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Abstract

We study the problem of causal structure learning from data using transport maps.
Specifically, we first provide a constraint-based method which builds upon lower-
triangular monotone parametric transport maps to design conditional independence
tests which are agnostic to the noise distribution. We provide an algorithm for causal
discovery up to Markov Equivalence for general structural equations and noise
distributions, which allows for settings with latent variables. Our approach also
extends to score-based causal discovery by providing a novel means for defining
scores. This allows us to uniquely recover the causal graph under additional
identifiability and structural assumptions, such as additive noise or post-nonlinear
models. We provide experimental results to compare the proposed approach with
the state of the art on both synthetic and real-world datasets.

1 Introduction

Recovering the causal structure between the variables of a system from observational data is a
coveted goal in several disciplines of science. The importance of this task has become increasingly
evident in the realm of artificial intelligence over the past few decades. This is mainly because a
clear understanding of the causal structure in data can greatly enhance predictions of variables under
external manipulations, and eliminate systematic biases in inference.

The existing approaches for recovering the causal mechanisms can be largely categorized into score-
based and constraint-based methods. Most of the existing score-based methods impose constraints
on either the functional assignment model, or the data distribution. For instance, they may limit the
problem to linear models [33, 32, 45], or models with additive noise [12, 20, 25, 18], or restrict the
data distribution to a limited class, e.g. Gaussian or discrete [14, 16, 27, 18]. These methods can be
sensitive to the choice of model assumptions, and may fail to recover the correct causal model if the
relationships between variables are complex, or latent variables exist. However, there is abundant
evidence that information about the sparsity of the underlying causal graph improves the estimation
efficiency of these methods [42, 30, 34, 9, 11]. An established approach for uncovering the sparsity
pattern of the graph involves conducting conditional independence tests, as commonly employed in
constraint-based methods, such as PC [36]. Unfortunately, conditional independence (CI) testing is
only well understood – theoretically speaking – for either Gaussian or discrete data distributions,
and proves to be inefficient in practice outside of this scope. Despite recent progress in the study of
kernel-based CI tests [10, 6, 43, 8], conducting CI tests for more general data generating processes
remains a daunting task. This presents a significant challenge, since non-Gaussian continuous data is
prevalent in various natural phenomena.

In this study, we employ the optimal transport (OT) framework to characterize arbitrary (possibly non-
Gaussian) continuous distributions. Through this approach, we offer several advantages compared
to existing approaches in the literature. To begin with, this method provides a means to conduct
conditional independence tests on continuous data with non-Gaussian distribution. This can hence be
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used as a building block for constraint-based causal discovery algorithms. Further, it allows for a
straightforward way to define and determine scores in the context of score-based causal discovery by
characterizing the joint distribution of variables. We will elaborate on this point further in Section 4.

Related work To the best of our knowledge, the work presented in [38] is the only work to date
that has explored the application of optimal transport (OT) in the context of learning causal structure
from data. In this work the authors considered a two-dimensional additive noise model of the form

(X1, X2) := (U1, f(X1) + U2), (1)

where U1, U2 are independent exogenous noise variables, and sought to distinguish cause from
effect among the two variables X1 and X2. The main idea in their approach comes from viewing
the distribution ν of X = (X1, X2) as the pushforward measure of the distribution µ of noises
U = (U1, U2). The authors made the crucial assumption that the solution Tot to the following
standard optimal transport problem with L2 cost coincides with the structural model of Eq. (1):

Tot := argmin
T :R2→R2,T1=id,T♯µ=ν

Eµ[∥U− T (U)∥2], (2)

Note that in (2), the authors impose the first coordinate of the transport map to be identity. A simple
criterion for Tot to correspond to a cause-effect additive noise model is given by div(Tot − id) = 0,
where div is the divergence. In practice, the authors rely on a conditional variance test of the form
Var((Tot)2(U)− U2 |X1) = 0, where (Tot)2 is the second coordinate of the map Tot, to test causal
direction. While [38] paves the way for applications of OT in causal discovery, it remains unclear how
their method can be generalized to multivariate models; for instance, in higher dimensions (≥ 3), the
proposed divergence-based criterion turns out to be only necessary, but far from sufficient. Moreover,
the OT problem in Eq. (2) requires knowledge of the distribution µ which is often unavailable. It is
unclear how robust the approach of [38] is to noise distribution misspecification in higher dimensions.
It is not clear either how it extends to models that violate the additive noise assumption.

Other works have explored the use of optimal transport framework to extract certain relations among
variables from the joint distribution. Most relevant to our study is the work [35] which highlighted
the presence of a specific type of pairwise conditional independence relations, i.e., the independence
of two variables given all the rest of variables, in the Hessian information of the log density of the
joint distribution. In line with this observation, [19] emphasized that these independence relations
can be leveraged to recover the independence map of a Markov random field.

Contributions Our contributions can be summarized as follows:

(i) We propose a novel causal discovery method based on optimal transport (OT), designed to be
agnostic to the noise distribution. The foundation of this method draws inspiration from the work by
Morrison et. al. [19], which originally focused on structure learning in Markov random fields. They
utilized a parametric OT framework to infer the structure by constructing a lower triangular monotone
map, denoted as S, between an unknown data distribution and a reference distribution, typically a
standard isotropic Gaussian. We extend this method to causal discovery domain by incorporating
additional conditional independence tests. It is noteworthy that our method does not rely on any
assumptions regarding the structural or noise properties, and it produces the underlying causal graph
up to Markov equivalence. Moreover, our approach is applicable in the presence of latent variables.
(ii) Under additional structural assumptions, e.g. additive noise or post-nonlinear models, we
introduce methods to uniquely recover the causal graph based on the same construction as in (i) and a
notion of score based on structural assumptions and the shape of the transport map. We demonstrate
the dual purpose of the OT-based framework: first, it facilitates the recovery of the sparsity map, and
thereby enhances efficiency. Second, it offers a unified framework for evaluating scores.
(iii) We provide novel characterizations of additive noise and post-nonlinear models, generalizing
the divergence criterion of [38] to higher dimensions. We show that our criteria are necessary and
sufficient for assessing whether data is generated from a model belonging to these two classes of
SEMs. Our OT framework offers an effective way of determining the validity of these criteria.

Paper organization We define the problem in Section 2.1 and review the definitions of structural
equation models and identifiability. We give some background on transport maps in Section 2.2,
introducing the lower-triangular monotone maps, also called Knothe-Rosenblatt maps, and argue that

2



these maps are particularly well-adapted for causal discovery, as illustrated by Theorem 1 in Section
2.3. Section 3 is dedicated to the description of our OT-based causal discovery method: we first
discuss the parameterization of the learned maps, and how to extract conditional independencies from
these maps. We then describe our algorithm, which we present as a variation of the PC algorithm [36].
Section 4 describes our score-based approaches under further additive noise model or post non-linear
model assumptions. Numerical experiments are presented in Section 5.

