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ABSTRACT

Time series data are central to domains such as finance, healthcare, and cloud
computing, yet existing benchmarks for evaluating various large language models
(LLMs) on temporal tasks remain scattered and unsystematic. To bridge this gap,
we introduce MMTS-Bench, a comprehensive multimodal benchmark built upon
a hierarchical taxonomy of time-series tasks, spanning feature analysis, temporal
reasoning, and cross-modal alignment. MMTS-Bench comprises 2,424 time se-
ries question answering (TSQA) pairs across 4 subsets: Base, InWild, Match,
and Align, generated through a progressive real-world QA framework and mod-
ular synthetic data construction. We conduct extensive evaluations on closed-
source, open-source LLMs and existing time series adapted large language mod-
els (TS-LLMs), revealing that: (1) TS-LLMs significantly lag behind general-
purpose LLMs in cross-domain generalization, (2) LLMs show weaknesses in
local tasks compared to global tasks, and (3) chain-of-thought (CoT) reasoning
and multimodal integration substantially improve performance. MMTS-Bench
not only provides a rigorous evaluation framework but also offers clear directions
for advancing LLMs toward robust, interpretable, and generalizable time-series
reasoning

1 INTRODUCTION

Time-series data underpin critical systems in finance, healthcare, transportation, and cloud comput-
ing (Zeng et al., 2023 Zhou et al., [2021} |Liu et al.l 2024), capturing how processes evolve over
time. Traditionally, tasks such as forecasting, classification, anomaly detection, and imputation (Nie
et al., 2023}, Zhang et al., [2020; 2024) rely on specialized statistical models and tooling, demand-
ing substantial domain expertise. In recent years, with the rapid advancement of natural language
processing (NLP), especially the breakthroughs in Large Language Models (LLMs) (OpenAlL 2023}
Comanici et al.l [2025; |Anthropicl [2025a; |Yang et al., 2024} Team et al., 2025b), new possibilities
have emerged to overcome the professional barriers in time series analysis (Xie et al., [2024} Wang
et al., [2025bal Jin et al., 2024b). Integrating time series data with LLMs to build end-to-end time
series models has become a prominent research direction (Liu et al., 2023} Bai et al., 2025)). Re-
cently, a growing number of researchers have begun to explore the application of LLMs to time
series analysis, giving rise to novel tasks such as time series description(Zhang et al., [2023)), text-
context-assisted forecasting (Jin et al [2024a), simple time series question answering (QA) (Wang
et al.,[2025a), complex time series reasoning, and cross-variable QA (Xie et al., [2024).

The above works that combine LLMs with time-series data also require substantial training and
testing datasets for support. Prior efforts either enrich classic time-series datasets with textual anno-
tations (Liu et al., 2024; Yu et al.| 2024) or build QA datasets for time series reasoning (Wang et al.,
2025b; [Kong et all 2025). However, most current studies rely on a “flat” task taxonomy (Wang
et al., 2025a;|Cai et al.,|2024)) to define capabilities and synthesize QA data. Such taxonomies either
have no hierarchical structure or are simple, making it difficult to comprehensively evaluate LLMs’
abilities in time-series understanding and reasoning at a fine-grained level. Moreover, the construc-
tion of most time-series datasets and the fine-tuning of LLMs are limited to single or small-domain
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Figure 1: MMTS-Bench at a glance
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data (Wang et al},[2025b; [Dong et al., [2024)), and there is still a lack of a comprehensive benchmark

across multiple domains to evaluate LLMs’ out-of-distribution (OOD) generalization.

In this work, we propose a hierarchical taxonomy of time series tasks that reorganizes analytical
tasks into a multi-level, orthogonal structure spanning from basic perception to advanced reasoning,
thereby clarifying and extending several key task areas that have previously been overlooked. Build-
ing on this taxonomy, we construct MMTS-Bench, a new multi-modal, multi-dimensional evaluation
benchmark for time series tasks (see Figure [I]), comprising 2,424 TSQA pairs across four subsets.
One subset is built from synthetic time-series data: (1) Base, which assesses capabilities in struc-
tural awareness and feature analysis. The others are built from real-world time series spanning five
domains (e.g., Transport; see Appendix [A2)) in the LOTSA dataset (Woo et al, [2024b): (2) In-
Wild, which targets feature analysis and temporal reasoning; (3) Match, which evaluates sequence-
similarity matching and morphological correspondence; and (4) Align, which measures bidirectional
conversion between time series and natural language as well as advanced cross-modal semantic un-
derstanding. We also conduct a comprehensive evaluation of multiple mainstream LLMs using
MMTS-Bench, providing detailed capability rankings and deeper insights into current strengths and
limitations, thereby offering concrete guidance for the development of future time-series foundation
models and the construction of datasets. Our main contributions are as follows:

1. MMTS-Bench. We introduce a capability-oriented, hierarchical taxonomy of time-series
tasks and instantiate it in MMTS-BENCH, a multimodal, multi-dimensional benchmark
comprising 2,424 QA pairs across four subsets (Base, InWild, Match, Align) covering
skills from feature analysis to temporal reasoning and cross-modal alignment; using this
benchmark, we perform large-scale, fine-grained model assessments and derive practical
recommendations for improvement.

2. Progressive real-world TSQA generation. We propose an innovative three-stage frame-
work for real-world time series data QA generation, effectively addressing generation qual-
ity and reliability, and offering a new methodology for large-scale QA generation based on
real-world time series data.

3. Controllable synthetic data pipeline. We develop a controllable synthetic data generation
pipeline, where modular construction and templated generation are employed to system-
atically control data diversity and difficulty, leading to high-quality datasets for targeted
evaluation of foundational abilities.

2 RELATED WORK

2.1 TIME-SERIES LLMSs

Multimodal large language models (MLLMs) have demonstrated strong capabilities in natural lan-
guage processing and cross-modal reasoning. In the domain of TS-LLMs, several implementation
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paradigms have recently been explored. Time-MQA [Kong et al.| (2025) serialize time series as tex-
tual inputs and report early gains on the time-series question answering (TSQA) task. ChatTime
(Wang et al.,|2025a) quantize continuous values into a finite token space, enabling continuous pre-
training within a unified LLM framework. |Zhuang et al.| (2024) use GPT-40 (OpenAll [2024) in a
two-stage, coarse-to-fine anomaly-detection pipeline over rendered time-series plots, while Insight-
Miner (Zhang et al.,|2023) and FinVis-GPT (Wang et al., [2023)) adapt LLaVA (Liu et al., |2023) for
time-series description and candlestick-chart analysis, respectively.

However, representing dense time series data as text or plots inflates sequence length and token
budgets, with typically modest gains. Alignment-based methods mitigate these issues by retaining a
dedicated time-series encoder and learning a lightweight projector into the LLM token-embedding
space, enabling efficient TS—text interaction. Following this paradigm, (Chow et al.| (2024) and
ChatTS (Xie et al.l 2024) build TS-LLMs and report competitive results across classification, de-
scription, QA, and reasoning. Nevertheless, a unified and comprehensive benchmark for systemati-
cally evaluating the multi-dimensional capabilities of TS-LLMs is still lacking.

2.2  TIME-SERIES QA DATASETS

Although recent work has combined LLMs with time series and released several datasets, most of
them remain confined to forecasting (Hu et al., 2025} [Liu et al.| 2025|2024} Wang et al.,|2024), while
publicly available TSQA datasets are scarce. Moreover, existing TSQA datasets (Wang et al.,[2025a;
Kong et al.| 2025} Wang et al., |2025b)) suffer from domain inconsistencies, “flat” ability taxonomies,
and rigid question formats, isolating different works and hindering meaningful cross-comparisons.

On the univariate side, ChatTime-TSQA (Wang et al., 2025a) is generated from fixed, simple tem-
plates and focuses on four basic properties—trend, volatility, seasonality, and outliers. Time-MQA
(Kong et al., [2025) and Chat-TS (Quinlan et al., [2025) derive QA pairs from real-world domains
via single-turn prompting; despite manual filtering, these datasets offer limited coverage for com-
prehensive, balanced evaluation. On the multivariate side, EngineMT-QA (Wang et al.| |2025b)
constructs QA pairs from aviation-engine data through a four-stage pipeline, but its narrow domain
and template reliance constrain its generality as a benchmark. ChatTS (Xie et al.| [2024) introduces
TSEvol-Instruct, which generates QA pairs via iterative prompting over diverse time-series data
(synthetic and real; univariate and multivariate); however, its “flat” taxonomy and rigid question
design weaken its ability to evaluate distinct capability dimensions.

In contrast, our proposed MMTS-Bench is a multimodal, multi-dimensional benchmark for TSQA
that covers varied difficulty, domains, and both synthetic and real data across univariate and mul-
tivariate cases. Through iterative expert curation and human validation, the benchmark offers a
balanced and reliable basis for assessing the performance of models.

3 MMTS-BENCH

3.1 MULTI-DIMENSIONAL TASK CLASSIFICATION FRAMEWORK

To systematically evaluate the comprehensive understanding and reasoning capabilities of LLMs in
time series analysis, we propose a multi-dimensional task classification framework together with
a corresponding dataset construction methodology. Existing time-series QA datasets for assessing
LLMs often suffer from a lack of consistency and hierarchical structure. To address the limitations
of such “flat” classification schemes, we decompose temporal understanding into five functionally
orthogonal core dimensions (see Appendix [A.3]for taxonomy details): structural awareness, feature
analysis, temporal reasoning, sequence matching, and cross-modal understanding, which theoreti-
cally yield 286 fine-grained composite task types

Based on this framework, we design four subsets under MMTS-Bench. Base provides a controlled
synthetic environment focusing on fundamental abilities such as structural awareness and feature
analysis, without involving complex reasoning. It includes multiple-choice, binary-choice, and nu-
merical questions. For evaluation, we divide the subset into two splits: the Choice split and the

By combining feature analysis and temporal reasoning, 35 composite sub-tasks are formed. With the
addition of structural awareness, this extends to 280. Including 4 from sequence matching and 2 from cross-
modal understanding, the total reaches 286.



Under review as a conference paper at ICLR 2026

Numerical split. InWild leverages real-world time series to further examine LLMs’ capacity for
feature analysis and temporal reasoning under complex and noisy conditions. It consists of multiple-
choice and binary-choice questions. Match and Align focus on two less-studied dimensions in time
series analysis, namely similarity matching and cross-modal understanding, and are composed of
multiple-choice questions.

Tableﬂ] summarizes the subtasks across the five orthogonal dimensions and their links to the subsets,
with full definitions given in Table [5] (Appendix [A.3). This multi-dimensional construction enables
fine-grained profiling of LLM capabilities in time series analysis and helps identify the bottlenecks
they face in complex analytical reasoning tasks.

Table 1: Overview of task dimensions, subtasks, and related subsets in MMTS-Bench.

Dimensions | Subtask | Related Subsets
Structural Awareness \ Non-Stationarity, Local-Global, Univariate-Multivariate \ Base
Feature Analysis | Trend, Seasonality, Noise, Volatility, Basic Analysis | Base & InWild
Temporal Reasoning | Deductive, Inductive, Causal, Analogical, Counterfactual Reasoning | InWild
Sequence Matching | Isomorphic, Robust, Positioning, Reverse Matching \ Match
Cross-Modal \ Time-series to Semantic, Semantic to Time-series \ Align

3.2 SYNTHETIC DATASET
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Figure 2: Base Construction Pipeline. Synthetic time series with controllable characteristics are
generated by concatenating and adding basic components of trend, seasonality, and noise. The
plotting style of this figure is adapted from |Cai et al.|(2024)

Base is designed to conduct fundamental evaluation experiments under controllable conditions us-
ing synthetic data. To achieve this, it employs 17 expert-designed templates, which use controllable
parameters to automatically construct QA pairs. These parameters, including trend direction and
strength, seasonal patterns, and noise types, generate synthetic time series through a modular frame-
work (detailed mathematical formulation in Appendix [A.4.T)), consistent with established practices
in time series construction (Cat et al., 2024; |Das et al., 2024; |Fu et al., 2024; |Zhang et al., [2024)).
The framework consists of three parameterized units: trend, seasonality, and noise (as shown in
Figure [2), which are superposed and concatenated to produce sequences that are interpretable and
controllable.

