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Life possesses agency and behaves autonomously [1, 2]. Agency refers to the ability to autonomously1

set goals based on intrinsic motivation (IM) and act toward achieving them. Life, by autonomously2

setting its own goals, is able to proactively respond to unknown situations and unpredictable events,3

and adjust its behavior using feedback from the environment. When attempting to mimic the agency4

of life, it is crucial for artificial agents to intrinsically set their own goals. Intrinsic goal setting has5

been explored through concepts like prediction information maximization [3, 4, 5], empowerment6

maximization [6], curiosity-driven learning [7, 8, 9, 10], and novelty-based learning [11, 12]. In many7

of these IM approaches, however, researchers explicitly design motivations, such as “novelty is good”8

in novelty-based learning. As a result, the complete internalization of goals within artificial agents9

has not yet been fully achieved, and flexible adaptation to the environment based on autonomous goal10

setting remains a challenge.11

The most fundamental goal of life is to avoid death. Avoiding death means maintaining a state12

of being alive, that is, possessing homeostasis [13, 14, 15], which involves acquiring energy from13

external sources and keeping one’s internal state within a certain range. The homeostasis is based on14

the objective of sustaining the very existence (being) of the self. The characterization of life based on15

the goal of maintaining the persistence of being was proposed as autopoiesis by Maturana and Varela16

[16] and later extended by Barandiaran et al. to define agency [17]. Autopoiesis is a process by which17

life, driven by the meta-goal of preserving its own existence (being), autonomously sets multiple18

internalized motivations, such as acquiring energy or escaping predators, and generates open-ended19

behaviors to achieve them (Appendix A) [18]. This suggests the renaissance of research stance that20

the existence of the agent itself and the extrinsic motivation (EM) to maintain it precedes the agent’s21

IM, which this stance akin to the perspective of classical suggestions, such as Parisi’s internal robotics22

[19], and Di Paolo’s approach to the homeostatic adaptation using evolutionary optimizations [18].23

A theoretical framework where homeostasis as the core of the EM is known as homeostatic reinforce-24

ment learning (homeostatic RL) in computational neuroscience [20, 21, 22]. By combining deep25

RL [23, 24], recent studies have reported the emergence of various goal-directed behaviors [25, 26].26

These results suggest a possibility of the emergence of highly adaptive process of the artificial systems27

from our perspective, such as world models and IM (Appendix B) [27, 28, 29, 30, 31, 32, 33]. In this28

paper, by combining meta-RL [34, 35] and deep homeostatic RL, we hypothesize the possibility of29

explaining such IMs as an emergent property of homeostatic systems, together with world models.30

The further discussion in Appendix C suggests that including recurrent neural networks (RNN) in31

homeostatic RL may naturally lead to the meta-learning ability of agents. Furthermore, as reported32

by Wang et al. [34, 35], computational experiments have shown that, even though all of the agent33

architecture and optimization are carried out in model-free, such meta-RL agents behave like model-34

based [35]. This suggests that the agent acquires a process for implicitly constructing a model of the35

environment (implicit world model) within the unstructured network, and uses it for learning and36

exploration.37

By conducting meta-RL based on the unified EM (homeostasis), we propose a “mortal agent” that38

can open-endedly generate IMs and world models according to the agent-environment coupling.39

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



References40

[1] Alvaro Moreno and Matteo Mossio. Biological autonomy: A Philosophical and Theoretical41

Enquiry. Springer, 2015.42

[2] Ezequiel Di Paolo and Evan Thompson. The enactive approach. In The Routledge handbook of43

embodied cognition, pages 68–78. Routledge, 2014.44

[3] Nihat Ay, Nils Bertschinger, Ralf Der, Frank Güttler, and Eckehard Olbrich. Predictive infor-45

mation and explorative behavior of autonomous robots. The European Physical Journal B,46

63:329–339, 2008.47

[4] Jakob Hohwy. The predictive mind. OUP Oxford, 2013.48

[5] Thomas Parr, Giovanni Pezzulo, and Karl J Friston. Active inference: the free energy principle49

in mind, brain, and behavior. MIT Press, 2022.50

[6] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal51

agent-centric measure of control. In 2005 ieee congress on evolutionary computation, volume 1,52

pages 128–135. IEEE, 2005.53

[7] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building54

neural controllers. In Proc. of the international conference on simulation of adaptive behavior:55

From animals to animats, pages 222–227, 1991.56

[8] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for57

autonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–58

286, 2007.59

[9] Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).60

IEEE transactions on autonomous mental development, 2(3):230–247, 2010.61

[10] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.62

Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.63

[11] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv64

preprint arXiv:1504.04909, 2015.65

[12] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random66

network distillation. In Seventh International Conference on Learning Representations, pages67