2 Preliminaries

2.1 Problem setup

A directed acyclic graph (DAG) is defined as G = (X, E), where X = {X1, . . . , Xd}, and E ⊆
X × X denote the set of vertices and edges of this graph, respectively, such that G cointains no
directed cycle. Each vertex Xk ∈ X represents a random variable. For each vertex Xk, Pa(Xk)
denotes the set of it parents in G. We say two DAGs are Markov equivalent if they share the same d-
separation relations [22]. Throughout this work, we assume that the random variables {X1, . . . , Xd}
are governed by a structural equation model (SEM) [23],

∀ 1 ≤ k ≤ d, Xk := fk((Xℓ)Xℓ∈Pa(Xk), Uk), (3)
where (Uk)1≤k≤d are mutually independent noise variables. Let πX denote the probability distribu-
tion over X induced by the SEM defined in Eq. (3). πX is commonly referred to as the observational
distribution in the literature. We drop subscript X whenever it is clear from context.

Causal discovery refers to the task of learning the causal graph G from i.i.d. samples drawn from
observational distribution π. Two causal DAGs within the same Markov equivalence class are not
distinguishable from merely the observational data. In other words, the causal graph is identifiable
up to Markov equivalence class using the observational data [23]. However, the causal graph may
become uniquely identifiable under further assumptions.

Let C be a class of SEMs, that is, a subclass of structural models of the form (3).
Definition 1 (Identifiability within a class of SEMs). Given a distribution π, we say causal graph G
is identifiable within the class C if every SEM S ∈ C that induces distribution π yields the causal
structure G.

In other words, the causal DAG is identifiable in class C if there is a unique DAG G compatible with
(i) the data distribution and (ii) a SEM in class C. Examples of such classes C and some of these
assumptions required for identifiability will be given in Section 4.
Definition 2 (G-compatible orderings). Given a causal DAG G, we say that a permutation σ of
{1, . . . , d} is a G-compatible (causal) ordering if for all k, ℓ,

Xℓ ∈ Pa(Xk) =⇒ σ(ℓ) < σ(k) .

2.2 Background on transport maps

We assume all probability distributions are absolutely continuous with respect to Lebesgue measure.
With a slight abuse of notation, we use the same symbol to denote a distribution and its density.

A transport map S between two distributions µ and ν in Rd is a map S : Rd → Rd such that the
pushforward of µ by S is ν. In other terms S(X) ∼ ν when X ∼ µ. Assuming S is invertible, we
denote by S#µ the pushforward of µ by the map S, and by S#ν the pullback of ν by S. These are
easily obtained by a multi-dimensional change of variables as follows:

S#µ(y) = µ ◦ S−1(y) |det(∇S−1(y))|, S#ν(x) = ν ◦ S(x) |det(∇S(x))|. (4)

In general, there are many such transport maps S. A special class of transport maps, well suited to the
problem of recovering a causal graph (see Section 2.3), or a causal ordering, is the lower-triangular
maps. In particular, when µ and ν have positive densities with respect to Lebesgue measure, there
exists a unique lower-triangular map S of the following form

S(x) =


S1(x1)
S2(x1, x2)
...
Sd(x1, . . . , xd)

 , (5)
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which satisfies the measure transformations of Eq. (4) and for each component k, Sk is strictly
increasing in the last variable [15, 28, 2, 4]. This map is sometimes referred to as the Knothe-
Rosenblatt (KR) map [15, 28]. Note that each component Sk only depends on x1, . . . , xk and the
strict monotonocity of Sk in xk implies that this map is invertible1. We refer the interested reader
to [4], in which Knothe-Rosenblatt maps have been studied thoroughly. In particular, KR maps are
shown to be characterized as the limit of solutions of the standard optimal transport problem in the
regime where the quadratic cost becomes degenerate (see Carlier et al. [4], Theorem 2.1).

2.3 Knothe-Rosenblatt maps for causal discovery

As we will see in Section 3.1, KR maps are used to provide good estimates of the joint distribution
π. There are several non-parametric methods to estimate joint densities, the most popular of which
being multivariate Kernel density estimation, and KNN density estimation [31]. Rather than relying
on these, we propose a method based on KR maps because these maps precisely reveal the causal
structure in a SEM. The Theorem below, proof of which is given in Appendix C, brings some
mathematical evidence of the previous statement and shows that KR maps are particularly well-suited
for causal discovery tasks.

Theorem 1. Suppose random variables {X1, . . . , Xd} are governed by the SEM given in (3),
Moreover, assume that for all 1 ≤ k ≤ d, map fk is strictly increasing in the last variable, and that
the cumulative distribution function (c.d.f) of Uk, denoted by FUk

, is strictly increasing.

(i) For any G-compatible ordering σ, KR map S(σ) between the distribution of (Uσ(1), . . . , Uσ(d))
and that of (Xσ(1), . . . , Xσ(d)) coincides with the SEM equations (3), that is, for all 1 ≤ k ≤ d,

S(σ)k(uσ(1), . . . , uσ(k−1), uσ(k)) = fσ(k)

(
(S(σ)ℓ(uσ(1), . . . , uσ(ℓ)))ℓ:Xσ(ℓ)∈Pa(Xσ(k))

, uσ(k)

)
. (6)

Further, KR maps corresponding to any G-compatible ordering are the same up to a permutation2.
(ii) If the causal mechanism is identifiable within a class C of SEMs (Def. 1), then σ is a G-compatible

ordering if and only if the KR map S(σ) provides a SEM in class C.

In other words, given a G-compatible ordering, KR map recovers the true underlying SEM. Moreover,
if the structure is uniquely identifiable (for instance in the case of additive noise models), computing
KR maps allows us to identify a G-compatible causal ordering, and hence G itself. Theorem 1 gives
an identifiablity result through the use of KR maps, highlighting the fact that they are exceptionally
suitable for revealing the causal relations among the variables. However, it is noteworthy that our
transport-based causal discovery approach, which will be introduced in the sequel, does not rely on
this result. Indeed, while Theorem 1 accomplishes a more extensive objective, namely, recovering
the entire SEM, it necessitates stronger assumptions than those needed for our primary focus in this
paper: recovering the mere causal structure (the essential graph).

