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Abstract

Image steganography ensures secure information
transmission and storage by concealing secret
messages within images. Recently, the diffusion
model has been incorporated into the generative
image steganography task, with text prompts be-
ing employed to guide the entire process. How-
ever, existing methods are plagued by three prob-
lems: (1) the restricted control exerted by text
prompts causes generated stego images resem-
ble the secret images and seem unnatural, rais-
ing the severe detection risk; (2) inconsistent in-
termediate states between Denoising Diffusion
Implicit Models and its inversion, coupled with
limited control of text prompts degrade the re-
vealed secret images; (3) the descriptive text of
images(i.e. text prompts) are also deployed as the
keys, but this incurs significant security risks for
both the keys and the secret images. To tackle
these drawbacks, we systematically propose the
SSHR, which joints the Reference Images with
the adaptive keys to govern the entire process, en-
hancing the naturalness and imperceptibility of
stego images. Additionally, we methodically con-
struct an Exact Reveal Process to improve the
quality of the revealed secret images. Further-
more, adaptive Reference-Secret Image Related
Symmetric Keys are generated to enhance the
security of both the keys and the concealed secret
images. Various experiments indicate that our
model outperforms existing methods in terms of
recovery quality and secret image security.

1Department of Computer Science and Technology,
University of Harbin Institute of Technology (Shen-
zhen), Shenzhen, Guangdong, China. Correspondence
to: Yao Lu <luyao2021@hit.edu.cn>, Guangming Lu
<luguangm@hit.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Due to the demand of privacy, security, and data protec-
tion in the era of digital communication and AI develop-
ment, steganography has emerged as an essential technology.
Steganography embeds diverse types of secret messages into
a container medium in an undetectable manner, which has
broad applications across fields (Vyas et al., 2023; Wouters,
2024; Feng et al., 2024; Liu & Bu, 2024).

Currently, image steganography techniques are primarily di-
vided into cover-based and generative steganography meth-
ods. Cover-based methods, such as LSBM (Mielikainen,
2006), HUGO (Pevnỳ et al., 2010), UNIWARD (Sameer &
Naskar, 2018), and deep learning based methods (Baluja,
2017; 2019; Lu et al., 2021; Jing et al., 2021; Guan et al.,
2022), embed secret messages within the cover images.
Compared to cover-based methods, generative steganog-
raphy methods generating the suitable stego images directly
from the secret images via neural network without using
the cover images, such as CycleGAN (Zhu et al., 2017) and
encoder-decoder models (Zhou et al., 2015). Recently, the
diffusion model(Ho et al., 2020) has been incorporated into
the generative image steganography task, such as CRoSS
(Yu et al., 2024) and DiffStega (Yang et al., 2024), with text
prompts, which are the descriptive text of images, being
employed to guide the entire conceal and reveal processes.

However, existing diffusion model-based generative meth-
ods still face several challenges, as illustrated in Figure 1.
Firstly, constrained by the restricted control over specific
semantic regions via text prompts, the generated stego im-
ages closely resemble the secret images, particularly in the
background. Occasionally, the generated stego images seem
weird and unnatural, raising the severe detection risk from
third parties. Additionally, owing to the inconsistency of
intermediate states between Denoising Diffusion Implicit
Models (DDIM) (Song et al., 2021) and its inversion, cou-
pled with the restricted control exerted by text prompts
(Hertz et al., 2023; Zhang et al., 2024; Wang et al., 2024),
the quality of the revealed secret images has been signifi-
cantly declined, posing substantial challenges for practical
applications. Finally, text prompts, also utilized as crypto-
graphic keys to enhance steganography security, are vulner-
able to being guessed due to their essence of descriptive text
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Figure 1. The pipeline comparison of (a) CRoSS, (b) DiffStega, and (c) our method, with main differences highlighted in red dotted boxes.
Our approach enables significant modifications to the secret image while enhancing the quality of revealed images. Additionally,We use a
Reference-Secret Image Related Symmetric Key (ksym) as the cryptographic key, rather than text prompt used in previous methods.

for images, creating serious security risks for both the keys
and concealed secret images.

To address these problems, this paper systematically pro-
poses a secure generative steganography method, SSHR,
based on the diffusion model. Given the inadequate con-
trol exerted by text prompts in diffusion-based generative
steganography models, this paper substitutes text prompts
with reference images as guiding conditions. The abundant
semantic information inherent in reference images facili-
tates superior control of stego images generation. Distinct
from cover-based methods, our model treats these reference
images as guides for stego images generation, rather than
as simple containers for concealed secret images. An exact
reveal process is performed to minimize damage to the re-
vealed secret images. Furthermore, the adaptive keys, which
will be joined with the reference images to guide the en-
tire process, are generated to compensate for the absence
of keys after removing text prompts. Experimental results
indicate that our method achieves notable improvements in
effectiveness and security over existing models. Our main
contributions are:

• We systematically propose a novel generative steganog-
raphy method joints the Reference Images with the
adaptive keys to govern the entire process, enhancing
the naturalness and imperceptibility of stego images.

• We methodically construct an Exact Reveal Process to
precisely reverse the conceal process, diminishing the
errors in the reveal process and enhancing the quality
of the revealed secret images.

• We propose a Reference-Secret Image Related Sym-
metric Key (RSRK) generation module to generate
the keys, enhancing the security of both the keys and
the concealed secret images.

• We conduct extensive experiments to demonstrate that
our model surpasses existing methods in terms of stego
images quality and security, as well as the quality of
the revealed secret images.

