

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MMTS-BENCH: A COMPREHENSIVE BENCHMARK FOR MULTIMODAL TIME SERIES UNDERSTANDING AND REASONING

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Time series data are central to domains such as finance, healthcare, and cloud computing, yet existing benchmarks for evaluating various large language models (LLMs) on temporal tasks remain scattered and unsystematic. To bridge this gap, we introduce MMTS-Bench, a comprehensive multimodal benchmark built upon a hierarchical taxonomy of time-series tasks, spanning feature analysis, temporal reasoning, and cross-modal alignment. MMTS-Bench comprises 2,424 time series question answering (TSQA) pairs across 4 subsets: **Base**, **InWild**, **Match**, and **Align**, generated through a progressive real-world QA framework and modular synthetic data construction. We conduct extensive evaluations on closed-source, open-source LLMs and existing time series adapted large language models (TS-LLMs), revealing that: (1) TS-LLMs significantly lag behind general-purpose LLMs in cross-domain generalization, (2) LLMs show weaknesses in local tasks compared to global tasks, and (3) chain-of-thought (CoT) reasoning and multimodal integration substantially improve performance. MMTS-Bench not only provides a rigorous evaluation framework but also offers clear directions for advancing LLMs toward robust, interpretable, and generalizable time-series reasoning.¹.

1 INTRODUCTION

Time-series data underpin critical systems in finance, healthcare, transportation, and cloud computing (Zeng et al., 2023; Zhou et al., 2021; Liu et al., 2024), capturing how processes evolve over time. Traditionally, tasks such as forecasting, classification, anomaly detection, and imputation (Nie et al., 2023; Zhang et al., 2020; 2024) rely on specialized statistical models and tooling, demanding substantial domain expertise. In recent years, with the rapid advancement of natural language processing (NLP), especially the breakthroughs in Large Language Models (LLMs) (OpenAI, 2023; Comanici et al., 2025; Anthropic, 2025a; Yang et al., 2024; Team et al., 2025b), new possibilities have emerged to overcome the professional barriers in time series analysis (Xie et al., 2024; Wang et al., 2025b;a; Jin et al., 2024b). Integrating time series data with LLMs to build end-to-end time series models has become a prominent research direction (Liu et al., 2023; Bai et al., 2025). Recently, a growing number of researchers have begun to explore the application of LLMs to time series analysis, giving rise to novel tasks such as time series description(Zhang et al., 2023), text-context-assisted forecasting (Jin et al., 2024a), simple time series question answering (QA) (Wang et al., 2025a), complex time series reasoning, and cross-variable QA (Xie et al., 2024).

The above works that combine LLMs with time-series data also require substantial training and testing datasets for support. Prior efforts either enrich classic time-series datasets with textual annotations (Liu et al., 2024; Yu et al., 2024) or build QA datasets for time series reasoning (Wang et al., 2025b; Kong et al., 2025). However, most current studies rely on a “flat” task taxonomy (Wang et al., 2025a; Cai et al., 2024) to define capabilities and synthesize QA data. Such taxonomies either have no hierarchical structure or are simple, making it difficult to comprehensively evaluate LLMs’ abilities in time-series understanding and reasoning at a fine-grained level. Moreover, the construction of most time-series datasets and the fine-tuning of LLMs are limited to single or small-domain

¹Code and data are available at <https://anonymous.4open.science/r/MMTS-BENCH-BEF7/>

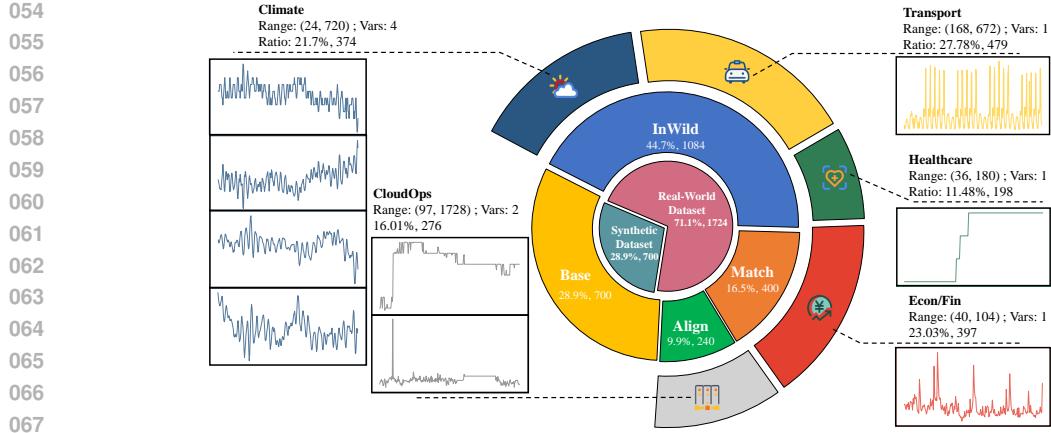


Figure 1: MMTS-Bench at a glance

data (Wang et al., 2025b; Dong et al., 2024), and there is still a lack of a comprehensive benchmark across multiple domains to evaluate LLMs’ out-of-distribution (OOD) generalization.

In this work, we propose a hierarchical taxonomy of time series tasks that reorganizes analytical tasks into a multi-level, orthogonal structure spanning from basic perception to advanced reasoning, thereby clarifying and extending several key task areas that have previously been overlooked. Building on this taxonomy, we construct MMTS-Bench, a new multi-modal, multi-dimensional evaluation benchmark for time series tasks (see Figure 1), comprising 2,424 TSQA pairs across four subsets. One subset is built from synthetic time-series data: (1) **Base**, which assesses capabilities in structural awareness and feature analysis. The others are built from real-world time series spanning five domains (e.g., Transport; see Appendix A.2) in the LOTSA dataset (Woo et al., 2024b): (2) **In-Wild**, which targets feature analysis and temporal reasoning; (3) **Match**, which evaluates sequence-similarity matching and morphological correspondence; and (4) **Align**, which measures bidirectional conversion between time series and natural language as well as advanced cross-modal semantic understanding. We also conduct a comprehensive evaluation of multiple mainstream LLMs using MMTS-Bench, providing detailed capability rankings and deeper insights into current strengths and limitations, thereby offering concrete guidance for the development of future time-series foundation models and the construction of datasets. Our main contributions are as follows:

1. **MMTS-Bench.** We introduce a capability-oriented, hierarchical taxonomy of time-series tasks and instantiate it in MMTS-BENCH, a multimodal, multi-dimensional benchmark comprising 2,424 QA pairs across four subsets (Base, InWild, Match, Align) covering skills from feature analysis to temporal reasoning and cross-modal alignment; using this benchmark, we perform large-scale, fine-grained model assessments and derive practical recommendations for improvement.
2. **Progressive real-world TSQA generation.** We propose an innovative three-stage framework for real-world time series data QA generation, effectively addressing generation quality and reliability, and offering a new methodology for large-scale QA generation based on real-world time series data.
3. **Controllable synthetic data pipeline.** We develop a controllable synthetic data generation pipeline, where modular construction and templated generation are employed to systematically control data diversity and difficulty, leading to high-quality datasets for targeted evaluation of foundational abilities.

2 RELATED WORK

2.1 TIME-SERIES LLMs

Multimodal large language models (MLLMs) have demonstrated strong capabilities in natural language processing and cross-modal reasoning. In the domain of TS-LLMs, several implementation

108 paradigms have recently been explored. Time-MQA Kong et al. (2025) serialize time series as textual inputs and report early gains on the time-series question answering (TSQA) task. ChatTime
 109 (Wang et al., 2025a) quantize continuous values into a finite token space, enabling continuous pre-
 110 training within a unified LLM framework. Zhuang et al. (2024) use GPT-4o (OpenAI, 2024) in a
 111 two-stage, coarse-to-fine anomaly-detection pipeline over rendered time-series plots, while Insight-
 112 Miner (Zhang et al., 2023) and FinVis-GPT (Wang et al., 2023) adapt LLaVA (Liu et al., 2023) for
 113 time-series description and candlestick-chart analysis, respectively.
 114

115 However, representing dense time series data as text or plots inflates sequence length and token
 116 budgets, with typically modest gains. Alignment-based methods mitigate these issues by retaining a
 117 dedicated time-series encoder and learning a lightweight projector into the LLM token-embedding
 118 space, enabling efficient TS–text interaction. Following this paradigm, Chow et al. (2024) and
 119 ChatTS (Xie et al., 2024) build TS-LLMs and report competitive results across classification, de-
 120 scription, QA, and reasoning. Nevertheless, a unified and comprehensive benchmark for systemati-
 121 cally evaluating the multi-dimensional capabilities of TS-LLMs is still lacking.
 122

123 2.2 TIME-SERIES QA DATASETS

124 Although recent work has combined LLMs with time series and released several datasets, most of
 125 them remain confined to forecasting (Hu et al., 2025; Liu et al., 2025; 2024; Wang et al., 2024), while
 126 publicly available TSQA datasets are scarce. Moreover, existing TSQA datasets (Wang et al., 2025a;
 127 Kong et al., 2025; Wang et al., 2025b) suffer from domain inconsistencies, “flat” ability taxonomies,
 128 and rigid question formats, isolating different works and hindering meaningful cross-comparisons.
 129

130 On the univariate side, ChatTime-TSQA (Wang et al., 2025a) is generated from fixed, simple tem-
 131 plates and focuses on four basic properties—trend, volatility, seasonality, and outliers. Time-MQA
 132 (Kong et al., 2025) and Chat-TS (Quinlan et al., 2025) derive QA pairs from real-world domains
 133 via single-turn prompting; despite manual filtering, these datasets offer limited coverage for com-
 134 prehensive, balanced evaluation. On the multivariate side, EngineMT-QA (Wang et al., 2025b)
 135 constructs QA pairs from aviation-engine data through a four-stage pipeline, but its narrow domain
 136 and template reliance constrain its generality as a benchmark. ChatTS (Xie et al., 2024) introduces
 137 TSEvol-Instruct, which generates QA pairs via iterative prompting over diverse time-series data
 138 (synthetic and real; univariate and multivariate); however, its “flat” taxonomy and rigid question
 139 design weaken its ability to evaluate distinct capability dimensions.

140 In contrast, our proposed MMTS-Bench is a multimodal, multi-dimensional benchmark for TSQA
 141 that covers varied difficulty, domains, and both synthetic and real data across univariate and mul-
 142 tivariate cases. Through iterative expert curation and human validation, the benchmark offers a
 143 balanced and reliable basis for assessing the performance of models.
 144

3 MMTS-BENCH

3.1 MULTI-DIMENSIONAL TASK CLASSIFICATION FRAMEWORK

145 To systematically evaluate the comprehensive understanding and reasoning capabilities of LLMs in
 146 time series analysis, we propose a multi-dimensional task classification framework together with
 147 a corresponding dataset construction methodology. Existing time-series QA datasets for assessing
 148 LLMs often suffer from a lack of consistency and hierarchical structure. To address the limitations
 149 of such “flat” classification schemes, we decompose temporal understanding into **five functionally**
 150 **orthogonal core dimensions (see Appendix A.3 for taxonomy details)**: structural awareness, feature
 151 analysis, temporal reasoning, sequence matching, and cross-modal understanding, which theoreti-
 152 cally yield 286 fine-grained composite task types².
 153

154 Based on this framework, we design four subsets under MMTS-Bench. **Base** provides a controlled
 155 synthetic environment focusing on fundamental abilities such as structural awareness and feature
 156 analysis, without involving complex reasoning. It includes multiple-choice, binary-choice, and nu-
 157 matical questions. For evaluation, we divide the subset into two splits: the Choice split and the
 158

159 ²By combining feature analysis and temporal reasoning, 35 composite sub-tasks are formed. With the
 160 addition of structural awareness, this extends to 280. Including 4 from sequence matching and 2 from cross-
 161 modal understanding, the total reaches 286.

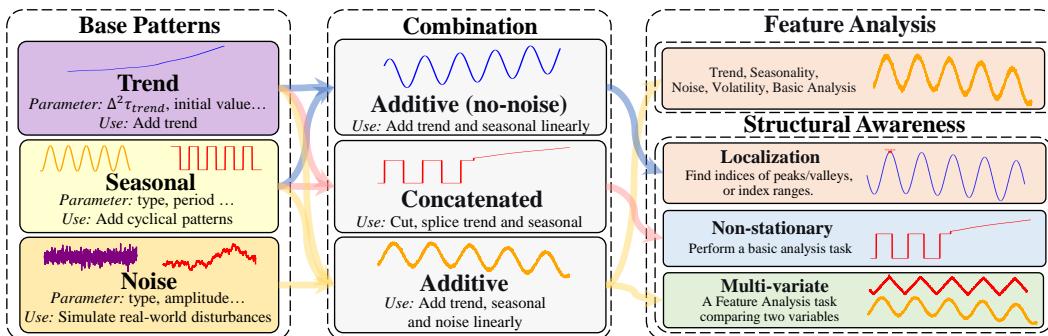
162 Numerical split. **InWild** leverages real-world time series to further examine LLMs’ capacity for
 163 feature analysis and temporal reasoning under complex and noisy conditions. It consists of multiple-
 164 choice and binary-choice questions. **Match** and **Align** focus on two less-studied dimensions in time
 165 series analysis, namely similarity matching and cross-modal understanding, and are composed of
 166 multiple-choice questions.

