

Anonymous ACL submission

Abstract

In Question Answering (QA), Retrieval Aug-001
mented Generation (RAG) has revolutionized002
performance in various domains. However,003
how to effectively capture multi-document re-004
lationships remains an open question. This is005
particularly critical for biomedical tasks due006
to their reliance on information spread across007
multiple documents. In this work, we pro-008
pose a novel method CLAIMS, which utilizes009
propositional claims to construct a local knowl-010
edge graph from retrieved documents. Sum-011
maries are then derived via layerwise summa-012
rization from the knowledge graph to contex-013
tualize a small language model to perform QA.014
The structured summaries effectively capture015
explicit and implicit relationships between en-016
tities in the documents, thus having a more017
comprehensive context to provide to LLMs.018
CLAIMS achieved comparable or superior019
performance over RAG baselines on several020
biomedical QA benchmarks. We also evalu-021
ated each individual step of our approach with022
a targeted set of metrics, demonstrating its ef-023
fectiveness.024

1 Introduction025

Retrieval-Augmented Generation (RAG) (Lewis026

et al., 2020) has shown promise in augmenting027

Large Language Models (LLMs) with documents028

retrieved from established corpora. The process029

uses these documents to ground LLM outputs, re-030

ducing hallucinations and improving the contex-031

tual relevance of generated responses. For a typ-032

ical Question Answering (QA) task, RAG tends033

to retrieve multiple documents relevant to an in-034

put question. However, recognizing and leverag-035

ing the multi-document relationships across these036

documents remains an underexplored challenge.037

Relying on a single LLM call to integrate all of038

these relationships tends to prove inadequate, espe-039

cially in Biomedical QA where accurate answers040

often require synthesizing multiple medical con- 041

cepts across diverse documents. Existing work 042

has introduced targeted techniques to mitigate this 043

problem, such as hierarchical summarization of 044

semantically related chunks (Sarthi et al., 2024; 045

Tang et al., 2024) or integrating Knowledge Graphs 046

(KGs) to represent explicit connections in retrieved 047

text. Yet reliance on semantically related chunks 048

can miss documents that share topics but differ in 049

semantic focus, and works that utilize KGs can re- 050

quire access to the entire offline knowledge corpus 051

(Edge et al., 2024; Guo et al., 2024b; Wu et al., 052

2024) or suffer from explicit information loss dur- 053

ing graph traversal for retrieval (Wang et al., 2024; 054

Guo et al., 2024a). Therefore, there is a need for 055

a method that effectively represents and utilizes 056

relevant multi-document relationships from dynam- 057

ically updated knowledge bases, enabling more 058

comprehensive reasoning in Biomedical QA. 059

To remedy this, we propose utilizing the con- 060

struction of a knowledge graph to underlay lay- 061

erwise document summarization as an alternative 062

via CLAIMS (Connected Layered Analysis of 063

Information through Multi-level Summarization). 064

Propositional claims are utilized to represent infor- 065

mation and facilitate handling conflicting and noisy 066

claims extracted from retrieved unstructured doc- 067

uments. The knowledge graph constructed from 068

these propositional claims captures relationships 069

beyond semantic similarity. Finally, our approach 070

performs layerwise graph summarization around 071

several key claims of interest to comprehensively 072

capture and filter multi-document relations and fit 073

them into a limited context window. 074

CLAIMS utilizes the properties of decontextual- 075

ized claims in the knowledge graph structure and 076

layerwise topological summarization to capture ex- 077

plicit and implicit relationships between entities 078

in the documents, thus having a more comprehen- 079

sive context to provide to LLMs. We evaluate each 080

part of our methodology, and compare CLAIMS 081
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to traditional RAG retrieval baselines on several082

biomedical QA datasets, achieving comparable or083

superior performance over all baselines.084

Our approach makes three main contributions.085

• We introduce a novel approach of structur-086

ing information from retrieved documents087

as propositional claims in local knowledge088

graphs to capture cross-document relation-089

ships.090

• We introduce utilizing layerwise topological091

graph summaries of key claims in this local092

knowledge graph as context for LLM QA093

tasks.094

• We evaluate CLAIMS on a comprehensive095

set of benchmarks, including testing the prop-096

erties of the intermediate components of the097

approach, its impact on LLM reasoning, and098

the final accuracy on several datasets.099

2 Related Work100

We review relevant work in RAG, summarization101

techniques, and knowledge graph applications for102

Biomedical QA. Current approaches face chal-103

lenges in effectively capturing cross-document rela-104

tionships. CLAIMS builds upon these foundations105

while addressing their limitations through the novel106

combination of propositional claims, local knowl-107

edge graphs, and layerwise summarization.108

2.1 Retrieval Augmented Generation109

Information Retrieval methods have been used for110

general QA tasks, including biomedical QA (Jin111

et al., 2022). RAG extends these methods for use112

with LLMs, allowing for the integration of large113

external corpora into pre-trained language models’114

context windows. The initial naive RAG approach115

utilized a trained retriever and a seq2seq model116

to capture knowledge from retrieved documents117

(Lewis et al., 2020), and has since been followed118

by many follow-up refinements (Gao et al., 2023b).119

A number of works have been conducted on the120

application of RAG in biomedical QA, such as121

MedRAG which retrieves documents from a variety122

of corpora (Xiong et al., 2024), BioMedRAG which123

trains the retriever for improved retrieval of medi-124

cal documents (Li et al., 2024b), and Self-BioRAG125

which uses on-demand retrieval and reflection to-126

kens to select the best evidence (Yu et al., 2023),127

among many others (Liu et al., 2024; Zhou et al.,128

2023), which tend to take the strategies used in gen- 129

eral domain RAG and adapt them to the biomed- 130

ical domain. While these works provide benefits 131

for QA tasks, they fall short in capturing all of the 132

relevant multi-document relationships in retrieved 133

documents. 134

2.2 Summarization 135

Summarization can condense input documents into 136

relevant information while using less input tokens, 137

and is one method by which retrieved documents 138

can be processed to better suit downstream tasks. 139

RAPTOR (Sarthi et al., 2024) uses hierarchical 140

summarization of input documents to capture both 141

locally relevant information and distant interdepen- 142

dencies. However, its reliance on semantic similar- 143

ity means that it may miss explicit, non-semantic 144

connections. Long-context summarization meth- 145

ods like MemTree (Rezazadeh et al., 2024) or it- 146

erative hierarchical summarization methods like 147

ILM-TR (Tang et al., 2024) also use embedding 148

similarity to group contextual information, and thus 149

suffer from the same problem of missing explicit 150

connections. SiReRAG extends RAPTOR with an 151

additional hierarchical summarization of proposi- 152

tional claims (Zhang et al., 2025a), but while this 153

does capture relationships between shared entities 154

it still misses explicit multi-hop connections. 155

2.3 RAG with Knowledge Graphs 156

Graph based RAG is an alternative to semantic sim- 157

ilarity as a way to capture complex relationships. 158

An extensive line of prior work exists due to the 159

widespread usage of external knowledge graphs as 160

a data structure. Common RAG methods involv- 161

ing them include directly retrieving relevant triples 162

from the graph (Baek et al., 2023), subgraph ex- 163

traction (Gutiérrez et al., 2025; Sarmah et al., 2024; 164

Li et al., 2024a), or path based retrieval of relevant 165

documents (Chen et al., 2024a; Luo et al., 2024; 166

Jiang et al., 2024b; Ma et al., 2025). These methods 167

may miss out on information outside of the explicit 168

subgraphs or paths that are retrieved. 169

More recently, there has been a line of work per- 170

forming community-based summarization on gen- 171

erated knowledge graphs. They partition the knowl- 172

edge graph into modular parts, either via communi- 173

ties as with Graph Rag (Edge et al., 2024), or into 174

hierarchical tags as in MedGraphRAG (Wu et al., 175

2024). While these methods are able to capture 176

more multi-document relationships, they perform 177

their method on the entire offline retrieval corpus 178
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Figure 1: Overview of the proposed CLAIMS framework. (a) Relation extraction: load in documents with
a retriever relevant to an input question, break documents into claims, break claims into triples. (b) Graph
construction: build local graph with claims and triples. (c) Graph summarization: summarize the graph layerwise
with the top re-ranked claims as the roots. (d) QA with LLM: the final summaries for each top-ranked claim are
collated and provided to a model as context for downstream QA tasks.