2. Related work
2.1. Cover-based Image Steganography

Traditional cover-based image steganography conceals se-
cret data within a cover image, either in the spatial domain
using techniques like Least Significant Bits (Mielikainen,
2006) or in the transform domain, such as Discrete Fourier
Transform. Baluja (Baluja, 2017; 2019) initially proposed
a deep learning method to conceal a full-size image within
another. Universal Deep Hiding (UDH) (Zhang et al., 2020)
introduced a universal pipeline for image steganography that
contrasts with the pipeline in (Baluja, 2017; 2019). ISN (Lu
et al., 2021) pioneered the use of Invertible Neural Networks
(INN), setting a benchmark by utilizing INN’s reversible
properties for conceal and reveal, showcasing superior capa-
bilities. Following this, models such as HiNet (Jing et al.,
2021), DeepMIH (Guan et al., 2022), and other INN-based
approaches have been proposed to further explore INN’s
potential in image steganography.

The reliance on cover images limits the applicability of these
methods, and their stability and detection resistance need
enhancement. In contrast, our model utilizes a reference
image to guide stego image generation rather than serving
as a container for the secret image.

2.2. Generative Steganography

Generative steganography eliminates the reliance on cover
images by directly generating stego images from the se-
cret images using neural networks, such as CycleGAN (Zhu
et al., 2017) and encoder-decoder models (Zhou et al., 2015).
Wei et al. (Wei et al., 2022) established a bi-directional
mapping between stego images and secret data, integrat-
ing the generator and extractor within a single Flow-based
network. Distinguished from these methods, Generative
Steganography Diffusion (GSD) (Wei et al., 2023) leverages
the advanced capabilities of diffusion models. Additionally,
CRoSS (Yu et al., 2024) and DiffStega (Yang et al., 2024),
both diffusion-based models with text prompts being em-
ployed to guide the entire process, demonstrate excellent
controllability and resilience against attacks.
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Figure 2. The overall structure of our SSHR model. In the conceal stage, the secret image xsec and reference image xref jointly generate
the symmetric key ksym first. Guided by ksym and xref , the secret image will be gradually encrypted and ultimately generate the stego
image xstego. In the reveal stage, both ksym and xref are fed into the model simultaneously to accurately reveal the secret image xsec.

Nevertheless, the limited control over text prompts, coupled
with inconsistency between DDIM and its inversion, sig-
nificantly damage the quality of stego and revealed secret
images. This drives us to replace the text prompts with
images and construct the exact reveal process. Furthermore,
adaptive keys compensate for the absence of keys after re-
moving text prompts.

2.3. Perona-Malik model

The Perona-Malik (PM) model (Perona & Malik, 1990)
which has demonstrated strong performance in various im-
age processing tasks, is a nonlinear diffusion model and
formulated by the following partial differential equation:{

∂z
∂t = div(g(|∇z|)∇z) ,

z|t=0 = f ,
(1)

where ∇ represents the gradient operator, t denotes the
time, f represents the initial image and g is the diffusion
function (Weickert et al., 1998). The discrete version of the
PM model is derived through an explicit finite difference
scheme and represented as:

zt+1 − zt
∆t

= −
∑
i∈x,y

∇T
i Λ(zt)∇izt

= −
∑
i∈x,y

∇T
i ϕ(∇izt) ,

(2)

where ϕ is the influence function (Black et al., 1997) or flux
function (Weickert et al., 1998). As demonstrated in previ-
ous works (Scherzer & Weickert, 2000; Zhu & Mumford,

1997), the diffusion step Equation (2) aligns with a gradient
descent step to minimize the following energy function:

P(z) =
∑
i∈x,y

N∑
p=1

ρ((ki ∗ z)p) , (3)

where the functions ρ is the penalty function, ki denotes
a two-dimensional convolution filter kernel and ∗ signifies
the convolution operation. It is noteworthy that the matrix-
vector product ∇x(z) can be interpreted as a 2D convolution
of z with the linear filter kx = [−1, 1]T . Similarly, ∇y ∈
RN×N corresponds to the linear filter ky = [−1, 1]T .

This paper systematically presents a novel and secure gen-
erative steganography model. Motivated by the limited
control of text prompts, this paper introduces a secondary
image with a new identity, replacing the text prompt for a
more intuitive and effective approach. The exact reveal pro-
cess is conducted to mitigate the inconsistency between the
conceal and reveal process in existing methods. Moreover,
the absence of keys after removing text prompts will be
compensated with the adaptively generated symmetric keys.
These keys will be integrated with reference images, serving
as guiding elements throughout the process and enhancing
security beyond conventional text prompts.

3. Proposed Methods
3.1. Framework

This paper proposes SSHR, a novel and secure generative
steganography model, with the overall framework presented
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in Figure 2. Building on the exceptional performance of
prior work (Jing et al., 2021), our steganography process is
conducted in the frequency domain. Specifically, the secret
image xsec is first accepted as input and transformed into the
latent space as zsec using discrete wavelet transform (DWT).
Subsequently, the zsec is encrypted with the symmetric
key ksym and the reference image xref , which is pre-
processed with the condition information guidance module
(CIGM). This step generates the latent representation zstego
of the stego image xstego. The final stego image xstego

is obtained through inverse wavelet transform (IWT). The
reveal process follows the exact inverse of the conceal
process, ultimately yielding the revealed secret image xrev .

Conceal process. To meet the specific requirements of
our steganography task, we introduce a condition term
R(z, ksym, c) into the original PM diffusion model. Re-
ferred to as the condition reaction term following the termi-
nology in (Chen & Pock, 2016), this term serves to guide the
generation process. Consequently, Equation (3) is modified
as follows:

F =

Nk∑
i=1

ρi(ki ∗ z, ksym) + λR(z, ksym, c) , (4)

where ksym denotes the Reference-Secret Image Related
Symmetric Key, which is utilized to strengthen the security
of both the key and the concealed secret images, with ad-
ditional details provided later. Nk represents the amount
of the filters. c is the condition infused into the condition
reaction term to regulate the generated stego images and en-
hance their naturalness and imperceptibility. In our model,
c is set to the reference images by default. Equation (4)
results in a Nonlinear Diffusion Model incorporating the
condition reaction term, depicted as a forward-backward
step at zt−1 of the energy functional, expressed as:

Et(x) =

Nk∑
i=1

Pt
i (z, ksym) +Rt(z, ksym, c) , (5)

where Pt
i (z, ksym) =

Nk∑
j=1

ρti((K
t
i z)j , ksym). By applying an

explicit finite difference scheme, we derive the following
discretized iteration law, with the initial input set as z0 =
zsec:

zt+1 = zt −
Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ zt, ksym)

− λφt(zt, ksym, c) .