Our approach for OT-based causal discovery comprises two steps. The first step, discussed in Section
3, recovers the causal graph up to Markov equivalence, without requiring any model or structural
assumptions. The second step, detailed in Section 4, aims at learning a G-compatible ordering, which
identifies the causal graph, under additional assumptions, e.g. restricting the model to the ANM class.

3 Recovering the essential graph via monotone triangular transport maps

3.1 A parametrization of the transport maps

Henceforth, we consider the KR map from π (or some of its marginals) to a known, smooth, log-
concave source distribution η with the same dimension. Throughout this work, η will be taken to be
the multivariate isotropic normal distribution. The idea behind this approach is that if the KR map
S from the data distribution π to η can be estimated efficiently with finitely many samples, then π
can be simply represented as the pullback of η by S, namely π = S#η. In practice, we parameterize
the KR map S with a vector of parameters α. The parameterized transport map Sα is estimated by

1Note that by this definition, the transport map defined in [38] as the solution of problem (2) is exactly the
KR map between the distributions of U = (U1, U2) and X = (X1, X2).

2Note that these permutations necessarily preserve the lower-triangular structure.
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optimizing over the set of parameters α such that the Kullback-Leibler divergence between π and the
pullback of the source distribution η by the map Sα is minimized:

α∗=argmin
α

DKL(π∥S#
α η)=argmin

α
Eπ[log π− logS#

α η]≈argmax
α

1

n

n∑
i=1

log
(
S#
α η(x

i)
)
, (7)

where {xi}1≤i≤n are the i.i.d. samples of data. Following [19], an efficient way to parameterize Sα

in order to enforce both the lower-triangular shape and the monotonicity assumption is the following:

(Sα)k(x1, . . . , xk) = ck,α(x1, . . . , xk−1) +

∫ xk

0

g ◦ hk,α(x1, . . . , xk−1, t)dt, (8)

where g : R → R is a positive map, and ck,α : Rk−1 → R (resp. hk,α : Rk → R) is a linear
combination of multivariate Hermite polynomials {ϕs}s≥0 (resp. Hermite functions {ψs}s≥0).

Note that map Sα defined in (8) has the desired lower-triangular shape and each (Sα)k is strictly
increasing in the last variable. The well-known fact that Hermite functions form a Hilbert basis
of L2(R) justifies this parametrization [19, 35]. The expressiveness of the model depends on the
maximal degree of the Hermite polynomials/functions in (ck,α, hk,α)1≤k≤d. Moreover, since η is
log-concave and the parametrization of Sα is linear in α, the optimization problem (7) is convex. In
some recent work was proposed to learn maps ck,α and hk,α with neural networks [21].

In this work, the positive map g in (8) is always fixed as the square function. This allows us to
compute all the integrals in maps Sα easily and in closed form (as they correspond to joint moments
of Gaussian variables), as well as all the partial derivatives of Sα – which we will need in the sequel.

3.2 Capturing conditional independencies in marginal densities

We denote the independence of Xℓ and Xk conditioned on Z by Xℓ ⊥⊥ Xk|Z. Recall that π denotes
the distribution (or, density) of the data X = {X1, . . . , Xd}. In order to explain how the conditional
independencies can be read directly off the marginals of π, we need the following assumption on π.
Assumption 1. Density π is positive and its second-order partial derivatives are defined everywhere.

Lemma 2 of [35] establishes a characterization of conditional independence in terms of Hessian
information of the density π. Herein, we adapt their lemma for our purpose.
Lemma 3.1. [Adapted from [35]] Suppose π satisfies Assumption 1. Let πZ denote the marginal
density over Z ⊆ X. For any two variables Xk, Xℓ ∈ Z, the following equivalence holds:

Xk ⊥⊥ Xℓ | Z \ {Xk, Xℓ} ⇐⇒
∂2 log πZ
∂xk∂xℓ

= 0 on R|Z| .

Proof of Lemma 3.1 appears in Appendix C. For a fixed subset Z ⊆ X, let SZ be a transport map that
pushes the marginal density πZ forward to a multivariate isotropic Gaussian η. In light of Lemma
3.1, the conditional independence relations can be determined by assessing the partial derivatives of
S#
Z η at all points and observing if they are all zero. When the variables are continuous, determining

whether these derivatives are zero everywhere is impractical. Instead, we propose the following
conditional independence score to test the conditional independence Xk ⊥⊥ Xℓ | Z \ {Xk, Xℓ}:

ΩZ
kℓ :=EπZ

[(
∂2

∂xk∂xℓ
log πZ(z)

)2]
=EπZ

[(
∂2

∂xk∂xℓ
logS#

Z η(z)
)2]≈ 1

n

n∑
i=1

(
∂2

∂xk∂xℓ
S#
Z η(z

i)
)2
, (9)

where {zi}ni=1 are observed samples of Z. In practice, finite sample approximations of α and ΩZ
kℓ

could yield small but non-zero entries when the corresponding independence holds. To deal with
this issue, we compare the conditional independence score to a properly chosen threshold τzkℓ. The
threshold is chosen in proportion to the standard deviation of ΩZ

kℓ, driven by the objective of isolating
those entries whose standard deviation renders them indistinguishable from zero [1]. Morrison
et al. [19] take a similar thresholding approach, albeit employing the absolute value of the partial
derivatives of log density as the independence score rather than the squared form of Eq. (9). The
standard deviation of ΩZ

kℓ is approximated as

ς(ΩZ
kℓ) ≈

1

n
(∇αΩ

Z
kℓ)

TΓ(α)−1(∇αΩ
Z
kℓ)

∣∣∣
α=α∗

, (10)
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where Γ(α) is the Fisher information matrix [5], and∇αΩ
Z
kℓ is the gradient of ΩZ

kℓ w.r.t. α. See [19]
for further details of the rationale behind this choice of thresholding and its consistency analysis.

It is crucial to note that this criterion does not require any assumption on the distribution class. SING
algorithm [19] employs the criterion above only for the set Z := X to recover the Markov random
field structure. In the context of DAGs, their approach is termed as total conditioning (TC) by [24],
and is shown to recover the moralized graph of G, where each vertex is adjacent to its Markov
boundary [24]. In our method, the maps SZ for every Z ⊆ X will be parameterized in the same
fashion as S in (8), except that dimension d will be replaced with a smaller d′ := |Z|.