167 Table 1 summarizes the subtasks across the five orthogonal dimensions and their links to the subsets,
 168 with full definitions given in Table 5 (Appendix A.3). This multi-dimensional construction enables
 169 fine-grained profiling of LLM capabilities in time series analysis and helps identify the bottlenecks
 170 they face in complex analytical reasoning tasks.
 171

172 Table 1: Overview of task dimensions, subtasks, and related subsets in MMTS-Bench.
 173

174 Dimensions	175 Subtask	176 Related Subsets
175 Structural Awareness	176 Non-Stationarity, Local-Global, Univariate-Multivariate	177 Base
176 Feature Analysis	177 Trend, Seasonality, Noise, Volatility, Basic Analysis	178 Base & InWild
177 Temporal Reasoning	178 Deductive, Inductive, Causal, Analogical, Counterfactual Reasoning	179 InWild
178 Sequence Matching	179 Isomorphic, Robust, Positioning, Reverse Matching	180 Match
179 Cross-Modal	180 Time-series to Semantic, Semantic to Time-series	181 Align

182 3.2 SYNTHETIC DATASET



196 Figure 2: **Base** Construction Pipeline. Synthetic time series with controllable characteristics are
 197 generated by concatenating and adding basic components of trend, seasonality, and noise. The
 198 plotting style of this figure is adapted from Cai et al. (2024)

200 **Base** is designed to conduct fundamental evaluation experiments under controllable conditions using
 201 synthetic data. To achieve this, it employs 17 expert-designed templates, which use controllable
 202 parameters to automatically construct QA pairs. These parameters, including trend direction and
 203 strength, seasonal patterns, and noise types, generate synthetic time series through a modular frame-
 204 work ([detailed mathematical formulation in Appendix A.4.1](#)), consistent with established practices
 205 in time series construction (Cai et al., 2024; Das et al., 2024; Fu et al., 2024; Zhang et al., 2024).
 206 The framework consists of three parameterized units: trend, seasonality, and noise (as shown in
 207 Figure 2), which are superposed and concatenated to produce sequences that are interpretable and
 208 controllable.

209 3.3 REAL-WORLD DATASETS

211 **InWild** focuses on realistic and complex scenarios, enabling richer assessments of real-world gen-
 212 eralization and the analytical and reasoning abilities of LLMs on time series, in contrast to **Base**,
 213 which emphasizes controllability and fundamental property evaluation. We construct **InWild** inter-
 214 actively with LLMs through a three-stage pipeline ([as illustrated in Figure 3; see Appendix A.4.2](#)
 215 for details): (1) **Description Generation**, given multimodal inputs (raw sequences, visualizations,
 domain metadata, and pre-computed statistical features), where the domain metadata specifies the

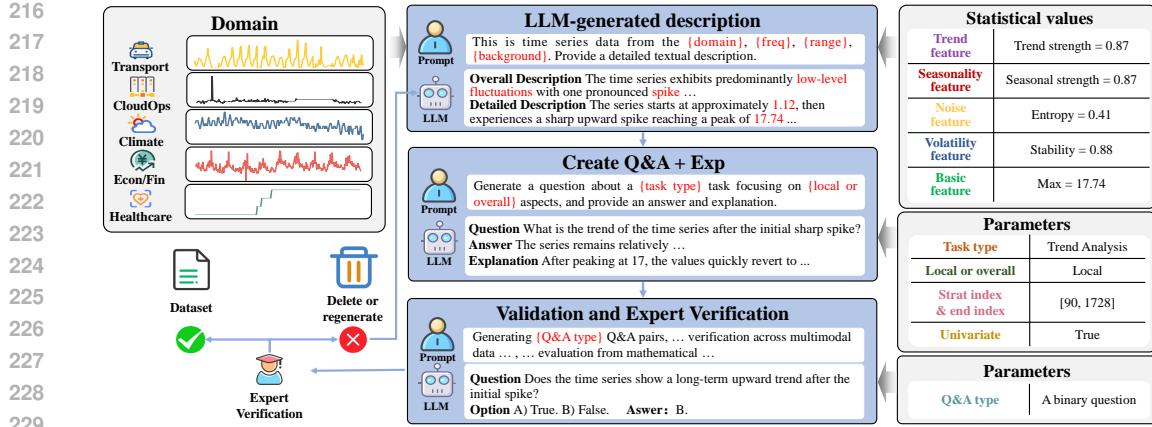


Figure 3: **InWild** Construction Pipeline. Flowchart illustrating the conversion of domain-specific time series via statistical analysis and multimodal input preparation for LLMs. It highlights the feedback loop between LLM generation and expert verification, showing how raw sequences from multiple domains (Economics/Finance, Transport, CloudOps, Climate, Healthcare) are enriched with features (trend strength, seasonal strength, entropy, stability) and structured as inputs for automated QA generation.

physical meaning of variables (e.g., hourly traffic volume, CPU and memory utilization, etc.), the LLM produces overall and detailed descriptions; (2) **QA Construction**, given initialization parameters (task type, global vs. local scope, uni- vs. multivariate setting, and the index range of the sequence), the descriptions are converted into Q-A-E (question-answer-explanation) triplets; and (3) **Validation and Expert Refinement**, the LLM performs logical and mathematical consistency checks to produce standardized QA pairs, followed by human expert review.

Match is designed to evaluate LLMs' ability to perform similarity matching on time series. It is constructed by extracting fragments from real-world time series and applying Dynamic Time Warping (DTW) to search the original series for four candidate sequences at different similarity levels. Each fragment and its candidate sequences are then combined into a multiple-choice question, where a fixed template asks the model to identify the candidate most similar to the fragment (Figure 4). In addition, we apply operations such as smoothing, extension, and reversal to the fragment samples, constructing four task paradigms of different difficulty levels (**construction details in Appendix A.4.2**): (1) Isomorphic, matching sequences with identical lengths, (2) Robust, matching sequences after smoothing, (3) Positioning, localizing target patterns within longer sequences, and (4) Reverse, matching sequences after reversal.

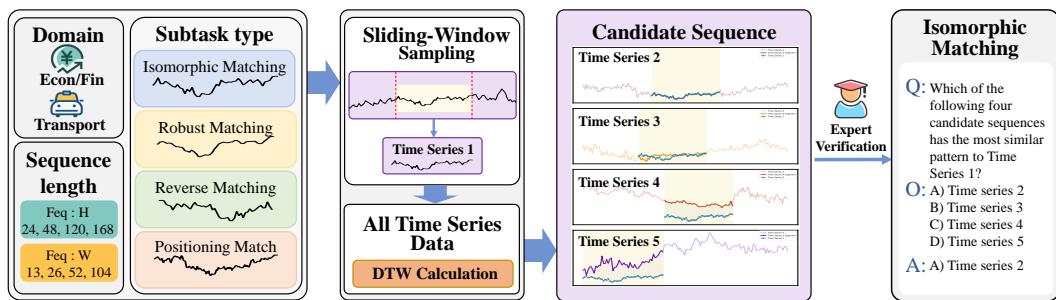


Figure 4: **Match** Construction Pipeline. Fragments are extracted from real-world time series, and candidate series with different similarity levels are retrieved using DTW. QA pairs are then formed with fixed templates, while transformations such as smoothing, extension, and reversal create four task paradigms of varying difficulty.

270 **Align** is designed to evaluate LLMs’ ability in cross-modal understanding between time series and
 271 natural language. It is constructed by extracting the descriptions generated in the first step of **InWild**
 272 and pairing them with the corresponding time series to form multiple-choice questions (**construction**
 273 **details in Appendix A.4.2**). Based on this process, two symmetric tasks are generated: (1)
 274 time-series to semantics, where a time series is provided and the LLM must select the matching de-
 275 scription from several candidates, and (2) semantics to time-series, where a description is provided
 276 and the LLM must identify the corresponding time series among the options. To increase task dif-
 277 ficulty, time series are sampled from three real-world domains with similar value ranges, ensuring
 278 that the incorrect options remain plausible.

279 280 3.4 HUMAN-IN-THE-LOOP CURATION

281 To ensure dataset quality, we adopt a human-in-the-loop process combining automated generation
 282 with expert review (Wu et al., 2022), executed by a fixed group of 10 time-series domain experts. In
 283 **InWild**, experts check question soundness and reasoning validity; in **Match**, experts confirm that
 284 the sequence most similar in shape indeed attains the minimum DTW distance; and in **Align**, experts
 285 verify textual descriptions accurately reflect temporal patterns.

286 We rigorously evaluated the reliability of this annotation process using Fleiss’ κ (Fleiss, 1971). An
 287 overall κ score of 0.73 was achieved, falling into the “Substantial Agreement” category (0.61–0.80)
 288 (Landis & Koch, 1977). To ensure the validity of the final benchmark, ground truth labels were
 289 determined by majority vote, with any ambiguous cases undergoing a second round of adjudication.
 290 This high level of agreement provides strong statistical evidence for the dataset’s reliability.

291 Furthermore, we evaluated one-step generation and our three-stage pipeline without human-in-the-
 292 loop in **InWild**. Results show that without time series inputs, LLMs achieve about 57% accuracy
 293 with one-step generation³; accuracy decreases to 44% with the three-stage pipeline, and further
 294 to 35% when expert review is applied. This demonstrates the necessity of the human-in-the-loop
 295 process in preventing question errors or answer leakage that may otherwise lead to inflated accuracy.

296 297 3.5 STATISTICAL RELIABILITY AND VALIDITY ANALYSIS

298 To complement human curation, we conducted rigorous statistical analyses (details in Appendix E)
 299 to verify the benchmark’s quality.

300 **Evaluation Stability.** First, we assessed the evaluation stability through bootstrap confidence inter-
 301 vals estimation and iterative subsampling analysis. The results indicate that MMTS-Bench yields
 302 highly stable evaluation scores with narrow confidence intervals and a coefficient of variation down
 303 to 10^{-3} magnitude, providing a robust safety margin against sampling variance.

304 **Validity against Shortcut Learning.** Furthermore, to ensure performance reflects intrinsic rea-
 305 soning rather than dataset artifacts, we analyzed the dependency of accuracy on explicit surface
 306 attributes (e.g., sequence length, dimensionality). Our analysis reveals negligible correlations (e.g.,
 307 $|r| < 0.08$ for sequence length) and minimal performance gaps. These findings confirm that MMTS-
 308 Bench is robust against spurious correlations, serving as a reliable benchmark for assessing intrinsic
 309 time-series understanding capabilities.

310 311 312 4 EVALUATION RESULTS

313 Using the MMTS-Bench dataset, we conducted a systematic benchmarking and analysis of the latest
 314 open-source and closed-source LLMs alongside state-of-the-art (SOTA) TS-LLMs. We report *Accu-*
 315 *racy*, *Accuracy@N%*, and *Relative Accuracy* (definitions in Appendix A.1) across multiple subsets
 316 spanning different task dimensions. To ensure statistical robustness and experimental reliability,
 317 all experiments were conducted five times independently at temperature 1.0, with results averaged
 318 across trials.

319 **Model Selection for Evaluation.** We conduct a comprehensive evaluation on MMTS-Bench us-
 320 ing three representative categories of large language models to assess their performance on time

321 ³In **InWild**, based on the distribution of multiple-choice and binary questions under no-input conditions,
 322 the expected accuracy of random guessing is 37.5%.

series QA tasks. Our selection includes: (1) Closed-source models: Claude 3.7 Sonnet (Anthropic, 2025a), Claude Sonnet 4 (Anthropic, 2025b), Gemini 2.5 Flash/Pro (Comanici et al., 2025), GPT 5 Minimal/High (OpenAI, 2025b), GPT 4.1/4.1 mini (OpenAI, 2025a), and GPT 4o (OpenAI, 2024); (2) Open-source models: DeepSeek V3 (DeepSeek-AI, 2024), Kimi K2 (Team et al., 2025a), and Qwen series (Yang et al., 2024; 2025) (including 2.5 and 3 variants with different parameter scales. Notably, for Qwen3 series models, we evaluate both the thinking and non-thinking modes; all Qwen2.5 models we evaluate are instruction-tuned (“Instruct”), we omit “Instruct” in later mentions for brevity); (3) TS-LLMs: ChatTS (Xie et al., 2024), ITFormer (Wang et al., 2025b), and ChatTime (Wang et al., 2025a), which are specifically designed for time series data analysis. For MLLMs (Qwen2.5 VL(Bai et al., 2025), Claude Sonnet series(Anthropic, 2025a;b), Gemini 2.5 Pro(Comanici et al., 2025), GPT 4 series(OpenAI, 2023)), we evaluate across text-only, vision-only, and vision-text combined inputs. To ensure a fair evaluation, we design a standardized time series input format (see Appendix B for details); for TS-LLMs, we carefully reuse the original inference scripts. This multi-dimensional evaluation framework aims to clarify the impact of different model architectures and input modalities on time series understanding and reasoning tasks.