3.3 REAL-WORLD DATASETS

InWild focuses on realistic and complex scenarios, enabling richer assessments of real-world gen-
eralization and the analytical and reasoning abilities of LLMs on time series, in contrast to Base,
which emphasizes controllability and fundamental property evaluation. We construct InWild inter-
actively with LLMs through a three-stage pipeline (as illustrated in Figure [3} see Appendix [A.4.7]
for details): (1) Description Generation, given multimodal inputs (raw sequences, visualizations,
domain metadata, and pre-computed statistical features), where the domain metadata specifies the
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Figure 3: InWild Construction Pipeline. Flowchart illustrating the conversion of domain-specific
time series via statistical analysis and multimodal input preparation for LLMs. It highlights the feed-
back loop between LLM generation and expert verification, showing how raw sequences from mul-
tiple domains (Economics/Finance, Transport, CloudOps, Climate, Healthcare) are enriched with
features (trend strength, seasonal strength, entropy, stability) and structured as inputs for automated
QA generation.

physical meaning of variables (e.g., hourly traffic volume, CPU and memory utilization, etc.), the
LLM produces overall and detailed descriptions; (2) QA Construction, given initialization param-
eters (task type, global vs. local scope, uni- vs. multivariate setting, and the index range of the
sequence), the descriptions are converted into Q-A-E (question-answer-explanation) triplets; and
(3) Validation and Expert Refinement, the LLM performs logical and mathematical consistency
checks to produce standardized QA pairs, followed by human expert review.

Match is designed to evaluate LLMs’ ability to perform similarity matching on time series. It
is constructed by extracting fragments from real-world time series and applying Dynamic Time
Warping (DTW) to search the original series for four candidate sequences at different similarity
levels. Each fragment and its candidate sequences are then combined into a multiple-choice ques-
tion, where a fixed template asks the model to identify the candidate most similar to the fragment
(Figure ). In addition, we apply operations such as smoothing, extension, and reversal to the frag-
ment samples, constructing four task paradigms of different difficulty levels (construction details in
Appendix[A:42): (1) Isomorphic, matching sequences with identical lengths, (2) Robust, matching
sequences after smoothing, (3) Positioning, localizing target patterns within longer sequences, and
(4) Reverse, matching sequences after reversal.

p
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Figure 4: Match Construction Pipline. Fragments are extracted from real-world time series, and
candidate series with different similarity levels are retrieved using DTW. QA pairs are then formed
with fixed templates, while transformations such as smoothing, extension, and reversal create four
task paradigms of varying difficulty.
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Align is designed to evaluate LLMs’ ability in cross-modal understanding between time series and
natural language. It is constructed by extracting the descriptions generated in the first step of InWild
and pairing them with the corresponding time series to form multiple-choice questions (construc-
tion details in Appendix [A:4.2). Based on this process, two symmetric tasks are generated: (1)
time-series to semantics, where a time series is provided and the LLM must select the matching de-
scription from several candidates, and (2) semantics to time-series, where a description is provided
and the LLM must identify the corresponding time series among the options. To increase task dif-
ficulty, time series are sampled from three real-world domains with similar value ranges, ensuring
that the incorrect options remain plausible.

3.4 HUMAN-IN-THE-LOOP CURATION

To ensure dataset quality, we adopt a human-in-the-loop process combining automated generation
with expert review (Wu et al.| [2022)), executed by a fixed group of 10 time-series domain experts. In
InWild, experts check question soundness and reasoning validity; in Match, experts confirm that
the sequence most similar in shape indeed attains the minimum DTW distance; and in Align, experts
verify textual descriptions accurately reflect temporal patterns.

We rigorously evaluated the reliability of this annotation process using Fleiss’ « (Fleiss, |1971). An
overall  score of 0.73 was achieved, falling into the “Substantial Agreement” category (0.61-0.80)
(Landis & Koch, [1977)). To ensure the validity of the final benchmark, ground truth labels were
determined by majority vote, with any ambiguous cases undergoing a second round of adjudication.
This high level of agreement provides strong statistical evidence for the dataset’s reliability.

Furthermore, we evaluated one-step generation and our three-stage pipeline without human-in-the-
loop in InWild. Results show that without time series inputs, LLMs achieve about 57% accuracy
with one-step generatiorﬂ; accuracy decreases to 44% with the three-stage pipeline, and further
to 35% when expert review is applied. This demonstrates the necessity of the human-in-the-loop
process in preventing question errors or answer leakage that may otherwise lead to inflated accuracy.

3.5 STATISTICAL RELIABILITY AND VALIDITY ANALYSIS

To complement human curation, we conducted rigorous statistical analyses (details in Appendix [E)
to verify the benchmark’s quality.

Evaluation Stability. First, we assessed the evaluation stability through bootstrap confidence inter-
vals estimation and iterative subsampling analysis. The results indicate that MMTS-Bench yields
highly stable evaluation scores with narrow confidence intervals and a coefficient of variation down
to 10~3 magnitude, providing a robust safety margin against sampling variance.

Validity against Shortcut Learning. Furthermore, to ensure performance reflects intrinsic rea-
soning rather than dataset artifacts, we analyzed the dependency of accuracy on explicit surface
attributes (e.g., sequence length, dimensionality). Our analysis reveals negligible correlations (e.g.,
|r| < 0.08 for sequence length) and minimal performance gaps. These findings confirm that MMTS-
Bench is robust against spurious correlations, serving as a reliable benchmark for assessing intrinsic
time-series understanding capabilities.

4 EVALUATION RESULTS

Using the MMTS-Bench dataset, we conducted a systematic benchmarking and analysis of the latest
open-source and closed-source LLMs alongside state-of-the-art (SOTA) TS-LLMs. We report Accu-
racy, Accuracy@N%, and Relative Accuracy (definitions in Appendix [A.T) across multiple subsets
spanning different task dimensions. To ensure statistical robustness and experimental reliability,
all experiments were conducted five times independently at temperature 1.0, with results averaged
across trials.

Model Selection for Evaluation. We conduct a comprehensive evaluation on MMTS-Bench us-
ing three representative categories of large language models to assess their performance on time

3In InWild, based on the distribution of multiple-choice and binary questions under no-input conditions,
the expected accuracy of random guessing is 37.5%.
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series QA tasks. Our selection includes: (1) Closed-source models: Claude 3.7 Sonnet (Anthropic}
2025a)), Claude Sonnet 4 (Anthropic, |2025b), Gemini 2.5 Flash/Pro (Comanici et al., |2025), GPT 5
Minimal/High (OpenAl, [2025b), GPT 4.1/4.1 mini (OpenAll 2025a), and GPT 40 (OpenAl, [2024));
(2) Open-source models: DeepSeek V3 (DeepSeek-All 2024), Kimi K2 (Team et al. [2025a), and
Qwen series (Yang et al., 20245 2025) (including 2.5 and 3 variants with different parameter scales.
Notably, for Qwen3 series models, we evaluate both the thinking and non-thinking modes; all
Qwen2.5 models we evaluate are instruction-tuned (“Instruct”), we omit “Instruct” in later men-
tions for brevity); (3) TS-LLMs: ChatTS (Xie et al., [2024), [TFormer (Wang et al., 2025b), and
ChatTime (Wang et al.l |2025a), which are specifically designed for time series data analysis. For
MLLMs (Qwen2.5 VL(Bai et al., [2025), Claude Sonnet series(Anthropic, [2025aib), Gemini 2.5
Pro(Comanici et al., [2025), GPT 4 series(OpenAl, 2023)), we evaluate across text-only, vision-only,
and vision-text combined inputs. To ensure a fair evaluation, we design a standardized time series
input format (see Appendix |B|for details); for TS-LLMs, we carefully reuse the original inference
scripts. This multi-dimensional evaluation framework aims to clarify the impact of different model
architectures and input modalities on time series understanding and reasoning tasks.

Table 2: Performance comparison of typical LLMs across different categories on MMTS-Bench.
‘TS’ = Time Series modality. “~” = no testing. Best results are underlined and bolded.

MMTS-Bench Subsets

Category | Model Modality | Average |
| | | Base InWild Match Align
GPT-5-High Text 074 051 0.72 0.82 0.99
GPT-40 Text 061 |042 062 050 097
Closed-source | &y de-Sonnet-4 ~ Text | 071 | 049 071 071 0098
Gemini 2.5 Pro Text 070 | 048 068 079 0.98
Kimi-k2 Text 0.63 045 0.63 0.60 0.95
) DeepSeek-v3 Text 0.62 |041 0.61 0.65 0.95
Open-source | 0015 5-14B Text 055 |035 053 057 088
Qwen2.5-7B Text 045 |033 044 040 0.69
. . ChatTS TS 049 (039 050 037 0.80
Time-series | [TRqrmer TS 031 |031 033 024 029

4.1 VERTICAL COMPARISON OF LARGE LANGUAGE MODELS

TS-LLMs Show Limited Generalization Capabilities. From Table [2| and the more comprehen-
sive experimental results in the Appendix [D] we observe that both closed-source and open-source
general-purpose LLMs consistently outperform TS-LLMs across diverse tasks in MMTS-Bench, in-
cluding InWild, Match, Align, and the Choice split in Base. TS-LLMs show marked weaknesses
in OOD generalization: ChatTS is comparable to, or slightly below, its base model Qwen2.5-14B;
ITFormer lags substantially behind Qwen2.5-7B when applied outside the aero-engine domain; and
ChatTime fails to produce valid outputs. These findings indicate that while TS-LLMs may perform
adequately within narrow domains, their generalization remains severely limited. Moreover, com-
parison with human experts further underscores this gap: on InWild, humans achieve 67% accuracy,
clearly surpassing TS-LLM:s.

Existing Multimodal Alignment in TS-LLMs Remains Inefficient. To investigate the key fac-
tors affecting TS-LLM performance, we modified the training pipeline of the current SOTA model
ChatTS and conducted a series of ablation studies on encoder architecture, scale, positional encod-
ing, backbone LLM size, and prompt prefix. The results show that model performance is predomi-
nantly determined by the backbone LLM size, while being largely insensitive to encoder structure,
scale, and positional encoding, suggesting that the encoder’s contribution remains limited and under-
developed. Notably, augmenting the prompt with simple statistical summaries leads to substantial
improvements in reasoning accuracy, underscoring the importance of task-aware prompt design.
Details are provided in Appendix



Under review as a conference paper at ICLR 2026

4.2 CROSS-DIMENSIONAL COMPARISON OF LARGE LANGUAGE MODEL PERFORMANCE

LLMs Underperform on Temporal Reasoning Relative to Feature Analysis. As shown in Ta-
ble [T5] (Appendix [D), current LLMs reach an average accuracy of 62% on feature analysis tasks in
InWild, notably higher than the 55% achieved on temporal reasoning tasks. A comparison under
unified input modalities indicates that Claude-Sonnet-4 and Gemini-2.5-Pro are the strongest closed-
source LLMﬂ while DeepSeek-V3 and Kimi-K?2 lead among open-source LLMs (Figure . Table
further shows that weaker performance on feature analysis generally coincides with poor tem-
poral reasoning. For instance, GPT-4.1-Mini among closed-source models and Qwen2.5-7B among
open-source models both follow this trend, suggesting that insufficient feature analysis capability
constrains temporal understanding.

Within the Feature Analysis dimension, seasonality tasks consistently yield the lowest accuracy
across Base and InWild. This indicates that LLMs may struggle with capturing seasonal patterns,
making seasonality a particularly challenging subtask. In the Temporal Reasoning dimension, re-
sults further reveal that causal and counterfactual reasoning are especially difficult compared to other
reasoning tasks. As illustrated in Figure [§] (Appendix [A.4.2), LLMs frequently fall into local rea-
soning traps in causal tasks, failing to capture causal relations from a global perspective. Similarly,
counterfactual reasoning involves reconstructing dependencies under hypothetical conditions. When
LLMs lack sufficient local and global awareness, they tend to make faulty conditional assumptions,
which ultimately leads to reasoning failures.

—— GPT 5 High —— GPT5 High
Season Trend Gemini 2.5 Pro Ind. Ded. Gemini 2.5 Pro
— Kimi k2 — Kimi K2
—— Deepseek V3 —— Deepseek V3

Acc, Causal

Volat. Basic Analog. Count.

(a) Feature Analysis (b) Temporal Reasoning

Figure 5: Accuracy of top-ranked LLMs on subtasks within the two dimensions of InWild. “Acc.”
denotes the average accuracy within each dimension. (a) Feature Analysis: Volat. = Volatility;
(b) Temporal Reasoning: Ded. = Deductive, Ind. = Inductive, Analog. = Analogical, Count. =
Counterfactual.

LLMs Show Weaknesses in Local Tasks Compared to Global Tasks. As shown in the Base
results (Table[3), LLMs show their most pronounced weaknesses in Local subtasks under the Struc-
tural Awareness dimension. Across all model categories, accuracy on Local subtasks remains low,
whereas performance on Global subtasks is considerably higher. This suggests that while LLMs can
capture overall regularities in time-series structures, they generally lack precise localization and fine-
grained discrimination across different input modalities—an issue that connects with the reasoning
failures discussed above.

In contrast, performance gaps in non-stationarity and univariate—multivariate subtasks remain rela-
tively modest. Non-stationary sequences are typically constructed by concatenating subsequences
with distinct statistical properties, leading to global shifts that can be detected through overall struc-
tural and distributional cues. Similarly, because it is difficult in task design to generate questions
that necessarily require leveraging cross-variable dependencies, multivariate tasks within the context
length of LLMs often degenerate into multiple univariate ones.