(6)

To perform the convolution kti ∗ zt, we substitute tradi-
tional convolution with Re-parameterization Depthwise
Convolution (Rep-DWConv) (Tu et al., 2024), which

Figure 3. Illustration of (a) the Diffusion Term (DT) and (b) the
Condition Reaction Term (CRT).

offers enhanced performance and parameter efficiency.
The weights of Rep-DWConv, given by Wre−c =

Linear(SiLU(Linear(ksym))), are dynamically generated
using the symmetric key ksym to ensure security. Con-
sequently, this module is referred to as Conditional Re-
parameterization Convolution (CRC). In line with (Chen
& Pock, 2016), we use 63 Gaussian radial basis func-
tions(GRBFs) to parameterize ϕt

i for i ∈ {1, 2, ..., Nk}.
The overall pipeline for the Diffusion Term (DT) and the
Condition Reaction Term (CRT) is illustrated in Figure 3.

Inspired by the coupling function and affine coupling layer
introduced in (Dinh et al., 2014; 2016), we define an aux-
iliary variable yt that satisfies yt = zt. Consequently, the
iteration step in Equation (6) is transformed into:

yt = zt ,

zt+1 = zt −
Nk∑
i=1

k̄ti ∗ ϕt
i(k

t
i ∗ yt, ksym)

−λφt(yt, ksym, c) .

(7)

Therefore, yt+1 is calculated as:

yt+1 = zt+1

= zt −
Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ yt, ksym)

− λφt(yt, ksym, c)

= yt −
Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ zt, ksym)

− λφt(zt, ksym, c) .

(8)

By combining the equation above with the second equation
in Equation (7), we obtain:

zt+1 = zt −
Nk∑
i=1

k̄ti ∗ ϕt
i(k

t
i ∗ yt, ksym)

−λφt(yt, ksym, c) ,

yt+1 = yt −
Nk∑
i=1

k̄ti ∗ ϕt
i(k

t
i ∗ zt, ksym)

−λφt(zt, ksym, c) .

(9)

To accelerate model convergence and drawing inspiration
from the Gauss-Seidel method, we use zt+1 instead of zt as
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the input of the second equation, leading to:

zt+1 = zt −
Nk∑
i=1

k̄ti ∗ ϕt
i(k

t
i ∗ yt, ksym)

−λφt(yt, ksym, c) ,

yt+1 = yt −
Nk∑
i=1

k̄ti ∗ ϕt
i(k

t
i ∗ zt+1, ksym)

−λφt(zt+1, ksym, c) .

(10)

Following the recommendation in (Wallace et al., 2023), we
introduce a learnable parameter p ∈ [0.90, 1.0] to enhance
robustness. Additionally, intermediate mixing layers are
applied after each gradient descent step to compute weighted
averages of z and y, defined as:

zmix = p · z + (1− p) · y . (11)

In summary, the conceal process of the proposed SSHR,
with the input z0 = zsec and final output zT = zstego, can
be formulated as:

zmix
t+1 = zt −

Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ yt, ksym)

− λφt(yt, ksym, c) ,

ymix
t+1 = yt −

Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ zmix

t+1 , ksym)

− λφt(z
mix
t+1 , ksym, c) ,

zt+1 = p · zmix
t+1 + (1− p) · ymix

t+1 ,

yt+1 = p · ymix
t+1 + (1− p) · zt+1 .

(12)

Exact reveal process. To minimize errors in the reveal pro-
cess and enhance the quality of the revealed secret images,
we deterministically reverse the conceal process, ensuring
a reliable reveal process in the proposed model. Equa-
tion (11) represents an invertible affine transformation, with
the inversion process defined as follows:

z = (zmix − (1− p) · y)/p . (13)

Thus, reveal Equation (12) and the exact reveal process of
our model is calculated, with input zT = zstego and output
z0 = zrev , as follows:

ymix
t+1 = (yt+1 − (1− p) · zt+1)/p ,

zmix
t+1 = (zt+1 − (1− p) · ymix

t+1 )/p ,

yt = ymix
t+1 +

Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ zmix

t+1 , ksym)

+ λφt(z
mix
t+1 , ksym, c) ,

zt = zmix
t+1 +

Nk∑
i=1

k̄ti ∗ ϕ
t
i(k

t
i ∗ yt, ksym)

+ λφt(yt, ksym, c) .

(14)

In practice, the calculation steps of z and y in both the
conceal and reveal process are executed alternately, ensuring
a symmetrical transformation between the two sequences.

3.2. Reference-Secret Image Related Key

Ensuring the security of the secret image hidden within
the stego images is of paramount in image steganography.
The concept of the key, originally from cryptography and
first introduced to steganography in (Mou et al., 2023), is
well-suited to address this requirement. However, existing
methods do not fully guarantee key security and vulner-
able to key guessing. In (Mou et al., 2023), the key is
merely a single numeric value; in CRoSS (Yu et al., 2024),
the private and public keys correspond to the descriptive
text of the secret and stego images, respectively. Similarly,
DiffStega (Yang et al., 2024) employs a pre-determined
password-related reference image, alongside a text prompt
as the public key. In contrast, and drawing inspiration from
the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key
exchange algorithm, our model introduces a dynamically
generated symmetric key that is adaptively derived from the
reference-secret image pair, significantly boosting security.