3.3 Description of the algorithm

Assuming faithfulness [36], conditional independence relations encoded in the data distribution are
equivalent to d-separations in the causal DAG. The conditional independence test developed in the
previous section can therefore be employed as a module in constraint-based causal discovery methods.
To illustrate this, we present our method PC-OT as a variation of the PC algorithm [36], summarized
as Algorithm 1 in Appendix A. Note that even in the presence of latent variables, the joint distribution
of the observable variables can still be represented as a pullback measure of a standard Gaussian
distribution of the same dimension. Although this map may have nothing to do with the underlying
SEM in this case, once a representation π = S#η (or3 πZ = S#

Z η) is obtained, Lemma 3.1 applies,
i.e. the conditional independence relationships the observable data are revealed, enabling the recovery
of the maximally oriented partial ancestral graph (PAG). In the presence of latent variables, OT-based
variants of algorithms such as FCI and RFCI [36, 7] can be developed analogous to Alg. 1.

4 Refined OT-based structure learning under structural assumptions

In this section, we shall undertake an analysis of our OT-based causal discovery approach under
the consideration of class assumptions that enable the unique identification of the causal DAG. The
results stated in this section are applicable to any class within which the causal graph is identifiable
(refer to Def. 1) and membership in that class is testable. As two illustrative examples of such classes,
we discuss additive noise models (ANMs) and post-nonlinear models (PNLs). While ANMs are
discussed below, PNLs are postponed to Appendix D due to space limitations.

4.1 Additive noise models

Additive noise models (ANMs) are defined as follows.
Definition 3 (ANM). We say that the SEM of Eq. (3) forms an additive noise model if,

∀ 1 ≤ k ≤ d : fk((Xℓ)Xℓ∈Pa(Xk), Uk) := gk((Xℓ)Xℓ∈Pa(Xk)) + Uk, (11)

that is, the structural equation pertaining to any variable is additive in the corresponding noise.

Note that as long as the noise variables Uk have a strictly positive density, the ANMs satisfy the condi-
tions of Theorem 1. For any ordering σ, we denote by πσ the joint distribution of (Xσ(1), . . . , Xσ(d)).
If σ is G−compatible, then in view of Theorem 1, the KR map S(σ) from πσ to η is of the form

S(σ)k(xσ(1), . . . , xσ(k)) =Mk(σ)
(
xσ(k) − gk((xℓ)Xℓ∈Pa(Xσ(k)))

)
, (12)

where Mk(σ) is the strictly increasing transport map from the distribution of Uσ(k) to a standard
Gaussian N (0, 1). Note that, up to a one-dimensional monotonous map, the partial derivative of
S(σ)k with respect to its last variable is a constant, and specifically equal to 1. This observation
constitutes a characterization of ANMs, formalized below.
Lemma 4.1. Suppose π satisfies Assumption 1. Let σ be an ordering. The following are equivalent.

• π is induced by an ANM, and σ is G−compatible.
• for all 1 ≤ k ≤ d, there exists a strictly increasing map Bk(σ) : R→ R such that

∂
∂xσ(k)

Bk(σ) ◦ S(σ)k(xσ(1), . . . , xσ(k))− 1 = 0 . (13)
3In general, the marginal distribution πZ for Z ⊆ X is not modeled by a SEM with independent noises, and

hence the marginal model for nodes in Z is equivalent to a SEM with latent variables.
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Figure 1: Underlying causal graphs in the numerical experiments.

Bk(σ) in Eq. (13) corresponds to Mk(σ)
−1 in Eq. (12). In practice, we parameterize each map

Bk(σ) with vector βk, and β∗
k is estimated by optimizing the natural loss given by Lemma 4.1:

β∗
k := argmin

βk

Eπ

[ ∣∣∣ ∂
∂xσ(k)

[Bk(σ)]βk
◦ (S(σ)α∗)k(Xσ(1), . . . , Xσ(k))− 1

∣∣∣ ]
≈ argmin

βk

[ANMlossk(σ,x)](βk), where (14)

[ANMlossk(σ,x)](βk) :=

n∑
i=1

∣∣∣ ∂
∂xσ(k)

[Bk(σ)]βk
◦ (S(σ)α∗)k(x

i
σ(1), . . . , x

i
σ(k))−1

∣∣∣, (15)

and (we recall) x1, . . . ,xn are observed samples, and we used S(σ)α∗ with α∗ being the solution of
the optimization problem (7), as in Section 3. An efficient way to parameterize [Bk(σ)]βk

is:

[Bk(σ)]βk
(u) :=

∫ u

0

g ◦ bk,βk
(t)dt, (16)

where g : R → R is positive (the quadratic function in our case), and bk,βk
: R → R is a linear

combinations of Hermite functions {ψs}s≥0. Note that the parameterization in (16) enforces strict
monotonicity of u 7→ [Bk(σ)]βk

(u).

Note that given the Markov equivalence class, and a G-compatible ordering, the causal graph is
uniquely identified. Under identifiability assumptions for ANMs [12], every G-compatible ordering
is consistent with the true underlying causal order. As such, identifying one G-compatible ordering
suffices to recover the causal DAG. On account of Lemma 4.1, we devise a method to decide
G-compatibility of an ordering under ANM assumption. To this end, we compute the ANM loss
corresponding to an ordering, introduced subsequently.

ANM loss. The ANM loss of an ordering σ, parameterized by γ ∈ (R>0)
d is defined as

ANMlossγ(σ,x) :=

d∑
k=1

γk[ANMlossk(σ,x)](β
∗
k), (17)

where α∗, β∗
k and ANMlossk(σ,x) are defined in (7), (14) and (15). Evidently, an ordering σ is

G-compatible iff its ANM loss is zero. In practice, we choose the ordering with the lowest ANM loss.

Possible orderings Given an essential graph Ĝ, we need to test every possible causal graphH in
the Markov equivalence classM(Ĝ) of Ĝ. For any such graphH, choose an arbitraryH−compatible
ordering σH. We define the set of possible orderings as Σ(Ĝ) := {σH, H ∈ M(Ĝ)}. Note that
depending on Ĝ, Σ(Ĝ) is often much smaller than the set of permutations of {1, . . . , d}; a trivial
upper bound on Σ(Ĝ) is 2e(Ĝ), with e(Ĝ) denoting the edge count in Ĝ.

5 Numerical experiments

This section presents the performance of our methods through illustrative examples. Further numerical
experiments, plots and details can be found in Appendix E. We utilized TransportMaps package [37]
for recovering parametric maps.

Experiments for PC–OT. We compared the performance of our PC–OT method with both PC and
Grow-Shrink (GS) algorithms [36], provided with conditional independence tests which are designed
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Figure 2: comparison of PC–OT with PC and GS algorithms.
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Figure 3: ANMloss for the four different DAGs within the Markov equivalence class. For both plots,
γk = 1 was chosen for every 1 ≤ k ≤ d (see Eq. 17.) The plots are clipped for better visualization:
the loss corresponding to ordering 3→ 1→ 2→ 4→ 5→ 6 is not included due to a large gap.

for Gaussian distributions (using CDT package [13]). On the contrary, our method is equipped with
the OT-based conditional independence criterion, which is agnostic to the noise distribution.