Moreover, in the evaluations on the Match and Align subsets (see Table [16] and Table [18]in Ap-
pendix [D), we observe two key findings: (1) among the four sequence matching subtasks, LLMs

4Claude-3.7-Sonnet ranked second but was excluded due to its substantial involvement in dataset construc-
tion.
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Table 3: The Accuracy@10% metric (see Appendix |A.1)) of different models on the Base subset’s
numerical split. “°* = thinking mode. *TS’ = Time Series modality. Abbreviations: Stat. = Station-
ary, Non-Stat. = Non-Stationary, Local = Localized, Uni. = Univariate, Multi. = Multivariate.

Structural Awareness

Category | Model Modality |
| Stat. Non-Stat. | Local Overall | Uni. Multi.
Kimi-K2 Text 0.56 0.56 0.19 045 |0.56 0.54
Open-source | Qwen3-32bc% Text 0.40 0.40 020 032 (040 0.33
Qwen3-32b Text 0.47 0.50 0.07 0.38 (047 042
GPT-40 Text 0.53 0.58 0.13 043 |0.53 0.51
Closed-source | GPT-40 Vision |0.34 0.29 031 0.31 [0.34 0.34
GPT-40 V+T (059 0.57 031 0.56 [0.59 0.56
Time-series | ChatTS TS |0.41 042 1012 040 |0.41 040

perform significantly worse on Localization Matching and Reverse Matching than on the remain-
ing ones. This may be due to the inherent limitations of attention mechanisms and autoregressive
paradigms under temporal direction transformations, though further experiments are required to con-
firm this; (2) in the two subtasks under the Cross-Modal dimension, LLMs generally exhibit strong
performance. This is because LLMs, by leveraging basic statistical cues (e.g., maxima, minima)
and conducting logical reasoning, can align sequences with textual descriptions without the need to
capture the complete temporal structure.

4.3 ANALYZING APPROACHES TO ENHANCE LLM PERFORMANCE ON TIME SERIES TASKS

Multimodal Fusion Enhances LLMs’ Ability in Time Series Analysis. As shown in Table [[3]
(Appendix [D), Gemini 2.5 Pro achieves 68% accuracy with text-only inputs, 72% with vision-only
inputs, and reaches 76% when combining text and visual modalities. Similarly, GPT-4.1 exhibits
similar improvements with multimodal fusion. Building on this observation, we further evaluated
Qwen2.5-VL-7B across all MMTS-Bench datasets, which also showed consistent gains (see Figure
@. However, such improvements are not universal; for example, GPT-4.1-Mini demonstrates shows
reduced performance on InWild. We suspect this limitation arises from differences in the LLMs’
inherent ability to integrate multiple modalities. Therefore, introducing additional modalities is an
effective way to narrow the information gap of LLMs in time series analysis, but its effectiveness
mainly depends on the fusion design and training methods of the LLMs.
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Figure 6: (a) presents the evaluation results of Qwen2.5-VL-7B across four subsets. (b) illustrates
the accuracy gains of GPT-5 and Qwen3-32B on the InWild across different subtasks, comparing
performance with and without the thinking mode enabled.

CoT Reasoning Enhances LLMs Beyond Parameter Scaling in Time Series Analysis. Experi-
ments with the Qwen2.5 series in Table [T5] (Appendix [D) demonstrate a scaling-law effect (Kaplan
et al.| [2020): scaling from 7B to 14B parameters yields clear performance gains, but further growth
to 32B provides marginal improvements, indicating diminishing returns for temporal reasoning tasks
in time series analysis. In contrast, enabling CoT reasoning produces substantial improvements
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across all InWild subtasks for Qwen3 and GPT-5, as shown in Figure The benefits are espe-
cially pronounced in temporal reasoning, where the average improvement surpasses that observed in
feature analysis tasks, and additional evaluations on the other subsets confirm this trend. These find-
ings highlight that scaling laws impose inherent limits on parameter-based gains, whereas activating
CoT reasoning enables models to capture temporal dependencies more effectively. Therefore, fu-
ture work should focus on leveraging CoT reasoning to enhance LLMs’ performance on time series
analysis, rather than relying solely on scaling up LLM parameter size.

5 CONCLUSION

We presented MMTS-Bench, a comprehensive benchmark comprising 2,424 TSQA pairs across four
specialized subsets for evaluating multi-modal time series understanding and reasoning abilities.
Our extensive evaluations reveal that general-purpose LLMs outperform TS-LLMs in cross-domain
generalization, and that current LLMs struggle with fine-grained localization and complex reason-
ing. We also find that simply scaling model size yields diminishing returns; instead, performance
is more effectively enhanced through multi-modal inputs and explicit reasoning strategies like CoT,
with the backbone LLLM’s capability being the dominant success factor.

Limitations and Future Work. MMTS-Bench currently does not cover several traditional time se-
ries evaluation tasks, such as forecasting, imputation, anomaly detection, and representation learn-
ing, which are also important components of time series capability. The benchmark also relies
heavily on English annotations, potentially missing insights from multilingual temporal reasoning.
Future work includes: (1) extending to longer-horizon sequences beyond current context limits, (2)
adding complementary suites for traditional time series tasks (forecasting, imputation, anomaly de-
tection, and representation learning) to provide a more complete picture of model capability, (3) de-
veloping more effective time series—text alignment paradigms beyond current encoder architectures,
and (4) exploring prompt and tool-use strategies that leverage statistical features more systemati-
cally. We hope this evaluation protocol will help steer the development of time series LLMs toward
robust, generalizable time series understanding.

REPRODUCIBILITY STATEMENT

We elaborate on the implementation details of our benchmark construction and experimen-
tal setup in this paper and the Appendix. To facilitate end-to-end reproduction, we release
an anonymized repository containing all data and code at https://anonymous.4open.
science/r/MMTS-BENCH-BEF7/. We will maintain the anonymized repository for the du-
ration of the review and, upon acceptance, migrate to a public repository and archive a snapshot to
support long-term availability.
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A  DETAILS ABOUT MMTS-BENCH

A.1 METRICS

We adopt a stratified evaluation scheme with specialized metrics tailored to each answer type within
our answer space A, ensuring comprehensive and fair assessment across diverse question formats.

Categorical Evaluation (A,,. and A;). For both multiple-choice and binary-choice tasks, we
utilize Accuracy as the primary evaluation metric, measuring exact match performance through the
indicator function: .

Accuracy = [(A = Ag) (1)

where I(A = Agt) = 1if the predicted answer A matches ground-truth A, and 0 otherwise.

Numerical Evaluation (A,,,). For numerical tasks, we employ two complementary metrics to
capture both continuous proximity and threshold-based precision. Relative Accuracy quantifies the
relative proximity between predicted and ground-truth values, yielding a normalized score in [0, 1]
where 1 indicates perfect prediction:

. ‘A — Agt|
Relative Accuracy = max | 1.0 — W, 0.0 )
gt

Accuracy @ 10% provides a stricter binary evaluation criterion, determining whether the prediction
falls within a 10% relative error tolerance:

A—A
Accuracy@10% = I |4~ Ag <0.1 (3)
|Agt|

The scoring function M (A, Ag) introduced in our protocol is instantiated using these type-specific
metrics, ensuring appropriate assessment based on answer type while maintaining consistency across
the evaluation framework.

A.2 REAL-WORLD DATASET SOURCES

The real-world component of our benchmark is constructed from the LOTSA (Woo et al., |[2024a;
Godahewa et al.,[2021; Nguyen et al., 2023} [Woo et al., [2024b) dataset collection. To ensure broad
domain coverage while maintaining representativeness and high quality, we selected five major do-
mains: Transport, Cloud Operations, Climate, Economics, and Healthcare. Representative datasets
from these domains include Traffic Hourly, Alibaba Cluster Trace 2018, ERAS 2018, M4 Weekly,
Hospital, and COVID deaths, with statistical parameters summarized in Table[d] Their details are as
follows.

Transport (Traffic Hourly) The dataset originates from the California Department of Transportation.
It records hourly highway occupancy rates from multiple sensors in the San Francisco Bay Area over
a 48-month period (2015-2016). It contains 862 time series, each with 17,376 points in the range
[0,1]. Because of the long time span and the strong seasonal patterns, we applied a sliding window
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with a maximum length of 672 points. To reduce token usage and irrelevant precision for LLMs,
values were scaled by a factor of 100 and rounded to two decimal places.

Cloud Operations (Alibaba Cluster Trace 2018) This dataset describes CPU and memory utilization
in a cluster of about 4,000 machines over eight days (from January 2 to January 8, 2018), sampled at
five-minute intervals. It consists of 58,409 pairs of time series. Theoretical sequence length is 1,728
points, although some sequences are shorter due to missing samples (100-1,728 points). Values are
within [0,100]. Because sequence lengths are moderate, no windowing was applied. Instead, we
randomly sampled sequences and retained two decimal places.

Climate (ERAS5 2018) The dataset comes from the European Centre for Medium-Range Weather
Forecasts. It provides hourly global reanalysis data for 2018 at 2.8125° resolution (64 x 128 grid
points), covering 45 variables across seven pressure levels (50, 250, 500, 600, 700, 850, and 925
hPa). Each time series pair has 8,736 points. To construct our benchmark subset, we selected
relative humidity and temperature from the seven pressure levels, with values within [0,100]. To
capture spatial diversity, we randomly sampled 50 locations worldwide and then applied sliding
windows of length 720. All values were rounded to two decimal places.

Economics (M4 Weekly) The dataset is a subset of the M4 Competition (2018), which consists of
100,000 time series across different frequencies. The weekly subset includes 359 economic and
business-related series, such as sales, demand, and index values. Sequence lengths range from 80
to 2,597 points. To preserve potential seasonalities and balance sequence lengths, we used a sliding
window with a maximum length of 104 points, approximately two years in length. Shorter series
were kept in full. Values were rounded to two decimal places.

Healthcare (Hospital & COVID deaths) The Hospital dataset records monthly patient counts related
to medical products from January 2000 to December 2006. It contains 767 series of length 72. We
applied sliding windows with common monthly cut lengths of 36, 60, and 72 points. All values
were rounded to two decimal places.The COVID deaths dataset is sourced from the Johns Hopkins
University repository. It contains cumulative daily death counts for countries and regions from
January 22 to August 20, 2020. It consists of 266 daily series, each 182 points long. We applied
a sliding window with a maximum length of 180 points. All values were rounded to two decimal
places.

Table 4: Statistical parameters of subsets in LOTSA.

Dataset Domain  Frequency #Time Series #Obs. #Vars
Traffic Hourly Transport H 862 14,978,112 1
Alibaba Cluster Trace 2018  CloudOps 5T 58,409 95,192,530 2
ERA5 2018 Climate H 245,760 2,146,959,000 45
M4 Weekly Economics w 359 366,912 1
Hospital Healthcare M 767 55,224 1
COVID Deaths Healthcare D 266 48,412 1

A.3 DATASETS CLASSIFICATION

To systematically evaluate large models’ capabilities across the proposed multi-dimensional frame-
work, we construct four specialized subsets that collectively form the core of the MMTS-Bench. The
design of these subsets is based on a core hypothesis: a model’s understanding of time series is hi-
erarchical and progressive, where deficiencies in foundational analytical abilities lead to systematic
biases in higher-level reasoning tasks. To operationalize this hypothesis, we decompose temporal
understanding into five orthogonal core dimensions.

In this paper, the term “orthogonal’ denotes functional distinctness rather than statistical in-
dependence. We decompose time-series understanding into several information dimensions, each
representing a unique and non-substitutable processing requirement. Since a single task typically re-
lies on only a subset of these dimensions, we organize and annotate our tasks accordingly to prevent
mixed or redundant definitions. The notion of hierarchy means that higher-level capabilities are the
result of combining multiple dimensions, rather than introducing entirely new dimensions. Although
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the dimensions in the Base and InWild subsets are related, we deliberately assign them distinct roles.
The Base subset is designed to isolate and “activate” individual dimensions (e.g., structural aware-
ness) in controlled settings. In contrast, InWild tasks, drawn from realistic scenarios, necessitate the
simultaneous integration of multiple dimensions. By explicitly annotating these dimensional depen-
dencies, we enable fine-grained failure analysis: poor performance on an InWild task can be traced
to deficiencies in specific dimensions (e.g., structural awareness), rather than being attributed to an
undifferentiated notion of overall failure.

To this end, we employ a dual-tier evaluation architecture: foundational capability assessment
using synthetic data, followed by advanced capability assessment using real-world data. This
approach ensures both precise, controlled evaluation of core competencies and a realistic assessment
of practical performance.