rather than dynamically retrieved online input doc-179

uments. This requires a high upfront cost and a dif-180

ferent level of granularity compared to our method,181

while also requiring additional effort when updat-182

ing their graph summaries with new information.183

Alternatively, retrieved documents can be turned184

into a graph structure for additional processing.185

Several works have opted for this method, with186

many using semantic similarity of text chunks in187

combination with structural information to con-188

struct the graph. Even with explicit connections189

formed by structural relationships, the retrieval190

uses agents (Wang et al., 2024; Guo et al., 2024a)191

that can miss information outside of returned paths192

or requires a trained GNN (Li et al., 2024c).193

Our method utilizes the explicit connections from194

knowledge graph Resource Description Frame-195

work (RDF) formats and does layerwise summa-196

rization to capture these connections with off-the-197

shelf LLMs. Another work generates minigraphs198

from retrieved documents (Zhang et al., 2025b), but199

does not use propositional claims as their chunking200

modality and summarizes the content for literature201

review creation instead of QA.202

3 Methods203

Approach overview: CLAIMS handles the prob-204

lem of processing and connecting distributed evi-205

dence from multiple retrieved documents to solve206

biomedical questions. At its core, our method takes 207

in a biomedical question, a set of retrieved docu- 208

ments, and possible multiple choice answers before 209

using a language model to process the documents 210

and determine the correct answer. More formally, 211

given an input biomedical question q, a set of an- 212

swer options A, and a corpus of dynamically up- 213

dated unstructured documents D, a language model 214

L is used to generate the correct answer a ∈ A. The 215

output should satisfy three requirements: 216

1. Comprehensively identify and connect multi- 217

document relations. 218

2. Efficiently use the limited context window of L. 219

3. Reduce noise and preserve relevant information. 220

CLAIMS improves the extraction and presenta- 221

tion of relevant information and multi-document 222

relations from unstructured documents by the ad- 223

dition of layerwise graph summarization (Figure 224

1). It proceeds by first extracting decontextualized 225

claims from each d ∈ D (Section 3.1), using the 226

entities in these claims to build a graph (Section 227

3.2), before summarizing the content in the graph 228

into several key claims that are provided to L to 229

solve the question (Section 3.3). 230

3.1 Relation extraction 231

The relation extraction step transforms retrieved 232

unstructured documents into propositional claims 233
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and associated RDF triples. This turns complex234

technical documents into atomic pieces of infor-235

mation that can be reliably connected and analyzed.236

237

Retrieval: To accurately answer biomedical ques-238

tions, CLAIMS gathers relevant information from239

several knowledge bases. For a given input ques-240

tion q, it is first preprocessed into a better suited re-241

trieval query to retrieve relevant documents d ∈ D242

via question rewriting (Ma et al., 2023) and HyDE243

candidate answer generation (Gao et al., 2023a).244

The final query with the rewritten question,245

answer options, and candidate answer is used to246

retrieve text chunks d ∈ D. Further details on the247

retrieval corpora and the retrieval process can be248

found in Appendix I.249

250

Claim extraction: To connect information across251

documents, documents are broken down into con-252

cise and independent pieces. From the retrieved253

text chunks d ∈ D, the model L extracts proposi-254

tional claims C = {c1, c2, ..., cn}. These proposi-255

tional claims must be256

• Atomic: includes only a single statement that257

cannot be broken down, and258

• Decontextualized: fully understandable on its259

own with no unresolved entity references.260

This chunking strategy improves the retriever’s261

performance (Chen et al., 2024b) and is especially262

important in CLAIMS for later reranking and263

summarization.264

265

Triple extraction: Once a claim c ∈ C is extracted,266

it is prepared for addition to the local graph G.267

We assume that the claim extraction process has268

given us atomic propositional claims, with each one269

having only one key relation. This step involves270

extracting a single RDF triple (subj, pred, obj)271

from each claim c. This triple format captures the272

relationship pred between the two entities subj273

and obj, with the extraction being based on the274

LLM’s best judgment.275

3.2 Graph construction276

The graph construction step processes the RDF277

triples and claims from Section 3.1 into a local278

graph structure that captures the relationships279

between pieces of information. This is crucial for280

identifying multi-document interactions that are281

not apparent from individual claims.282

283

Deduplication: While our claim extraction 284

phase (Section 3.1) resolves coreferences to the 285

same entities, the entities in each RDF triple 286

can still have multiple possible representations. 287

Deduplication of entities in the RDF triples is 288

performed to ensure that all references to the 289

same concept point towards the same node in the 290

graph. Specifically, embeddings are placed into 291

the same cluster using a similarity threshold of 292

0.8 with Unweighted Average Linkage Clustering 293

(UPGMA) (Sokal and Michener, 1958). 294

295

Graph structure: After deduplication, the pro- 296

cessed RDF triples and claims are used to construct 297

the graph G. Each node in the graph is an entity 298

from the RDF triples (subj, pred, obj), one of the 299

subj or obj entities. Each edge e ∈ G includes the 300

representative claim c the entities were extracted 301

from and relevancy score s. The scores are cal- 302

culated using a reranker R according to the edge 303

claim’s relevance to the input question q. All of 304

the edges are treated as undirected in further pro- 305

cessing, and allow for multiple edges between two 306

entities. 307

3.3 Graph summarization 308

The final graph summarization stage of CLAIMS 309

condenses the content in G into several claims of 310

interest to capture the most relevant information 311

for answering the input question. 312

313

Obtaining claims of interest: Due to the large 314

number of documents under consideration, our 315

method selects several key claims of interest K 316

from G, which provides a diverse set of entry points 317

into the graph. CLAIMS starts with the top 10 318

ranked claims in the graph. 319

It proceeds to determine each claim of interest’s 320

potential to produce meaningful summaries for our 321

later layerwise summarization. Since claims closer 322

to these entry points will be given more weight in 323

the final summaries, each claim of interest’s 1-hop 324

neighboring claims are examined. These neigh- 325

boring claims are used as context to generate test 326

summaries that approximate the final summaries, 327

and the relevance of these test summaries are used 328

to again rerank the claims of interest. 329

As adjacent claims should produce similar sum- 330

maries, we remove all claims that are 1-hop neigh- 331

bors of higher ranked claims in K. This returns 332

a more focused list, improving efficiency while 333

retaining coverage of relevant information. 334
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Figure 2: Layerwise summarization approach overview.
For a given claim of interest (Claim 1), the graph is orga-
nized into layers based on the distance of each connected
claim from it. The summarization begins from the fur-
thest layer, moving inwards. For each layer claims are
summarized using the previously generated summaries
of connected claims in lower layers. This process en-
sures that path information and multi-document rela-
tionships are preserved while filtering out irrelevant
information in the final summaries.

Layerwise summarization: Layerwise summa-335

rization for each claim of interest involves organiz-336

ing its connected component in G into layers based337

on each claim’s distance (Figure 2).338

Definition 1 (Layer). Given a claim of interest k339

in graph G, the ith layer consists of all claims that340

are exactly i-hop away from k in G.341

The summarization process starts from the342

outermost layer and proceeds inwards. For each343

claim in the current layer, our method considers the344

summaries of connected claims one layer below.345

These summaries from connected claims are again346

summarized to create the current claim’s own347

summary. Each claim is processed only once and348

uses summaries from already processed claims,349

ensuring that there are no cycles. This occurs layer350

by layer until the claim of interest is reached.351

352

Summary generation: The final summary for each353

claim of interest captures information from its en-354

tire connected component in G, but is focused355

around the central claim. Although these claims356

of interests share common topics due to their high357

relevance to the input question, each final summary358

should differ because they emphasize their local359

relationships. The final output is a concatenation of360

the summaries in the order of their relevance rank-361

ings. This set of summaries is provided as contexts362

for an LLM to perform QA.363

4 Experiments 364

Our experiments assess both CLAIMS’ overall QA 365

performance and the effectiveness of its individual 366

components. We evaluate on multiple benchmarks 367

(Section 4.1), and compare against standard RAG 368

baselines (Section 4.2). Each part of CLAIMS 369

was also individually assessed to test its robust- 370

ness (Section 4.3). Additionally, we employ entity 371

masking tests to evaluate CLAIMS’ ability to im- 372

prove LLM reasoning capabilities independent of 373

parametric knowledge (Section 4.4). 374

4.1 Evaluation datasets 375

We use the test sets of PubMedQA (Jin et al., 2019), 376

MedQA (Jin et al., 2020), and the MMLU clinical 377

topics datasets (Hendrycks et al., 2021) (Anatomy, 378

Clinical Knowledge, College Biology, Professional 379

Medicine, College Medicine, and Medical Genet- 380

ics). For validation and ablation tests, a combina- 381

tion of the validation sets of the MMLU datasets is 382

used, termed MMLU validation. 383

4.2 QA baselines 384

We compared the QA accuracy of CLAIMS with 385

four alternative measures. 386

• Baseline: Only includes the input question and 387

answer options, relying on the model’s paramet- 388

ric knowledge to answer the questions. 389

• Rewrite: Question rewriting is used to retrieve 390

unstructured documents, added with reranking 391

to the model’s context window until the context 392

limit is reached. 393

• HyDE (Gao et al., 2023a): The question, an- 394

swer options, and candidate answer are used to 395

retrieve unstructured documents. The retrieved 396

documents are reranked and added to the model’s 397

context window up to the context limit. 398

• RAPTOR (Sarthi et al., 2024): We use the HyDE 399

query generation method to retrieve documents. 400

The RAPTOR process1 is used to produce a con- 401

text for each question for QA. 402

4.3 Component level analysis 403

We evaluated the capabilities of the core compo- 404

nents in CLAIMS over our MMLU Validation 405

dataset. These included the modules of relation 406

extraction, graph construction, and graph summa- 407

rization as can be seen from Figure 1. 408

409

1https://llamahub.ai/l/llama-packs/llama-index-packs-
raptor
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Relation extraction: The goal of the relation410