We worked with synthetic data from a SEM where the exogenous noises are non-Gaussian, details of
which can be found in Appendix E. The underlying causal graph is represented in Figure 1b. We see
on Figure 2 that PC–OT outperforms these two methods as soon as the number of samples is large
enough. This superior performance is illustrated for the number of misoriented edges of the output as
well as the overall loss, which is defined as the total number of missing, extra and misoriented edges.
Results are averaged over 20 tests. See Appendix E for further details and experiments.

Experiments for ANM-OT. To illustrate the ANM-OT method, we worked with the DAG of Figure
1a. The Markov equivalence class of this graph contains four DAGs. For each of these DAGs, we
chose a compatible ordering and compared the ANMloss (17) of each of these orderings. Results
shown in Figure 3 show that the ANMloss of the true ordering (the rightmost one) is significantly
lower than the other three.

6 Concluding remarks

In this work, we proposed a novel causal discovery method based on transport, designed to be
agnostic to the noise distribution. This framework both helps recovering the causal graph up to
Markov equivalence, and offers a coherent framework for evaluating scores assessing the validity of
structural assumptions such as additive noise or post-nonlinear models.

Bringing the optimal transport framework to the fore as a valuable toolkit for causal discovery, we
believe that this study may pave the way to future works of interest to the causality community.
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Appendix
This appendix is organized as follows. We present our OT-based version of PC algorithm in Section
A. In Section B, we briefly review concepts from KR maps and their relation to Brenier maps for the
sake of comprehensiveness and their subsequent utilization in our proofs. We present the proofs of
our main results in Section C. Section D includes the derivation of PNLloss based on Lemma C.1 in
the text. Section E is devoted to further experimental results, along with details of the experiments
included in the main text.

A OT-based PC Algorithm

As discussed in the main text, any constraint-based causal discovery algorithm can be modified to
utilize the proposed OT-based conditional independence test. For illustration purposes, we present an
OT-based version of PC algorithm [36] in this section. The pseudo-code is provided as Algorithm 1.

High-level description. Like classic PC, the algorithm begins with a complete undirected graph. It
keeps track of a counter ∆, increasing it by one at each iteration. At each iteration, subsets Z of size
∆+ 2 are chosen, and SING [19] is called as a subroutine using only the samples corresponding to
variables in Z. The output of this subroutine is the matrix ΩZ, with entries as defined in Eq. (9). As
long as the entry ΩZ

kℓ of the matrix does not exceed the threshold τZkℓ, we conclude that Xk and Xℓ

are conditionally independent with respect to π, which results in removing the corresponding edge
from Ĝ. The corresponding separating set Z \ {Xk, Xℓ} is stored for orienting the v-structures at the
end of the algorithm. The algorithm iterates as long as the maximum degree of the remaining graph
Ĝ is at least ∆. Finally, Meek rules [17] are applied to output the essential graph.

Algorithm 1 PC–OT

input: n i.i.d. samples from the observational distribution {xi}ni=1 ∼ π
output: essential graph corresponding to the causal DAG G

1: function PCOT({xi}ni=1)
2: Ĝ ← complete undirected graph on X, ∆← 0
3: for every k ̸= ℓ ∈ {1, . . . , d} do SepSet (Xk, Xℓ)← null
4: while True do
5: for every subset Z ⊆ X of size ∆+ 2 do
6: ΩZ ← SING({xi

Z}ni=1 ∼ πZ)
7: for each pair {Xk, Xℓ} ⊆ Z do
8: if ΩZ

kℓ < τZkℓ then
9: delete the edge between Xk and Xℓ in Ĝ

10: SepSet (Xk, Xℓ)← Z \ {Xk, Xℓ}
11: ∆← ∆+ 1
12: if ∆ > maxdegree(Ĝ) then break
13: for every triplet k, ℓ,m ∈ {1, . . . , d} do
14: if ∃ an edge between Xk and Xℓ, and Xℓ and Xm, no edge between Xk and Xm then
15: Orient Xk → Xℓ and Xℓ ← Xm in Ĝ if and only if Xℓ /∈ SepSet (Xk, Xm)

16: Apply Meek rules on Ĝ [17]
17: return Ĝ

B On Knothe-Rosenblatt transport maps

In this short part we give details on construction of Knothe-Rosenblatt transport maps between two
distributions µ and ν in Rd. For a general recap on transport maps, we refer to Section 2.2. In the
following we assume that µ and ν have positive densities on Rd, with respect to Lebesgue measure.
These assumptions are made for the sake of simplicity, but can be further relaxed [26, 4, 15, 28, 3].

A fundamental building block for KR maps is given in this Lemma, which characterizes the one-
dimensional monotone transport maps:
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Lemma B.1 (See Carlier et al. [4] and Proposition 2.5 of Rieger [26]). When µ and ν are one-
dimensional (d = 1), there exists a unique strictly increasing transport map T from µ to ν, given by
T := F−1

ν ◦ Fµ, where Fµ (resp. Fν) is the cumulative distribution function (c.d.f.) of distribution µ
(resp. of ν). This map will be referred to as the (one-dimensional) Brenier map between distributions
µ and ν.

We are now ready to describe the construction of KR maps. Recall that these maps are of the following
form

S(x) =


S1(x1)
S2(x1, x2)
...
Sd(x1, . . . , xd)

 ,
with Sk is strictly increasing in the last variable for all k.

Let (X1, . . . , Xd) ∼ µ and (Y1, . . . , Yd) ∼ ν. The KR map S is built recursively. First, let S1 be the
(unique) Brenier map from the distribution of X1 to that of Y1. Then, when S1, . . . , Sk−1 are already
constructed, we define Sk as follows. For every fixed x1, . . . , xk−1, the map Sk(x1, . . . , xk−1, ·) is
defined as the (unique) Brenier map from the distribution of

(Xk |Xk−1 = xk−1, . . . , X1 = x1)

to that of
(Yk |Yk−1 = Sk−1(x1, . . . , xk−1), . . . , Y1 = S1(x1)) .

It can be easily checked that this map S previously defined is (i) transporting µ onto ν and (ii)
satisfying the lower-triangular and monotonicity properties.

C Proofs

Theorem 1. Suppose random variables {X1, . . . , Xd} are governed by the SEM given in (3),
Moreover, assume that for all 1 ≤ k ≤ d, map fk is strictly increasing in the last variable, and that
the cumulative distribution function (c.d.f) of Uk, denoted by FUk

, is strictly increasing.