Base. This subset is constructed using precisely controlled synthetic data, eliminating confounding
variables present in real-world data, to provide standardized, fine-grained evaluation of a model’s
foundational time series analysis capabilities in a controlled environment. It contains 700 QA pairs
that encompass two core dimensions of Structural Awareness (D,) and Feature Analysis (D).

The following three subsets are constructed from real-world data in the LOTSA benchmark to eval-
uate advanced capabilities in complex scenarios.

InWild. This subset is constructed from across five specialized domains (Transport, CloudOps,
Climate, Econ/Fin, Healthcare) to evaluate a model’s capabilities in advanced time series under-
standing and reasoning. Through combinatorial arrangements of three core dimensions—Structural
Awareness (D,), Feature Analysis (D), and Temporal Reasoning (D,)—it generates 1,084 QA
pairs covering 140 subtask types.

—=m Lz Volatility Analysis |
Univariate et . NN - Deductive
Basic Analysis Reasoning
RN Inductive
= Reasonin,
Trend Analysis = 9
X \ " Analogical
) ) . = SRS Reasoning
Multivariate Global Noise Analysis NN Causal
- Reasoning
Seasonal Analysis Counterfactual
Reasoning

Figure 7: Sankey Diagram of Subtask Labels in the InWild Subset. This diagram illustrates the
relationships and transitions between subtask labels in the InWild subset, highlighting their interde-
pendencies in a clear and intuitive way.

Match. This subset is constructed from Transport and Econ/Fin domains to evaluate a model’s per-
formance in time series similarity matching and morphological correspondence. We generated four
categories of sub-tasks by varying the Sequence Matching (D,,,) dimensionality while holding Struc-
tural Awareness (Dg) dimensionality—stationarity, global scope, and univariate series—constant.
The subset contains 400 QA pairs, with 100 pairs in each category.

Align. This subset is constructed from across five specialized domains (Transport, CloudOps, Cli-
mate) to systematically evaluate models’ capabilities in bidirectional understanding and cross-modal
conversion between numerical time series and natural language. From the perspective of the Cross-
Modal Understanding dimension (D..), we constructed 240 bidirectional QA pairs based on homol-
ogous time series sequences.

This hierarchical dataset architecture enables MMTS-Bench to provide comprehensive evaluation
spanning from foundational analytical skills to advanced analytical capabilities, providing detailed
diagnostic capability profiles that identify specific strengths and weaknesses of models in the context
of time series understanding and reasoning tasks.

SFor the detailed comparison table, please refer to https://anonymous.4open.science/r/
MMTS-BENCH-BEF7/comparison.md
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Table 6: This table presents a horizontal comparison of existing datasets for time series understand-
ing and reasoning. The TS Type column denotes the source of time series data, where “R” refers
to real-world data and “S” refers to synthetic data. The Domain column indicates the application
domain of the time series. Question Type specifies the types of questions included in the dataset,
such as Choice or Numerical. Taxonomy shows how each dataset categorizes different capability
dimensions. Input Method describes how time series are processed in these works, including TS-
as-text, TS-encoded and TS tokens. Cross-Var. indicate whether the dataset contains cross-variable
analysis tasks, respectively. Finally, the Generation column outlines the construction methods of
different datasets[g])

Dataset \ TS Type Domain Size Q ion Type T: y R i Input Method Cross-Var. Generation
EngineMT-QA R Single 11K/~ Choice Flat v TS Encoded X Templates + Polishment
Time-MQA-TSQA R Multiple  200K/1.4K  Choice+Num. Flat v TS-as-Text X Single-round prompting
ChatTime-TSQA S - 48K/0 Choice Flat X TS tokens X Templates
TimeSeriesExam S - 746/- Choice Flat v - v Templates

ChatTS R+S Multiple 11K/525 Choice+Num. Flat v TS Encoded v TS Self-Evol
Chat-TS R Multiple ~ 3741/100 Choice Flat 4 TS tokens X Single-round prompting
MMTS-Bench R+S Multiple ~ 2524/1724  Choice+Num.  Multi-level v - v 3-stage prompting + Templates

A.4 DATASET CONSTRUCTION METHOD

To comprehensively evaluate multimodal time series understanding capabilities, we develop a dual-
pathway construction methodology combining synthetic and real-world data sources. The synthetic
pathway employs modular component synthesis with systematic parameter control to enable con-
trolled evaluation of fundamental time series properties. The real-world pathway leverages pro-
gressive conversational frameworks, similarity matching algorithms, and cross-modal conversion
techniques to construct comprehensive evaluation benchmarks. This approach yields four special-
ized subsets: Base for controlled synthetic evaluation, and InWild for multi-dimensional reasoning,
Match for similarity matching, and Align for cross-modal understanding using authentic LOSTA
data.

A.4.1 SYNTHETIC DATASET

The time series data within the Base subset is generated through a modular synthesis approach. This
process begins with the creation of three fundamental primitive components: (1) Trend Compo-
nents, which can be configured with specific directions and magnitudes; (2) Seasonal Components,
a diverse range of periodicities and waveforms are supported, encompassing both standard patterns
(e.g., sine waves) and complex composite waveforms representative of real-world scenarios; and (3)
Noise Components, where various noise types are included.

The final time series is formed by the superposition of these components. This principle is formally
expressed through an additive model where the generated time series y; is the sum of three weighted
components:

y® =70 O O o T “4)

— ‘trend seasonal noise’

Each component 7(*) is synthesized by scaling a corresponding base signal S (t) with a randomly

sampled weight w, such that T[(rgld = Wyrend - Strend (t), and similarly for the other components. The
generation of these base signals is governed by a set of configurable parameters to ensure diversity,

as detailed below.

First, a global Sequence Length (7) for all base signals is determined by sampling from the in-
terval [128, 2048] (corresponding to min_length and max_length). Then, each base signal is
constructed as follows:

* Trend Base Signal (St(rgd) is designed to capture long-term, non-stationary behavior. It is
modeled as an ARIMA(0,2,0) process, representing a second-order random walk:

t n
Stod =33 X, where X;~N(0,07). )
n=1m=1
For dataset generation, the smoothness of this trend is controlled by the second differ-
ence parameter, J, (delta_s), which corresponds to the variance o2 and is sampled from
[0.01,0.1]. The overall amplitude of the base signal is sampled from [0.1, 1000].
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* Seasonal Base Signal (Ss(:zsonal) provides the series’ periodic structure. It is constructed

from standard periodic waveforms (e.g., sine, square, triangular):
Ss(e?sonal = SO (mOd(t + ¢, TO))7 (6)
where Sp(-) is the standard waveform, ¢ is a phase shift, and Ty is the period. In our

dataset, the period Ty is set to one-fifth of the total sequence length (i.e., Tp = T'/5), and
the amplitude is sampled from [0.1, 1000].

* Noise Base Signal (S,Efgse) introduces various types of random fluctuations. It can be drawn

from several distinct statistical distributions to simulate different scenarios:

N(p, %), Gaussian white noise
U(a,b) Uniform noise
sW o —x, X, = v 7
noise b ¢ round(V;/q) - ¢, V; ~ U(a,b), Quantization noise @
X1+ Vi, Vi ~U(a,d), Random walk noise

The specific parameters for each noise type (e.g., s, o> for Gaussian, a, b for Uniform) are
configured to generate a variety of noise profiles. For the Quantization noise, the step size
q is specifically defined as one-tenth of the signal’s amplitude.

* Component Weights (w) After generating the three base signals, their respective contri-
butions to the final time series are determined by a set of weights. The weights w =
(Wirend s Wseasonaly Whoise) are sampled from a symmetric Dirichlet distribution, w ~ Dir(cx)
with « = (1,1,1). This ensures an unbiased combination where the weights are positive
and sum to one.

During the construction of the subset, the ground-truth labels for the four types of subtasks in the
Feature Analysis (D) dimension are systematically generated based on the parameter system of the
underlying primitive components. For the sub-tasks in the Structural Awareness (D) dimension, a
differentiated construction strategy is adopted:

e Univariate vs. Multivariate: Multivariate series are generated to evaluate a model’s dif-
ferential capabilities in analyzing univariate versus multivariate statistical properties.

* Local vs. Global: Descriptive and localization-based tasks are created by defining sub-
intervals within the synthetic time series, thereby testing a model’s local and global percep-
tual abilities.

* Stationarity vs. Non-stationarity: Composite series are constructed by concatenating
two sub-series with distinct statistical properties. These are then used in conjunction with
feature analysis tasks to assess a model’s proficiency in identifying non-stationarity.

QA pairs are systematically generated based on a set of 17 distinct templates. These templates cover
a spectrum of tasks, ranging from qualitative feature analysis to quantitative numerical computa-
tion. Except for a subset of interval localization problems that require manual annotation, the vast
majority of QA pairs are automatically generated. This template-based automation serves as the
execution layer for our pipeline, the distinct advantages of which—specifically in terms of diversity
and alignment precision compared to prior works—are detailed below.

Advancements in Generation Pipeline. While modular synthesis is a shared paradigm in recent
works like TimeSeriesExam (Cai et al.,2024) and ChatTS (Xie et al.,|2024)), our pipeline introduces
critical enhancements in diversity, precision, and alignment.

* Generation Diversity: Unlike TimeSeriesExam, which relies on simple base patterns
(e.g., linear, exponential) and restricted sub-options, we adopt an STL-inspired decompo-
sition into Trend, Seasonal, and Noise modules with rich control parameters. For instance,
our trends are generated via second-order random walks (controlled by 42 and initial val-
ues) rather than simple functions, and we incorporate diverse noise types (e.g., quantized,
random-walk) and flexible combination strategies (Additive, Concatenated) that surpass the
fixed combination schemes seen in ChatTS.
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* Precision and Alignment: We log precise quantitative parameters (e.g., specific wave-
form configurations) rather than qualitative labels. This granular logging allows the QA
generation engine to leverage exact numerical values, enabling the construction of nuanced
evaluation items—such as differentiating between weak, medium, and strong seasonality
based on the seasonal_strength parameter—rather than limiting assessment to bi-
nary presence/absence questions.

A.4.2 REAL-WORLD DATASET

To comprehensively evaluate multimodal time series understanding across diverse analytical dimen-
sions, we construct three specialized subsets from real-world LOSTA data targeting distinct aspects
of time series analysis: comprehensive QA-based evaluation (InWild), sequential similarity match-
ing (Match), and cross-modal language understanding (Align). Each subset employs systematic
construction pipelines with domain-specific sampling strategies and automated generation frame-
works built upon authentic temporal data from five key domains.

INWILD SUBSET

This subset evaluates comprehensive understanding and reasoning capabilities in time series analysis
through an innovative progressive, multi-turn conversational approach. The subset employs open-
ended question templates to ensure rich diversity while avoiding rigid patterns. The generation
process synergistically integrates three analytical dimensions: structural awareness, feature analy-
sis, and temporal reasoning, creating 140 unique dimensional combinations that compel models to
perform deep inference on underlying patterns and dynamic relationships.

Three-Stage Progressive Generation Pipeline Our dataset construction follows a systematic
three-stage pipeline where each stage serves a distinct function in creating high-quality question-
answering pairs.

 Stage 1: Initialization and Context Generation The process begins with random sam-
pling to define core parameters including question type (multiple-choice or true/false), task
type (combining feature analysis and temporal reasoning capabilities), number of variables
(univariate or multivariate), and analysis scope (local sub-sequence or global series). The
system provides Claude 3.7 Sonnet with comprehensive multimodal context: time series
visualizations, raw numerical sequences, domain metadata, and pre-computed statistical
features from specialized libraries. The model generates a structured textual description
tailored to the specified task type.

» Stage 2: Task Specification and Reasoning Construction Building upon the initial de-
scription, this stage further specifies the task according to predefined variables and analysis
scope. For local-scope questions, the system provides indices for key time points. The
model abstracts the structured information to construct specific questions, ground-truth an-
swers, and detailed reasoning explanations.

» Stage 3: Formatting and Quality Verification The model formats outputs into standard-
ized QA pairs according to designated question types while performing automated consis-
tency verification across three dimensions: mathematical soundness of logic and calcula-
tions, descriptive accuracy between textual elements and data, and logical interpretability
of reasoning coherence.

MATCH SUBSET

The Match subset is specifically designed to evaluate models’ capabilities in time series similarity
matching and morphological correspondence analysis. The subset employs standardized question-
answer templates with fixed structural awareness parameters (stationarity, univariate, and global se-
quence) while systematically varying sequence matching dimensions to create four distinct matching
paradigms.

Four Matching Tasks: (1) Isomorphic Matching evaluates models’ fundamental ability to iden-
tify sequential similarity under identical temporal scales and data distributions, primarily assessing
recognition accuracy of statistical characteristics and dynamic patterns; (2) Robust Matching eval-
uates models’ resilience to maintain matching accuracy under data preprocessing transformations
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such as moving average smoothing, testing adaptability to data quality variations; (3) Localization
Matching assesses models’ precision in identifying target temporal patterns within extended time
windows, focusing on temporal pattern retrieval and spatial localization performance; (4) Reverse
Matching evaluates models’ adaptability to temporal direction transformations, testing sequence
correspondence recognition under time-reversed conditions.