Table 2: Performance comparison of typical LLMs across different categories on MMTS-Bench. ‘TS’ = Time Series modality. “–” = no testing. Best results are underlined and bolded.

Category	Model	Modality	Average	MMTS-Bench Subsets			
				Base	InWild	Match	Align
Closed-source	GPT-5-High	Text	0.74	0.51	0.72	0.82	0.99
	GPT-4o	Text	0.61	0.42	0.62	0.50	0.97
	Claude-Sonnet-4	Text	0.71	0.49	0.71	0.71	0.98
	Gemini 2.5 Pro	Text	0.70	0.48	0.68	0.79	0.98
Open-source	Kimi-k2	Text	0.63	0.45	0.63	0.60	0.95
	DeepSeek-v3	Text	0.62	0.41	0.61	0.65	0.95
	Qwen2.5-14B	Text	0.55	0.35	0.53	0.57	0.88
	Qwen2.5-7B	Text	0.45	0.33	0.44	0.40	0.69
Time-series	ChatTS	TS	0.49	0.39	0.50	0.37	0.80
	ITFormer	TS	0.31	0.31	0.33	0.24	0.29

4.1 VERTICAL COMPARISON OF LARGE LANGUAGE MODELS

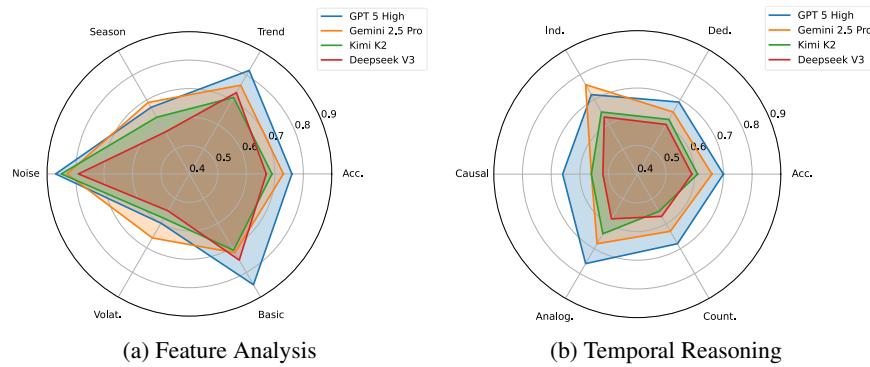
TS-LLMs Show Limited Generalization Capabilities. From Table 2 and the more comprehensive experimental results in the Appendix D, we observe that both closed-source and open-source general-purpose LLMs consistently outperform TS-LLMs across diverse tasks in MMTS-Bench, including **InWild**, **Match**, **Align**, and the Choice split in **Base**. TS-LLMs show marked weaknesses in OOD generalization: ChatTS is comparable to, or slightly below, its base model Qwen2.5-14B; ITFormer lags substantially behind Qwen2.5-7B when applied outside the aero-engine domain; and ChatTime fails to produce valid outputs. These findings indicate that while TS-LLMs may perform adequately within narrow domains, their generalization remains severely limited. Moreover, comparison with human experts further underscores this gap: on **InWild**, humans achieve 67% accuracy, clearly surpassing TS-LLMs.

Existing Multimodal Alignment in TS-LLMs Remains Inefficient. To investigate the key factors affecting TS-LLM performance, we modified the training pipeline of the current SOTA model ChatTS and conducted a series of ablation studies on encoder architecture, scale, positional encoding, backbone LLM size, and prompt prefix. The results show that model performance is predominantly determined by the backbone LLM size, while being largely insensitive to encoder structure, scale, and positional encoding, suggesting that the encoder’s contribution remains limited and underdeveloped. Notably, augmenting the prompt with simple statistical summaries leads to substantial improvements in reasoning accuracy, underscoring the importance of task-aware prompt design. Details are provided in Appendix C.

378 4.2 CROSS-DIMENSIONAL COMPARISON OF LARGE LANGUAGE MODEL PERFORMANCE
379

380 **LLMs Underperform on Temporal Reasoning Relative to Feature Analysis.** As shown in Ta-
381 ble 15 (Appendix D), current LLMs reach an average accuracy of 62% on feature analysis tasks in
382 **InWild**, notably higher than the 55% achieved on temporal reasoning tasks. A comparison under
383 unified input modalities indicates that Claude-Sonnet-4 and Gemini-2.5-Pro are the strongest closed-
384 source LLMs⁴, while DeepSeek-V3 and Kimi-K2 lead among open-source LLMs (Figure 5). Table
385 15 further shows that weaker performance on feature analysis generally coincides with poor tem-
386 poral reasoning. For instance, GPT-4.1-Mini among closed-source models and Qwen2.5-7B among
387 open-source models both follow this trend, suggesting that insufficient feature analysis capability
388 constrains temporal understanding.

389 Within the Feature Analysis dimension, seasonality tasks consistently yield the lowest accuracy
390 across **Base** and **InWild**. This indicates that LLMs may struggle with capturing seasonal patterns,
391 making seasonality a particularly challenging subtask. In the Temporal Reasoning dimension, re-
392 sults further reveal that causal and counterfactual reasoning are especially difficult compared to other
393 reasoning tasks. As illustrated in Figure 8 (Appendix A.4.2), LLMs frequently fall into local rea-
394 soning traps in causal tasks, failing to capture causal relations from a global perspective. Similarly,
395 counterfactual reasoning involves reconstructing dependencies under hypothetical conditions. When
396 LLMs lack sufficient local and global awareness, they tend to make faulty conditional assumptions,
397 which ultimately leads to reasoning failures.



410 Figure 5: Accuracy of top-ranked LLMs on subtasks within the two dimensions of **InWild**. “Acc.”
411 denotes the average accuracy within each dimension. (a) Feature Analysis: Volat. = Volatility;
412 (b) Temporal Reasoning: Ded. = Deductive, Ind. = Inductive, Analog. = Analogical, Count. =
413 Counterfactual.

414 **LLMs Show Weaknesses in Local Tasks Compared to Global Tasks.** As shown in the **Base**
415 results (Table 3), LLMs show their most pronounced weaknesses in Local subtasks under the Struc-
416 tural Awareness dimension. Across all model categories, accuracy on Local subtasks remains low,
417 whereas performance on Global subtasks is considerably higher. This suggests that while LLMs can
418 capture overall regularities in time-series structures, they generally lack precise localization and fine-
419 grained discrimination across different input modalities—an issue that connects with the reasoning
420 failures discussed above.

422 In contrast, performance gaps in non-stationarity and univariate–multivariate subtasks remain rel-
423 atively modest. Non-stationary sequences are typically constructed by concatenating subsequences
424 with distinct statistical properties, leading to global shifts that can be detected through overall struc-
425 tural and distributional cues. Similarly, because it is difficult in task design to generate questions
426 that necessarily require leveraging cross-variable dependencies, multivariate tasks within the context
427 length of LLMs often degenerate into multiple univariate ones.

428 Moreover, in the evaluations on the **Match** and **Align** subsets (see Table 16 and Table 18 in Ap-
429 pendix D), we observe two key findings: (1) among the four sequence matching subtasks, LLMs
430

431 ⁴Claude-3.7-Sonnet ranked second but was excluded due to its substantial involvement in dataset construc-
432 tion.

432 Table 3: The *Accuracy@10%* metric (see Appendix A.1) of different models on the **Base** subset’s
 433 numerical split. *cot* = thinking mode. ’TS’ = Time Series modality. Abbreviations: Stat. = Stationary,
 434 Non-Stat. = Non-Stationary, Local = Localized, Uni. = Univariate, Multi. = Multivariate.

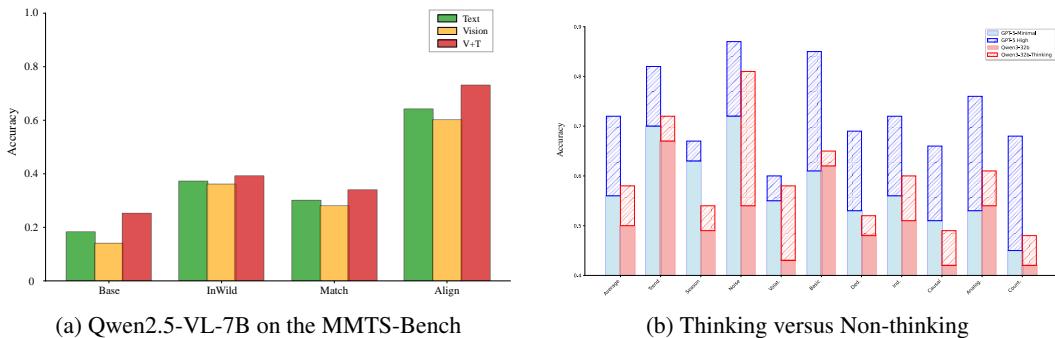
435

436 437 Category	438 439 Model	440 441 Modality	442 443 Structural Awareness					
			444 445 Stat.	446 447 Non-Stat.	448 449 Local	450 451 Overall	452 453 Uni.	454 455 Multi.
439 440 Open-source	Kimi-K2	Text	0.56	0.56	0.19	0.45	0.56	0.54
	Qwen3-32b ^{cot}	Text	0.40	0.40	0.20	0.32	0.40	0.33
	Qwen3-32b	Text	0.47	0.50	0.07	0.38	0.47	0.42
441 442 Closed-source	GPT-4o	Text	0.53	0.58	0.13	0.43	0.53	0.51
	GPT-4o	Vision	0.34	0.29	0.31	0.31	0.34	0.34
	GPT-4o	V+T	0.59	0.57	0.31	0.56	0.59	0.56
443 444 Time-series	ChatTS	TS	0.41	0.42	0.12	0.40	0.41	0.40

446
 447 perform significantly worse on Localization Matching and Reverse Matching than on the remaining
 448 ones. This may be due to the inherent limitations of attention mechanisms and autoregressive
 449 paradigms under temporal direction transformations, though further experiments are required to con-
 450 firm this; (2) in the two subtasks under the Cross-Modal dimension, LLMs generally exhibit strong
 451 performance. This is because LLMs, by leveraging basic statistical cues (e.g., maxima, minima)
 452 and conducting logical reasoning, can align sequences with textual descriptions without the need to
 453 capture the complete temporal structure.

454 455 4.3 ANALYZING APPROACHES TO ENHANCE LLM PERFORMANCE ON TIME SERIES TASKS

456
457 Multimodal Fusion Enhances LLMs’ Ability in Time Series Analysis. As shown in Table 15
 458 (Appendix D), Gemini 2.5 Pro achieves 68% accuracy with text-only inputs, 72% with vision-only
 459 inputs, and reaches 76% when combining text and visual modalities. Similarly, GPT-4.1 exhibits
 460 similar improvements with multimodal fusion. Building on this observation, we further evaluated
 461 Qwen2.5-VL-7B across all MMTS-Bench datasets, which also showed consistent gains (see Figure
 462 6a). However, such improvements are not universal; for example, GPT-4.1-Mini demonstrates shows
 463 reduced performance on **InWild**. We suspect this limitation arises from differences in the LLMs’
 464 inherent ability to integrate multiple modalities. Therefore, introducing additional modalities is an
 465 effective way to narrow the information gap of LLMs in time series analysis, but its effectiveness
 466 mainly depends on the fusion design and training methods of the LLMs.



478 Figure 6: (a) presents the evaluation results of Qwen2.5-VL-7B across four subsets. (b) illustrates
 479 the accuracy gains of GPT-5 and Qwen3-32B on the **InWild** across different subtasks, comparing
 480 performance with and without the thinking mode enabled.

481
482 CoT Reasoning Enhances LLMs Beyond Parameter Scaling in Time Series Analysis. Experi-
 483 ments with the Qwen2.5 series in Table 15 (Appendix D) demonstrate a scaling-law effect (Kaplan
 484 et al., 2020): scaling from 7B to 14B parameters yields clear performance gains, but further growth
 485 to 32B provides marginal improvements, indicating diminishing returns for temporal reasoning tasks
 in time series analysis. In contrast, enabling CoT reasoning produces substantial improvements

486 across all **InWild** subtasks for Qwen3 and GPT-5, as shown in Figure 6b. The benefits are especially
 487 pronounced in temporal reasoning, where the average improvement surpasses that observed in
 488 feature analysis tasks, and additional evaluations on the other subsets confirm this trend. These
 489 findings highlight that scaling laws impose inherent limits on parameter-based gains, whereas activating
 490 CoT reasoning enables models to capture temporal dependencies more effectively. Therefore, future
 491 work should focus on leveraging CoT reasoning to enhance LLMs’ performance on time series
 492 analysis, rather than relying solely on scaling up LLM parameter size.