Inspired by the principle of ECDHE, we treat each steganog-
raphy task as an independent encryption session, where the
symmetric key is adaptively generated based on the secret
and reference images. The process begins by extracting fea-
tures Fs and Fr from the secret and reference image, respec-
tively, using a pre-trained neural network, with AlexNet em-
ployed as the default model. Next, a MLP is applied to gen-
erate the private key, defined as kpri−i = MLP (Fi), i ∈ r, s,
where kpri−r and kpri−s represent the private keys of the
reference and secret images, respectively. The public key
is then derived using a specific parameter matrix W , for-
mulated as kpub−i = W · kpri−i, where · represents the
Hadamard product.

Following the principles of the ECDHE algorithm, the sym-
metric key ksym utilized in our model is derived as:

ksym = (WL +WS) · kpri−s · kpri−r

= (WL +WS) · kpri−r · kpri−s ,
(15)

where WS denotes the weight matrix generated based on
the secret image, and the overall framework is illustrated
in Figure 2. Based on the above equation, the parameter
matrix W used for public key generation is defined as W =

WL +WS . Thus, for each unique pair of images, a distinct
symmetric key is generated and used in both the conceal
and reveal processes. During transmission, only the public
key is shared, ensuring strict protection of both the private
keys and the symmetric key. This approach significantly
enhances the security of the secret images concealed within
the stego images.

When transmitting the stego image xstego, the public key
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kpub−s associated with the secret image is sent alongside
it. Upon receiving the public key of the secret image, the
receiver can use the same pipeline outlined in Equation (15)
to generate the symmetric key ksym, as the sender did during
the conceal process. With this symmetric key, the receiver
can accurately reveal the secret image and complete the
reveal process. Further details are provided in the Supple-
mentary. To the best of our knowledge, this is the first
exploration to integrate key exchange protocols into image
steganography.

Subsequently, the symmetric key ksym is utilized to generate
the weights for CRC, denoted as Wre−c, as well as the
modulation parameters α, β, γ in CRT. This design ensures
that the symmetric key plays a crucial role in the conceal
and reveal process.

3.3. Condition Information Guidance Module

We aim to progressively encrypt the secret images, allow-
ing the stego images to gradually improve in quality and
increasingly resemble the reference images over time. To
achieve this, we first pre-process the reference images us-
ing the Condition Information Guidance Module (CIGM)
before generating the modulation parameters. This ensures
that the input to AdaLN-Zero (Peebles & Xie, 2023) varies
across different timesteps, thereby enabling the stego im-
ages to incrementally converge toward the reference images.
The CIGM is analogous to a transformer block and com-
prises a a separate linear transformation(SLT) (Lu et al.,
2024), followed by a Re-parameterization Feed-Forward
Network(Re-FFN)(Tu et al., 2024). The SLT serves a func-
tion similar to that of the attention module in a transformer
block and can be formulated as follows:

Oslt(c) = W (θ1) · c+ θ2 · c+ θ3 , (16)

where θ1 ∈ RB×C×H×W , θ2 ∈ RB×C×1×1, θ3 ∈
RB×C×1×1 and c is the input of it. The W (θ1) is a convo-
lution layer, expressed as W (θ1) = Conv(SiLU(θ1)). The
Re-FFN is structured with two pointwise convolution layers
and a Rep-Conv layer, as illustrated in Figure 2.

Subsequently, the modulation parameters α, β, γ are gener-
ated based on the output of CIGM, denoted as OCIPM (c),
along with the parameter matrix WA. The parameters WA

derived from the symmetric key ksym via a MLP layer. The
overall pipeline is formulated as:

α, β, γ = split((OCIGM (c)) ·WA)

= split((OCIGM (c)) ·MLP (ksym) .
(17)

Subsequently, they are incorporated into the CRT to guide
the generation process and encrypt the secret image.

In summary, the output of CRT OCRT (z, ksym, c) is:

OCRT (z, ksym, c) = γ ·N(z · (1 + α) + β), (18)

where N is the Transformer block illustrated in Figure 3.

3.4. Loss function

Our loss function comprises frequency loss and perceptual
loss, which we will describe in detail below.

Frequency loss. The steganography process intends to
generate the stego image xstego based on the secret image
xsec. For security purposes, the frequency content of the
stego image zstego should closely match that of the reference
image zref , making them indistinguishable. In the reveal
phase, it is essential that the frequency profile of the revealed
image zrev closely aligns with that of the original secret
image zsec. To enforce these constraints, we define the
frequency loss as follows:

LF = ls(zref , zstego) + ls(zsec, zrev), (19)

where ls represents the l1 or l2 norm, serving as a measure
of the difference between two images. In our experiments,
we use the l1 norm as the default.

Perceptual loss. To ensure that the stego image xstego,
generated during the conceal process, closely resembles
the reference image xref , and that the revealed image xrev

visually aligns with the secret image xsec, we introduce
a perceptual loss. This loss function quantifies the high-
level perceptual differences between these image pairs. The
perceptual loss is defined as follows:

LP =lp(A (xref ),A (xstego))

+ lp(A (xsec),A (xrev)),
(20)

where A is the pre-trained AlexNet (Krizhevsky et al.,
2012), used to extract high-level features from the images,
and lp measures the difference between these features.

Total loss. The total loss function LTotal is defined as the
weighted sum of the frequency loss LF and perceptual loss
LP , formulated as:

LTotal = λ1LF + λ2LP , (21)

where λ1 and λ2 are trade-off parameters set to 2.0 and 1.0,
respectively, to balance the different losses.

4. Experiments
4.1. Experimental Setting

Datasets and settings. Our model is implemented with
PyTorch and trained on the DIV2K (Agustsson & Timofte,
2017) training dataset. The evaluation is performed on
the DIV2K (Agustsson & Timofte, 2017) test dataset (100
images), COCO (Lin et al., 2014) (5000 images), ImageNet
(Russakovsky et al., 2015) (10,000 images), and UniStega
(Yang et al., 2024) (100 images) at a resolution of 256×256.
Additional details are presented in the Supplementary.
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Figure 4. Visual comparisons of our model with generative steganography models on the UniStega dataset across three different prompts.
These prompts are utilized in CRoSS and DiffStega, whereas our model functions without text prompts. The reference image is used as
the image condition in both DiffStega and our model. More comparison results are presented in the Supplementary.