These four progressive difficulty gradients comprehensively examine models’ integrated capabili-
ties in time series similarity measurement, pattern alignment, and morphological recognition under
various constraints and challenging scenarios.

Dataset Construction Pipeline The construction process begins with segmenting sequences based
on their typical periodicity patterns. Using a sliding window approach, we calculate Dynamic Time
Warping (DTW) distances to identify four segments: minimum DTW distance, median distance,
maximum distance, and second-maximum distance. We then randomly shuffle the subsequences
of these four segments to serve as the four options in question—answer pairs. We construct the
final dataset using standardized QA templates, covering four sequence matching tasks across two
domains.

ALIGN SUBSET

The Align subset evaluates models’ bidirectional conversion capabilities between time series data
and natural language. It is intentionally designed as an alignment calibration subtask, aiming to
assess whether a model can accurately match time series with natural language descriptions under
conditions of low linguistic ambiguity. Consequently, the descriptions are intentionally specific
regarding trend ranges and magnitude changes, ensuring the evaluation focuses on precise cross-
modal alignment.

Bidirectional Cross-Modal Tasks (1) Time-series to Semantic Conversion requires models to
identify which textual description best matches a given time series’ statistical characteristics and
dynamic patterns. (2) Semantic to Time-series Conversion requires models to select the temporal
sequence that best corresponds to a given natural language description of trends, fluctuations, and
periodicity.

Dataset Construction Pipeline The subset employs symmetric construction ensuring task consis-
tency. The data originates from three real-world domains: Traffic, CloudOps, and Climate. To
prevent shortcut learning based on domain or value range, we implemented two strategies:

e Value Scaling: CloudOps and Climate series are scaled to similar ranges to mitigate
magnitude-based biases.

* Controlled Sampling: For each correct sample, we select three distractors. We ensure
that at least one distractor comes from the same domain and shares a similar statistical
distribution as the correct answer. This forces models to rely on fine-grained patterns and
numeric details rather than domain priors.

For time-series to semantic tasks, Claude 3.7 Sonnet generates feature descriptions for four temporal
samples, which serve as answer options. For semantic to time-series tasks, the model generates
structured descriptions of correct samples, which become question prompts with temporal sequences
as options.

HUMAN-IN-THE-LOOP CURATION

All real-world datasets undergo rigorous verification by a panel of ten time series analysis experts,
each employing specialized quality control procedures. For TSQA, experts review generated QA
pairs for academic rigor, retaining high-quality samples while flagging substandard pairs for regen-
eration under identical parameter configurations. For Match, verification focuses on eliminating
samples with similar DTW distances but fundamentally different morphological patterns through
combined manual assessment and statistical metric analysis. For Align, experts evaluate the accu-
racy and coherence of LLM-generated textual descriptions, correcting or removing content that fails
to accurately represent temporal characteristics. This comprehensive human-in-the-loop curation
ensures dataset quality and practical applicability across all evaluation benchmarks.
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It is observed that Time Series 1 and Time Series 3 both show a
synchronized decline between indices 85 and 115. Can it be inferred
that there exists some kind of positive causal relationship between
the two series?

Observation: It can be observed that both Time Series 1 and Time
Series 3 show a synchronized decline within the index segment...

Inference: Observing a strong synchronized movement within a
specific interval is a reasonable basis for inferring or suggesting that
a positive correlation may exist between the two series. The
observed phenomenon is consistent with the positive causal

relationship described in the question; therefore, the answer is True.

(b) Casual reasoning error case analysis
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Figure 8: The top subfigure illustrates a counterfactual reasoning error case, whereas the bottom
subfigure illustrates a causal reasoning error case. In both subfigures, the left panel visualizes the
time series data, the central panel presents the questions together with the LLM responses, and the
right panel reports the ground-truth answers accompanied by error analysis. Red text highlights the
erroneous reasoning points, green text denotes the correct reasoning points, and blue text marks the
keywords from the questions.
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B STANDARDIZED TS INPUT FORMAT

B.1 EVALUATION PROMPT

We use the following prompts to standardize multiple-choice QA and numerical QA evaluation. The
system prompt mandates the answer format and ambiguity policy; the user prompt injects per-item
content. The model’s output is scored by extracting the single letter inside the <final _answer>
tag.

B.1.1 SYSTEM PROMPT FOR MULTIPLE-CHOICE QA

You are an expert AI assistant specialized in answering numerical
questions with high accuracy and consistency. Your task is to analyze
questions carefully and provide precise numerical answers.

IMPORTANT INSTRUCTIONS:

1. You must provide a numerical answer (integer, decimal, or scientific
notation)

2. Your final answer must be a single number only

3. If the question seems ambiguous, choose the most reasonable
interpretation

4. Do not include units unless specifically requested in the question

RESPONSE FORMAT:
You must structure your final answer exactly as follows:

<final_answer>
[State your numerical answer as a single number only]
</final_answer>

Remember: Your final answer should contain ONLY the numerical value,
nothing else.

Listing 1: System Prompt for multiple-choice QA

B.2 SYSTEM PROMPT FOR NUMERICAL QA

You are an expert AI assistant specialized in answering multiple-choice
questions with high accuracy and consistency. Your task is to analyze
questions carefully and provide clear, well-reasoned answers.

IMPORTANT INSTRUCTIONS:

1. You must select your answer from the given options only

2. Your final answer must be a single letter (A, B, C, D, etc.)

3. If the question seems ambiguous, choose the most reasonable
interpretation

4. Do not make up information not provided in the question

RESPONSE FORMAT:
You must structure your final answer exactly as follows:

<final_ answer>
[State your chosen option as a single letter: A, B, C, or D]
</final_answer>

Remember: Your final answer should contain ONLY the letter of your chosen
option, nothing else.

Listing 2: System Prompt for numerical QA
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B.2.1 USER PROMPT

Please answer the following multiple-choice/numerical question based on
the given information:

Question: {guestion}

{given_values_str}

Available Options: {option}

Please analyze this question carefully, consider the given value and all
available options, then provide your answer following the exact

format specified in the system instructions.

Listing 3: User Prompt used for Evaluation

B.3 TIME SERIES TO IMAGE CONVERSION

We follow the plotting style of Zhuang et al.[Zhuang et al.| (2024) and adapt it for multi-channel time
series. Specifically, we preserve the single-channel resolution (1500 x 320 at 100 dpi) and scale the
figure height linearly with the number of channels by stacking channel-wise subplots with a fixed
per-channel height (320 px at 100dpi). This keeps a consistent time axis across channels while
maintaining comparable vertical resolution per channel.

Listing 4: Python code for converting time series data into images

def plot_time_series_as_image (value_list):

if len(value_1list) > 8: # single—-channel time series
num_channels = 1

else: # multi-channel time series
num_channels = len(value_list)

# Figure parameters: base width and per-channel height

# Single channel: 1500x320; increase height by 320 for each
additional channel

width_inches = 15.0 # 1500 pixels / 100 dpi = 15 inches

height_per_channel = 3.2 # 320 pixels / 100 dpi = 3.2 inches

total_height = height_per_channel * num_channels

plt.figure(figsize=(width_inches, total_height), dpi=100)

if num_channels == 1: # single-channel time series
plt.plot (range (len(value_list)), value_list, ’'b-’, linewidth=1.5)
plt.title (' Time Series’, fontsize=12)
plt.xlabel (' Time Index’, fontsize=10)
plt.ylabel ("Value’, fontsize=10)
plt.grid(True, alpha=0.3)
plt.x1lim (0, len(value_list) - 1)
else: # multi-channel time series
for i, channel_data in enumerate (value_list):
plt.subplot (num_channels, 1, i + 1)
plt.plot (range (len (channel_data)), channel_data, ’'b-',
linewidth=1.5)
plt.title(f’Time Series {i+1}’, fontsize=10)
plt.xlabel (' Time Index’, fontsize=8)
plt.ylabel ('Value’, fontsize=8)
plt.grid(True, alpha=0.3)
plt.x1im (0, len(channel_data) - 1)
plt.tight_layout ()
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C ABLATION STUDY

Across all tasks in the MMTS-Benchmark, ChatTS demonstrates the best performance within the
open-source TS-LLM category, showcasing robust time series analysis and reasoning capabilities.
To further investigate the key factors that influence TS-LLM performance and provide insights for
future research, we modified the official ChatTS training pipeline E], adopting their released train-
ing data and recommended training strategy. We conducted controlled ablations on the encoder
architecture and size, positional encoding strategies, LLM backbone size, and prompt prefix
design.

C.1 EXPERIMENTAL SETUP

In its original implementation, ChatTS employs Qwen2.5-14B-Instruct as the backbone LLM, with
a 5-layer MLP serving as the time series encoder. During training, textual embeddings are aligned
with time series embeddings to equip the model with time series reasoning capabilities. To examine
the role of the encoder, we replaced the MLP with alternative architectures, including CNN and
Transformer encoders with variable depth. We further tested the effect of introducing learnable
positional embeddings or index-based positional features into the time series input.

Due to computational constraints, our experiments use Qwen2.5-3B-Instruct as the backbone, and
we also report its text-only baseline performance on MMTS-Benchmark. For comparison, we in-
clude performance of Qwen2.5-14B-Instruct, allowing us to isolate the effect of LLM backbone
size. Finally, since ChatTS incorporates a prompt prefix that contains statistical information (e.g.,
offset, scale factor, length, max/min values, left/right boundary values), we tested models trained
with and without this prefix to measure its contribution.

All models were evaluated on InWild, Match, and Align. While we closely followed the ChatTS
training methodology, inevitable differences arise due to random training data mixing, limited com-
pute budgets, and variations in model size and hyperparameters. Nonetheless, the relative compar-
isons across ablations yield consistent and reliable conclusions.

C.2 EVALUATION RESULTS

We categorize the factors related to the time series encoder into three dimensions: (i) encoder ar-
chitecture, (ii) encoder size, and (iii) positional encoding. For the architecture study, we compared
a 5-layer MLP (17.1M parameters), a CNN (50.3M), and a Transformer (6.3M) as the TS Encoders
of our TS-LLMs. As shown in Table[/] the results indicate that model performance is largely insen-
sitive to encoder architecture, with only marginal differences across tasks. Relative to the Qwen2.5-
3B baseline, trained models exhibit no significant improvements on InWild and Match, but achieve
clear gains on Sem—TS while degrading on TS—Sem. This suggests that the encoder introduces a
directional bias in learning, which may be related to the distributional characteristics of the training
data.

Table 7: Performance of TS-LLMs with different time series encoder architectures. We compare a 5-
layer MLP, CNN, and Transformer as encoders, with their parameter sizes indicated in parentheses.
The baseline is Qwen2.5-3B-Instruct, which treats the time series as plain text input.

Dataset | Baseline | MLP(17.1M) CNN(50.4M) Transformer(6.3M)

InWild 38.75 38.25 37.36 38.84
Match 27.45 30.67 28.42 30.00
Sem—TS 49.17 59.44 60.83 60.56
TS—Sem 64.17 45.56 44.44 47.50

To further examine scaling effects within a fixed architecture, we tested MLP encoders of varying
depths (1, 3, 5, and 7 layers), as reported in Table[8] For reference, we also include the Qwen2.5-
3B baseline and the original ChatTS(14B) checkpoint released on Hugging Face[] Results show

®https://github.com/xiezhe-24/ChatTS-Training
"nttps://huggingface.co/bytedance-research/ChatTS—-14B
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that increasing the number of MLP layers does not yield a monotonic improvement, indicating
that simply enlarging the encoder does not directly translate into better performance. In contrast,
comparing models with 3B and 14B backbones reveals consistent improvements of 10%—-30% across
tasks for the larger ones. This highlights the dominant role of the backbone’s intrinsic reasoning
capacity in determining TS-LLM performance. Besides, a comparison with the unaligned Qwen2.5
backbones yields results consistent with the above trend: while InWild and Match remain largely
unchanged(except ChatTS in Match), aligned models achieve clear improvements on Sem—TS but
show noticeable degradation on TS— Sem, thereby further validating our observation.

Table 8: Ablation study on the number of layers in time series encoders. We evaluate different layer
counts for the MLP encoder, comparing performance with the baseline models Qwen2.5-3B-Instruct
and Qwen2.5-14B-Instruct, and the ChatTS model. For the ChatTS model, we use the weights
released by the original authors on Hugging Face, with Qwen2.5-14B-Instruct as the backbone and
a 5-layer MLP as the time series encoder.