extraction phase is to turn the retrieved documents411

into decontextualized claims with associated RDF412

triples. These claims should be self-contained and413

should retain the meaning of the source documents.414

Thus, for relation extraction, we evaluated the415

method’s ability on three key criteria, namely.416

417

• Decontextualization: fraction of explicit entity418

references over all entity references extracted419

with SpaCy from each claim.420

• Preservation of semantic meaning: semantic sim-421

ilarity between the input document and the con-422

catenated form of all of the extracted claims.423

• Key claim extraction: the fraction of key claims424

extracted from the retrieved documents using a425

judge LLM, that were extracted with the method426

under evaluation.427

To assess our method, it is compared with several428

alternatives.429

• Single-stage (Our Method): Extracts the claims430

from documents and decontextualizes them in a431

single prompt.432

• Two-stage: Performs the extraction and decontex-433

tualization separately, potentially improves the434

performance of the decontextualization but has a435

drop in efficiency.436

• Direct triples: Extracts RDF triples instead of437

claims, improves the efficiency of the overall438

pipeline due to skipping the claim extraction.439

• Pairs relations: Extracts the entities first before440

extracting the relations between entities, a more441

traditional KG creation method.442

Graph construction: The goal of the graph con-443

struction phase is to have the communities in the444

graph make sense upon consideration of their rel-445

evance to the input question. Thus, for graph con-446

struction, the method’s ability to have high quality447

graph communities centered around key claims was448

tested.449

We compared the summaries produced from450

subgraphs and semantic communities around the451

claims of interests from graph summarization (Sec-452

tion 3.3).453

• Subgraph communities: All 1-hop connections454

around the entities in the claims of interests are455

considered, using the claims on these connections456

to produce summaries for each claim of interest.457

• Semantic communities: All claims that have a 458

similarity above the cosine similarity threshold 459

of 0.8 with the claims of interests are retrieved, 460

and use these claims to produce summaries. 461

A method’s score for an index is calculated 462

by obtaining the relevance score relative to the 463

input question of the concatenation of all produced 464

summaries. Which of the two methods had a 465

higher score for each index is recorded. 466

467

Graph summarization: The goal of graph summa- 468

rization is to ensure that the summaries produced 469

are of high quality. The requirements for these 470

summaries are that the content should have little 471

hallucinations, be relevant, and integrate informa- 472

tion from various sources. 473

Thus, for graph summarization, we further test 474

three different metrics: 475

• Faithfulness (hallucination rate): fraction of 476

claims in the output summaries that are supported 477

by the input documents. 478

• Answer relevance: fraction of claims relevant to 479

the input question in the output summaries. 480

• Score diversity: fraction of input documents 481

that have their content included in the final sum- 482

maries. 483

We compared CLAIMS with the summaries pro- 484

duced from the subgraph and semantic communi- 485

ties around the claims of interests. These are the 486

same summaries used in the graph construction 487

component analysis. 488

4.4 Entity masking 489

In order to evaluate the effect of CLAIMS on LLM 490

reasoning beyond the parametric knowledge of the 491

models, we masked the entities in the retrieved doc- 492

uments, questions, and answer options. The mask- 493

ing was performed via prompting the Llama-3.3- 494

70B-Instruct model (Dubey et al., 2024) to identify 495

and mask key biomedical entities into one of 13 496

categories. These entities will be replaced with 497

a generic label, and the generic label masks used 498

for each entity were aligned across all documents, 499

answer options, and the question for each index. 500

This allowed us to evaluate whether our approach 501

was able to improve the model’s performance in the 502

absence of any prior knowledge of how the entities 503

were related to each other. We compared CLAIMS 504

under this circumstance against the HyDE baseline 505
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Approach MMLU-
V*

MMLU-
A

MMLU-
CB

MMLU-
CM

MMLU-
PM

MMLU-
MG

MMLU-
CK

PMQA MedQA

Baseline 0.55 0.46 0.57 0.46 0.51 0.60 0.54 0.50 0.44
Rewrite 0.47 0.44 0.45 0.38 0.48 0.62 0.43 0.59 0.46
HyDE 0.55 0.47 0.47 0.45 0.57 0.65 0.46 0.60 0.50
RAPTOR 0.63 0.54 0.63 0.55 0.60 0.75 0.63 0.66 0.50
CLAIMS 0.69 0.59 0.67 0.58 0.61 0.78 0.68 0.59 0.52
*MMLU prefixes denote: V-Validation, A-Anatomy, CB-College Biology, CM-College Medicine,
PM-Professional Medicine, MG-Medical Genetics, CK-Clinical Knowledge

Table 1: Accuracy scores across various BioMedical QA approaches. Results show the performance on MMLU
Clinical Topics, PubMedQA, and MedQA benchmarks. CLAIMS shows consistent improvements over baseline
methods, with comparable or superior performance across the non-validation datasets. The MMLU prefixes denote
different subject areas, as noted under the table.

from the QA Accuracy evaluation. More informa-506

tion about the masking procedure can be found in507

Appendix K.508

5 Results509

5.1 QA accuracy510

The largest average improvement of our method is511

over the Rewrite method at 14.63% and the smallest512

over RAPTOR at 2.00% on all of the non-validation513

datasets (Table 1). Other than the PubMedQA514

dataset where it obtained a 59% accuracy, CLAIMS515

has comparable or improved performance over the516

baselines on all datasets. For PubMedQA, we be-517

lieve that the slight drop in performance is due to in-518

sufficient denoising in the created graph, which we519

plan on addressing in future work. In all, these re-520

sults imply that our method has allowed the model521

to more thoroughly analyze cross-document rela-522

tionships in its limited context window, therefore523

more effectively synthesizing information from the524

retrieved documents.525

Approach Ref Score Sem. Sim. Claim Ret.
single_stage 0.941 0.901 1.0
two_stage 0.946 0.903 1.0
direct_triples 0.971 0.865 1.0
pairs_relations 0.994 0.815 1.0

Table 2: Relation extraction methods across three met-
rics. Ref. Score measures decontextualization ability,
Sem. Sim. measures preservation of original meaning,
and Claim Ret. measures preservation of key informa-
tion. Scores range from 0-1.0. Results demonstrate
the trade-off between entity-based and claim-based ap-
proaches, with our single stage method achieving a bal-
anced performance while maintaining good computa-
tional efficiency.

5.2 Component level analysis results526

We obtained evaluation results for each of527

CLAIMS’ three core components, namely relation528

extraction, graph construction, and graph summa- 529

rization. Our relation extraction evaluation com- 530

pared four methods across three metrics: decontex- 531

tualization quality (Ref Score), semantic preserva- 532

tion of original documents’ meanings (Sem. Simi- 533

larity), and key claim retention (Claim Ret.) (Table 534

2). The entity-based claim extraction approaches 535

(direct_triples and pairs_relations) achieved higher 536

reference tracking scores (0.994 and 0.971) com- 537

pared to claim-based methods (single_stage 0.941, 538

two_stage 0.946) due to their focus on extracting 539

explicit entities which naturally avoids leaving un- 540

resolved references. However, the claim-based 541

methods achieved strong semantic preservation per- 542

formance (0.901 and 0.903 vs 0.865 and 0.815). 543

This advantage suggests that retaining the sentence 544

structure of the claims results in lower informa- 545

tion loss of semantic meaning. All of the meth- 546

ods tested achieved a perfect key claim retention 547

score. These results support our usage of the single 548

stage approach with its comparable decontextual- 549

ization and superior semantic preservation scores 550

compared to the entity extraction approaches, and 551

it achieves almost identical performance to the two 552

stage approach at a fraction of the computational 553

cost. 554

Approach Summary Score Wins
Graph Communities 59.35%

Semantic Communities 40.65%

Table 3: Relevance scores between graph and semantic-
based summarization. Results show the percentage of
times each method produced summaries with a higher
relevance score, and demonstrate the graph community
summary’s superior ability to capture relevant informa-
tion from the input documents.