Table 1. Numerical comparisons of secret/revealed image pairs with cover-based steganography methods across various datasets, high-
lighting the best results in red and the second-best in bold.

METHOD
DIV2K COCO IMAGENET

PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
HIDDEN 36.43 0.9496 6.02 5.50 37.68 0.9145 4.72 6.33 35.70 0.9301 4.57 6.92
BALUJA 35.88 0.9377 4.68 6.11 35.01 0.9341 6.52 8.00 34.13 0.9247 5.31 8.37

WENG ET.AL 33.24 0.8582 5.04 6.32 33.05 0.8921 4.80 6.06 33.34 0.8921 4.80 6.06
UDH 35.22 0.8036 4.03 4.78 35.07 0.8220 3.77 4.67 35.39 0.8252 3.73 4.58
ISN 37.06 0.9672 2.80 4.30 36.58 0.9016 3.04 3.78 37.73 0.9548 2.97 3.31

HINET 46.64 0.9962 0.93 1.31 44.05 0.9952 1.17 1.70 46.78 0.9947 1.12 1.23

OURS 48.56(1.92↑) 0.9988(0.0022↑) 0.74(0.19↓) 0.97(0.34↓) 47.67(3.62↑) 0.9985(0.0033↑) 0.80(0.37↓) 1.08(0.62↓) 49.52(2.74↑) 0.9986(0.0039↑) 0.68(0.44↓) 0.88(0.35↓)

Table 2. Numerical comparisons with generative steganography
methods on the UniStega dataset.

METHOD
STEGO IMAGES CORRECT KEY WRONG KEY(CONSTANT)

PSNR↓ SSIM↓ PSNR↑ SSIM↑ PSNR↓ SSIM↓
CROSS 19.03 0.66 21.25 0.71 - -

DIFFSTEGA 18.61 0.59 23.29 0.77 17.53 0.54
DIFFSTEGA‡ 19.73 0.65 23.92 0.79 20.68 0.70

OURS 8.96(9.65↓) 0.11(0.48↓) 47.04(23.12↑) 0.99(0.20↑) 5.70(11.83↓) 0.24(0.30↓)

Table 3. NIQE scores for various models.

ORIGINAL IMAGE ISN HINET CROSS DIFFSTEGA OURS

NIQE↓ 5.14 11.28 5.35 5.60 5.58 5.46

Benchmarks. To comprehensively evaluate our method’s
effectiveness, we compare it against state-of-the-art (SOTA)
steganography methods, including cover-based methods:
Baluja et al. (Baluja, 2017), HiDDeN (Zhu, 2018), UDH
(Zhang et al., 2020), Weng et al. (Weng et al., 2019), ISN
(Lu et al., 2021), HiNet (Jing et al., 2021); and generative
methods: CRoSS (Yu et al., 2024), DiffStega (Yang et al.,
2024). To maintain objectivity, we re-trained the cover-
based models with the same training dataset as ours.

Evaluation Metrics. To assess the quality of secret/revealed
pairs, we utilize Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index Measure (SSIM) (Wang et al., 2004),
Root Mean Square Error (RMSE), and Mean Absolute Er-
ror (MAE) as performance metrics. In addition, we use the
Naturalness Image Quality Evaluator (NIQE) (Mittal et al.,
2012) to evaluate the naturalness of the stego images.

4.2. Quality Analysis

Quantitative results. We compare the proposed method
against existing models, with numerical results presented in
Table 1 and Table 2. Table 1 presents a quantitative com-
parison between the proposed SSHR model and other cover-
based models on the DIV2K, COCO, and ImageNet datasets.
Notably, on the ImageNet dataset, our model demonstrates a
PSNR gain of 2.74 dB and an SSIM improvement of 0.39%.
Meanwhile, MAE and RMSE are reduced by 0.44 and 0.35,
respectively. Similarly, on the DIV2K and COCO datasets,
the proposed SSHR model outperforms other cover-based
models, achieving PSNR/SSIM gains of 1.92 dB/0.22%
and 3.62 dB/0.33%, respectively, along with lower MAE
and RMSE. These results illustrate that SSHR significantly
enhances the quality of revealed secret images compared to
existing cover-based steganography methods.

Table 2 presents the quantitative results in comparison with
generative methods on the UniStega dataset. Specifically,
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Figure 5. Visual comparisons of stego images(top) and revealed
secret images(bottom) for our model and various cover-based
steganography models on the DIV2K dataset.

our model achieves an impressive 24 dB gain in PSNR and
20% improvement in SSIM for correct recovery/secret pairs,
indicating a substantial enhancement. For secret/stego im-
age pairs, the proposed model reduces PSNR by 9.65 dB
and SSIM by 48% compared to other generative methods,
effectively diminishing the resemblance between stego and
their corresponding secret images. Additionally, lower simi-
larity scores for incorrect recovery/secret image pairs, with
a notable 11.83 dB decrease in PSNR and 30% reduction in
SSIM, demonstrate the proposed model effectively bolsters
security for recovery attempts with incorrect key. Evidently,
the SSHR excels in encryption and decryption compared
to other generative steganography models, offering high-
quality revealed secret images and enhanced security.

Qualitative Results. The qualitative comparison outcomes
for the stego and recovery images of our model and other
models are presented in Figure 4 and Figure 5. Figure 4
illustrates comparisons between our SSHR model and other
generative steganography models on the UniStega dataset.
The results demonstrate that the proposed model generates
stego images that are distinctly different from the secret
images, while simultaneously producing higher-quality re-
vealed secret images. Additionally, the SSHR model shows
enhanced security when the image is revealed with three
types of incorrect keys. Figure 5 showcases the visual
performance of our model in comparison to various cover-
based steganography methods. The figure highlights the
superior performance of the proposed method in terms of se-
cret/reveal image pairs, as well as the comparative results for
cover/stego image pairs. These results clearly demonstrate
that the proposed model achieves significant improvements
in effectiveness and security over existing SOTA models.