Dataset \ Qwen2.5-3B \ 1 Layer(0.3M) 3 Layers(8.7M) 5 Layers(17.1M) 7 Layers(25.5M) \ Qwen2.5-14B ChatTS

InWild 38.75 38.90 38.44 38.25 37.45 52.84 50.28
Match 27.45 30.67 30.42 30.67 33.00 56.55 36.80
Sem—TS 49.17 60.83 51.67 59.44 61.39 86.83 91.17
TS—Sem 64.17 45.28 44.44 45.56 45.28 88.50 68.33

We also evaluated the effect of positional encoding strategies, following the three configurations in
the official training code: no positional encoding, learnable embeddings appended to the input series,
and normalized index values concatenated with the input series. Using a 3-layer MLP encoder, the
results are reported in Table[0] These findings suggest that positional encoding design also has only
a limited impact on performance compared with the backbone scale.

Table 9: Performance of models with different positional encoding strategies. no_emb denotes no
positional encoding, pos_emb denotes learnable embeddings, and pos_idx denotes normalized
index values used as positional encoding.

Dataset | no.emb pos_emb pos_idx

InWild 39.11 38.44 39.42
Match 31.00 30.42 28.67
Sem—TS | 58.83 51.67 52.22
TS—Sem | 42.22 44.44 45.00

Finally, we investigated the role of the prompt prefix introduced in ChatTS, which encodes statistical
descriptors of the time series (e.g., offset, scale factor, length, min/max, and boundary values). We
compared models trained with and without the prefix using a 5-layer MLP encoder, and additionally
tested a model trained without the prefix but provided with the prefix at inference time. Results
(Table [T0) demonstrate that the statistical prompt prefix has a significant impact on model perfor-
mance, especially in Align tasks, likely because it provides auxiliary information that enhances both
interpretability and reasoning efficiency.

Table 10: Performance of models trained with and without the prompt prefix. ON indicates that the
prefix is used during both training and testing; OFF indicates that it is used in neither; and OFF*
denotes models trained without the prefix but evaluated with it.

Dataset | ON OFF OFF*

InWild 38.25 36.53 37.01
Match 30.67 2550 33.41
Sem—TS | 59.44 24.17 59.72
TS—Sem | 45.56 21.39 45.83

C.3 CONCLUSION ON ABLATIONS

Our ablation findings can be summarized as follows:
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* Limited Encoder Contribution. Under the current alignment paradigm, encoder architec-
ture, scale, and positional encoding have only marginal effects. More effective paradigms
for time series—text alignment remain an open challenge.

* Backbone Dominance. The LLM backbone size is the primary determinant of perfor-
mance; scaling the backbone directly boosts temporal reasoning ability.

* Prompt Engineering Effectiveness. Incorporating statistical information into prompts
substantially enhances model inference, suggesting that prompt engineering is a promising
direction for strengthening TS-LLM reasoning. Future work should explore alternative
prompt formats and auxiliary signals.
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D FULL RESULTS

Table 11: The Accuracy metric of different models on the Base subset’s Choice split. “°* denotes
thinking mode. ' denotes models evaluated without any time-series input. 2 denotes ChatTS with-
out built-in statistical computation module. —VL = Vision-Language. TS’ stands for Time Series
modality, as time-series-specific models introduce a TS encoder. -’ indicates that the model failed
to respond correctly. Bold underlined values indicate the best performance within each category
for each metric, and bold values indicate the second-best performance. Stat. and Non-Stat. columns
represent the questions with staionary and non-stationary time series, respectively.

Category ‘ Model Name Modality ‘ Total ‘ Trend Seasonality Noise | Local Overall
DeepSeek-V3 Text 041 | 049 0.37 0.33 | 0.53 0.49
Kimi-K2 Text 045 | 0.50 0.40 0.39 | 0.55 0.50
Qwen3-32bc°! Text 042 | 0.53 0.45 0.37 | 0.32 0.53
Qwen3-32b Text 0.40 | 046 0.37 0.35 | 047 0.46
Qwen3-8bct Text 0.35 | 0.38 0.40 0.33 | 0.26 0.38
Qwen3-8b Text 0.32 | 0.33 0.27 0.26 | 0.50 0.33
Open-source | Qwen2.5-32b Text 0.35 | 0.39 0.28 0.30 | 0.48 0.39
Qwen2.5-14b Text 0.35 | 0.39 0.31 0.27 | 0.46 0.39
Qwen2.5-7b Text 0.33 | 044 0.22 0.28 | 0.46 0.44
Qwen2.5-32b! Text 0.30 | 0.39 0.23 0.19 | 0.44 0.39
Qwen2.5-7b-VL Text 0.29 | 0.35 0.23 0.24 | 0.36 0.35
Qwen2.5-7b-VL Vision | 0.32 | 0.32 0.41 0.28 | 0.29 0.32
Qwen2.5-7b-VL V+T 0.34 | 041 0.34 027 | 034 0.41
Claude-3.7-Sonnet Text 0.49 | 0.59 0.54 0.35 | 0.52 0.59
Claude-Sonnet-4 Text 049 | 0.57 0.49 0.35 | 0.63 0.57
Gemini-2.5-Pro Text 0.48 | 0.50 0.51 0.39 | 0.59 0.50
Gemini-2.5-Flash Text 0.39 | 0.49 0.36 0.24 | 0.56 0.49
GPT-5-Minimal Text 045 | 045 0.40 042 | 0.56 0.45
Closed-source | GPT-5-High Text 0.51 | 0.53 0.51 045 | 0.60 0.53
GPT-40 Text 042 | 0.51 0.36 0.34 | 0.52 0.51
GPT-40 Vision | 0.55 | 0.60 0.64 042 | 0.56 0.60
GPT-40 V+T 0.51 | 0.53 0.60 0.39 | 0.56 0.53
GPT-40-mini Text 0.36 | 043 0.34 0.28 | 0.44 0.43
ChatTS TS 0.39 | 042 0.39 0.31 | 049 0.37
. . ChatTS? TS 0.39 | 0.37 0.39 0.34 | 0.53 0.36
Time-series
ITFormer TS 0.31 | 0.30 0.29 0.28 | 0.42 0.29
ChatTime TS - - - - - -
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Table 12: The Accuracy@10% metric of different models on the Base subset’s numerical split. ¢
denotes thinking mode. 2 denotes ChatTS without built-in statistical computation module. —VIL, =
Vision-Language. 'TS’ stands for Time Series modality, as time-series-specific models introduce
a TS encoder. ’- indicates that the model failed to respond correctly. Bold underlined values
indicate the best performance within each category for each metric, and bold values indicate the
second-best performance. Stat. and Non-Stat. columns represent the questions with staionary and

s

non-stationary time series, respectively.

Category ‘ Model Name Modality ‘ Total ‘ Trend Seasonality Basic ‘ Stat. Non-Stat. ‘ Local Overall ‘ Uni-Var. Multi-Var.
DeepSeek-V3 Text 0.41 | 0.08 0.02 0.57 | 0.57 0.52 0.21 0.47 0.57 0.56
Kimi-K2 Text 042 | 0.04 0.13 0.56 | 0.56 0.56 0.19 0.45 0.56 0.54
Qwen3-32b°°* Text 0.31 | 0.00 0.10 0.40 | 0.40 0.40 020 032 0.40 0.33
Qwen3-32b Text 0.35 | 0.02 0.03 0.47 | 0.47 0.50 0.07 0.38 0.47 0.42
Qwen3-8be° Text 0.27 | 0.00 0.00 0.34 | 0.34 0.38 0.13 0.27 0.34 0.29
Qwen3-8b Text 0.26 | 0.02 0.03 0.33 | 0.33 0.39 0.07 0.27 0.33 0.26

Open-source | Qwen2.5-32b Text 0.34 | 0.03 0.00 0.45 | 045 0.50 0.11 0.36 0.45 0.44
Qwen2.5-14b Text 0.25 | 0.05 0.00 0.29 | 0.29 0.41 004 024 0.29 0.34
Qwen2.5-7b Text 0.18 | 0.06 0.00 0.19 | 0.19 0.31 0.01 0.16 0.19 0.31
Qwen2.5-7b-VL Text 0.14 | 0.03 0.03 0.14 | 0.14 0.23 0.04  0.12 0.14 0.21
Qwen2.5-7b-VL Vision | 0.25 | 0.05 0.09 0.28 | 0.28 0.27 027 024 0.28 0.35
Qwen2.5-7b-VL V+T 0.19 | 0.05 0.04 021 | 0.21 0.27 0.09 0.18 0.21 0.31
Claude-3.7-Sonnet ~ Text 0.54 | 0.13 0.20 0.66 | 0.66 0.65 044 055 0.66 0.66
Claude-Sonnet-4 Text 0.53 | 0.04 0.33 0.62 | 0.62 0.61 053  0.50 0.62 0.66
Gemini-2.5-Pro Text 0.63 | 0.14 041 0.72 | 0.72 0.69 071  0.60 0.72 0.72
Gemini-2.5-Flash Text 0.43 | 0.04 0.20 0.56 | 0.56 0.55 020 045 0.56 0.40
GPT-5-Minimal Text 042 | 0.10 0.09 0.58 | 0.58 0.53 0.16 048 0.58 0.57

Closed-source | GPT-40 Text 0.41 | 0.06 0.09 0.53 | 0.53 0.58 0.13 0.43 0.53 0.51
GPT-40 Vision | 0.28 | 0.17 0.10 0.34 | 0.34 0.29 0.31 0.31 0.34 0.34
GPT-40 V+T 0.51 | 0.42 0.37 0.59 | 0.59 0.57 0.31 0.56 0.59 0.56
GPT-40-mini Text 0.33 | 0.02 0.00 0.40 | 0.40 0.51 0.09 0.32 0.40 0.43
ChatTS TS 0.37 | 0.36 0.43 0.41 | 0.41 0.42 0.12 0.40 0.41 0.40

Time-series ChatTS? TS 0.01 | 0.00 0.45 0.01 | 0.01 0.01 0.11 0.01 0.01 0.02
ITFormer TS 0.00 | 0.00 0.00 0.00 | 0.00 0.01 0.02  0.00 0.00 0.00
ChatTime TS - - - - - - - - - -
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Figure 9: This stacked bar chart illustrates the Accuracy@N% performance of several representative
models (closed-source, open-source, and TS-LLMs) on the numerical split of the Base subset. To
explore the hierarchical distribution of numerical reasoning ability, we report results for N = 5,

10,

20.
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Table 13: The Relative Accuracy metric of different models on the Base subset’s numerical split.
<ot denotes thinking mode. ? denotes ChatTS without built-in statistical computation module. —VL
= Vision-Language. *TS’ stands for Time Series modality, as time-series-specific models introduce
a TS encoder. '’ indicates that the model failed to respond correctly. Bold underlined values
indicate the best performance within each category for each metric, and bold values indicate the
second-best performance. Stat. and Non-Stat. columns represent the questions with staionary and

LK)

non-stationary time series, respectively.

Category ‘ Model Name Modality ‘ Total ‘ Trend Seasonality Basic ‘ Stat. Non-Stat. ‘ Local Overall ‘ Uni-Var. Multi-Var.
DeepSeek-V3 Text 0.59 | 0.27 0.32 0.73 | 0.73 0.66 0.41 0.63 0.73 0.76
Kimi-K2 Text 0.65 | 0.37 0.49 0.74 | 0.74 0.71 0.56  0.66 0.74 0.72
Qwen3-32b°t Text 0.42 | 0.00 0.30 0.51 | 0.51 0.52 0.27 0.41 0.51 0.47
Qwen3-32b Text 0.49 | 0.07 0.25 0.61 | 0.61 0.64 0.29 0.50 0.61 0.61
Qwen3-8b<°! Text 0.37 | 0.00 0.19 0.47 | 047 0.49 0.19 0.37 0.47 0.43
Qwen3-8b Text 0.40 | 0.13 0.19 0.49 | 0.49 0.54 0.16 0.42 0.49 0.46
Open-source | Qwen2.5-32b Text 0.51 | 0.16 0.13 0.66 | 0.66 0.63 0.30 0.56 0.66 0.64
Qwen2.5-14b Text 044 | 0.14 0.10 0.51 | 0.51 0.59 0.29 0.43 0.51 0.55
Qwen2.5-7b Text 0.35 | 0.20 0.12 0.40 | 0.40 0.49 0.14 0.36 0.40 0.50
Qwen2.5-7b-VL Text 032 | 0.16 0.15 0.37 | 0.37 0.43 0.12 0.33 0.37 0.42
Qwen2.5-7b-VL Vision | 0.40 | 0.26 0.36 0.44 | 0.44 0.48 0.22 0.4 0.44 0.50
Qwen2.5-7b-VL V+T 0.19 | 0.05 0.04 0.21 | 0.21 0.27 0.09 0.18 0.21 0.31
Claude-3.7-Sonnet Text 0.74 | 0.51 0.59 0.80 | 0.80 0.79 0.72 0.74 0.80 0.80
Claude-Sonnet-4 Text 0.73 | 0.36 0.61 0.78 | 0.78 0.79 0.79 0.69 0.78 0.80
Gemini-2.5-Pro Text 0.82 | 0.56 0.78 0.85 | 0.85 0.83 0.88 0.79 0.85 0.83
Gemini-2.5-Flash Text 0.57 | 0.10 0.55 0.69 | 0.69 0.66 0.34 0.57 0.69 0.53
GPT-5-Minimal Text 0.61 | 0.24 0.33 0.77 | 0.77 0.68 0.45 0.66 0.77 0.78
Closed-source | GPT-40 Text 0.60 | 0.32 0.35 0.73 | 0.73 0.7 0.38 0.64 0.73 0.67
GPT-40 Vision | 0.58 | 0.30 0.71 0.60 | 0.60 0.55 0.63 0.55 0.60 0.57
GPT-40 V+T 0.70 | 0.59 0.75 0.76 | 0.76 0.70 0.60 0.73 0.76 0.74
GPT-40-mini Text 0.50 | 0.17 0.14 0.60 | 0.60 0.66 0.31 0.51 0.60 0.61
ChatTS TS 0.55 | 0.46 0.79 0.59 | 0.59 0.56 0.34 0.56 0.59 0.56
Time-series ChatTs? TS 0.19 | 0.06 0.76 0.10 | 0.10 0.10 0.36 0.09 0.10 0.10
ITFormer TS 0.15 | 0.02 0.06 0.15 | 0.15 0.19 0.23 0.12 0.15 0.18
ChatTime TS - - - - - - - - - -