1–17, 2019.68

[13] Walter Bradford Cannon. The wisdom of the body. Norton & Co., 1939.69

[14] W Ross Ashby. Design for a brain. Wiley, 1952.70

[15] George E Billman. Homeostasis: the underappreciated and far too often ignored central71

organizing principle of physiology. Frontiers in physiology, 11:200, 2020.72

[16] Francisco G Varela, Humberto R Maturana, and Ricardo Uribe. Autopoiesis: The organization73

of living systems, its characterization and a model. In Facets of systems science, pages 559–569.74

Springer, 1991.75

[17] Xabier E Barandiaran, Ezequiel Di Paolo, and Marieke Rohde. Defining agency: Individuality,76

normativity, asymmetry, and spatio-temporality in action. Adaptive behavior, 17(5):367–386,77

2009.78

[18] Ezequiel A Di Paolo. Organismically-inspired robotics: homeostatic adaptation and teleology79

beyond the closed sensorimotor loop. Dynamical systems approach to embodiment and sociality,80

pages 19–42, 2003.81

[19] Domenico Parisi. Internal robotics. Connection science, 16(4):325–338, 2004.82

[20] Mehdi Keramati and Boris S Gutkin. A reinforcement learning theory for homeostatic regulation.83

In Advances in Neural Information Processing Systems, pages 82–90, 2011.84

2



[21] Mehdi Keramati and Boris Gutkin. Homeostatic reinforcement learning for integrating reward85

collection and physiological stability. Elife, 3:e04811, 2014.86

[22] Oliver J Hulme, Tobias Morville, and Boris Gutkin. Neurocomputational theories of homeostatic87

control. Physics of life reviews, 31:214–232, 2019.88

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G89

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.90

Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.91

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal92

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.93

[25] Naoto Yoshida, Tatsuya Daikoku, Yukie Nagai, and Yasuo Kuniyoshi. Emergence of integrated94

behaviors through direct optimization for homeostasis. Neural Networks, 177:106379, 2024.95

[26] Naoto Yoshida, Hoshinori Kanazawa, and Yasuo Kuniyoshi. Synthesising integrated robot96

behaviour through reinforcement learning for homeostasis. bioRxiv, pages 2024–06, 2024.97

[27] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In98

Advances in Neural Information Processing Systems, pages 2451–2463, 2018.99

[28] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with100

discrete world models. In International Conference on Learning Representations, 2020.101

[29] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains102

through world models. arXiv preprint arXiv:2301.04104, 2023.103

[30] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of104

computational approaches. Frontiers in neurorobotics, 1:6, 2007.105

[31] Nick Haber, Damian Mrowca, Stephanie Wang, Li F Fei-Fei, and Daniel L Yamins. Learning to106

play with intrinsically-motivated, self-aware agents. Advances in neural information processing107

systems, 31, 2018.108

[32] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak109

Pathak. Planning to explore via self-supervised world models. In ICML, 2020.110

[33] Isaac Kauvar, Chris Doyle, Linqi Zhou, and Nick Haber. Curious replay for model-based111

adaptation. International Conference on Machine Learning, 2023.112

[34] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,113

Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.114

arXiv preprint arXiv:1611.05763, 2016.115

[35] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z116

Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement117

learning system. Nature neuroscience, 21(6):860–868, 2018.118

[36] Humberto R Maturana and Francisco J Varela. The tree of knowledge: The biological roots of119

human understanding. New Science Library/Shambhala Publications, 1987.120

[37] Humberto Maturana. Biology of cognition. Biological Computer Laboratory, Department of121

Electrical Engineering . . . , 1970.122

[38] Humberto R Maturana and Francisco J Varela. Autopoiesis and cognition: The realization of123

the living. Springer, 1980.124

[39] Francisco J Varela. Principles of biological autonomy. General Systems Research. North125

Holland, 1979.126

[40] Tom Froese and Stewart John. Life after ashby: ultrastability and the autopoietic foundations of127

biological autonomy. Cybernetics and Human Knowing, 17(4):7–50, 2010.128

3



[41] Robert Rosen. Some realizations of (m, r)-systems and their interpretation. The bulletin of129

mathematical biophysics, 33:303–319, 1971.130

[42] Ryuzo Hirota, Hayato Saigo, and Shigeru Taguchi. Reformalizing the notion of autonomy as131

closure through category theory as an arrow-first mathematics. In ALIFE 2023: Ghost in the132

Machine: Proceedings of the 2023 Artificial Life Conference. MIT Press, 2023.133

[43] Gautier Hamon, Mayalen Etcheverry, Bert Wang-Chak Chan, Clément Moulin-Frier, and Pierre-134