4.3. Security Analysis

Naturalness and Imperceptibility. We apply the NIQE to
evaluate the naturalness and visual security of the images
against human suspicion without the assistance of reference
images or human feedback. The results in Table 3 show a
0.12 reduction in NIQE value for SSHR model compared to
other generative steganography models. This indicates that

Table 4. The detection accuracy (%) detected by SRNet and XuNet.

COVER-BASED METHOD GENERATIVE METHOD

WENG UDH ISN HINET CROSS DIFFSTEGA OURS

SRM 81.47 76.34 54.86 53.52 51.73 51.68 50.64(1.04↓)
SRNET 85.31 79.82 55.68 55.54 52.10 52.03 51.05(0.98↓)
XUNET 86.24 80.26 55.42 55.37 53.12 52.86 50.93(1.93↓)

Figure 6. Security performance detected by StegExpose.

the proposed model outperforms other generative steganog-
raphy models in terms of naturalness and imperceptibility.

Steganographic analysis. The anti-steganalysis ability is
crucial for evaluating the security of image steganography,
as it measures the likelihood that stego images can be dis-
tinguished from reference images using steganalysis tools.
Following the common practices in the cover-based and
generative steganography task (e.g., ISN (Lu et al., 2021),
HiNet (Jing et al., 2021), CRoSS (Yu et al., 2024), DiffStega
(Yang et al., 2024)), we employ the open-source steganalysis
tool StegExpose (Boehm, 2014), hand-crafted feature-based
steganalyzer SRM (Fridrich & Kodovsky, 2012) and two
steganalysis networks: SRNet (Boroumand et al., 2018) and
XuNet (Xu et al., 2016), to systematically evaluate the anti-
steganalysis capabilities of the proposed model alongside
other methods. Lower detection accuracy and a smaller area
under curve (AUC) indicates better security performance.
The evaluate results are presented in Figure 6 and Table 4
respectively. These steganalysis results indicate that the
proposed SSHR model outperforms other SOTA methods in
terms of anti-steganalysis performance.

Effect of the Symmetric Key. The RSRK is designed to se-
cure both the key and the concealed secret image. We tested
the model with the correct symmetric key, alongside three
types of incorrect keys: random Gaussian noise, a constant
value, and the public key of the secret image (which could
be intercepted by attackers during transmission). As shown
in Figure 1 and Figure 4, only the correct key enables accu-
rate recovery of the secret image. Figure 1 uses a constant
key as the incorrect key, and Table 2 provides numerical
results for revealing the secret image with a constant key.
Both numerical and visual results consistently show that an
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Table 5. Effectiveness of PM, Wavelet transform,Rep-Conv and
CIGM.

PM WAVELET
TRANSFORM

REP-CONV CIGM REFERENCE/STEGO SRCRET/RECOVERY

PSNR SSIM MAE RMSE PSNR SSIM MAE RMSE

% % % % 30.25 0.7862 8.57 9.23 37.77 0.9489 3.58 4.23
! % % % 35.37 0.8050 7.77 7.90 41.36 0.9624 2.75 2.88
! ! % % 37.96 0.9318 2.99 3.57 42.24 0.9969 1.69 2.18
! ! ! % 39.92 0.9670 2.16 2.91 45.19 0.9758 0.98 1.45
! ! ! ! 41.32 0.9897 1.13 1.25 48.56 0.9988 0.74 0.97

Table 6. Quantitative results of revealed images on the UniStega
dataset when stego images undergo various distortion.

METHOD CLEAN GAUSSIAN BLUR GAUSSIAN NOISE JPEG COMPRESSION POISSON

ISN 21.73 5.16 3.97 4.33 4.05
HINET 46.55 9.32 9.97 10.13 10.29
CROSS 21.25 20.08 18.97 20.20 19.27

DIFFSTEGA 23.29 20.85 18.62 21.16 20.15

OURS 47.04 24.01(3.16↑) 23.95(4.98↑) 24.74(3.58↑) 23.96(3.81↑)

attacker cannot retrieve the secret image with an incorrect
key. These findings underscore the essential role of the pro-
posed RSRK and key generation module in enhancing the
security of both the key and the concealed secret image.

Effectiveness of various setting. As indicated in Table 5,
the various settings we employed significantly improve the
quantitative metrics for both stego and revealed images,
enhancing performance in both the conceal and reveal pro-
cesses. For example, the introduced PM model leads to a
PSNR gain of 5.12 dB for reference/stego pairs and 3.59 dB
for secret/recovery pairs. Figure 7 illustrates the encryption
and decryption process, showcasing how the SSHR model
achieves secure, stepwise encryption and decryption of se-
cret images with reference image guidance. These results
demonstrate that the proposed model effectively reduces
the similarity between the stego and secret images, while
producing high-quality revealed secret images, validating
the module’s effectiveness and overall model performance.

Performances on Various Distortions. To assess the ro-
bustness of our SSHR model, we test it under various degra-
dations, including Gaussian blur, Gaussian noise, JPEG
compression and Poisson noise. The results, presented
in Table 6 in terms of PSNR, indicate that the proposed
SSHR model outperforms other SOTA models. These re-
sults demonstrate the favorable robustness of the proposed
SSHR against attacks. Additional details on the distortions
are provided in the Supplementary.