(i) For any G-compatible ordering σ, KR map S(σ) between the distribution of (Uσ(1), . . . , Uσ(d))
and that of (Xσ(1), . . . , Xσ(d)) coincides with the SEM equations (3), that is, for all 1 ≤ k ≤ d,

S(σ)k(uσ(1), . . . , uσ(k−1), uσ(k)) = fσ(k)

(
(S(σ)ℓ(uσ(1), . . . , uσ(ℓ)))ℓ:Xσ(ℓ)∈Pa(Xσ(k))

, uσ(k)

)
. (6)

Further, KR maps corresponding to any G-compatible ordering are the same up to a permutation4.
(ii) If the causal mechanism is identifiable within a class C of SEMs (Def. 1), then σ is a G-compatible

ordering if and only if the KR map S(σ) provides a SEM in class C.

Proof. First note that statement (ii) follows from the identifiablity assumption.

We prove (i) recursively. Without loss of generality we assume that σ is the identity permutation
id and denote S = S(σ) = S(id). For any random variable Y , FY will denote its cumulative
distribution function (c.d.f). By definition, transport map S has the following form

S(u1, u2, . . . , ud) =


S1(u1)
S2(u1, u2)
...
Sd(u1, . . . , ud)

 .

By definition of a compatible ordering, X1 has no parent in G, hence X1 := f1(U1). The map S1 is
by definition (see Appendix B) the monotone Brenier map between the distribution of U1 and that of
X1 = f1(U1). Since by assumption f1 and FU1 are strictly increasing, then Ff1(U1) is invertible and
this Brenier 1D map is given by

S1(u1) = F−1
f1(U1)

◦ FU1
(u1) = (FU1

◦ f−1
1 )−1 ◦ FU1

(u1) = f1(u1) .

4Note that these permutations necessarily preserve the lower-triangular structure.
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Then, assume that (6) holds for 1 ≤ k < ℓ. Fix u1, . . . , uℓ−1 ∈ R. By definition again, uℓ 7→
Sℓ(u1, . . . , uℓ−1, uℓ) is the Brenier map between the first marginal distribution of

(Uℓ |Uℓ−1 = uℓ−1, . . . , U1 = u1)
(d)
= Uℓ

and that of

(Xℓ |Xℓ−1 = Sℓ−1(u1, . . . , uℓ−1), . . . , X1 = S1(u1))
(d)
= fℓ

(
(Sk(u1, . . . , uk))k:Xk∈Pa(Xℓ), uℓ

)
,

The second equality in distribution being justified by the fact that σ = id is a compatible ordering.
Since by assumption fℓ is strictly increasing in the last variable and FUℓ

is strictly increasing, then
Ffℓ((Sk(u1,...,uk))k:Xk∈Pa(Xℓ)

,Uℓ) = FUℓ
◦f−1

ℓ

(
(Sk(u1, . . . , uk))k:Xk∈Pa(Xℓ), ·

)
is invertible and this

Brenier 1D map is given by

Sℓ(u1, . . . , uℓ−1, uℓ) = F−1

fℓ((Sk(u1,...,uk))k:Xk∈Pa(Xℓ)
,Uℓ)
◦ FUℓ

(uℓ)

=
[
FUℓ
◦ f−1

ℓ

(
(Sk(u1, . . . , uk))k:Xk∈Pa(Xℓ), ·

)]−1 ◦ FUℓ
(uℓ)

= f−1
ℓ

(
(Sk(u1, . . . , uk))k:Xk∈Pa(Xℓ), uℓ

)
.

Lemma 3.1. [Adapted from [35]] Suppose π satisfies Assumption 1. Let πZ denote the marginal
density over Z ⊆ X. For any two variables Xk, Xℓ ∈ Z, the following equivalence holds:

Xk ⊥⊥ Xℓ | Z \ {Xk, Xℓ} ⇐⇒
∂2 log πZ
∂xk∂xℓ

= 0 on R|Z| .

Proof. Suppose the independence holds. Then the marginal density factorizes as follows.

πZ = πZ\{Xk,Xℓ} · πXk|Z\{Xk,Xℓ} · πXℓ|Z\{Xk,Xℓ},

and therefore,

log(πZ) = log(πZ\{Xk,Xℓ}) + log(πXk|Z\{Xk,Xℓ}) + log(πXℓ|Z\{Xk,Xℓ}). (18)

It is clear from Eq. 18 that
∂2 log πZ
∂xk∂xℓ

= 0 on R|Z|.

For the opposite direction, note that the general solution to the PDE
∂2 log πZ
∂xk∂xℓ

= 0 on R|Z| is given

by log(πZ)(z) = f(z \ {xk}) + g(z \ {xℓ}), for some functions f and g. The marginal density πZ
is then of the form

πZ(z) = exp(f(z \ {xk})) exp(g(z \ {xℓ})).
Relying on the positivity of the density, we can compute the conditional density as follows:

πXk,Xℓ|Z\{Xk,Xℓ}(z) =
πZ(z)

πZ\{Xk,Xℓ}(z)
=

exp(f(z \ {xk})) exp(g(z \ {xℓ}))∫∫
ef(z\{xk})eg(z\{xℓ})dxkdxℓ

=
exp(f(z \ {xk})) exp(g(z \ {xℓ}))∫

ef(z\{xk})dxk
∫
eg(z\{xℓ})dxℓ

=
exp(f(z \ {xk}))

∫
eg(z\{xℓ})dxℓ∫

ef(z\{xk})dxk
∫
eg(z\{xℓ})dxℓ

·
exp(g(z \ {xℓ}))

∫
ef(z\{xk})dxk∫

ef(z\{xk})dxk
∫
eg(z\{xℓ})dxℓ

=
πZ\{Xℓ}(z)

πZ\{Xk,Xℓ}(z)
·
πZ\{Xk}(z)

πZ\{Xk,Xℓ}(z)
= πXk|Z\{Xk,Xℓ}(z) · πXℓ|Z\{Xk,Xℓ}(z),

which implies the desired conditional independence relation.

Lemma 4.1. Suppose π satisfies Assumption 1. Let σ be an ordering. The following are equivalent.