493 5 CONCLUSION

494 We presented MMTS-Bench, a comprehensive benchmark comprising 2,424 TSQA pairs across four
 495 specialized subsets for evaluating multi-modal time series understanding and reasoning abilities.
 496 Our extensive evaluations reveal that general-purpose LLMs outperform TS-LLMs in cross-domain
 497 generalization, and that current LLMs struggle with fine-grained localization and complex reasoning.
 498 We also find that simply scaling model size yields diminishing returns; instead, performance
 499 is more effectively enhanced through multi-modal inputs and explicit reasoning strategies like CoT,
 500 with the backbone LLM’s capability being the dominant success factor.

501 **Limitations and Future Work.** MMTS-Bench currently does not cover several traditional time series
 502 evaluation tasks, such as forecasting, imputation, anomaly detection, and representation learning,
 503 which are also important components of time series capability. The benchmark also relies
 504 heavily on English annotations, potentially missing insights from multilingual temporal reasoning.
 505 Future work includes: (1) extending to longer-horizon sequences beyond current context limits, (2)
 506 adding complementary suites for traditional time series tasks (forecasting, imputation, anomaly
 507 detection, and representation learning) to provide a more complete picture of model capability, (3) de-
 508 veloping more effective time series–text alignment paradigms beyond current encoder architectures,
 509 and (4) exploring prompt and tool-use strategies that leverage statistical features more systemati-
 510 cally. We hope this evaluation protocol will help steer the development of time series LLMs toward
 511 robust, generalizable time series understanding.

512 514 REPRODUCIBILITY STATEMENT

515 We elaborate on the implementation details of our benchmark construction and experimen-
 516 tal setup in this paper and the Appendix. To facilitate end-to-end reproduction, we release
 517 an anonymized repository containing all data and code at <https://anonymous.4open.science/r/MMTS-BENCH-BEF7/>. We will maintain the anonymized repository for the du-
 518 ration of the review and, upon acceptance, migrate to a public repository and archive a snapshot to
 519 support long-term availability.

520 524 REFERENCES

525 Anthropic. Claude 3.7 sonnet and claude code.
 526 url`https://www.anthropic.com/news/clause-3-7-sonnet`, February 2025a. Accessed: 2025-09-18.

527 Anthropic. Introducing claude 4: Claude opus 4 and claude sonnet 4. `https://www.anthropic.com/news/clause-4`, May 2025b. Accessed: 2025-09-18.

528 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 529 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 530 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 531 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv preprint arXiv:2502.13923*, 2025.

532 Yifu Cai, Arjun Choudhry, Mononito Goswami, and Artur Dubrawski. Timeseriesexam: A time
 533 series understanding exam. *arXiv preprint arXiv:2410.14752*, 2024.

534 Winnie Chow, Lauren Gardiner, Haraldur T Hallgrímsson, Maxwell A Xu, and Shirley You Ren.
 535 Towards time series reasoning with llms. *arXiv preprint arXiv:2409.11376*, 2024.

540 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 541 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 542 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 543 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

544 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
 545 time-series forecasting, 2024. URL <https://arxiv.org/abs/2310.10688>.

546 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

547 Zihan Dong, Xinyu Fan, and Zhiyuan Peng. Fnspid: A comprehensive financial news dataset in time
 548 series, 2024. URL <https://arxiv.org/abs/2402.06698>.

549 Joseph L Fleiss. Measuring nominal scale agreement among many raters. *Psychological bulletin*,
 550 76(5):378, 1971.

551 Fanzhe Fu, Junru Chen, Jing Zhang, Carl Yang, Lvbin Ma, and Yang Yang. Are synthetic time-series
 552 data really not as good as real data?, 2024. URL <https://arxiv.org/abs/2402.00607>.

553 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
 554 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature
 555 Machine Intelligence*, 2(11):665–673, 2020.

556 Rakshitha Wathsadini Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob Hyndman, and Pablo
 557 Montero-Manso. Monash time series forecasting archive. In *Thirty-fifth Conference on Neural
 558 Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=wEclmgAju->.

559 Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
 560 Noah A Smith. Annotation artifacts in natural language inference data. In *Proceedings of the
 561 2018 Conference of the North American Chapter of the Association for Computational Linguis-
 562 tics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 107–112, 2018.

563 Yuxiao Hu, Qian Li, Dongxiao Zhang, Jinyue Yan, and Yuntian Chen. Context-alignment: Acti-
 564 vating and enhancing LLMs capabilities in time series. In *The Thirteenth International Confer-
 565 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=syC2764fPC>.

566 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 567 uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by
 568 reprogramming large language models. In *International Conference on Learning Representations
 569 (ICLR)*, 2024a.

570 Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui
 571 Pan, and Qingsong Wen. Position paper: What can large language models tell us about time series
 572 analysis. In *International Conference on Machine Learning (ICML 2024)*, 2024b.

573 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 574 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 575 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

576 Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming
 577 Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with context
 578 enhancement. *arXiv preprint arXiv:2503.01875*, 2025.

579 J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data.
 580 *biometrics*, pp. 159–174, 1977.

581 Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and
 582 Rui Zhao. TimeCMA: Towards llm-empowered multivariate time series forecasting via cross-
 583 modality alignment. In *AAAI*, 2025.

594 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 595 2023.

596

597 Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
 598 Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash. Time-
 599 mmd: A new multi-domain multimodal dataset for time series analysis, 2024.

600 Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn:
 601 Benchmarking machine learning for weather and climate modeling. In A. Oh, T. Naumann,
 602 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information
 603 Processing Systems*, volume 36, pp. 75009–75025. Curran Associates, Inc., 2023.
 604 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/ed73c36e771881b232ef35fa3a1dec14-Paper-Datasets_and_Benchmarks.pdf.

605

606

607 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 608 64 words: Long-term forecasting with transformers. In *International Conference on Learning
 609 Representations*, 2023.

610 OpenAI. Gpt-4 research. <https://openai.com/index/gpt-4-research/>, March 2023.
 611 Accessed: 2025-09-18.

612

613 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, May 2024. Ac-
 614 cessed: 2025-09-18.

615 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, April
 616 2025a. Accessed: 2025-09-18.

617

618 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, Au-
 619 gust 2025b. Accessed: 2025-09-18.

620 Paul Quinlan, Qingguo Li, and Xiaodan Zhu. Chat-ts: Enhancing multi-modal reasoning over time-
 621 series and natural language data. *arXiv preprint arXiv:2503.10883*, 2025.

622 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 623 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
 624 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
 625 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
 626 Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
 627 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
 628 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
 629 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
 630 Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
 631 Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
 632 Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
 633 Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
 634 Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
 635 Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
 636 Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
 637 Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
 638 Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
 639 Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
 640 Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
 641 Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
 642 Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
 643 Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
 644 Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
 645 Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
 2025a. URL <https://arxiv.org/abs/2507.20534>.

646 MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
 647 Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. *arXiv preprint
 arXiv:2506.07900*, 2025b.

648 Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
 649 Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
 650 and textual data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 651 pp. 12694–12702, 2025a.

652

653 Xinlei Wang, Maike Feng, Jing Qiu, Jinjin Gu, and Junhua Zhao. From news to forecast: Inte-
 654 grating event analysis in llm-based time series forecasting with reflection. In *Neural Information
 655 Processing Systems*, 2024.

656

657 Yilin Wang, Peixuan Lei, Jie Song, Yuzhe Hao, Tao Chen, Yuxuan Zhang, Lei Jia, Yuanxiang Li,
 658 and Zhongyu Wei. Itformer: Bridging time series and natural language for multi-modal qa with
 659 large-scale multitask dataset. In *International Conference on Machine Learning (ICML)*, 2025b.

660

661 Ziao Wang, Yuhang Li, Junda Wu, Jaehyeon Soon, and Xiaofeng Zhang. Finvis-gpt: A multimodal
 662 large language model for financial chart analysis. *arXiv preprint arXiv:2308.01430*, 2023.

663

664 Gerald Woo, Chenghao Liu, Akshat Kumar, and Doyen Sahoo. Pushing the limits of pre-training for
 665 time series forecasting in the cloudops domain, 2024a. URL <https://openreview.net/forum?id=ZkEsEFFUyo>.

666

667 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 668 Unified training of universal time series forecasting transformers. In *Forty-first International
 669 Conference on Machine Learning*, 2024b.

670

671 Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang He. A survey of
 672 human-in-the-loop for machine learning. *Future Generation Computer Systems*, 135:364–381,
 2022.

673

674 Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, and
 675 Dan Pei. Chatts: Aligning time series with llms via synthetic data for enhanced understanding
 676 and reasoning. *arXiv preprint arXiv:2412.03104*, 2024.

677

678 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 679 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 680 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 681 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 682 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 683 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint
 arXiv:2412.15115*, 2024.

684

685 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 686 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 687 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 688 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 689 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 690 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 691 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 692 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 693 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

694

695 Han Yu, Peikun Guo, and Akane Sano. Ecg semantic integrator (esi): A foundation ecg model
 696 pretrained with llm-enhanced cardiological text. *arXiv preprint arXiv:2405.19366*, 2024.

697

698 Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Saba Rahimi, Tucker Balch, and Manuela
 699 Veloso. Financial time series forecasting using cnn and transformer. *arXiv preprint
 arXiv:2304.04912*, 2023.

700

701 Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. Tapnet: Multivariate time series
 702 classification with attentional prototypical network. In *Proceedings of the AAAI conference on
 artificial intelligence*, volume 34, pp. 6845–6852, 2020.

702 Yunkai Zhang, Yawen Zhang, Ming Zheng, Kezhen Chen, Chongyang Gao, Ruian Ge, Siyuan Teng,
703 Amine Jelloul, Jinmeng Rao, Xiaoyuan Guo, et al. Insight miner: A time series analysis dataset
704 for cross-domain alignment with natural language. In *NeurIPS 2023 AI for Science Workshop*,
705 2023.

706 Zhenwei Zhang, Ruiqi Wang, Ran Ding, and Yuantao Gu. Unravel anomalies: an end-to-end
707 seasonal-trend decomposition approach for time series anomaly detection. In *ICASSP 2024 -*
708 *2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
709 5415–5419, 2024. doi: 10.1109/ICASSP48485.2024.10446482.

710 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
711 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-*
712 *Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pp.
713 11106–11115. AAAI Press, 2021.

714 Jiaxin Zhuang, Leon Yan, Zhenwei Zhang, Ruiqi Wang, Jiawei Zhang, and Yuantao Gu. See it, think
715 it, sorted: Large multimodal models are few-shot time series anomaly analyzers. *arXiv preprint*
716 *arXiv:2411.02465*, 2024.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 TABLE OF CONTENTS
757

758 • Appendix A: Details About MMTS-Bench. Definitions of evaluation metrics, sources of
759 real-world time series data, dataset classification, and dataset construction methods.
760 • Appendix B: Standardized time series input format. Evaluation prompt, and the method for
761 time series to image conversion.
762 • Appendix C: Ablation Study. Details About experimental setups, results, and conclusions.
763 • Appendix D: Full Results. Complete testing results of LLMs evaluated with MMTS-Bench.
764 • Appendix E: **Statistical Robustness and Artifact Analysis.** Statistical experiments demon-
765 strating the robustness, evaluation stability, and validity of MMTS-Bench against dataset
766 artifacts.
767 • Appendix F: Use of LLMs. Explanations of how LLMs are applied in this work.
768

770 A DETAILS ABOUT MMTS-BENCH
771772 A.1 METRICS
773

774 We adopt a stratified evaluation scheme with specialized metrics tailored to each answer type within
775 our answer space \mathcal{A} , ensuring comprehensive and fair assessment across diverse question formats.