For the graph construction component, the sum- 555

maries produced by the graph communities had a 556

higher relevance score to the input question com- 557

pared to the summaries produced by the semantic 558
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Approach MMLU-
V*

MMLU-
A

MMLU-
CB

MMLU-
CM

MMLU-
PM

MMLU-
MG

MMLU-
CK

PMQA MedQA

HyDE 0.15 0.18 0.28 0.23 0.22 0.36 0.23 0.56 0.28
CLAIMS 0.26 0.22 0.28 0.28 0.26 0.43 0.34 0.48 0.30
*MMLU prefixes denote: V-Validation, A-Anatomy, CB-College Biology, CM-College Medicine,
PM-Professional Medicine, MG-Medical Genetics, CK-Clinical Knowledge

Table 4: Accuracy scores across various BioMedical QA approaches, with masked retrieved documents, input
questions, and answer options. Our CLAIMS approach achieved higher scores on all datasets other than PubMedQA.
The MMLU prefixes denote different subject areas, as noted under the table.

communities 59.35% of the time (Table 3). While559

semantic communities are limited to capturing re-560

lationships based on pure semantic similarity, our561

graph construction identifies connections that may562

be relevant topically yet semantically dissimilar.563

For the graph summarization component,564

CLAIMS achieved comparable faithfulness565

(0.9569) and relevancy scores (0.8414) compared566

to the alternative approaches while having superior567

source diversity (0.9647) (Table 5). The slightly568

lower relevancy score of our CLAIMS method569

(0.8414) compared to semantic clustering (0.8604)570

stems from the inclusion of information in the571

summaries that is not directly relevant to the572

question but is useful for connecting relevant573

statements. This design decision enables more574

comprehensive answers but lowers the total575

number of claims that are directly relevant to the576

input question in the summaries. The consistently577

high faithfulness values (>0.94) for all three578

alternative methods confirms that none of them579

suffer from significant hallucinations. Our method580

achieving a strong faithfulness (0.9569) balanced581

with superior source diversity, meaning that it can582

integrate information from many of the retrieved583

documents with little hallucination in the produced584

summaries. The results of our evaluations are585

discussed in more detail in Appendix L.

Approach Faithfulness Relevancy Source Div.
CLAIMS 0.9569 0.8414 0.9647
Semantic 0.9706 0.8604 0.9170
Subgraph 0.9453 0.7938 0.9356

Table 5: Three summarization approaches across faith-
fulness (hallucination), relevancy (relevance to input
question), and source diversity (multi-document rela-
tions) metrics. Scores range from 0-1.0. Results demon-
strate CLAIMS’ ability to maintain a high faithfulness
and relevancy while achieving superior source diversity.

586

5.3 Entity masking results587

Notably, the accuracy scores of the masked config-588

uration are significantly lower than their unmasked589

variants, suggesting that the masking of the entities 590

has broken many of the connections between them 591

that had been learned during pretraining. Look- 592

ing at the results, other than on PubMedQA, our 593

CLAIMS approach had a comparable or higher ac- 594

curacy score than the HyDE baseline, achieving an 595

average improvement of 3.13% on all of the non- 596

validation datasets (Table 4). This suggests that our 597

approach is capable of representing information in 598

a manner that fundamentally improves the reason- 599

ing ability of the LLM, instead of only utilizing 600

heuristic patterns between entities learned during 601

pretraining. 602

6 Conclusion 603

We introduce a novel method called CLAIMS for 604

retrieval based BioMedical QA tasks, targeting 605

the key challenge of recognizing and leveraging 606

multi-document relationships. It utilizes proposi- 607

tional claims to construct a local knowledge graph 608

from retrieved documents, before constructing sum- 609

maries derived via layerwise summarization from 610

the graph. These summaries were used to contextu- 611

alize a small language model to produce the final 612

QA decisions. CLAIMS achieved comparable or 613

superior performance over RAG baselines on sev- 614

eral biomedical benchmarks, with average improve- 615

ments ranging from 2.00% to 14.63%, demonstrat- 616

ing its effectiveness in enabling even a small model 617

to effectively synthesize complex multi-document 618

information. Additional experiments covering the 619

intermediate stages of our pipeline and its effects 620

on LLM reasoning showed the robustness of each 621

part of our approach. The results reveal that out- 622

side of improvements on traditional benchmarks, 623

CLAIMS provides benefits on QA tasks even when 624

existing connections between entities are masked. 625

7 Limitations 626

Denoising: Our approach currently relies on 627

the summarization’s inherent denoising ability 628

to remove irrelevant information from the con- 629

8



structed graph. This was done in lieu of entirely630

removing irrelevant claims in an attempt to retain631

connections that were individually irrelevant yet632

important to connect relevant content together for633

the summaries. Future work will target methods634

to limit the effects of these irrelevant claims and635

improve detection and removal of conflicting636

information.637

638

Model use: We currently only test on Mistral-639

7B-Instruct-v0.1 (Jiang et al., 2023) for the main640

model. We chose this model due to its balance641

of performance and computational accessibility,642

allowing our method to be implemented with more643

modest hardware requirements compared to larger644

models. In future work, we plan on testing on other645

newer, more advanced models as well as a more646

diverse set of retrieval datasets and evaluation647

benchmarks.648

649

Claim extraction efficiency: Our current claim650

and triple extraction steps all require LLM gen-651

eration for each claim/triple, which can become652

expensive depending on the number of retrieved653

documents. We plan on looking into non-LLM654

approaches to do the extractions to improve the655

method’s efficiency.656

8 Ethical Considerations657

Our system, while demonstrating improved QA Ac-658

curacy on biomedical QA benchmarks, inherits the659

fundamental limitations of LLM-based approaches660

in healthcare contexts. We caution against using661

CLAIMS or similar systems for medical diagno-662

sis or treatment decisions without expert oversight.663

The knowledge graphs constructed reflect the in-664

formation and potential biases in retrieved source665

documents, so verification of model outputs is es-666

sential. This tool is not intended to replace clini-667

cal expertise, and implementations should include668

clear limitation disclaimers and verification mecha-669

nisms.670
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964
Extract ALL claims from this medical965

text as independent statements. For966
each claim:967

968
1. Make it atomic - break apart any969

grouped findings/measurements into970
individual claims , even if they were971
presented together in the text (e.g972

., if text says 'measurements A, B973
and C showed improvement ', create974
three separate claims)975

2. Make it standalone by including ALL976
necessary context within each claim:977

978
- Study type and time period979
- Population characteristics and sample980

size981
- Study setting982
- Relevant conditions983
- Statistical Significance if noted984

985
3. Structure each claim as a complete986

sentence that:987
988

- Avoids phrases like 'the study found '989
or 'results showed '990

- Includes full technical terms with991
abbreviations992

- Could be understood without any other993
context994

- Contains all qualifying information995
996

Example transformations:997
BAD claims (missing context , ambiguous998

source , or incomplete):999
CLAIM: Blood pressure and heart rate1000

improved.1001
CLAIM: The study found improvements in1002

vital signs.1003
CLAIM: 30% of patients showed positive1004

outcomes.1005
CLAIM: This randomized trial1006

demonstrated efficacy.1007
CLAIM: In this study , BMI decreased1008

significantly.1009
CLAIM: The present analysis showed1010

improved outcomes ..1011
1012

GOOD claims:1013
CLAIM: The 2010 -2015 Mayo Clinic1014

randomized controlled trial of 1001015
hypertensive patients aged 45-651016
demonstrated systolic blood pressure1017
decreases of 15mmHg (95% CI: 10-201018

mmHg , p <0.001) after 6 weeks of1019
treatment.1020

CLAIM: The 2010 -2015 Mayo Clinic1021
randomized controlled trial of 1001022
hypertensive patients aged 45-651023
showed resting heart rate decreases1024
of 8 bpm (95% CI: 5-11 bpm , p <0.001)1025
after 6 weeks of treatment.1026