• π is induced by an ANM, and σ is G−compatible.
• for all 1 ≤ k ≤ d, there exists a strictly increasing map Bk(σ) : R→ R such that

∂
∂xσ(k)

Bk(σ) ◦ S(σ)k(xσ(1), . . . , xσ(k))− 1 = 0 . (13)
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Proof. The first direction is proved in the main text, applying Theorem 1 and considering the form of
the KR map in equation (12). For the other direction, without loss of generality we assume that σ is
the identity permutation id, the proof being identical for any other permutation. The general solution
to the PDE

∂

∂xk
Bk ◦ Sk(x1, . . . , xk)− 1 = 0

is
Bk ◦ Sk(x1, . . . , xk) = xk − hk(x1, . . . , xk−1), (19)

for some function hk : Rk−1 → R. By definition of transport map Sk, Sk(X1, . . . , Xk) is a
standard Gaussian variable. By (19), denoting Uk := −Bk ◦ Sk(X1, . . . , Xk), we have for all k,
Xk = hk(X1, . . . , Xk−1) + Uk. By independence of the Gaussian marginals, the U variables are
independent.

Lemma C.1. Suppose π satisfies Assumption 1. Let σ be an ordering. The following are equivalent.

• π is induced by a PNL model, and σ is G−compatible.
• For all 1 ≤ k ≤ d, there exists a strictly increasing map Bk(σ) : R→ R such that for all
1 ≤ ℓ ≤ d where ℓ ̸= k,

∂2

∂xσ(l)∂xσ(k)
Bk(σ)◦ S(σ)k(xσ(1), . . . , xσ(k))= 0. (20)

Proof. Here again, without loss of generality we assume that σ is the identity permutation id, the
proof being identical for any other permutation.

For the first direction, since hk is strictly increasing, Theorem 1 applies, and the KR map S from π to
η is of the form

Sk(x1, . . . , xk) =Mk

(
h−1
k (xk)− gk((xℓ)Xℓ∈Pa(Xk))

)
, (21)

where Mk is the strictly increasing transport map from the distribution of Uk to a standard Gaussian
N (0, 1). With Bk :=M−1

k , Sk is thus a solution to PDE (20).

For the other direction, let us assume that for all 1 ≤ ℓ < k,

∂2

∂xk∂xℓ
Bk ◦ Sk = 0 . (22)

Applying (22) for ℓ = 1, this implies that for all Bk ◦ Sk is of the form Bk ◦ Sk(x1, . . . , xk) =
a1(x2, . . . , xk)− b1(x1, . . . , xk−1), where a1 again satisfies (22) for ℓ = 2, which again implies that
a1 is of the form a1(x2, . . . , xk) = a2(x3, . . . , xk)−b2(x2, . . . , xk−1). Iterating over 1 ≤ ℓ ≤ k−1,
we obtain that Bk ◦ Sk is of the form

Bk ◦ Sk(x1, . . . , xk) = g(xk)− h(x1, . . . , xk−1) . (23)

By definition, Sk is strictly increasing in xk, and Bk is a strictly increasing transport map. Therefore,
Eq. (23) implies that g is strictly increasing in xk, and g−1 is well-defined. By definition of
transport map Sk, Sk(X1, . . . , Xk) is a standard Gaussian variable. By (19), denoting Uk :=
−Bk ◦ Sk(X1, . . . , Xk), we have for all k, g(Xk) = h(X1, . . . , Xk−1) + Uk. By independence of
the Gaussian marginals, the U variables are independent. Finally, applying the function g−1 to both
sides, we get Xk = g−1(h(X1, . . . , Xk−1) + Uk), which is a PNL considering the independence of
U variables.

D PNLs

Due to space limitations, the discussion on post-nonlinear (PNL) models and the derivations of
PNLloss were postponed to this appendix.
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D.1 Post non-linear models

Post non-linear (PNL) models [40, 39, 44], known to be a general identifiable class of models, are
defined as follows.
Definition 4 (PNL). We say that the SEM of Eq. (3) forms a post-nonlinear model if for all 1 ≤ k ≤ d,

fk((Xℓ)Xℓ∈Pa(Xk), Uk) := hk
(
gk((Xℓ)Xℓ∈Pa(Xk)) + Uk

)
, (24)

where the functions hk are strictly increasing.

Note that the PNL model reduces to an ANM when hk is the identity for all k. That is, ANMs are a
special case of PNLs. The PNL class is identifiable if we prevent some singular functions and noise
distributions [41]. We show the following characterization of PNLs.
Lemma C.1. Suppose π satisfies Assumption 1. Let σ be an ordering. The following are equivalent.

• π is induced by a PNL model, and σ is G−compatible.
• For all 1 ≤ k ≤ d, there exists a strictly increasing map Bk(σ) : R→ R such that for all
1 ≤ ℓ ≤ d where ℓ ̸= k,

∂2

∂xσ(l)∂xσ(k)
Bk(σ)◦ S(σ)k(xσ(1), . . . , xσ(k))= 0. (20)

In view of Lemma C.1, for a given ordering σ, we can parameterize each map Bk(σ) with vector βk

as in (16), and β∗
k is now estimated by optimizing the loss given by Lemma C.1:

β∗
k := argmin

βk

∑
1≤ℓ≤k
ℓ ̸=k

Eπ

[∣∣∣∣ ∂2

∂xσ(l)∂xσ(k)
[Bk(σ)]βk

◦ (S(σ)α∗)k(Xσ(1), . . . , Xσ(k))

∣∣∣∣]

≈ argmin
βk

[PNLlossk(σ,x)](βk), (25)

where

[PNLlossk(σ,x)](βk) :=
∑

1≤ℓ≤k
ℓ̸=k

n∑
i=1

∣∣∣∣ ∂2

∂xσ(l)∂xσ(k)
[Bk(σ)]βk

◦ (S(σ)α∗)k(x
i
σ(1), . . . , x

i
σ(k))

∣∣∣∣ .
(26)

PNL loss. The PNL loss of an ordering σ, parameterized by γ ∈ (R>0)
d is defined as

PNLlossγ(σ,x) :=

d∑
k=1

γk[PNLlossk(σ,x)](βk), (27)

where α∗, β∗
k and ANMlossk(σ,x) are defined in (7), (25) and (26).

We note in particular that

ANMlossγ(σ) = 0 =⇒ PNLlossγ(σ) = 0,

which agrees with the fact that {ANMs} ⊊ {PNLs}.

E Further on numerical experiments

In this section, we first provide comprehensive details of the numerical experiments included in the
main text. Subsequently, we unveil novel numerical experiments, including a numerical experiment
with the real-world dataset ’Sachs’ [29].