776 **Categorical Evaluation** (\mathcal{A}_{mc} and \mathcal{A}_{bf}). For both multiple-choice and binary-choice tasks, we
777 utilize **Accuracy** as the primary evaluation metric, measuring exact match performance through the
778 indicator function:

$$779 \text{Accuracy} = \mathbb{I}(\hat{A} = A_{gt}) \quad (1)$$

780 where $\mathbb{I}(\hat{A} = A_{gt}) = 1$ if the predicted answer \hat{A} matches ground-truth A_{gt} , and 0 otherwise.
781

782 **Numerical Evaluation** (\mathcal{A}_{num}). For numerical tasks, we employ two complementary metrics to
783 capture both continuous proximity and threshold-based precision. Relative Accuracy quantifies the
784 relative proximity between predicted and ground-truth values, yielding a normalized score in $[0, 1]$
785 where 1 indicates perfect prediction:

$$786 \text{Relative Accuracy} = \max \left(1.0 - \frac{|\hat{A} - A_{gt}|}{|A_{gt}|}, 0.0 \right) \quad (2)$$

787 Accuracy@10% provides a stricter binary evaluation criterion, determining whether the prediction
788 falls within a 10% relative error tolerance:
789

$$790 \text{Accuracy@10\%} = \mathbb{I} \left(\frac{|\hat{A} - A_{gt}|}{|A_{gt}|} \leq 0.1 \right) \quad (3)$$

791 The scoring function $\mathcal{M}(\hat{A}, A_{gt})$ introduced in our protocol is instantiated using these type-specific
792 metrics, ensuring appropriate assessment based on answer type while maintaining consistency across
793 the evaluation framework.
794

795 A.2 REAL-WORLD DATASET SOURCES
796

797 The real-world component of our benchmark is constructed from the LOTSA (Woo et al., 2024a;
798 Godahewa et al., 2021; Nguyen et al., 2023; Woo et al., 2024b) dataset collection. To ensure broad
799 domain coverage while maintaining representativeness and high quality, we selected five major do-
800 mains: Transport, Cloud Operations, Climate, Economics, and Healthcare. Representative datasets
801 from these domains include Traffic Hourly, Alibaba Cluster Trace 2018, ERA5 2018, M4 Weekly,
802 Hospital, and COVID deaths, with statistical parameters summarized in Table 4. Their details are as
803 follows.
804

805 **Transport** (Traffic Hourly) The dataset originates from the California Department of Transportation.
806 It records hourly highway occupancy rates from multiple sensors in the San Francisco Bay Area over
807 a 48-month period (2015–2016). It contains 862 time series, each with 17,376 points in the range
808 $[0, 1]$. Because of the long time span and the strong seasonal patterns, we applied a sliding window
809

810 with a maximum length of 672 points. To reduce token usage and irrelevant precision for LLMs,
 811 values were scaled by a factor of 100 and rounded to two decimal places.
 812

813 **Cloud Operations** (Alibaba Cluster Trace 2018) This dataset describes CPU and memory utilization
 814 in a cluster of about 4,000 machines over eight days (from January 2 to January 8, 2018), sampled at
 815 five-minute intervals. It consists of 58,409 pairs of time series. Theoretical sequence length is 1,728
 816 points, although some sequences are shorter due to missing samples (100–1,728 points). Values are
 817 within [0,100]. Because sequence lengths are moderate, no windowing was applied. Instead, we
 818 randomly sampled sequences and retained two decimal places.
 819

820 **Climate** (ERA5 2018) The dataset comes from the European Centre for Medium-Range Weather
 821 Forecasts. It provides hourly global reanalysis data for 2018 at 2.8125° resolution (64×128 grid
 822 points), covering 45 variables across seven pressure levels (50, 250, 500, 600, 700, 850, and 925
 823 hPa). Each time series pair has 8,736 points. To construct our benchmark subset, we selected
 824 relative humidity and temperature from the seven pressure levels, with values within [0,100]. To
 825 capture spatial diversity, we randomly sampled 50 locations worldwide and then applied sliding
 826 windows of length 720. All values were rounded to two decimal places.
 827

828 **Economics** (M4 Weekly) The dataset is a subset of the M4 Competition (2018), which consists of
 829 100,000 time series across different frequencies. The weekly subset includes 359 economic and
 830 business-related series, such as sales, demand, and index values. Sequence lengths range from 80
 831 to 2,597 points. To preserve potential seasonalities and balance sequence lengths, we used a sliding
 832 window with a maximum length of 104 points, approximately two years in length. Shorter series
 833 were kept in full. Values were rounded to two decimal places.
 834

835 **Healthcare** (Hospital & COVID deaths) The Hospital dataset records monthly patient counts related
 836 to medical products from January 2000 to December 2006. It contains 767 series of length 72. We
 837 applied sliding windows with common monthly cut lengths of 36, 60, and 72 points. All values
 838 were rounded to two decimal places. The COVID deaths dataset is sourced from the Johns Hopkins
 839 University repository. It contains cumulative daily death counts for countries and regions from
 840 January 22 to August 20, 2020. It consists of 266 daily series, each 182 points long. We applied
 841 a sliding window with a maximum length of 180 points. All values were rounded to two decimal
 842 places.
 843

844 Table 4: Statistical parameters of subsets in LOTSA.
 845

846 Dataset	847 Domain	848 Frequency	849 #Time Series	850 #Obs.	851 #Vars
Traffic Hourly	Transport	H	862	14,978,112	1
Alibaba Cluster Trace 2018	CloudOps	5T	58,409	95,192,530	2
ERA5 2018	Climate	H	245,760	2,146,959,000	45
M4 Weekly	Economics	W	359	366,912	1
Hospital	Healthcare	M	767	55,224	1
COVID Deaths	Healthcare	D	266	48,412	1

852 A.3 DATASETS CLASSIFICATION

853 To systematically evaluate large models’ capabilities across the proposed multi-dimensional frame-
 854 work, we construct four specialized subsets that collectively form the core of the MMTS-Bench. The
 855 design of these subsets is based on a core hypothesis: a model’s understanding of time series is
 856 hierarchical and progressive, where deficiencies in foundational analytical abilities lead to systematic
 857 biases in higher-level reasoning tasks. To operationalize this hypothesis, we decompose temporal
 858 understanding into five orthogonal core dimensions.
 859

860 **In this paper, the term “orthogonal” denotes functional distinctness rather than statistical in-
 861 dependence.** We decompose time-series understanding into several information dimensions, each
 862 representing a unique and non-substitutable processing requirement. Since a single task typically re-
 863 lies on only a subset of these dimensions, we organize and annotate our tasks accordingly to prevent
 864 mixed or redundant definitions. The notion of hierarchy means that higher-level capabilities are the
 865 result of combining multiple dimensions, rather than introducing entirely new dimensions. Although

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Dimensions	Subtasks	Definition	Related Subsets
Structural Awareness	Non-Stationarity	Analyzes statistical properties of concatenated subsequences.	
	Local-Global	Locates and analyzes specific sequence segments.	Base
	Univariate-Multivariate	Processes and analyzes multiple time series data jointly.	
Feature Analysis	Trend Analysis	Identifies long-term directional patterns and trend strength.	
	Seasonality Analysis	Captures seasonal patterns and seasonality strength.	
	Noise Analysis	Distinguishes random fluctuations from signal components.	Base, InWild
	Volatility Analysis	Quantifies temporal variability and instability.	
	Basic Analysis	Computes fundamental statistics (mean, variance, range, etc.).	
Temporal Reasoning	Deductive Reasoning	Applies general rules to infer properties of specific intervals.	
	Inductive Reasoning	Generalizes characteristics from observed sequences.	
	Causal Reasoning	Identifies causal or lead-lag relationships between series.	InWild
	Analogical Reasoning	Infers similarity by comparing temporal patterns.	
	Counterfactual Reasoning	Predicts outcomes under hypothetical changes.	
Sequence Matching	Isomorphic Matching	Finds the most similar sequence under equal-length constraints.	
	Robust Matching	Robustly matches patterns under preprocessing transformations.	Match
	Positioning Match	Locates target patterns within longer sequences.	
	Reverse Matching	Recognizes similarity under temporal reversal.	
Cross-Modal Understanding	Time-series to Semantic	Converts time series patterns into textual descriptions.	
	Semantic to Time-series	Maps textual descriptions to corresponding time series data.	Align

Table 5: Orthogonal dimensions of time series tasks described by MMTS-Bench, their covered subtask types, and related subsets.

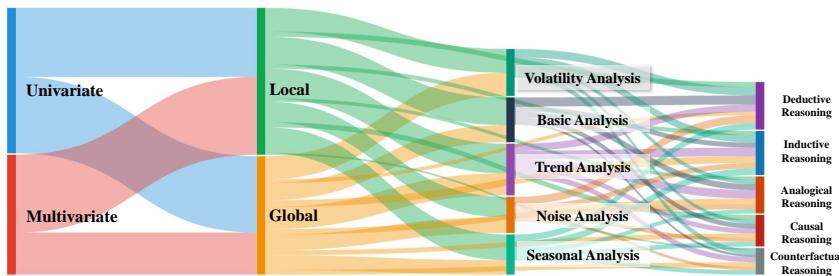
918 the dimensions in the Base and InWild subsets are related, we deliberately assign them distinct roles.
 919 The Base subset is designed to isolate and “activate” individual dimensions (e.g., structural awareness)
 920 in controlled settings. In contrast, InWild tasks, drawn from realistic scenarios, necessitate the
 921 simultaneous integration of multiple dimensions. By explicitly annotating these dimensional depen-
 922 dencies, we enable fine-grained failure analysis: poor performance on an InWild task can be traced
 923 to deficiencies in specific dimensions (e.g., structural awareness), rather than being attributed to an
 924 undifferentiated notion of overall failure.

925 To this end, we employ a dual-tier evaluation architecture: **foundational capability assessment**
 926 using synthetic data, followed by **advanced capability assessment** using real-world data. This
 927 approach ensures both precise, controlled evaluation of core competencies and a realistic assessment
 928 of practical performance.

929 **Base.** This subset is constructed using precisely controlled synthetic data, eliminating confounding
 930 variables present in real-world data, to provide standardized, fine-grained evaluation of a model’s
 931 foundational time series analysis capabilities in a controlled environment. It contains 700 QA pairs
 932 that encompass two core dimensions of Structural Awareness (D_s) and Feature Analysis (D_f).
 933

934 The following three subsets are constructed from real-world data in the LOTSA benchmark to eval-
 935 uate advanced capabilities in complex scenarios.

936 **InWild.** This subset is constructed from across five specialized domains (Transport, CloudOps,
 937 Climate, Econ/Fin, Healthcare) to evaluate a model’s capabilities in advanced time series under-
 938 standing and reasoning. Through combinatorial arrangements of three core dimensions—Structural
 939 Awareness (D_s), Feature Analysis (D_f), and Temporal Reasoning (D_r)—it generates 1,084 QA
 940 pairs covering 140 subtask types.



951 Figure 7: Sankey Diagram of Subtask Labels in the InWild Subset. This diagram illustrates the
 952 relationships and transitions between subtask labels in the InWild subset, highlighting their interde-
 953 pendencies in a clear and intuitive way.
 954

955 **Match.** This subset is constructed from Transport and Econ/Fin domains to evaluate a model’s per-
 956 formance in time series similarity matching and morphological correspondence. We generated four
 957 categories of sub-tasks by varying the Sequence Matching (D_m) dimensionality while holding Struc-
 958 tural Awareness (D_s) dimensionality—stationarity, global scope, and univariate series—constant.
 959 The subset contains 400 QA pairs, with 100 pairs in each category.
 960

961 **Align.** This subset is constructed from across five specialized domains (Transport, CloudOps, Cli-
 962 mate) to systematically evaluate models’ capabilities in bidirectional understanding and cross-modal
 963 conversion between numerical time series and natural language. From the perspective of the Cross-
 964 Modal Understanding dimension (D_c), we constructed 240 bidirectional QA pairs based on homol-
 965 ogous time series sequences.
 966

967 This hierarchical dataset architecture enables MMTS-Bench to provide comprehensive evaluation
 968 spanning from foundational analytical skills to advanced analytical capabilities, providing detailed
 969 diagnostic capability profiles that identify specific strengths and weaknesses of models in the context
 970 of time series understanding and reasoning tasks.