5. Conclusion
This paper presents SSHR, an innovative steganography
method based on the PM diffusion model, designed to over-
come the limitations of existing generative steganography
approaches. The proposed model uses reference images to
guide stego image generation, ensuring outputs are visually
natural yet highly dissimilar to the secret images, thereby
enhancing concealment effectiveness. We also establish an

Figure 7. The CIGM facilitates the achievement of progressive
encryption.

exact reveal process to improve the quality of the revealed
secret images. Additionally, we propose an RSRK genera-
tion module that strengthens key security by dynamically
linking them to both the reference and secret images, signifi-
cantly enhancing the overall security of the concealed secret
images. Extensive experiments demonstrate that SSHR out-
performs SOTA generative steganography methods in both
effectiveness and security.
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curity and effectiveness of generative image steganography
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but also endows cryptology with new application scenarios.
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A. Security of the symmetric key
The ECDHE algorithm, widely used in the Transport Layer Security (TLS) handshake, is an effective key exchange method
based on elliptic curves. Inspired by this, we treat each steganography task as an independent encryption session, adaptively
generating symmetric keys linked to both the secret and reference images using the Reference-Secret Image Related
Symmetric Key Generation (RSRK) module. This approach enhances the security of both the keys and the concealed secret
images during the conceal and reveal processes.

We model each steganography task as an independent encryption session, where the secret image and reference image
function as the client and server, respectively. Initially, features Fs and Fr are extracted from the secret and reference
images using AlexNet. An Multilayer Perceptron (MLP) is then used to generate the private keys, formulated as kpri−i =
MLP (Fi), i ∈ r, s, where kpri−r and kpri−s are the private keys of the reference and secret images, respectively. These
private keys are securely stored to maintain their integrity. Using specific parameters W , analogous to the base point G in
the ECDHE algorithm, we derive the public keys for the reference image kpub−r and secret image kpub−s as follows:

kpub−r = W · kpri−r ,

kpub−s = W · kpri−s ,
(22)

where · denotes the Hadamard product, which is commutative and satisfies the necessary conditions for the subsequent
operations in the ECDHE algorithm.

After obtaining the private and public key for the secret and reference image, we follow the principle of the ECDHE
algorithm to derive the symmetric key ksym utilized in our model, expressed as follows:

ksym = kpub−s · kpri−r

= (WL +WS) · kpri−s · kpri−r

= (WL +WS) · kpri−r · kpri−s

= kpub−r · kpri−s ,

(23)

where WS represents the weight generated based on the secret image, ensuring that the weight used to generate the symmetric
key is dynamically tied to the secret image. This operation guarantees that different parameters are used to derive the public
key kpub−s and the symmetric key ksym when concealing different secret images, analogous to selecting specific base
points G and elliptic curves E in the ECDHE algorithm. This not only aligns the symmetric key generation process with the
principles and procedures of the ECDHE algorithm but also enhances the security of the symmetric key. Following the
above equation, the parameters W are used for generating the public key and are defined as W = WL +WS . As a result,
for each unique combination of images, a distinct symmetric key ksym is generated and used in both the conceal and reveal
process.

In practical application, we assume that the sender and receiver share the same reference image and employ the same image
preprocessing methods. Additionally, the model parameters used for generating the private key are common to both parties.
Therefore, when using the same reference image, both the sender and receiver can derive the same private key kpri−r

corresponding to the reference image.

When transmitting the stego image xstego, the public key kpub−s associated with the secret image is sent alongside it. Upon
receiving the public key of the secret image, the receiver can use the same pipeline outlined in Equation (23) to generate the
symmetric key ksym, as the sender did during the conceal process. With this symmetric key, the receiver can accurately
reveal the secret image and complete the decrypt process.

The stego image xstego and public key kpub−s can be intercepted by an attacker during transmission. In existing generative
steganography methods, the security of the keys is not guaranteed, exposing the secret image xsec to potential risk. In
contrast, in our method, even if an attacker intercepts the stego image and the public key, they cannot obtain the correct
symmetric key ksym as the private key kpri−r of the reference image xref is never transmitted. Without the correct
symmetric key, the attacker is incapable of revealing the secret image xsec from the stego image. This ensures the security
of the key and significantly enhance the protection of the concealed secret image.

The proposed key generation process, grounded in robust, well-established algorithms, mitigates potential theoretical vulner-
abilities. Specifically, the symmetric key generation method employs the Elliptic Curve Diffie-Hellman Ephemeral (ECDHE)
algorithm. The security of key exchange protocols (e.g. RSA, ECDH) is mathematically grounded in computationally hard

13



SSHR: More Secure Generative Steganography with High-Quality Revealed Secret Images

problems like integer factorization for RSA, and elliptic curve discrete logarithm problem for ECDH and so on. These
foundational problems guarantee the computational infeasibility of deriving private keys or shared secrets from publicly
available parameters. This ensures strong theoretical security guarantees, safeguarding the symmetric key’s generation and
protection.

Figure 8. Visual results on DIV2K dataset. The secret images are revealed with four types of keys: correct keys, constant, random noise
and the public keys tied to secret images.

B. Implementation Details
Experimental Setting. The model is implemented in PyTorch and trained on the DIV2K (Agustsson & Timofte, 2017)
training dataset. Training images are randomly cropped to 256× 256 and augmented with random horizontal and vertical
flips. Evaluation is performed on DIV2K (Agustsson & Timofte, 2017) (100 images), COCO (Lin et al., 2014) (5000 images),
ImageNet (Russakovsky et al., 2015) (10,000 images), and UniStega (Yang et al., 2024) (100 images). Comparatively,
images in the DIV2K dataset are center-cropped, while in the other datasets, the images are resized to 256 × 256. The
AdamW optimizer with an initial learning rate of 1× 10−4 is used for training. All experiments are conducted on a Nvidia
4090 GPU.

Degradation setting. To evaluate the robustness of our SSHR model, we test it under a variety of degradations, including
Gaussian blur, Gaussian noise, JPEG compression, and Poisson noise. For Gaussian blur, we apply a Gaussian kernel with
σ = 0.1× std to blur the stego images via convolution with a kernel size of 3, where std denotes the standard deviation of
the stego images. In the case of Gaussian noise, we generate the noise with σ = 0.1× std. In addition, we set the quality
factor Q = 75 for JPEG compression in our experiments.