31



Under review as a conference paper at ICLR 2026

Table 14: The Average Offset metric of different models on the Base subset’s numerical split.
denotes thinking mode. 2 denotes ChatTS without built-in statistical computation module. —VIL =
Vision-Language. *TS’ stands for Time Series modality, as time-series-specific models introduce
a TS encoder. '’ indicates that the model failed to respond correctly. Bold underlined values
indicate the best performance within each category for each metric, and bold values indicate the
second-best performance. Stat. and Non-Stat. columns represent the questions with staionary and
non-stationary time series, respectively. H remark means the average offset value is higher than

leb.

Category ‘ Model Name Modality ‘ Total ‘ Trend Seasonality Basic ‘ Stat. Non-Stat. ‘ Local Overall ‘ Uni-Var. Multi-Var.
DeepSeek-V3 Text 1.06 | 1.17 0.68 0.69 | 0.69 1.64 0.69 0.79 0.69 1.94
Kimi-K2 Text 124 | 1.80 0.57 1.14 | 1.14 1.68 049 127 1.14 1.59
Qwen3-32b°* Text 49.19 | 512.64 1.07 232 | 232 3.73 8.45 107.63 232 4.94
Qwen3-32b Text 4.57 | 3494 0.75 1.43 | 1.43 1.48 2.72 8.34 1.43 3.17
Qwen3-8be°* Text 54.04 | 568.67 1.04 245 | 245 3.47 773 119.29 245 5.25
Qwen3-8b Text 6.01 | 39.83 0.81 3.05 | 3.05 1.76 496  10.64 3.05 4.15
Open-source | Qwen2.5-32b Text 1.65 | 591 0.92 149 | 1.49 1.05 122 240 1.49 3.77
Qwen2.5-14b Text 16.56 | 170.23 0.90 2.06 | 2.06 1.12 133 36.76 2.06 537
Qwen2.5-7b Text 3.02 | 349 0.88 3.20 | 3.20 1.97 6.00 3.26 3.20 4.81
Qwen2.5-7b-VL Text H 7.06 1.82 5.55 | 5.55 H 98.73 586 5.55 15.49
Qwen2.5-7b-VL Vision H 13.24 0.61 31.51|31.51 1.32 1.17  28.08 31.51 H
Qwen2.5-7b-VL V+T H 34.87 1.01 H H H 17.56 H H 4.15
Claude-3.7-Sonnet ~ Text 048 | 1.24 0.46 0.32 | 0.32 0.39 0.62  0.51 0.32 0.50
Claude-Sonnet-4 Text 0.72 | 1.26 0.56 0.62 | 0.62 0.78 058 0.75 0.62 0.44
Gemini-2.5-Pro Text 1.13 | 9.62 0.27 0.36 | 0.36 0.30 035 221 0.36 0.27
Gemini-2.5-Flash Text 34.04 | 350.9 0.62 249 | 249 1.48 8.87 74.38 2.49 557
GPT-5-Minimal Text 091 | 1.85 0.69 0.70 | 0.70 0.97 0.83 0.94 0.70 0.67
Closed-source | GPT-40 Text 227 | 16.22 0.71 045 | 045 1.18 1.40 3.70 0.45 2.57
GPT-40 Vision | 1.47 | 2.70 0.30 246 | 2.46 1.10 0.63 2.50 2.46 4.18
GPT-40 V+T | 072 | 1.66 0.25 031|031 073 135 059 0.31 0.48
GPT-40-mini Text 1.24 | 2.58 0.86 0.94 | 0.94 1.30 1.21 1.28 0.94 1.63
ChatTS TS 179 | 6.75 0.23 1.68 | 1.68 1.34 090 272 1.68 2.26
Time-series ChatTs? TS 21.89 | 130.25 0.24 20.54 | 20.54 8.88 0.88  43.18 20.54 7.21
ITFormer TS H 7.08 0.94 10.89 | 10.89 1.59 0.79 10.10 10.89 H
ChatTime TS - - - - - - - - - -
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Table 15: Performance of different models on the InWild subset. “°* denotes thinking mode.
denotes models evaluated without any time-series input. 2 denotes ChatTS without built-in statistical
computation module. —VL = Vision-Language. TS’ stands for Time Series modality, as time-series-

specific models introduce a TS encoder.

bl

-’ indicates that the model failed to respond correctly. In

reasoning tasks, abbreviations are: Ded. (Deductive), Ind. (Inductive), Analog. (Analogical), and
Count. (Counterfactual). Best and second-best results within each category are underlined and

bolded, respectively.

Category ‘Mo del Name Mo dality‘ Average‘ Feature Analysis ‘ Temporal Reasoning
‘ ‘ ‘Acc.‘Trend Season Noise Volat. Basic‘Acc‘Ded. Ind. Causal Analog. Count.
DeepSeek-V3 Text 0.61 |0.67]073 057 079 055 0.75[059]0.60 0.63 052 058 057
Kimi-K2 Text 0.63 [0.69] 071 0.63 085 058 071 |0.61|0.62 0.65 056 0.64 0.55
Qwen3-32b°" Text 058 |0.65| 072 054 081 058 065055052 0.60 049 0.61 048
Qwen3-32b Text 050 |0.56| 0.67 049 054 043 062 048|048 0.51 042 054 042
Qwen3-8b Text 050 |057|0.54 051 074 054 055|047(041 052 043 049 048
Qwen3-8b Text 045 |048| 045 043 065 034 058 |044(048 046 042 045 037

Open-source | Qwen2.5-32b Text 053 |0.62|0.66 053 077 052 062 |049(047 053 051 050 044
Qwen2.5-14b Text 053 061|060 055 073 058 063 |049|048 053 048 053 041
Qwen2.5-7b Text 044 |045| 061 048 035 035 042 |044|041 047 043 045 044
Qwen2.5-7b-VL Text 037 |037|041 032 044 028 038 037|038 035 040 035 036
Qwen2.5-7b-VL  Vision | 036 |037|039 044 037 030 033035038 036 036 033 033
Qwen2.5-7b-VL V4T 039 |041|048 041 045 030 040 |038]039 037 043 036 035
Qwen2.5-32b! Text 034 |034| 040 040 024 033 031 034|035 035 038 031 030
Claude-3.7-Sonnet ~ Text 069 |078|081 072 085 073 081 ]0.65/066 0.67 058 071  0.60
Claude-3.7-Sonnet ~ Vision | 0.69 |0.75| 082 067 082 070 075|0.66|0.64 072 062 071  0.60
Claude-3.7-Sonnet ~ V+T 0.73 |079| 084 071 087 070 0.85]0.71]0.66 076 070 074  0.66
Claude-Sonnet-4  Text 071 |079| 078 0.67 091 070 0.89 |0.68]0.67 075 0.60 069 0.63
Claude-Sonnet-4  Vision | 0.67 |0.74| 0.84 059 087 0.63 0.79 |0.64|0.59 0.75 055 0.66  0.60
Claude-Sonnet-4 V4T 071 |0.78|0.81 064 090 072 086 |0.68|0.65 0.76 0.62 072  0.66
Gemini-2.5-Pro Text 068 [073|076 069 083 066 072 |0.66(0.65 076 056 068  0.63
Gemini-2.5-Pro ~ Vision | 072 |0.80| 0.84 063 089 077 0.85|0.69(0.69 076 0.60 071  0.64

Closed-source | Gemini-2.5-Pro V4T | 076 |0.83|0.86 0.71 087 0.76 092 0.73|0.75 0.78 0.62 077  0.69
Gemini-2.5-Flash ~ Text 050 |050| 053 040 059 045 055]0.51]047 057 045 056 045
GPT-5-High Text 072 |076| 082 067 087 060 085]0.70|0.69 072 0.66 076  0.68
GPT-5-Minimal Text 056 |0.64|070 063 072 055 061 [052]053 056 051 053 045
GPT-4.1 Text 058 |0.64| 063 057 076 058 0.68|0.56|058 0.61 052 052 055
GPT-4.1 Vision | 0.58 [0.61]070 046 070 051 067057057 0.61 057 055 056
GPT-4.1 V4T 063 |067|073 055 085 060 068 |0.62]062 069 059 059 056
GPT-4.1-Mini Text 059 |066|0.69 049 088 055 073 |0.56(0.56 0.60 054 056 049
GPT-4.1-Mini Vision | 049 |0.51|056 037 054 051 0.55|049|051 045 052 050 048
GPT-4.1-Mini V+T 058 |0.64|0.68 054 075 053 073|0.56]059 0.61 055 054 044
GPT-4o Text 062 [070| 074 061 079 061 075|0.58]0.59 062 050 066 050
GPT-40 Vision | 059 [0.67]076 056 074 064 066056055 0.62 051 057 050
GPT-40 V4T 063 |071|075 059 085 061 077]0.59]059 0.65 055 063 053
ChatTS TS 050 |055]050 061 053 054 058]048[051 0.50 049 044 045

Time-series | CHA(TS? TS 048 |051| 053 055 048 052 050 |048[050 0.50 052 042 043
ITFormer TS 033 |037|029 031 037 029 036 036|037 040 035 035 035
ChatTime TS - - - - - - - - - - - - -

Human Experts - ] 067 [071]059 067 075 075 0.80]0.66|066 072 063 0.67  0.58
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Table 16: Performance of different models on the Match subset. “°* denotes thinking mode. '

denotes models evaluated without any time-series input. 2 denotes ChatTS without built-in statistical
computation module. —VL = Vision-Language. *TS’ stands for Time Series modality, as time-series-
specific models introduce a TS encoder. ’-’ indicates that the model failed to respond correctly.
Bold underlined values indicate the best performance within each category for each metric, and
bold values indicate the second-best performance.

Category ‘ Model Name Modality | Average | Isomorphic Robust Localization Reverse
DeepSeek-V3 Text 0.65 0.90 0.79 0.57 0.35
Kimi-K2 Text 0.60 0.78 0.66 0.50 0.44
Qwen3-32bct Text 0.60 0.80 0.64 0.42 0.52
Qwen3-32b Text 0.50 0.72 0.58 0.36 0.35
Qwen3-8bct Text 0.50 0.62 0.56 0.36 0.46
Qwen3-8b Text 0.42 0.56 0.48 0.31 0.32
Open-source | Qwen2.5-32b Text 0.62 0.84 0.72 0.53 0.41
Qwen2.5-14b Text 0.57 0.78 0.61 0.42 0.45
Qwen2.5-7b Text 0.40 0.45 0.49 0.35 0.29
Qwen2.5-7b-VL Text 0.30 0.31 0.36 0.27 0.28
Qwen2.5-7b-VL Vision 0.28 0.30 0.31 0.28 0.25
Qwen2.5-7b-VL V+T 0.34 0.40 0.41 0.27 0.30
Qwen2.5-32b! Text 0.25 0.25 0.25 0.25 0.25
Claude-3.7-Sonnet Text 0.74 0.93 0.81 0.67 0.54
Claude-Sonnet-4 Text 0.71 0.85 0.79 0.61 0.60
Gemini-2.5-Pro Text 0.79 0.96 0.80 0.59 0.80
Gemini-2.5-Flash Text 0.44 0.63 0.57 0.28 0.26
GPT-5-High Text 0.81 0.98 0.81 0.60 0.86
Closed-source | GPT-5-Minimal Text 0.57 0.84 0.67 0.53 0.26
GPT-4.1 Text 0.67 0.89 0.82 0.55 0.40
GPT-4.1-Mini Text 0.63 0.90 0.78 0.44 0.40
GPT-40 Text 0.50 0.68 0.60 0.41 0.34
GPT-40 Vision 0.45 0.56 0.50 0.34 0.38
GPT-40 V+T 0.55 0.79 0.64 0.38 0.38
ChatTS TS 0.37 0.47 0.40 0.24 0.36
. . ChatTS? TS 0.32 0.46 0.41 0.22 0.20
Time-series
ITFormer TS 0.24 0.16 0.25 0.25 0.29
ChatTime TS - - - - -

Table 17: Performance of the ChatTS model on the Match subset across different time series length
ranges. Total corresponds to the range [13,504], and “-” indicates that no questions fall into the
given length range for that task.