Parameters α and τ . In all our experiments, the parameters α are chosen so that all Hermite
polynomials/functions involved are of degree 2. The thresholds τZkℓ in Alg. 1 are defined as follows

τZkℓ := δ|Z| × ς(ΩZ
kℓ), (28)

where ς(ΩZ
kℓ) is defined in (10), and the δ|Z|s are constants depending on |Z|, i.e. the size of the

subspace of variables. They are tuned as follows:
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|Z| 2 3 4 5 6

Value of δ|Z| 0.17 0.3 0.4 0.5 0.6

Table 1: Values of δ|Z| for the thresholds τZkℓ in Alg. 1, defined by (28).

E.1 Details of the experiments in the text

PC-OT experiments. These experiments were conducted based on the following SEM:

X1 := U1

X2 := U2

X3 := X2
1 +X2 + U3

X4 := U4

X5 := 0.5X2
1 − 0.5X2

4 +X1X4 + U5

X6 := X3
4 −X5 + U6

with

U1 ∼ 0.2N (0, 1)×N (0, 1)

U2 ∼ (Gumbel(0, 0.7)− 2.5)/2.5

U3 ∼ N (0, 1)× Exp(1)/8

U4 ∼ (Ber(1/2)× Exp(1)− 3)/2

U5 ∼ (Ber(1/2)× Γ(2, 3)− 24)/12

U6 ∼ Gumbel(0, 0.5)− 1.5

(29)

The underlying causal graph G is given by Figure 1b. Figure 4 illustrates the decomposition of these
error terms. Note that the comparison between the number of misoriented edges was included in
Figure 2a.
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Figure 4: Decomposition of the errors made by PC-OT, PC (Gaussian) and Grow-Shrink.

ANM experiments. Within these experiments, we worked with the following SEM:

X1 := U1

X2 := 0.5X2
1 + U2

X3 := log(X2
1 ) + U3

X4 := 2X2(X2 + 1) + U4

X5 := 0.5X2
1 − 0.5X2

4 +X1X4 + U5

X6 := 0.25X2
3 −X5 + U6

with

U1 ∼ 0.2N (0, 1)2

U2 ∼ 0.5N (−2.5, 1)
U3 ∼ log(N (0, 1)2 + 1)

U4 ∼ 0.3N (0, 1)2

U5 ∼ log(N (0, 1)2 + 1)

U6 ∼ N (0, 1)

(30)

The underlying causal graph G is given by Figure 1a. For each sample size, we repeated the experiment
20 times, and the box plots of the ANMlosses corresponding to each permutation was depicted in
Figure 3. The permutation corresponding to the true causal order was 1→ 2→ 4→ 5→ 3→ 6,
which had the lowest ANMloss among all compatible permutations. Further, the gap between the
ANMlosses increased as the number of samples grew larger.

E.2 Further experiments

Real-world data. In this section, we consider a dataset corresponding to the causal relations
among components of a cellular signaling network based on single-cell data, namely ’Sachs’ dataset
[29]. This dataset comprises samples of 7446 primary human immune system cells. We consider a
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subnetwork of this dataset corresponding to the proteins Pclγ , PIP3, PIP2, PKC and Akt. The
causal mechanisms between these proteins are depicted in Figure 5.

1 2

3

5

4

Figure 5: Causal mechanisms pertaining to the proteins 1 := Pclγ , 2 := PIP3, 3 := PIP2,
4 := PKC and 5 := Akt.

Since the dataset comprises values between 1.0 and 9058, we applied a logarithm function so that
the support spans the real numbers. We then provided the Markov equivalence class of Figure 5
(which consists of 10 different DAGs) to our ANM-OT algorithm. Table 2 below demonstrates the
ANMlosses corresponding to each compatible permutation. As can be seen in Table 2, the ground
truth permutation 1 → 2 → 3 → 4 → 5 has the second lowest ANMloss, following permutation
2→ 1→ 3→ 4→ 5, which is a transposition of the true permutation.

Permutation ANMloss (ANM-OT)
2→ 1→ 3→ 4→ 5 28,517.74
1→ 2→ 3→ 4→ 5 31,732.97
1→ 4→ 3→ 2→ 5 33,776.88
1→ 3→ 4→ 2→ 5 35,402.31
2→ 3→ 1→ 4→ 5 36,563.22
4→ 1→ 3→ 2→ 5 38,816.92
3→ 2→ 1→ 4→ 5 46,310.82
4→ 3→ 1→ 2→ 5 48,449.60
3→ 1→ 4→ 2→ 5 49,448.33
3→ 4→ 1→ 2→ 5 49,686.34

Table 2: ANMlosses pertaining to the permutations compatible with the Markov equivalence class of
the DAG in Figure 5.

Another illustrative example for PC-OT. To illustrate the effectiveness of PC-OT on data with
non-Gaussian noise, we provide a numerical experiment on a small model. The SEM we consider is
as follows.

X1 := U1/450

X2 := U2

X3 := (X3
2 + log(|X2|X2

1 + U3))/15

with

U1
(d)
=

√
4/3(Pow(4)− 3/2) conditioned to be ≤ 1000

U2
(d)
= (Gumbel(0, 0.7)− 2.5)/2.5

U3
(d)
= Ber(1/2)× Exp(1/2)

(31)

Note that the DAG corresponding to the SEM of Eq. (31) is a v-structure, namely X1 → X3 ← X2.
We repeated the experiments of Section 5 using the SEM of Eq. (31). For comprehensiveness, we
also included a version of PC algorithm provided with a kernel-based CI test, namely HSIC-Gamma
[10] provided in the CDT package [14]. The results are depicted in Figure 6. As witnessed in Figure
6, PC-OT performs significantly better than PC with Gaussian CI tests.

Time complexity. Although the performance of PC-OT is comparable to PC with the kernel-based
CI tests, the computing time of the kernel-based algorithm appears to be drastically growing with
sample size. In contrast, PC-OT does not suffer from a growing runtime. It is noteworthy that with
2000 samples, the kernel-based method necessitates a runtime that is 14 times greater compared to
that of PC-OT.
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Figure 6: Performance of PC-OT, PC (Gaussian CI test) and PC (HSIC-Gamma CI test) on the
illustrative example with SEM of Eq. (31).

19


	Introduction
	Preliminaries
	Problem setup
	Background on transport maps
	Knothe-Rosenblatt maps for causal discovery

	Recovering the essential graph via monotone triangular transport maps
	A parametrization of the transport maps
	Capturing conditional independencies in marginal densities
	Description of the algorithm

	Refined OT-based structure learning under structural assumptions
	Additive noise models

	Numerical experiments
	Concluding remarks
	OT-based PC Algorithm
	On Knothe-Rosenblatt transport maps
	Proofs
	PNLs
	Post non-linear models

	Further on numerical experiments
	Details of the experiments in the text
	Further experiments