CLAIM: The 2018 -2020 Cleveland Clinic1027
prospective cohort study of 2501028
diabetic patients aged 30-501029
demonstrated hemoglobin A1C level1030
decreases of 1.2% (95% CI: 0.8-1.6%,1031
p <0.01) in the intervention group1032

receiving intensive lifestyle1033

modification. 1034
CLAIM: The 2015 -2017 Johns Hopkins 1035

Hospital double -blind placebo - 1036
controlled trial of 180 arthritis 1037
patients aged 50-75 showed morning 1038
stiffness duration decreases of 45 1039
minutes (95% CI: 30-60 minutes , p 1040
<0.005) in patients receiving the 1041
experimental treatment. 1042

CLAIM: The 2012 -2014 Stanford Medical 1043
Center retrospective analysis of 300 1044
obesity clinic patients aged 18-40 1045

demonstrated body mass index 1046
decreases of 2.5 kg/ m (95% CI: 1047
1.8 -3.2 kg/ m , p <0.001) after 12 1048
months of structured weight 1049
management. 1050

1051
Format each claim starting with 'CLAIM:' 1052

on a new line. Include every 1053
finding mentioned in the text , no 1054
matter how minor. 1055

1056
Text: {text} 10571058

Prompt 1: Claim Extraction Prompt

1059
Given these existing claims , find any 1060

ADDITIONAL claims from the text that 1061
weren 't already captured. 1062

Do NOT modify or restate the existing 1063
claims - only add new ones. 1064

If all claims have already been captured 1065
, respond with 'NO_ADDITIONAL_CLAIMS 1066
'. 1067

1068
Each new claim must be self -contained 1069

and decontextualized with: 1070
- All relevant entities and background 1071

information 1072
- Study conditions , populations , and 1073

timeframes 1074
- Statistical significance where 1075

mentioned 1076
- All context needed for independent 1077

understanding 1078
- Clear , single statements (not 1079

paragraphs) 1080
- Be a standalone , self -contained 1081

statement that does not reference or 1082
depend on any other claims , the 1083

original text , or any external 1084
context 1085

1086
Existing claims: 1087
{claims} 1088

1089
Text: {text} 1090

1091
List only NEW claims , starting each with 1092

'CLAIM:' (or respond with ' 1093
NO_ADDITIONAL_CLAIMS ') 10941095

Prompt 2: Claim Extraction Verification Prompt

1096
The following will be several examples 1097

of claims , and their extraction into 1098
subject - predicate - object 1099

triples. 1100

12



Extract only the single most important1101
relationship from each claim. For1102
research results , focus on the main1103
finding. For factual claims , focus1104
on the central relationship.1105

1106
Claim: A correlation exists between1107

histologic chorioamnionitis and the1108
usage of antibiotics.1109

SUBJECT: histologic chorioamnionitis1110
PREDICATE: correlation1111
OBJECT: usage of antibiotics1112

1113
Claim: Early cast -related complaints1114

predicted the development of complex1115
regional pain syndrome.1116

SUBJECT: early cast -related complaints1117
PREDICATE: predict1118
OBJECT: development of complex regional1119

pain syndrome1120
1121

Given the following claim , identify the1122
single most important relationship.1123

List exactly one triple using "SUBJECT",1124
"PREDICATE", and "OBJECT" on1125

separate lines.1126
All fields must contain content from the1127

claim.1128
Claim:11291130

Prompt 3: RDF Triple Extraction Prompt

A Claim Extraction Prompts1131

For claim extraction (Section 3.1), we do the1132

process in two gleanings. The first one can be seen1133

with Prompt 1. The second one takes the extracted1134

claims from the first pass, and asks the model to1135

extract claims it missed from the documents as1136

shown in Prompt 2. This is to ensure that we don’t1137

miss any important information while keeping1138

efficiency at a reasonable level. We deduplicate1139

all of the extracted claims to prevent repeats from1140

occurring.1141

1142
1143

Consider the following question and1144
answer options. Choose the correct1145
response and explain your decision.1146

Question: {question}1147
Answer Options: {answer_options}1148
Answer:11491150

Prompt 4: HyDE Candidate Answer Prompt

HyDE Queries: In HyDE query generation1151

(Section 3.1), as the answer options are multiple1152

choice for the benchmarks we are considering, we1153

prompt the model to generate an accompanying1154

explanation for the selected answer choice. This1155

ensures we are taking advantage of the parametric1156

knowledge inside of the model using this expla-1157

nation to find associated documents, and are not1158

stuck with only a simple multiple choice selection 1159

in the HyDE query. The prompt for creating the 1160

accompanying explanation can be seen in Prompt 1161

4. 1162

1163
1164

Question: {question} 1165
Main Claim: {claim} 1166
Related Claims from Local Community: 1167
{unique_contexts} 1168

1169
Please provide a comprehensive analysis 1170

of how the main claim relates to the 1171
question , considering the context 1172

from related claims. 11731174

Prompt 5: Claim of Interest Prompt

1175
You are tasked with enriching and 1176

contextualizing claims using related 1177
information. Your goal is to create 1178
a comprehensive summary that: 1179

1. Preserves ALL important information 1180
from the original claims 1181

2. Integrates relevant context from 1182
related claims 1183

3. Makes implicit relationships explicit 1184
4. Filters out redundant or irrelevant 1185

information 1186
1187

The following summaries provide relevant 1188
context. Each represents a claim 1189

that leads to or supports the above 1190
claims: 1191

{context_summaries} 1192
1193

The claims to contextualize are: 1194
{claims} 1195

1196
Produce a summary that: 1197
- MUST preserve the complete meaning and 1198

all key details of the original 1199
claims 1200

- Incorporate relevant context that 1201
helps understand or validate the 1202
claims 1203

- Make implicit connections explicit (e. 1204
g., if context suggests a cause - 1205
effect relationship not directly 1206
stated) 1207

- Filter out redundant or tangential 1208
information from the context 1209

- Use clear , precise language 1210
- Maintain factual accuracy without 1211

speculation 1212
1213

Focus on enriching the claims while 1214
ensuring NO important information is 1215
lost. When in doubt , include 1216