Length Range Isomorphic Robust Localization Reverse

Total 0.47 0.40 0.24 0.36
[64, 1024] 0.53 0.57 0.23 0.44
[256, 512] - - 0.36 -
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Table 18: Performance of different models on the Align subset. °* denotes thinking mode.
denotes models evaluated without any time-series input. 2 denotes ChatTS without built-in statistical
computation module. —VL = Vision-Language. TS’ stands for Time Series modality, as time-series-
indicates that the model failed to respond correctly.
Bold underlined values indicate the best performance within each category for each metric, and

specific models introduce a TS encoder.

LRl

bold values indicate the second-best performance.

Category ‘Model Name Modality | Average | TS—Sem Sem—TS
DeepSeek-V3 Text 0.94 0.95 0.94
Kimi-K2 Text 0.95 0.94 0.96
Qwen2.5-32b Text 0.93 0.92 0.94
Qwen2.5-14b Text 0.88 0.87 0.88
Qwen2.5-7b Text 0.69 0.68 0.71
Qwen3-32bct Text 0.89 0.92 0.86
Open-source | Qwen3-32b Text 0.87 0.86 0.88
Qwen3-8bct Text 0.86 0.88 0.83
Qwen3-8b Text 0.79 0.74 0.84
Qwen2.5-7b-VL Text 0.64 0.68 0.59
Qwen2.5-7b-VL Vision 0.60 0.61 0.60
Qwen2.5-7b-VL V+T 0.73 0.78 0.67
Qwen2.5-32b! Text 0.27 0.29 0.26
Claude-3.7-Sonnet Text 0.97 0.97 0.98
Claude-Sonnet-4 Text 0.98 0.98 0.99
Gemini-2.5-Pro Text 0.97 0.97 0.99
Closed-source Gemini-2.5-Flash Text 0.94 0.94 0.95
GPT-5-High Text 0.99 0.99 0.99
GPT-5-Minimal Text 0.97 0.97 0.98
GPT-40 Text 0.96 0.96 0.97
GPT-40-Mini Text 0.86 0.82 0.90
ChatTS TS 0.80 0.68 0.91
. . ChatTS? TS 0.45 0.49 0.42
Time-series
ITFormer TS 0.29 0.32 0.26
ChatTime TS - - -

Table 19: Token cost for a single evaluation on the InWild subset (1,084 samples).

Model Input/Output Tokens Price Cost
Qwen2.5-32B ~6M / ~20k 0
DeepSeek-V3 ~5M / ~250k ~$1.62
GPT-40 ~5M / =400k ~$16.50
Claude-Sonnet-4 ~5M / ~600k ~$24.00
Gemini-2.5-Pro ~6M / ~500k ~$12.50
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E STATISTICAL ROBUSTNESS ANALYSIS

To assess the testing stability, robustness, and validity of MMTS-Bench, we conducted comprehen-
sive statistical evaluations and bias analyses: Bootstrap Confidence Interval, Iterative Subsam-
pling Analysis, and Assessment of Dataset Artifacts. These experiments evaluate the dataset’s
testing stability, the adequacy of its scale, and its resistance to spurious correlations, respectively.

E.1 BOOTSTRAP CONFIDENCE INTERVAL

To evaluate the reliability of model performance and quantify its uncertainty, we adopted the non-
parametric bootstrap method. Specifically, the experimental setup is as follows: Given a test set
of size D, we generated N = 1000 bootstrap samples, also of size D, through sampling with
replacement.

We selected a few representative models (covering close-source, open-source LLMs and TS-LLMs)
for the MMTS-InWild subset, the choice split of the MMTS-Base subset, and the entire MMTS-
Bench dataset. We then calculated their respective accuracy scores to obtain an empirical distribution
for this metric. Based on this distribution, we report the mean accuracy, standard deviation (std),
and the 95% confidence interval (CI).

Table 20: Bootstrap confidence interval of different models on the MMTS-InWild dataset.

Models | Mean Std CILow CI High

Gemini-1.5-Pro (text) 0.6827 0.0142 0.6541 0.7103
Gemini-2.5-Pro (vision) | 0.7262 0.0138  0.6983 0.7537

GPT-4o (text) 0.6128 0.0148 0.5830  0.6421
DeepSeekV3 (text) 0.6218 0.0150 0.5932  0.6504
Qwen2.5-32b (text) 0.5379 0.0156  0.5083 0.5683

Table 21: Bootstrap confidence interval of different models on the MMTS-Base’s choice split.

Models | Mean Std CILow CIHigh

Gemini-1.5-Pro (text) 0.6340 0.0205 0.5933 0.6726
Claude-3.7-Sonnet (text) | 0.5967 0.0207  0.5581 0.6391

GPT-4o (text) 0.5609 0.0210 0.5211 0.6021
DeepSeekV3 (text) 0.5433 0.0205 0.5053 0.5845
Qwen2.5-32b (text) 04727 0.0218 0.4331 0.5158

Table 22: Bootstrap confidence interval of different models on the complete MMTS-Bench dataset.

Models | Mean Std CILow CIHigh
Gemini-1.5-Pro (text) | 0.7235 0.0094  0.7059 0.7422
GPT-4o (text) 0.6059 0.0103 0.5864 0.6265

DeepSeekV3 (text) 0.6366 0.0100 0.6165 0.6562
Qwen2.5-32b (text) 0.5789 0.0104 0.5580  0.5986

The experimental results (Table 20, 21} [22]and Figure [I0) indicate that the performance evalu-
ations across all models exhibit low statistical dispersion, both on the full dataset and the subsets.
Specifically, the bootstrapping experiment shows that the standard deviation (std) ranges only be-
tween 0.01 ~ 0.02, and the width of the 95% CI remains within a narrow range (approximately
0.5 ~ 0.8 percentage points).

These tight error bounds strongly confirm the statistical robustness of the MMTS-Benchmark. It
demonstrates that the benchmark is insensitive to data sampling variance and can provide stable
and reproducible evaluation results for cross-model and cross-capability comparisons. Furthermore,
to further suppress the stochastic noise from model generations, we also introduced a mechanism
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Figure 10: Visualization of the accuracy distribution and confidence intervals for different represen-
tative models on the MMTS-InWild, MMTS-Base (choice), and MMTS-Bench datasets.
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of multiple sampling and majority voting during the evaluation, thereby establishing a more robust
performance baseline.

E.2 ITERATIVE SUBSAMPLING ANALYSIS

To investigate the relationship between evaluation stability and dataset scale, and to estimate the
minimal sample size required to yield robust results, we conducted an Iterative Subsampling Anal-
ysis focusing on the representative model, Gemini-2.5-Pro, with text input.

The specific experimental setup is as follows: For a given dataset size D, we set the subsampling
size S as a variable that progressively increases from an initial value up to D, with an increment
step of T' = 20. At each fixed size S, we perform N = 50 independent repetitions of sampling,
and calculate the mean, standard deviation (std), and coefficient of variation (CV) of the model’s
performance.

We use the coefficient of variation (C'V = o/pu) as the core metric to measure evaluation stability.
The dataset size S is deemed to possess sufficient statistical stability when the CV curve, as S
increases, shows a descending trend and falls below a pre-set convergence threshold of 7 = 0.02. Iﬂ
This experiment covered the entire MMTS-Benchmark and its four subsets.

Table 23: Comparison of the minimum required sample size for stable assessment versus the actual
sample size in the subsampling analysis experiment, along with the model’s mean, standard devia-
tion, and coefficient of variation under the actual sample size across four data subsets and the entire
MMTS-Bench dataset.

Dataset | Full Sample Min Sample Mean Std Cv

Align 240 60 0.9813 0.0100 0.0041
Base (choice) 568 400 0.6357 0.0203  0.0038
Match 400 260 0.7795 0.0199 0.0047
InWild 1084 600 0.6811 0.0130 0.0011
Full 2292 600 0.7199  0.0093 0.0010

Subsampling Stability Curve & CV - InWild ‘Subsampling Stability Curve & CV - Match Subsampling Stability Curve & CV - Base.

Subsampling Stability Curve & CV - Align Subsampling Stability Curve & CV - Full

Figure 11: Trends of model accuracy metrics (mean, standard deviation, and coefficient of variation)
with varying subsampling size on four subsets and the entire MMTS-Bench.

8We empirically set the convergence threshold to 7 = 0.02, which requires the standard deviation of the
evaluation score to be controlled within 2% of the mean. For a typical model accuracy range (50% ~ 80%), this
means the measurement error is limited to an absolute range of approximately 1% ~ 1.6%. This strict stability
constraint is crucial for suppressing “ranking flips” caused by sampling variance, ensuring the benchmark can
reliably distinguish between models with slight performance differences.
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The experimental results (Table 23]and Figure [TT)) demonstrate that the current data scale of MMTS-
Bench provides an ample safety margin for evaluation stability. Specifically, the actual sample size
of each subset significantly exceeds the minimum number of samples required to reach the con-
vergence threshold (approximately 1.42 ~ 4 times the required minimum), and the lowest CV has
dropped to the 10~3 magnitude. This outcome confirms that we have not only ensured high confi-
dence in the evaluation results at the current scale but have also achieved a good balance between
statistical robustness and evaluation efficiency (computational and time costs).

E.3 ASSESSMENT OF DATASET ARTIFACTS AND SHORTCUT LEARNING

A substantial body of research warns against benchmark performance driven by spurious correla-
tions or explicit features rather than genuine reasoning (Geirhos et all] 2020} [Gururangan et all
[2018). To ensure MMTS-Bench evaluates robust time-series reasoning rather than relying on dataset
artifacts, we analyzed the dependency of model performance on explicit surface-level attributes.

Specifically, we examined the correlation between TSQA accuracy and three explicit factors: se-
quence length (L), variable count (V'), and question text length (') on the InWild subset. We
evaluated three representative models: GPT-40, Qwen2.5-32B, and ChatTS(Xie et al., [2024). We
introduce three metrics to quantify these dependencies:

e Correlation (7, 77): The Pearson correlation coefficient between accuracy and the loga-
rithm of sequence length (r1) or question text length (r7). A value close to O indicates no
linear dependency.

* Length Sensitivity (Ajong): The difference in mean accuracy between the samples in the
longest quartile (> 75th percentile) and the shortest quartile (< 25th percentile).

* Dimensionality Gap (Agim): The difference in mean accuracy between multivariate and
univariate samples.

As presented in Table [24] the results reveal minimal dependence on these artifacts. The correlation
with sequence length is negligible across all models (|r| < 0.08), and the accuracy gap between
extreme lengths (Ajong) remains within a narrow range (approx. 0.05 ~ 0.08), showing no con-
sistent bias towards short or long sequences. Similarly, the performance gap between univariate
and multivariate series is marginal (|Agin| < 0.04), and question length shows only a weak effect
(Irr| & 0.15). These findings confirm that MMTS-Bench performance is not trivially predictable
by simple metadata features.

Table 24: Analysis of potential dataset artifacts and shortcut learning on the InWild subset. Small
absolute values for all metrics indicate that model performance is not dominated by simple features
like length or dimensionality.

Model Name rrL Along Adim T

GPT-40 -0.0693  0.0824 -0.0101 -0.1451
Qwen2.5-32B  0.0547 -0.0525 0.0353 -0.0264
ChatTS 0.0727  -0.0502 -0.0163 -0.0862

E.4 CONCLUSION

We conducted three systematic analyses—Bootstrap Confidence Interval, Iterative Subsampling
Analysis, and Assessment of Dataset Artifacts—which collectively demonstrate that MMTS-Bench
possesses high statistical robustness, an efficient scale, and validity against shortcut learning. The
results confirm that model performance on MMTS-Bench is driven by genuine time-series under-
standing rather than explicit surface-level features (e.g., sequence length or dimensionality), ensur-
ing that the evaluation results are stable, reliable, and trustworthy.
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F USE OF LLMS

During the preparation of this paper, we employed large language models (LLMs) to polish para-
graphs and assist with grammar checking, aiming to reduce the gap with native English writing and
to improve readability for reviewers and readers. LLMs were also used extensively in constructing
the benchmark, with specific details already mentioned earlier.
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