971 ⁵For the detailed comparison table, please refer to <https://anonymous.4open.science/r/MMTS-BENCH-BEF7/comparison.md>

972 Table 6: This table presents a horizontal comparison of existing datasets for time series understanding
 973 and reasoning. The **TS Type** column denotes the source of time series data, where “R” refers
 974 to real-world data and “S” refers to synthetic data. The **Domain** column indicates the application
 975 domain of the time series. **Question Type** specifies the types of questions included in the dataset,
 976 such as Choice or Numerical. **Taxonomy** shows how each dataset categorizes different capability
 977 dimensions. **Input Method** describes how time series are processed in these works, including TS-
 978 as-text, TS-encoded and TS tokens. **Cross-Var.** indicate whether the dataset contains cross-variable
 979 analysis tasks, respectively. Finally, the **Generation** column outlines the construction methods of
 980 different datasets.⁵

Dataset	TS Type	Domain	Size	Question Type	Taxonomy	Reasoning	Input Method	Cross-Var.	Generation
EngineMT-QA	R	Single	11K/-	Choice	Flat	✓	TS Encoded	✗	Templates + Polishing
Time-MQA-TSQA	R	Multiple	200K/1.4K	Choice+Num.	Flat	✓	TS-as-Text	✗	Single-round prompting
ChatTime-TSQA	S	—	48K/0	Choice	Flat	✗	TS tokens	✗	Templates
TimeSeriesExam	S	—	746/-	Choice	Flat	✓	—	✓	Templates
ChatTS	R+S	Multiple	11K/525	Choice+Num.	Flat	✓	TS Encoded	✓	TS Self-Evol
Chat-TS	R	Multiple	3741/100	Choice	Flat	✓	TS tokens	✗	Single-round prompting
MMTS-Bench	R+S	Multiple	2524/1724	Choice+Num.	Multi-level	✓	—	✓	3-stage prompting + Templates

A.4 DATASET CONSTRUCTION METHOD

987 To comprehensively evaluate multimodal time series understanding capabilities, we develop a dual-
 988 pathway construction methodology combining synthetic and real-world data sources. The synthetic
 989 pathway employs modular component synthesis with systematic parameter control to enable con-
 990 trolled evaluation of fundamental time series properties. The real-world pathway leverages pro-
 991 gressive conversational frameworks, similarity matching algorithms, and cross-modal conversion
 992 techniques to construct comprehensive evaluation benchmarks. This approach yields four special-
 993 ized subsets: **Base** for controlled synthetic evaluation, and **InWild** for multi-dimensional reasoning,
 994 **Match** for similarity matching, and **Align** for cross-modal understanding using authentic LOSTA
 995 data.

A.4.1 SYNTHETIC DATASET

1000 The time series data within the **Base** subset is generated through a modular synthesis approach. This
 1001 process begins with the creation of three fundamental primitive components: (1) **Trend Compo-**
 1002 **nents**, which can be configured with specific directions and magnitudes; (2) **Seasonal Components**,
 1003 a diverse range of periodicities and waveforms are supported, encompassing both standard patterns
 1004 (e.g., sine waves) and complex composite waveforms representative of real-world scenarios; and (3)
 1005 **Noise Components**, where various noise types are included.

1006 The final time series is formed by the superposition of these components. This principle is formally
 1007 expressed through an additive model where the generated time series y_t is the sum of three weighted
 1008 components:

$$y^{(t)} = \tau_{\text{trend}}^{(t)} + \tau_{\text{seasonal}}^{(t)} + \tau_{\text{noise}}^{(t)}, \quad t = 1, 2, \dots, T. \quad (4)$$

1009 Each component $\tau^{(t)}$ is synthesized by scaling a corresponding **base signal** $S(t)$ with a randomly
 1010 sampled weight w , such that $\tau_{\text{trend}}^{(t)} = w_{\text{trend}} \cdot S_{\text{trend}}(t)$, and similarly for the other components. The
 1011 generation of these base signals is governed by a set of configurable parameters to ensure diversity,
 1012 as detailed below.

1013 First, a global **Sequence Length** (T) for all base signals is determined by sampling from the in-
 1014 terval $[128, 2048]$ (corresponding to `min_length` and `max_length`). Then, each base signal is
 1015 constructed as follows:

1016 • Trend Base Signal ($S_{\text{trend}}^{(t)}$) is designed to capture long-term, non-stationary behavior. It is
 1017 modeled as an ARIMA(0,2,0) process, representing a second-order random walk:

$$S_{\text{trend}}^{(t)} = \sum_{n=1}^t \sum_{m=1}^n X_m, \quad \text{where } X_t \sim \mathcal{N}(0, \sigma^2). \quad (5)$$

1021 For dataset generation, the smoothness of this trend is controlled by the second differ-
 1022 ence parameter, δ_s (`delta_s`), which corresponds to the variance σ^2 and is sampled from
 1023 $[0.01, 0.1]$. The overall amplitude of the base signal is sampled from $[0.1, 1000]$.

1026
1027
1028

- Seasonal Base Signal ($S_{\text{seasonal}}^{(t)}$) provides the series' periodic structure. It is constructed from standard periodic waveforms (e.g., sine, square, triangular):

1029
1030

$$S_{\text{seasonal}}^{(t)} = S_0(\text{mod}(t + \phi, T_0)), \quad (6)$$

1031 where $S_0(\cdot)$ is the standard waveform, ϕ is a phase shift, and T_0 is the period. In our
1032 dataset, the period T_0 is set to one-fifth of the total sequence length (i.e., $T_0 = T/5$), and
1033 the amplitude is sampled from $[0.1, 1000]$.

1034
1035

- Noise Base Signal ($S_{\text{noise}}^{(t)}$) introduces various types of random fluctuations. It can be drawn from several distinct statistical distributions to simulate different scenarios:

1036
1037
1038
1039
1040

$$S_{\text{noise}}^{(t)} = X_t, \quad X_t = \begin{cases} \mathcal{N}(\mu, \sigma^2), & \text{Gaussian white noise} \\ U(a, b), & \text{Uniform noise} \\ \text{round}(V_t/q) \cdot q, \quad V_t \sim U(a, b), & \text{Quantization noise} \\ X_{t-1} + V_t, \quad V_t \sim U(a, b), & \text{Random walk noise} \end{cases} \quad (7)$$

1041
1042 The specific parameters for each noise type (e.g., μ, σ^2 for Gaussian, a, b for Uniform) are
1043 configured to generate a variety of noise profiles. For the Quantization noise, the step size
1044 q is specifically defined as one-tenth of the signal's amplitude.

1045
1046
1047
1048
1049

- Component Weights (\mathbf{w}) After generating the three base signals, their respective contributions to the final time series are determined by a set of weights. The weights $\mathbf{w} = (w_{\text{trend}}, w_{\text{seasonal}}, w_{\text{noise}})$ are sampled from a symmetric Dirichlet distribution, $\mathbf{w} \sim \text{Dir}(\boldsymbol{\alpha})$ with $\boldsymbol{\alpha} = (1, 1, 1)$. This ensures an unbiased combination where the weights are positive and sum to one.

1050
1051 During the construction of the subset, the ground-truth labels for the four types of subtasks in the
1052 Feature Analysis (D_f) dimension are systematically generated based on the parameter system of the
1053 underlying primitive components. For the sub-tasks in the Structural Awareness (D_s) dimension, a
1054 differentiated construction strategy is adopted:

1055
1056
1057
1058
1059
1060
1061
1062
1063

- **Univariate vs. Multivariate:** Multivariate series are generated to evaluate a model's differential capabilities in analyzing univariate versus multivariate statistical properties.
- **Local vs. Global:** Descriptive and localization-based tasks are created by defining sub-intervals within the synthetic time series, thereby testing a model's local and global perceptual abilities.
- **Stationarity vs. Non-stationarity:** Composite series are constructed by concatenating two sub-series with distinct statistical properties. These are then used in conjunction with feature analysis tasks to assess a model's proficiency in identifying non-stationarity.

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

QA pairs are systematically generated based on a set of 17 distinct templates. These templates cover a spectrum of tasks, ranging from qualitative feature analysis to quantitative numerical computation. Except for a subset of interval localization problems that require manual annotation, the vast majority of QA pairs are automatically generated. This template-based automation serves as the execution layer for our pipeline, the distinct advantages of which—specifically in terms of diversity and alignment precision compared to prior works—are detailed below.

1074
1075
1076
1077
1078
1079

Advancements in Generation Pipeline. While modular synthesis is a shared paradigm in recent works like TimeSeriesExam (Cai et al., 2024) and ChatTS (Xie et al., 2024), our pipeline introduces critical enhancements in diversity, precision, and alignment.

- **Generation Diversity:** Unlike TimeSeriesExam, which relies on simple base patterns (e.g., linear, exponential) and restricted sub-options, we adopt an STL-inspired decomposition into Trend, Seasonal, and Noise modules with rich control parameters. For instance, our trends are generated via second-order random walks (controlled by δ^2 and initial values) rather than simple functions, and we incorporate diverse noise types (e.g., quantized, random-walk) and flexible combination strategies (Additive, Concatenated) that surpass the fixed combination schemes seen in ChatTS.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

- **Precision and Alignment:** We log precise quantitative parameters (e.g., specific waveform configurations) rather than qualitative labels. This granular logging allows the QA generation engine to leverage exact numerical values, enabling the construction of nuanced evaluation items—such as differentiating between weak, medium, and strong seasonality based on the `seasonal_strength` parameter—rather than limiting assessment to binary presence/absence questions.

A.4.2 REAL-WORLD DATASET

To comprehensively evaluate multimodal time series understanding across diverse analytical dimensions, we construct three specialized subsets from real-world LOSTA data targeting distinct aspects of time series analysis: comprehensive QA-based evaluation (**InWild**), sequential similarity matching (**Match**), and cross-modal language understanding (**Align**). Each subset employs systematic construction pipelines with domain-specific sampling strategies and automated generation frameworks built upon authentic temporal data from five key domains.

INWILD SUBSET

This subset evaluates comprehensive understanding and reasoning capabilities in time series analysis through an innovative progressive, multi-turn conversational approach. The subset employs open-ended question templates to ensure rich diversity while avoiding rigid patterns. The generation process synergistically integrates three analytical dimensions: structural awareness, feature analysis, and temporal reasoning, creating 140 unique dimensional combinations that compel models to perform deep inference on underlying patterns and dynamic relationships.

Three-Stage Progressive Generation Pipeline Our dataset construction follows a systematic three-stage pipeline where each stage serves a distinct function in creating high-quality question-answering pairs.

- **Stage 1: Initialization and Context Generation** The process begins with random sampling to define core parameters including question type (multiple-choice or true/false), task type (combining feature analysis and temporal reasoning capabilities), number of variables (univariate or multivariate), and analysis scope (local sub-sequence or global series). The system provides Claude 3.7 Sonnet with comprehensive multimodal context: time series visualizations, raw numerical sequences, domain metadata, and pre-computed statistical features from specialized libraries. The model generates a structured textual description tailored to the specified task type.
- **Stage 2: Task Specification and Reasoning Construction** Building upon the initial description, this stage further specifies the task according to predefined variables and analysis scope. For local-scope questions, the system provides indices for key time points. The model abstracts the structured information to construct specific questions, ground-truth answers, and detailed reasoning explanations.
- **Stage 3: Formatting and Quality Verification** The model formats outputs into standardized QA pairs according to designated question types while performing automated consistency verification across three dimensions: mathematical soundness of logic and calculations, descriptive accuracy between textual elements and data, and logical interpretability of reasoning coherence.

MATCH SUBSET

The **Match** subset is specifically designed to evaluate models’ capabilities in time series similarity matching and morphological correspondence analysis. The subset employs standardized question-answer templates with fixed structural awareness parameters (stationarity, univariate, and global sequence) while systematically varying sequence matching dimensions to create four distinct matching paradigms.

Four Matching Tasks: (1) **Isomorphic Matching** evaluates models’ fundamental ability to identify sequential similarity under identical temporal scales and data distributions, primarily assessing recognition accuracy of statistical characteristics and dynamic patterns; (2) **Robust Matching** evaluates models’ resilience to maintain matching accuracy under data preprocessing transformations

1134 such as moving average smoothing, testing adaptability to data quality variations; (3) **Localization**
 1135 **Matching** assesses models’ precision in identifying target temporal patterns within extended time
 1136 windows, focusing on temporal pattern retrieval and spatial localization performance; (4) **Reverse**
 1137 **Matching** evaluates models’ adaptability to temporal direction transformations, testing sequence
 1138 correspondence recognition under time-reversed conditions.

1139 These four progressive difficulty gradients comprehensively examine models’ integrated capabili-
 1140 ties in time series similarity measurement, pattern alignment, and morphological recognition under
 1141 various constraints and challenging scenarios.

1142 **Dataset Construction Pipeline** The construction process begins with segmenting sequences based
 1143 on their typical periodicity patterns. Using a sliding window approach, we calculate Dynamic Time
 1144 Warping (DTW) distances to identify four segments: minimum DTW distance, median distance,
 1145 maximum distance, and second-maximum distance. We then randomly shuffle the subsequences
 1146 of these four segments to serve as the four options in question–answer pairs. We construct the
 1147 final dataset using standardized QA templates, covering four sequence matching tasks across two
 1148 domains.

1149

1150 ALIGN SUBSET

1151 The **Align** subset evaluates models’ bidirectional conversion capabilities between time series data
 1152 and natural language. It is intentionally designed as an alignment calibration subtask, aiming to
 1153 assess whether a model can accurately match time series with natural language descriptions under
 1154 conditions of low linguistic ambiguity. Consequently, the descriptions are intentionally specific
 1155 regarding trend ranges and magnitude changes, ensuring the evaluation focuses on precise cross-
 1156 modal alignment.

1157

1158 **Bidirectional Cross-Modal Tasks** (1) **Time-series to Semantic Conversion** requires models to
 1159 identify which textual description best matches a given time series’ statistical characteristics and
 1160 dynamic patterns. (2) **Semantic to Time-series Conversion** requires models to select the temporal
 1161 sequence that best corresponds to a given natural language description of trends, fluctuations, and
 1162 periodicity.