information rather than exclude it. 1217
1218

Summary: 12191220

Prompt 6: Layerwise Summarization Summary Prompt

1221
Contexts: {context_claims} 1222
Question: {question} 1223
Answer Options: {answer_choices} 1224

13



1225

Prompt 7: Model Generation Prompt

Claim of Interest Prompts: In the claims of1226

interest summarization prompts (Section 3.3),1227

we emphasize the central claim of interest when1228

contextualizing it with the surrounding contexts.1229

This is to ensure that the central claim is not1230

overwhelmed by the surrounding contexts. The1231

output of this procedure is a test summary that is1232

used to rerank the claims of interests. This can be1233

seen in Prompt 5.1234

1235

Layerwise Summarization Prompts: In the lay-1236

erwise summarization prompts (Section 3.3), we1237

emphasize several key points. These include pre-1238

serving all important medical knowledge, integrat-1239

ing information together to capture multi-hop rela-1240

tions, capturing implicit relationships that are not1241

explicitly mentioned, and filtering out redundant or1242

irrelevant information. To ensure that information1243

important for multi document relations are retained1244

even when they are not apparent, we ask in the1245

prompt to preserve information if possible, as long1246

as it does not conflict with the removal of noise.1247

This can be seen in Prompt 6.1248

B Triple Extraction Fallbacks1249

For RDF triple extraction (Section 3.1), we begin1250

with Prompt 3. Occasionally, the model has the1251

tendency to leave an entity field or the relation1252

field empty when extracting RDF triples from1253

the propositional claims. In those cases, we have1254

several fallbacks which we sequentially attempt1255

when the previous one fails.1256

1257

Triple extraction fallback: The first is to provide1258

the previous faulty output of the RDF triple1259

extraction to the model, mention that there1260

is a missing/malformed output, and prompting1261

the model to provide the correctly formatted output.1262

1263

Entity extraction fallback: The second is to fall1264

back to extracting two key entities and the relation,1265

with one prompt extracting the two entities. The1266

first two listed entities are used if there are more1267

than two entities in the outputs. The relation1268

between entities is extracted with another prompt.1269

1270

SpaCy extraction fallback: If this still fails due to1271

malformed outputs, we use SciSpaCy (Neumann1272

et al., 2019) to extract two entities from the claim,1273

and use the "associated" relation to describe their 1274

relation. 1275

C Deduplication of Numerical Entities 1276

Due to the free-form entity extraction process (Sec- 1277

tion 3.2), sometimes numerical items are used as 1278

entity nodes. We have empirically found that the 1279

embeddings of these numerical items can receive 1280

high semantic similarities between each other, re- 1281

sulting in nodes being placed in the same cluster 1282

that are completely unrelated from our entity dedu- 1283

plication. To combat this special case, we check the 1284

contents of each entity node, and if over half of the 1285

characters are numeric, we treat them as numeric 1286

nodes and don’t allow them to be placed in other 1287

clusters. 1288

In addition, we don’t use character-based Leven- 1289

shtein distance because medical entities that have 1290

only minor character differences can have entirely 1291

different meanings. 1292

D Summary Generation 1293

Throughout our layerwise summarization method 1294

(Section 3.3), we need to ensure that combining 1295

summaries does not exceed the model’s context 1296

window. When the combined tokenization length 1297

of the connected summaries exceeds a predefined 1298

token limit (2k tokens for our testing), semantic 1299

clustering based compression is used to cut down 1300

on the size while preserving key information. After 1301

first determining a rough number of clusters from 1302

the total length of the input summaries, summaries 1303

are placed into the same cluster using KMeans 1304

with their individual embeddings. Each cluster is 1305

summarized, and if the combined resulting clusters 1306

are still too long, they are recursively summarized. 1307

The final summaries of the resulting clusters are 1308

returned to continue the layerwise summarization. 1309

The layerwise summarization process is used 1310

because it has three key benefits. First, it is ca- 1311

pable of capturing all the information in the local 1312

connected component, including both the direct 1313

content and path-based information. This is im- 1314

portant for understanding multi-document relations 1315

between different medical concepts. Second, our 1316

layerwise processing of claims will inherently filter 1317

out irrelevant content. Finally, this method places 1318

emphasis on claims closer in G to the claims of 1319

interest, which naturally prioritizes more topically 1320

relevant information in the final summaries. 1321
1322
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You are an evaluation machine. Look at1323
the following answer without1324
considering the given explanation: [1325
BEGIN PROVIDED ANSWER] {1326
provided_answer} [END PROVIDED1327
ANSWER] Looking at the answer , was1328
the FINAL answer it gave {1329
answer_choices }? Only give the final1330
answer the answer explicitly1331

returned in the provided answer text1332
, do not do any additional reasoning1333
. That is, at the very end of the1334
answer text it should have1335
explicitly mentioned that its final1336
answer was one of the options {1337
answer_choices }. Return that answer ,1338
and ignore all of the caveats the1339

answer mentioned. Do not reason1340
about the answer , simply return what1341
the model explicitly put as its1342

final answer. The answer should be1343
in a json object , with only the1344
letter corresponding to the answer1345
under the key "answer", so if the1346
answer as (A) the output should be1347
{" answer" : "a"}13481349

Prompt 8: Evaluation Output Extraction prompt

E Output Evaluation1350

Due to the variability in LLM outputs, in order to1351

extract the model’s answer option from its outputs1352

we utilized a subsequent extraction step. As seen1353

in prompt 8, we take the model output, question,1354

and answer options and ask the model to output a1355

json object that captures the selected option. The1356

outputs are forced to be json objects via lmfor-1357

matenforcer (MIT License) 2. We choose to do it in1358

this manner compared to directly having the model1359

output a json object when answering the question1360

due to issues with invalid json objects and empiri-1361

cally noticing a drop in performance when doing1362

so.1363

F Evaluation Datasets1364

For the datasets that we used, Table 6 lists the num-1365

ber of examples in each of them. We used MMLU1366

Clinical Topics (MIT License) (Hendrycks et al.,1367

2021), PubMedQA (MIT License) (Jin et al., 2019)1368

and MedQA (MIT License) (Jin et al., 2020). The1369

datasets were used in accordance with their license1370

agreements.1371

G Generative AI Use1372

In this work, we used Claude3 to assist in generat-1373

ing code for some of the more tedious implemen-1374

2https://github.com/noamgat/lm-format-enforcer
3www.claude.ai

Dataset Dataset Size
PubMedQA 500
MedQA 1273
MMLU Anatomy 135
MMLU College Biology 144
MMLU Professional Medicine 272
MMLU Clinical Knowledge 265
MMLU College Medicine 173
MMLU Medical Genetics 100

Table 6: Sizes of the evaluation datasets we used in this
work.

tation components. This assistance was limited to 1375

routine programming tasks such as data process- 1376

ing functions, formatting conversions, etc. The 1377

core algorithmic approaches, system architecture 1378

design, and experimental methodology were con- 1379

ceived and developed by the authors. For writing 1380

this paper, generative AI use was limited to minor 1381

grammatical adjustments. 1382

H Model Settings 1383

We use the Mistral-7B-Instruct-v0.1 model 1384

(Apache 2.0) for both construction and summa- 1385

rization of the graph for all evaluations (Jiang 1386

et al., 2023), and run it without sampling. For 1387

experiments that involved LLM-as-a-judge capabil- 1388

ities, we used Mixtral-8x7B-Instruct-v0.1 (apache 1389

2.0) (Jiang et al., 2024a). For Entity Masking, 1390

we use Llama-3.3-70B-Instrucz (Llama 3.3 Com- 1391

munity License Agreement) (Dubey et al., 2024). 1392

For Reranking, we used bge-reranker-v2-gemma 1393

(apache 2.0), and for embedding we used bge-large- 1394

en-v1.5 (MIT License) (Li et al., 2023). We use 1395

the en_core_sci_scibert spacy model (apache 2.0) 1396

(Neumann et al., 2019) due to its better perfor- 1397

mance on scientific tasks compared to general do- 1398

main spacy models, and the neural entity recogni- 1399

tion pipeline to extract entities. We run experiments 1400

on NVIDIA L40S and A40 GPUs, and H100s when 1401

possible. All of the experiments and benchmarks 1402

took approximately 250 GPU hours to run once. 1403

All models were used only for academic research 1404

and did not violate their license agreements. 1405

I RAG Retrieval 1406

The retrieval corpora include Simple Wikipedia 1407

(CC-BY-SA) (Foundation), medical textbooks 1408

from MedQA (MIT License) (Jin et al., 2020), 1409

PubMed abstracts and fulltext articles taken from 1410

GLKB (CC BY-NC-ND 4.0) (Huang et al., 2024), 1411
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and StatPearls articles4 (CC BY-NC-ND 4.0). Sim-1412