C. Additional Results
Table 7 provides a numerical comparison of the reference/stego image pairs with cover-based steganography methods

across the DIV2K, COCO, and ImageNet datasets. For instance, on the ImageNet dataset, our model achieves a PSNR
improvement of 1.81 dB and an SSIM enhancement of 0.64%. Additionally, both MAE and RMSE are reduced by 0.37 and
0.35, respectively. Similarly, on the DIV2K and COCO datasets, the SSHR model outperforms other cover-based methods,
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Table 7. Numerical comparisons of reference/stego image pairs with cover-based steganography methods across various datasets, high-
lighting the best results in red and the second-best in bold.

Method
Reference/Stego

DIV2K COCO Imagenet

PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓ PSNR↑ SSIM↑ MAE↓ RMSE↓
HiDDeN 35.21 0.9691 6.98 6.82 36.71 0.9676 6.58 8.73 34.79 0.9380 6.12 7.33
Baluja 36.77 0.9645 3.79 5.02 36.38 0.9563 5.98 7.43 36.59 0.9520 5.61 5.41

Weng et.al 37.34 0.9341 3.03 3.57 37.68 0.9323 2.82 3.42 38.20 0.9368 2.68 3.24
UDH 38.78 0.9658 2.82 2.94 38.90 0.9650 2.77 2.90 38.96 0.9624 2.75 2.88
ISN 39.28 0.9853 2.34 2.91 37.95 0.9751 2.76 3.23 40.13 0.9748 1.95 2.51

HiNet 39.53 0.9868 2.08 2.87 39.01 0.9844 2.09 2.96 44.61 0.9927 1.52 1.63

Ours 41.03(1.50↑) 0.9894(0.0026↑) 1.65(0.43↓) 1.93(0.94↓) 40.21(1.20↑) 0.9885(0.0041↑) 1.63(0.46↓) 1.90(1.06↓) 46.42(1.81↑) 0.9991(0.0064↑) 1.15(0.37↓) 1.28(0.35↓)

with PSNR/SSIM improvements of 1.50 dB/0.26% and 1.20 dB/0.41%, respectively, alongside lower MAE and RMSE
values. These results demonstrate that the SSHR model substantially enhances the quality and imperceptibility of stego
images.

Figure 8 shows the visual results on the DIV2K dataset. The results clearly indicate that when the correct keys are used, the
SSHR model successfully reveals high-quality secret images. The residual map, which is nearly entirely black, suggests
minimal divergence from the ground truth. However, when an attacker uses incorrect keys, the system’s security is evident,
as no meaningful information can be extracted from the stego images. Even if the attacker intercepts the public key during
transmission and attempts to decrypt the secret image, the model’s security remains intact. Moreover, the model preserves
the naturalness and imperceptibility of the stego images. These results collectively show that the suggested approach
provides high security and efficacy.

Figure 9 illustrates the performance of our SSHR model compared to other generative steganography models on the
UniStega dataset, using three different prompts. When compared to CRoSS (Yu et al., 2024) and DiffStega (Yang et al.,
2024), our SSHR model significantly improves the naturalness and imperceptibility of the stego images. It also facilitates
substantial modification of the secret image content, guided by the reference image, to minimize the similarity between the
stego and secret image pairs. When incorrect keys are used during the reveal process, the security of our model is evident, as
the exposed image differs drastically from the secret image and contains minimal secret information. Moreover, an attacker
cannot recover any useful data if they attempt to expose the secret image using the intercepted public key. Additionally, our
model almost perfectly recovers the secret image, as demonstrated by the near-black residual map between the recovered
image and the ground-truth secret image, in stark contrast to the larger residuals found in CRoSS (Yu et al., 2024) and
DiffStega (Yang et al., 2024). Visual results confirm that our SSHR model surpasses previous state-of-the-art (SOTA)
models in terms of both effectiveness and security.

Effectiveness of Wavelet Transform. Following the success of prior work (Jing et al., 2021), we adopt Wavelet Transform to
perform steganography in the frequency domain, converting the image from the spatial domain to the frequency domain. As
shown in Table 5, Wavelet Transform significantly enhances our model, yielding a 2.59 dB improvement for reference/stego
image pairs and a 0.88 dB improvement for revealed/secret image pairs. These results suggest that Wavelet Transform
boosts performance at both the concealment and reveal stages, enhancing the quality of stego images while preserving the
integrity of revealed secret images.

Effectiveness of Rep-Conv. As shown in Table 5, the Rep-Conv module significantly improves the quantitative metrics for
both the stego and revealed images, with a 1.96 dB improvement for reference/stego image pairs and a 2.95 dB improvement
for revealed/secret image pairs. These enhancements positively affect both the concealment and reveal stages, demonstrating
that the Rep-Conv module effectively boosts the performance of the proposed model.

Effectiveness of CIGM. The CIGM preprocesses the reference images to optimize the generation process and gradually
encrypts the secret images over time. As indicated in Table 5, the CIGM leads to substantial improvements in the quantitative
metrics, providing a 1.4 dB improvement for reference/stego image pairs and a 3.37 dB improvement for revealed/secret
image pairs. This enhancement enhances both the concealment and reveal stages. The results highlight that the CIGM
reduces the similarity between the stego and secret images, while the high-quality recovered secret images further confirm
the module’s effectiveness and the overall performance of the model.
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Figure 9. Visual contrast of our model and other generative steganography models on the UniStega dataset across three different prompts.
These prompts are utilized in CRoSS and DiffStega, whereas our model functions without text prompts. The reference image is used as
the image condition in both DiffStega and our model. The secret images are revealed with four types of keys: correct keys, constant,
random noise and the public keys tied to secret images.
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