1163

1164 **Dataset Construction Pipeline** The subset employs symmetric construction ensuring task consis-
 1165 tency. The data originates from three real-world domains: Traffic, CloudOps, and Climate. To
 1166 prevent shortcut learning based on domain or value range, we implemented two strategies:

1167

- **Value Scaling:** CloudOps and Climate series are scaled to similar ranges to mitigate magnitude-based biases.
- **Controlled Sampling:** For each correct sample, we select three distractors. We ensure that at least one distractor comes from the same domain and shares a similar statistical distribution as the correct answer. This forces models to rely on fine-grained patterns and numeric details rather than domain priors.

1172

1173 For time-series to semantic tasks, Claude 3.7 Sonnet generates feature descriptions for four temporal
 1174 samples, which serve as answer options. For semantic to time-series tasks, the model generates
 1175 structured descriptions of correct samples, which become question prompts with temporal sequences
 1176 as options.

1177

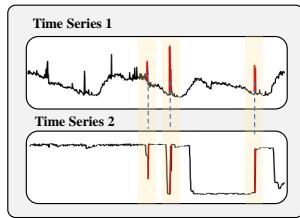
1178 HUMAN-IN-THE-LOOP CURATION

1179

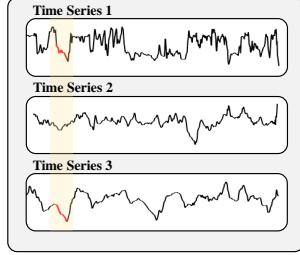
1180 All real-world datasets undergo rigorous verification by a panel of ten time series analysis experts,
 1181 each employing specialized quality control procedures. For TSQA, experts review generated QA
 1182 pairs for academic rigor, retaining high-quality samples while flagging substandard pairs for regen-
 1183 eration under identical parameter configurations. For **Match**, verification focuses on eliminating
 1184 samples with similar DTW distances but fundamentally different morphological patterns through
 1185 combined manual assessment and statistical metric analysis. For **Align**, experts evaluate the accu-
 1186 racy and coherence of LLM-generated textual descriptions, correcting or removing content that fails
 1187 to accurately represent temporal characteristics. This comprehensive human-in-the-loop curation
 1188 ensures dataset quality and practical applicability across all evaluation benchmarks.

1189

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202



(a) Counterfactual reasoning error case analysis



(b) Casual reasoning error case analysis

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 8: The top subfigure illustrates a counterfactual reasoning error case, whereas the bottom subfigure illustrates a causal reasoning error case. In both subfigures, the left panel visualizes the time series data, the central panel presents the questions together with the LLM responses, and the right panel reports the ground-truth answers accompanied by error analysis. Red text highlights the erroneous reasoning points, green text denotes the correct reasoning points, and blue text marks the keywords from the questions.

1242 **B STANDARDIZED TS INPUT FORMAT**1243 **B.1 EVALUATION PROMPT**

1244 We use the following prompts to standardize multiple-choice QA and numerical QA evaluation. The
 1245 system prompt mandates the answer format and ambiguity policy; the user prompt injects per-item
 1246 content. The model’s output is scored by extracting the single letter inside the `<final_answer>`
 1247 tag.

1248 **B.1.1 SYSTEM PROMPT FOR MULTIPLE-CHOICE QA**

1249 You are an expert AI assistant specialized in answering numerical
 1250 questions with high accuracy and consistency. Your task is to analyze
 1251 questions carefully and provide precise numerical answers.

1252 **IMPORTANT INSTRUCTIONS:**

1253 1. You must provide a numerical answer (integer, decimal, or scientific
 1254 notation)

1255 2. Your final answer must be a single number only

1256 3. If the question seems ambiguous, choose the most reasonable
 1257 interpretation

1258 4. Do not include units unless specifically requested in the question

1259 **RESPONSE FORMAT:**

1260 You must structure your final answer exactly as follows:

1261 `<final_answer>`
 1262 [State your numerical answer as a single number only]
 1263 `</final_answer>`

1264 Remember: Your final answer should contain ONLY the numerical value,
 1265 nothing else.

1266 Listing 1: System Prompt for multiple-choice QA

1267 **B.2 SYSTEM PROMPT FOR NUMERICAL QA**

1268 You are an expert AI assistant specialized in answering multiple-choice
 1269 questions with high accuracy and consistency. Your task is to analyze
 1270 questions carefully and provide clear, well-reasoned answers.

1271 **IMPORTANT INSTRUCTIONS:**

1272 1. You must select your answer from the given options only

1273 2. Your final answer must be a single letter (A, B, C, D, etc.)

1274 3. If the question seems ambiguous, choose the most reasonable
 1275 interpretation

1276 4. Do not make up information not provided in the question

1277 **RESPONSE FORMAT:**

1278 You must structure your final answer exactly as follows:

1279 `<final_answer>`
 1280 [State your chosen option as a single letter: A, B, C, or D]
 1281 `</final_answer>`

1282 Remember: Your final answer should contain ONLY the letter of your chosen
 1283 option, nothing else.

1284 Listing 2: System Prompt for numerical QA

```

1296 B.2.1 USER PROMPT
1297
1298
1299 1 Please answer the following multiple-choice/numerical question based on
1300 2 the given information:
1301 3 Question: {question}
1302 4
1303 5 {given_values_str}
1304 6
1305 7 Available Options: {option}
1306 8
1307 9 Please analyze this question carefully, consider the given value and all
1308 10 available options, then provide your answer following the exact
1309 11 format specified in the system instructions.

```

Listing 3: User Prompt used for Evaluation

B.3 TIME SERIES TO IMAGE CONVERSION

We follow the plotting style of Zhuang et al. Zhuang et al. (2024) and adapt it for multi-channel time series. Specifically, we preserve the single-channel resolution (1500×320 at 100 dpi) and scale the figure height linearly with the number of channels by stacking channel-wise subplots with a fixed per-channel height (320 px at 100 dpi). This keeps a consistent time axis across channels while maintaining comparable vertical resolution per channel.

Listing 4: Python code for converting time series data into images

```

1322 1 def plot_time_series_as_image(value_list):
1323 2     if len(value_list) > 8:  # single-channel time series
1324 3         num_channels = 1
1325 4     else:  # multi-channel time series
1326 5         num_channels = len(value_list)
1327 6
1328 7     # Figure parameters: base width and per-channel height
1329 8     # Single channel: 1500x320; increase height by 320 for each
1330 9     # additional channel
1331 10    width_inches = 15.0  # 1500 pixels / 100 dpi = 15 inches
1332 11    height_per_channel = 3.2  # 320 pixels / 100 dpi = 3.2 inches
1333 12    total_height = height_per_channel * num_channels
1334 13
1335 14    plt.figure(figsize=(width_inches, total_height), dpi=100)
1336 15
1337 16    if num_channels == 1:  # single-channel time series
1338 17        plt.plot(range(len(value_list)), value_list, 'b-', linewidth=1.5)
1339 18        plt.title('Time Series', fontsize=12)
1340 19        plt.xlabel('Time Index', fontsize=10)
1341 20        plt.ylabel('Value', fontsize=10)
1342 21        plt.grid(True, alpha=0.3)
1343 22        plt.xlim(0, len(value_list) - 1)
1344 23    else:  # multi-channel time series
1345 24        for i, channel_data in enumerate(value_list):
1346 25            plt.subplot(num_channels, 1, i + 1)
1347 26            plt.plot(range(len(channel_data)), channel_data, 'b-',
1348 27            linewidth=1.5)
1349 28            plt.title(f'Time Series {i+1}', fontsize=10)
1350 29            plt.xlabel('Time Index', fontsize=8)
1351 30            plt.ylabel('Value', fontsize=8)
1352 31            plt.grid(True, alpha=0.3)
1353 32            plt.xlim(0, len(channel_data) - 1)
1354 33
1355 34    plt.tight_layout()

```

1350 **C ABLATION STUDY**
 1351

1352 Across all tasks in the MMTS-Benchmark, *ChatTS* demonstrates the best performance within the
 1353 open-source TS-LLM category, showcasing robust time series analysis and reasoning capabilities.
 1354 To further investigate the key factors that influence TS-LLM performance and provide insights for
 1355 future research, we modified the official *ChatTS* training pipeline ⁶, adopting their released training
 1356 data and recommended training strategy. We conducted controlled ablations on the **encoder**
 1357 **architecture and size, positional encoding strategies, LLM backbone size, and prompt prefix**
 1358 **design**.

1359 **C.1 EXPERIMENTAL SETUP**
 1360

1361 In its original implementation, *ChatTS* employs Qwen2.5-14B-Instruct as the backbone LLM, with
 1362 a 5-layer MLP serving as the time series encoder. During training, textual embeddings are aligned
 1363 with time series embeddings to equip the model with time series reasoning capabilities. To examine
 1364 the role of the encoder, we replaced the MLP with alternative architectures, including CNN and
 1365 Transformer encoders with variable depth. We further tested the effect of introducing learnable
 1366 positional embeddings or index-based positional features into the time series input.

1367 Due to computational constraints, our experiments use Qwen2.5-3B-Instruct as the backbone, and
 1368 we also report its text-only baseline performance on MMTS-Benchmark. For comparison, we in-
 1369 clude performance of Qwen2.5-14B-Instruct, allowing us to isolate the effect of LLM backbone
 1370 size. Finally, since *ChatTS* incorporates a prompt prefix that contains statistical information (e.g.,
 1371 offset, scale factor, length, max/min values, left/right boundary values), we tested models trained
 1372 with and without this prefix to measure its contribution.

1373 All models were evaluated on **InWild**, **Match**, and **Align**. While we closely followed the *ChatTS*
 1374 training methodology, inevitable differences arise due to random training data mixing, limited com-
 1375 pute budgets, and variations in model size and hyperparameters. Nonetheless, the relative compar-
 1376 isons across ablations yield consistent and reliable conclusions.

1377 **C.2 EVALUATION RESULTS**
 1378

1379 We categorize the factors related to the time series encoder into three dimensions: **(i) encoder ar-**
 1380 **chitecture**, **(ii) encoder size**, and **(iii) positional encoding**. For the architecture study, we compared
 1381 a 5-layer MLP (17.1M parameters), a CNN (50.3M), and a Transformer (6.3M) as the TS Encoders
 1382 of our TS-LLMs. As shown in Table 7, the results indicate that model performance is largely insen-
 1383 sitive to encoder architecture, with only marginal differences across tasks. Relative to the Qwen2.5-
 1384 3B baseline, trained models exhibit no significant improvements on **InWild** and **Match**, but achieve
 1385 clear gains on Sem→TS while degrading on TS→Sem. This suggests that the encoder introduces a
 1386 directional bias in learning, which may be related to the distributional characteristics of the training
 1387 data.

1388 Table 7: Performance of TS-LLMs with different time series encoder architectures. We compare a 5-
 1389 layer MLP, CNN, and Transformer as encoders, with their parameter sizes indicated in parentheses.
 1390 The baseline is Qwen2.5-3B-Instruct, which treats the time series as plain text input.

1393 Dataset	1394 Baseline	1395 MLP(17.1M)	1396 CNN(50.4M)	1397 Transformer(6.3M)
InWild	38.75	38.25	37.36	38.84
Match	27.45	30.67	28.42	30.00
Sem→TS	49.17	59.44	60.83	60.56
TS→Sem	64.17	45.56	44.44	47.50

1398 To further examine scaling effects within a fixed architecture, we tested MLP encoders of varying
 1399 depths (1, 3, 5, and 7 layers), as reported in Table 8. For reference, we also include the Qwen2.5-
 1400 3B baseline and the original *ChatTS*(14B) checkpoint released on Hugging Face.⁷ Results show

1401 ⁶<https://github.com/xiezhe-24/ChatTS-Training>

1402 ⁷<https://huggingface.co/bytedance-research/ChatTS-14B>

that increasing the number of MLP layers does not yield a monotonic improvement, indicating that simply enlarging the encoder does not directly translate into better performance. In contrast, comparing models with 3B and 14B backbones reveals consistent improvements of 10%–30% across tasks for the larger ones. This highlights the dominant role of the backbone’s intrinsic reasoning capacity in determining TS-LLM performance. Besides, a comparison with the unaligned Qwen2.5 backbones yields results consistent with the above trend: while InWild and Match remain largely unchanged(except ChatTS in Match), aligned models achieve clear improvements on Sem→TS but show noticeable degradation on TS→Sem, thereby further validating our observation.

Table 8: Ablation study on the number of layers in time series encoders. We evaluate different layer counts for the MLP encoder, comparing performance with the baseline models Qwen2.5-3B-Instruct and Qwen2.5-14B-Instruct, and the ChatTS model. For the ChatTS model, we use the weights released by the original authors on Hugging Face, with Qwen2.5-14B-Instruct as the backbone and a 5-layer MLP as the time series encoder.