Yves Oudeyer. Discovering sensorimotor agency in cellular automata using diversity search.135

arXiv preprint arXiv:2402.10236, 2024.136

[44] Tibor Gánti. Chemoton theory: theory of living systems. Springer Science & Business Media,137

2003.138

[45] Pier Luigi Luisi. Autopoiesis: a review and a reappraisal. Naturwissenschaften, 90:49–59,139

2003.140

[46] Karl Friston. Life as we know it. Journal of the Royal Society Interface, 10(86):20130475,141

2013.142

[47] Jelle Bruineberg, Krzysztof Dołęga, Joe Dewhurst, and Manuel Baltieri. The emperor’s new143

markov blankets. Behavioral and Brain Sciences, 45:e183, 2022.144

[48] Takaya Araki, Tomoaki Nakamura, and Takayuki Nagai. Long-term learning of concept and145

word by robots: Interactive learning framework and preliminary results. In 2013 IEEE/RSJ146

International Conference on Intelligent Robots and Systems, pages 2280–2287. IEEE, 2013.147

[49] Tadahiro Taniguchi, Hiroshi Yamakawa, Takayuki Nagai, Kenji Doya, Masamichi Sakagami,148

Masahiro Suzuki, Tomoaki Nakamura, and Akira Taniguchi. A whole brain probabilistic149

generative model: Toward realizing cognitive architectures for developmental robots. Neural150

Networks, 150:293–312, 2022.151

4



A Mini Review for Autopiesis152

This review provides a comprehensive overview of the development of the concept of autopoiesis since153

its inception 50 years ago, and its computational models. The concept of autopoiesis, first introduced154

by Chilean biologists Humberto Maturana and Francisco Varela in the early 1970s [36, 37, 38, 39],155

has had a profound impact on our understanding of life, cognition, and complex systems. Autopoiesis156

refers to the process by which self-maintaining and self-producing systems sustain themselves and157

maintain their identity through continuous interactions with their environment. The concept of158

autopoiesis later became connected with ideas such as enaction related to the sensorimotor loop [2]159

and agency [17], and biological autonomy [40, 1].160

We then delve into the diverse research streams that have emerged in the field as computational161

model, examining the Category theory approach, Enactive approach, Synthetic Biology approach,162

and Bayesian approach each with its unique contributions to the understanding of autopoiesis. First,163

there is the approach using category theory. This begins with Rosen’s (M,R) system [41], and more164

recently, discussions on closure have been conducted by Moreno and Mossio [1], and Hirota, Saigo165

and Taguchi[42]. Next is the Enactive Approach. While Di Paolo and Frose have conceptually166

organized the interactions between agents and their environment [2, 40], computational models like167

the Sensorimotor Lenia [43], which employs cellular automata, have been proposed. The third is the168

Synthetic Biology approach, which began with Ganti’s chemoton[44] and has been further modeled169

by Luisi [45]. Lastly, there is the formulation of autopoietic systems using the free energy principle170

and Markov blankets [46, 47].Autopoiesis has developed both conceptually and computationally over171

the past 50 years, serving as an important guideline for constructing artificial agency.172
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Figure 1: Relation diagram of our proposal on the emergent abilities of autonomous cognitive
developmental systems, from mechanistic (= undirected, unsupervised) perspective of autonomous
biological systems.

C Architecture for Mortal Agent174

By combining recent meta-RL [34, 35] and deep homeostatic RL, we propose the possibility of175

explaining IM as an emergent property of systems adapting to a domain, together with a world model.176

To do this, we first focus on the possibility of mapping meta-RL and homeostasis RL (Figure 2).177

Specifically, the external observations xt, latest action selection at−1, and latest reward rt−1 required178

for domain adaptation in meta-RL. These multi-modal observation are thought to correspond to179

exteroception xe, proprioception xp, and interoception xi, in homeostatic RL [25] respectively. The180

multi-modal observation is common situation in studies of cognitive developmental robotics [48, 49].181

Therefore, the inclusion of a recurrent neural networks (RNNs), which is essential for meta-RL, in the182

model architecture of homeostasis RL agent may minimally lead to the potential for a meta-learning183

ability.184

5



+RNN

(     ,      ,     )𝑥!𝑥"Input

Input (   ,     ,     )𝑎𝑥 𝑟

𝑟 = 𝑓(𝑥!" , 𝑥!#$" )

Homeostatic RL

meta-RL

RNN

𝑎#𝑉#

𝑥!"𝑥!
%𝑥!&

meta-Homeostatic RL

Keramati & Gutkin 2011

Wang et al. 2018

𝑥#$

Mapping Possibility Minimum meta-RL
Architecture for Homeostatic RL

à Emergent Model-based Behavior?
(Implicit World Model and Exploration)

Figure 2: Implication of homeostatic extrinsic reward system combined with recurrent connection for
the emergence of implicit world models and exploration.
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