ple Wikipedia provides general knowledge, medi-1413

cal textbooks provide foundational concepts, Stat-1414

pearls documents provide detailed medical informa-1415

tion, and PubMed abstracts/fulltext articles provide1416

research findings. This combination is to improve1417

the coverage of topics for which our method can1418

retrieve relevant information, inspired by MedRAG1419

(Xiong et al., 2024). For Simple Wikipedia and1420

medical textbooks, we chunk them into chunks1421

of 1000 tokens via LlamaIndex’s SentenceSplitter,1422

with 200 token overlaps. PubMedCentral full text1423

articles are chunked using semantic chunking sen-1424

tence by sentence with a breakpoint threshold of1425

0.95 to ensure we have relevant chunks. For Stat-1426

Pearls, we use MedRAG’s scripts to chunk them1427

hierarchically.1428

We retrieve from each corpus with a variety of1429

methods. From Simple Wikipedia, we use the1430

BM25 Retriever (Robertson and Zaragoza, 2009)1431

to retrieve relevant articles due to the size of the1432

corpora and the retrieval process’s speed. From1433

the medical textbooks and statpearls, we use both1434

BM25 and dense vector retrieval to include seman-1435

tic meanings that might be missed from pure BM251436

retrieval. Reciprocal Rank Fusion (Cormack et al.,1437

2009) is used to combine the results of the two1438

retrieval methods. We use LlamaIndex’s imple-1439

mentations of BM25 Retriever and Vector Index1440

Retriever to implement these retrieval processes.1441

GLKB retrieval of abstracts is conducted via dense1442

vector retrieval through the GLKB API (Huang1443

et al., 2024), and as GLKB returns various top-1444

ics associated with the input query, we use one of1445

these connected topics to retrieve an additional set1446

of articles. For each of the retrieved abstracts, we1447

consider their pubid. If these articles are part of the1448

PubMedCentral corpus, we extract and chunk their1449

fulltext articles via the BioC API (Comeau et al.,1450

2013). We retrieve 3 documents from each of these1451

retrieval sources, including the additional reference1452

returned by GLKB. Before we do further process-1453

ing, we first perform an additional chunking of all1454

inputs to be within 1024 tokens via the LlamaIndex1455

SentenceSplitter to ensure model context window1456

limits are not exceeded, as well as remove special1457

characters to ensure smooth handling of the texts.1458

All data was used in accordance with their license1459

agreements.1460

4https://www.statpearls.com/

J Ablation test 1461

We ran an ablation test of our approach to test 1462

whether the graph construction and summarization 1463

was necessary for the improved performance. We 1464

tested our approach against the alternative of: 1465

• Claim: We use the HyDE query generation 1466

method, and chunk the documents into propo- 1467

sitional claims. The claims are reranked and 1468

added to the model’s context window up to 1469

the context limit. 1470

Our final CLAIMS method achieved a comparable 1471

or higher score on all datasets. It had an average 1472

improvement of 11.13% over Claim over the non- 1473

validation datasets, which suggests that our graph 1474

construction and summarization had a significant 1475

improvement over just using propositional claims 1476

as a chunking modality (Table 7). 1477

K Entity Masking 1478

For the Entity Masking experiments, we masked 1479

the entities in the retrieved documents, questions, 1480

and answer options before providing them to the 1481

model. These are the same documents that were 1482

retrieved for the datasets without masking to en- 1483

sure we had a good set of documents to start out 1484

with. Llama-3.3-70B-Instruct (Dubey et al., 2024) 1485

classified key biomedical entities into one of 13 1486

categories: Gene, Chemical, Disease, Phenotype, 1487

Policy, MedicalInterventions, ExperimentalTech- 1488

nique, Examination, ComputationalMethod, Loca- 1489

tion, Population, Organism, or OtherEntity. The 1490

prompt to do so is in Prompt 9. 1491

Then, the same model is used to identify all 1492

mentions of each entity. These mentions are all 1493

replaced with a generic label in format <Category 1494

+ entity number>, such as <Gene1> or <Disease2> 1495

using Prompt 10. The generic label masks used 1496

were aligned in all documents, answer options, and 1497

the question for each index, ensuring that the ’entity 1498

number’ used for each entity’s mask is consistent 1499

across all of these mentions. 1500
1501

You are a biomedical NLP expert. 1502
Identify and extract key biomedical 1503
entities from the text. Categorize 1504
them into: Gene , Chemical , Disease , 1505
Phenotype , Policy , 1506
MedicalInterventions , 1507
ExperimentalTechnique , Examination , 1508
ComputationalMethod , Location , 1509
Population , Organism , or OtherEntity 1510
. Return the results in JSON format 1511
like: {" entities ": [{" text": "entity 1512
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Approach MMLU-
V*

MMLU-
A

MMLU-
CB

MMLU-
CM

MMLU-
PM

MMLU-
MG

MMLU-
CK

PMQA MedQA

Claim 0.55 0.50 0.47 0.42 0.54 0.69 0.45 0.58 0.48
CLAIMS 0.69 0.59 0.67 0.58 0.61 0.78 0.68 0.59 0.52
*MMLU prefixes denote: V-Validation, A-Anatomy, CB-College Biology, CM-College Medicine,
PM-Professional Medicine, MG-Medical Genetics, CK-Clinical Knowledge

Table 7: Comparison of accuracy scores across various BioMedical QA approaches, with Claim referring to the
ablation configuration of only using the propositional claims without the final layerwise summarization. Our
CLAIMS approach achieved comparable or higher scores on all datasets. The MMLU prefixes denote different
subject areas, as noted under the table.

text", "type": "entity type", "1513
index": 1}]}. Return only the json1514
object.1515

Text:15161517

Prompt 9: Entity Extraction Prompt

1518
You are a biomedical NLP expert. Your1519

task is to:1520
1. Analyze the provided text and list of1521

entities1522
2. For each entity , extract all its1523

mentions in the text , skipping over1524
mentions that are inside of other1525
words1526

3. Return a JSON object with the1527
following structure , ensuring that1528
all fields are present:1529

{1530
"entity_mentions ": [1531

{1532
"entity_type ": "type",1533
"index": 1,1534
"original_form ": "main form1535

",1536
"mentions ": [" mention1", "1537

mention2", "mention3", "1538
mention4", "mention5"],1539

}1540
]1541

}1542
Ensure consistent indexing for the same1543

entity across all its forms. Each1544
mention in "mentions" should be1545
unique words , "mention1", "mention2"1546
should not be the same.1547

You must output a single valid json1548
object.1549

text: {text}1550
entities: {entities}1551
Return only the json object.15521553

Prompt 10: Entity Mention Prompt

L Component Level Analyses1554

We perform component level analyses to evalu-1555

ate the effectiveness of each component in our ap-1556

proach. In relevant metrics that use the LLM-as-1557

a-Judge methods, we use the token probabilities1558

of ’Yes’ vs. ’No’ to determine the model’s selec-1559

tion. The following sections discuss the analysis1560

performed in Section 4.3 in more detail.1561

L.1 Relation extraction 1562

The goal of the relation extraction phase is to 1563

turn the retrieved documents into decontextualized 1564

claims with associated RDF triples. The desired 1565

properties of these claims and triples are that each 1566

claim is self-contained and the meaning of the 1567

source documents are retained. In the case that 1568

the content in the documents are not exhaustively 1569

maintained, at least the key points must be. Thus, 1570

for relation extraction, we evaluated the method’s 1571

ability on three key criteria, namely decontextu- 1572

alization of entity references, preservation of se- 1573

mantic meaning of the original documents, and key 1574

claim extraction from the original documents. 1575

The Reference Tracker evaluation tests the de- 1576

contextualization. To do so, it uses SpaCy to extract 1577

both explicit entity mentions and all entity refer- 1578

ences in each claim. A claim’s score is the number 1579

of explicit entity mentions over the total number of 1580

entity references. The score is aggregated over all 1581

claims that are extracted. A well-decontextualized 1582

set of claims would have a lower number of unre- 1583

solved references and thus a higher score. 1584

The Semantic Similarity evaluation test as- 1585

sesses the method’s ability to preserve the original 1586

document’s meaning. The evaluation involves com- 1587

paring the semantic similarity between the embed- 1588

ding of the input document and the concatenated 1589

form of all of the extracted claims. The score is 1590

averaged over all of the retrieved and chunked doc- 1591

uments. The score of a set of extracted claims that 1592

preserve most of the original meaning would be 1593

high. 1594

The Key Relation Retention evaluation test as- 1595

sesses the ability of the extraction to extract key 1596

claims. A larger judge LLM extracts important 1597

claims from the source documents, and is subse- 1598

quently asked whether the claims retrieved from 1599

the document by the method under evaluation in- 1600

clude the information from each of the key claims. 1601

The score is calculated by determining the fraction 1602
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of key claims that are retained, averaging the scores1603

over all of the source documents. The methods un-1604

der evaluation must extract all relevant key claims1605

to prevent unpredictable downstream behavior.1606

To assess our method, we compare it with several1607

alternatives.1608

• Single stage (Our Method): Extracts the claims1609

from the documents and decontextualizes them1610

in a single prompt.1611

• Two stage: Performs the extraction and decontex-1612

tualization separately, could potentially improve1613

the performance of the decontextualization but1614

has a drop in efficiency.1615

• Direct triples: Extracts RDF triples instead of1616

claims, improves the efficiency of the overall1617

pipeline due to skipping the claim extraction step.1618

• Pairs relations: Extracts the entities first before1619

extracting the relations between entities, a more1620

traditional KG creation method.1621

1622
Summarize the following claims , focusing1623

on how the additional claims1624
provide context for the first claim:1625

1626
MAIN CLAIM:1627
{claim}1628

1629
CONTEXT CLAIMS:1630
{claims}16311632

Prompt 11: Graph construction component level
analysis subgraph and semantic summaries

L.2 Graph construction1633

The goal of the graph construction phase is to have1634

the RDF triples that come out of the relation extrac-1635

tion phase connect related claims. The communi-1636

ties in the graph should make sense upon consider-1637

ation of their relevance to the input question. Thus,1638

for graph construction, we tested the method’s abil-1639

ity to have high quality graph communities cen-1640

tered around key claims.1641

To evaluate the communities, we want commu-1642

nities that are effective at answering the input ques-1643

tion and are centered at the claims of interest. We1644

consider the summaries obtained from extracting a1645

subgraph around the claims of interest that are the1646

top 10 most relevant to the input question based on1647

our reranker, filtered to those that are not within1648

1-hop of a higher ranked claim. This filtering is1649

the same as that in our graph summarization proce-1650

dure (Section 3.3). We compare our graph structure1651

using subgraph retrieval with the alternative of re-1652

trieving semantically similar claims to the claims of1653

interest. For the subgraph retrieval, we consider all 1654

1-hop connections around the entities in the claims 1655

of interest. For semantic similarity, we retrieve 1656

all claims that have a similarity above the cosine 1657

similarity threshold of 0.8 with the claims of in- 1658

terest. The score for an index with either method 1659

is calculated by obtaining the relevance score of 1660

the concatenation of all produced summaries of 1661

that index via Prompt 11. As the actual relevance 1662

scores produced by rerankers are only useful to 1663

compare the two methods, we record which of the 1664

two methods had a higher score for each index. 1665
1666

We have extracted a claim from a summary 1667
. Was this claim derived from the 1668
below document? 1669

1670
SUMMARY: {summary} 1671
CLAIM: {claim} 1672
DOCUMENT: {doc} 1673

1674
Answer (Yes/No): 16751676

Prompt 12: Graph summarization component level
analysis source diversity prompt

1677
We have extracted a claim from a summary 1678

. Is this claim supported by this 1679
document? 1680

1681
SUMMARY: {summary} 1682
CLAIM: {claim} 1683
DOCUMENT: {source_doc} 1684

1685
Answer (Yes/No): 16861687

Prompt 13: Graph summarization component level
analysis faithfulness prompt

1688
We have extracted a claim from a summary 1689

. Is this claim relevant to 1690
answering the question in the 1691
context of the summary? 1692

1693
SUMMARY: {summary} 1694
CLAIM: {claim} 1695
QUESTION: {question} 1696

1697
Answer (Yes/No): 16981699

Prompt 14: Graph summarization component level
analysis relevancy prompt

L.3 Graph summarization 1700

The goal of graph summarization is to ensure that 1701

the summaries produced by the summarization 1702

method are useful for the input question. The re- 1703

quirements for these summaries are that the con- 1704

tents should be relevant, have little hallucinations, 1705

and have information from various sources. Thus, 1706
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for graph summarization, we further test three dif-1707

ferent metrics: faithfulness, answer relevance, and1708

source diversity.1709

We evaluate 3 different approaches,1710

• Our CLAIMS method,1711

• Subgraph retrieval, and1712

• Semantic similarity based extraction.1713

All metrics are tested on a subset of the top 101714

ranked claims according to the input question, the1715

claims of interest from Section 3.3. We first uti-1716

lize our community ranking approach from our1717

CLAIMS method to filter the top 10 claims, re-1718

taining the claims that are outside of other claims’1719

1-hop neighbors. For subgraph retrieval, we cre-1720

ate summaries from the 1-hop neighbors of these1721

claims of interest, while for the semantic similarity1722

method we use all claims that have cosine simi-1723

larity scores over 80% with the claims of interest.1724

Each of the metrics obtain a score for each index,1725

and the final score is the average score over all of1726

the indices.1727

Answer Relevance determines what fraction of1728

the claims made in the output summary are relevant1729

to answering the question. Using the output sum-1730

mary as context, we consider each of the claims1731

we extract from the output summary one by one,1732

and ask a Judge LLM whether it is relevant with1733

Prompt 14. The percentage of relevant claims over1734

all summaries in that index is used as the metric’s1735

performance. A higher score means that a higher1736

proportion of claims in the summaries are relevant1737

to the input question.1738

The Source Diversity test tests the ability of1739

each method to integrate information from a diverse1740

number of source documents. For each claim ex-1741

tracted from the output summary, we ask the Judge1742

LLM whether it could have come from any of the1743

input source documents with Prompt 12. The score1744

is the number of unique source documents over the1745

total number of documents. The final score for each1746

index is averaged over all of the indices for each1747

individual summarization method. A higher score1748

means that a larger number of multi-document re-1749

lationships are present in the summaries.1750

The Faithfulness test ensures that each claim in1751

the output summary is truthful based on whether1752

it occurred in the input documents. For each ex-1753

tracted claim from the summaries, we consider1754

each of its source documents from the source diver-1755

sity test. For each possible source document, we1756

ask the model whether the contexts fully support1757

the accuracy of that claim with Prompt 13. The 1758

percentage of supported claims over all summaries 1759

in that index is used as the metric’s performance. 1760

A higher score means less hallucination in the sum- 1761

maries. 1762

L.4 Relation extraction component results 1763

Our relation extraction evaluation compared four 1764

methods across three metrics: reference tracking 1765

(Ref Score), semantic preservation (Sem. Similar- 1766

ity), and key claim retention (Claim Ret.) (Table 2). 1767

The reference tracking scores show a clear pattern 1768

between the claim and entity-based approaches. 1769

The pairs relations method achieved the highest 1770

reference tracking score (0.994) followed by di- 1771

rect triples (0.971), while the two claim-based ap- 1772

proaches scored slightly lower (0.941, 0.946). This 1773

difference is due to the inherent nature of direct 1774

entity extraction, which focuses on extracting ex- 1775

plicit entities and thus naturally avoids leaving unre- 1776

solved references. However, the claim-based meth- 1777

ods still achieved strong scores above 0.94, indi- 1778

cating the effectiveness of the decontextualization 1779

while maintaining sentence structure. 1780

In contrast, the semantic preservation perfor- 1781

mance of the two claim extraction methods are 1782

superior. Our single stage (0.901) and the two 1783

stage (0.903) methods significantly outperformed 1784

the entity-based extraction methods, (0.865, 0.815). 1785

This advantage suggests that retaining the sentence 1786

structure of the claims results in lower informa- 1787

tion loss of semantic meaning. All of our meth- 1788

ods achieved a perfect key claim retention score, 1789

indicating that critical information was preserved 1790

regardless of which extraction approach was used. 1791

These results support our usage of the single 1792

stage approach, as while it shows slightly lower 1793

reference tracking performance compared to the 1794

entity-based methods, it achieves essentially identi- 1795

cal performance to the two stage approach while be- 1796

ing more computationally efficient without the addi- 1797

tional decontextualization step. The higher seman- 1798

tic similarity score suggests that the minor trade- 1799

offs in the decontextualization performance are 1800

compensated by better preservation of the claims’ 1801

original meanings. The perfect claim retention in- 1802

dicates that there is no loss of critical information. 1803

The balance of performance metrics and higher ef- 1804

ficiency gives it an edge for extracting information 1805

from the retrieved documents. 1806
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L.5 Graph construction component results1807

The summaries produced by the graph communi-1808

ties had a higher relevance score compared to the1809

summaries produced by the semantic communities1810

59.35% of the time (Table 3). This demonstrates1811

that the summaries produced from our graph struc-1812

ture more effectively group relevant information1813

for answering the input question. While semantic1814

communities are limited to capturing relationships1815

based on pure textual similarity, our graph con-1816

struction identifies topical connections that may not1817

be apparent from semantic similarity alone. This1818

property allows for relevant topically related yet1819

semantically dissimilar information to be added1820

to the final summaries. Such connections might1821

be missed by pure semantic grouping, contribut-1822

ing to our method producing more comprehensive1823

relevant summaries for question answering.1824

L.6 Graph summarization component results1825

Our CLAIMS method achieved comparable faith-1826

fulness (0.9569) and relevancy scores (0.8414)1827

compared to the alternative approaches while hav-1828

ing superior source diversity (0.9647) (Table 5).1829

The higher source diversity score demonstrates1830

our CLAIMS method’s effectiveness at integrating1831

multi-document relationships, surpassing the se-1832

mantic (0.9170) and subgraph (0.9356) approaches.1833

This implies that our layerwise processing has1834

the advantage of incorporating information from a1835

more diverse group of sources.1836

The slightly lower relevancy score of our1837

CLAIMS method (0.8414) compared to seman-1838

tic clustering (0.8604) stems from the nature of1839

our graph structure, where information that is not1840

directly relevant to the question but is useful for1841

connecting relevant statements is included in the1842

summaries. This design decision enables more1843

comprehensive answers but lowers the total num-1844

ber of claims that are directly relevant to the input1845

question in the summaries. The more significant1846

drop in relevancy score for the subgraph method1847

(0.7938) demonstrates how our CLAIMS approach1848

filters out irrelevant claims that subgraph extraction1849

retains.1850

The consistently high faithfulness values (>0.94)1851

for all three alternative methods confirms that none1852

of them suffer from significant hallucinations, with1853

our method achieving strong faithfulness (0.9569)1854

with superior source diversity. This validates our1855

CLAIMS approach’s ability to maintain quality1856

content while integrating information from more 1857

sources, therefore having a higher chance of com- 1858

bining relevant information that other methods 1859

would not have considered. 1860
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