Dataset	Qwen2.5-3B	1 Layer(0.3M)	3 Layers(8.7M)	5 Layers(17.1M)	7 Layers(25.5M)	Qwen2.5-14B	ChatTS
InWild	38.75	38.90	38.44	38.25	37.45	52.84	50.28
Match	27.45	30.67	30.42	30.67	33.00	56.55	36.80
Sem→TS	49.17	60.83	51.67	59.44	61.39	86.83	91.17
TS→Sem	64.17	45.28	44.44	45.56	45.28	88.50	68.33

We also evaluated the effect of positional encoding strategies, following the three configurations in the official training code: no positional encoding, learnable embeddings appended to the input series, and normalized index values concatenated with the input series. Using a 3-layer MLP encoder, the results are reported in Table 9. These findings suggest that positional encoding design also has only a limited impact on performance compared with the backbone scale.

Table 9: Performance of models with different positional encoding strategies. `no_emb` denotes no positional encoding, `pos_emb` denotes learnable embeddings, and `pos_idx` denotes normalized index values used as positional encoding.

Dataset	no_emb	pos_emb	pos_idx
InWild	39.11	38.44	39.42
Match	31.00	30.42	28.67
Sem→TS	58.83	51.67	52.22
TS→Sem	42.22	44.44	45.00

Finally, we investigated the role of the prompt prefix introduced in ChatTS, which encodes statistical descriptors of the time series (e.g., offset, scale factor, length, min/max, and boundary values). We compared models trained with and without the prefix using a 5-layer MLP encoder, and additionally tested a model trained without the prefix but provided with the prefix at inference time. Results (Table 10) demonstrate that the statistical prompt prefix has a significant impact on model performance, especially in Align tasks, likely because it provides auxiliary information that enhances both interpretability and reasoning efficiency.

Table 10: Performance of models trained with and without the prompt prefix. **ON** indicates that the prefix is used during both training and testing; **OFF** indicates that it is used in neither; and **OFF*** denotes models trained without the prefix but evaluated with it.

Dataset	ON	OFF	OFF*
InWild	38.25	36.53	37.01
Match	30.67	25.50	33.41
Sem→TS	59.44	24.17	59.72
TS→Sem	45.56	21.39	45.83

C.3 CONCLUSION ON ABLATIONS

Our ablation findings can be summarized as follows:

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

- **Limited Encoder Contribution.** Under the current alignment paradigm, encoder architecture, scale, and positional encoding have only marginal effects. More effective paradigms for time series–text alignment remain an open challenge.
- **Backbone Dominance.** The LLM backbone size is the primary determinant of performance; scaling the backbone directly boosts temporal reasoning ability.
- **Prompt Engineering Effectiveness.** Incorporating statistical information into prompts substantially enhances model inference, suggesting that prompt engineering is a promising direction for strengthening TS-LLM reasoning. Future work should explore alternative prompt formats and auxiliary signals.

1512 D FULL RESULTS

1514 Table 11: The *Accuracy* metric of different models on the **Base** subset’s Choice split. ^{*cot*} denotes
 1515 *thinking* mode. ¹ denotes models evaluated without any time-series input. ² denotes ChatTS with-
 1516 out built-in statistical computation module. –VL = Vision-Language. ‘TS’ stands for Time Series
 1517 modality, as time-series-specific models introduce a TS encoder. ‘–’ indicates that the model failed
 1518 to respond correctly. **Bold underlined** values indicate the best performance within each category
 1519 for each metric, and **bold** values indicate the second-best performance. Stat. and Non-Stat. columns
 1520 represent the questions with stationary and non-stationary time series, respectively.

1522 Category	1523 Model Name	1524 Modality	1525 Total	1526 Trend	1527 Seasonality	1528 Noise	1529 Local	1530 Overall
1524 Open-source	DeepSeek-V3	Text	0.41	0.49	0.37	0.33	0.53	0.49
	Kimi-K2	Text	0.45	0.50	0.40	0.39	0.55	0.50
	Qwen3-32b ^{<i>cot</i>}	Text	0.42	0.53	0.45	0.37	0.32	0.53
	Qwen3-32b	Text	0.40	0.46	0.37	0.35	0.47	0.46
	Qwen3-8b ^{<i>cot</i>}	Text	0.35	0.38	0.40	0.33	0.26	0.38
	Qwen3-8b	Text	0.32	0.33	0.27	0.26	0.50	0.33
	Qwen2.5-32b	Text	0.35	0.39	0.28	0.30	0.48	0.39
	Qwen2.5-14b	Text	0.35	0.39	0.31	0.27	0.46	0.39
	Qwen2.5-7b	Text	0.33	0.44	0.22	0.28	0.46	0.44
	Qwen2.5-32b ¹	Text	0.30	0.39	0.23	0.19	0.44	0.39
1531 Closed-source	Qwen2.5-7b-VL	Text	0.29	0.35	0.23	0.24	0.36	0.35
	Qwen2.5-7b-VL	Vision	0.32	0.32	0.41	0.28	0.29	0.32
	Qwen2.5-7b-VL	V+T	0.34	0.41	0.34	0.27	0.34	0.41
	Claude-3.7-Sonnet	Text	0.49	0.59	0.54	0.35	0.52	0.59
	Claude-Sonnet-4	Text	0.49	0.57	0.49	0.35	0.63	0.57
	Gemini-2.5-Pro	Text	0.48	0.50	0.51	0.39	0.59	0.50
	Gemini-2.5-Flash	Text	0.39	0.49	0.36	0.24	0.56	0.49
	GPT-5-Minimal	Text	0.45	0.45	0.40	0.42	0.56	0.45
	GPT-5-High	Text	0.51	0.53	0.51	0.45	0.60	0.53
	GPT-4o	Text	0.42	0.51	0.36	0.34	0.52	0.51
1544 Time-series	GPT-4o	Vision	0.55	0.60	0.64	0.42	0.56	0.60
	GPT-4o	V+T	0.51	0.53	0.60	0.39	0.56	0.53
	GPT-4o-mini	Text	0.36	0.43	0.34	0.28	0.44	0.43
	ChatTS	TS	0.39	0.42	0.39	0.31	0.49	0.37
1553	ChatTS ²	TS	0.39	0.37	0.39	0.34	0.53	0.36
	ITFormer	TS	0.31	0.30	0.29	0.28	0.42	0.29
	ChatTime	TS	–	–	–	–	–	–

1566

1567

1568 Table 12: The *Accuracy@10%* metric of different models on the **Base** subset’s numerical split. ^{*cot*}
 1569 denotes *thinking* mode. ² denotes ChatTS without built-in statistical computation module. ^{-VL} =
 1570 Vision-Language. ‘TS’ stands for Time Series modality, as time-series-specific models introduce
 1571 a TS encoder. ‘-’ indicates that the model failed to respond correctly. **Bold underlined** values
 1572 indicate the best performance within each category for each metric, and **bold** values indicate the
 1573 second-best performance. Stat. and Non-Stat. columns represent the questions with stationary and
 1574 non-stationary time series, respectively.

1575

Category	Model Name	Modality	Total	Trend	Seasonality	Basic	Stat.	Non-Stat.	Local	Overall	Uni-Var.	Multi-Var.
Open-source	DeepSeek-V3	Text	0.41	0.08	0.02	0.57	0.57	0.52	0.21	0.47	0.57	0.56
	Kimi-K2	Text	0.42	0.04	0.13	0.56	0.56	0.56	0.19	0.45	0.56	0.54
	Qwen3-32b ^{<i>cot</i>}	Text	0.31	0.00	0.10	0.40	0.40	0.40	0.20	0.32	0.40	0.33
	Qwen3-32b	Text	0.35	0.02	0.03	0.47	0.47	0.50	0.07	0.38	0.47	0.42
	Qwen3-8b ^{<i>cot</i>}	Text	0.27	0.00	0.00	0.34	0.34	0.38	0.13	0.27	0.34	0.29
	Qwen3-8b	Text	0.26	0.02	0.03	0.33	0.33	0.39	0.07	0.27	0.33	0.26
	Qwen2.5-32b	Text	0.34	0.03	0.00	0.45	0.45	0.50	0.11	0.36	0.45	0.44
	Qwen2.5-14b	Text	0.25	0.05	0.00	0.29	0.29	0.41	0.04	0.24	0.29	0.34
	Qwen2.5-7b	Text	0.18	0.06	0.00	0.19	0.19	0.31	0.01	0.16	0.19	0.31
	Qwen2.5-7b-VL	Text	0.14	0.03	0.03	0.14	0.14	0.23	0.04	0.12	0.14	0.21
Closed-source	Qwen2.5-7b-VL	Vision	0.25	0.05	0.09	0.28	0.28	0.27	0.27	0.24	0.28	0.35
	Qwen2.5-7b-VL	V+T	0.19	0.05	0.04	0.21	0.21	0.27	0.09	0.18	0.21	0.31
Time-series	Claude-3.7-Sonnet	Text	0.54	0.13	0.20	0.66	0.66	0.65	0.44	0.55	0.66	0.66
	Claude-Sonnet-4	Text	0.53	0.04	0.33	0.62	0.62	0.61	0.53	0.50	0.62	0.66
	Gemini-2.5-Pro	Text	0.63	0.14	0.41	0.72	0.72	0.69	0.71	0.60	0.72	0.72
	Gemini-2.5-Flash	Text	0.43	0.04	0.20	0.56	0.56	0.55	0.20	0.45	0.56	0.40
	GPT-5-Minimal	Text	0.42	0.10	0.09	0.58	0.58	0.53	0.16	0.48	0.58	0.57
	GPT-4o	Text	0.41	0.06	0.09	0.53	0.53	0.58	0.13	0.43	0.53	0.51
	GPT-4o	Vision	0.28	0.17	0.10	0.34	0.34	0.29	0.31	0.31	0.34	0.34
	GPT-4o	V+T	0.51	0.42	0.37	0.59	0.59	0.57	0.31	0.56	0.59	0.56
	GPT-4o-mini	Text	0.33	0.02	0.00	0.40	0.40	0.51	0.09	0.32	0.40	0.43
	ChatTS	TS	0.37	0.36	0.43	0.41	0.41	0.42	0.12	0.40	0.41	0.40
Time-series	ChatTS ²	TS	0.01	0.00	0.45	0.01	0.01	0.01	0.11	0.01	0.01	0.02
	ITFormer	TS	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00
	ChatTime	TS	–	–	–	–	–	–	–	–	–	–

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

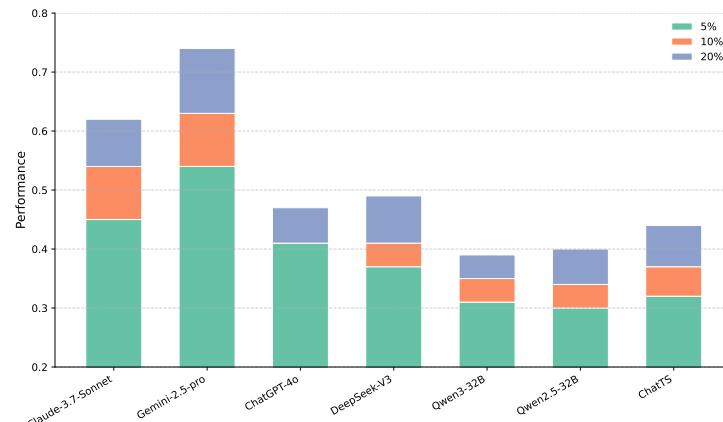


Figure 9: This stacked bar chart illustrates the *Accuracy@N%* performance of several representative models (closed-source, open-source, and TS-LLMs) on the numerical split of the **Base** subset. To explore the hierarchical distribution of numerical reasoning ability, we report results for $N = 5, 10, 20$.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

Table 13: The *Relative Accuracy* metric of different models on the **Base** subset’s numerical split. cot denotes *thinking* mode. 2 denotes ChatTS without built-in statistical computation module. $-\text{VL}$ = Vision-Language. ‘TS’ stands for Time Series modality, as time-series-specific models introduce a TS encoder. ‘-’ indicates that the model failed to respond correctly. **Bold underlined** values indicate the best performance within each category for each metric, and **bold** values indicate the second-best performance. Stat. and Non-Stat. columns represent the questions with stationary and non-stationary time series, respectively.

1640

Category	Model Name	Modality	Total	Trend	Seasonality	Basic	Stat.	Non-Stat.	Local	Overall	Uni-Var.	Multi-Var.
Open-source	DeepSeek-V3	Text	0.59	0.27	0.32	0.73	0.73	0.66	0.41	0.63	0.73	0.76
	Kimi-K2	Text	0.65	0.37	0.49	0.74	0.74	0.71	0.56	0.66	0.74	0.72
	Qwen3-32b $^{\text{cot}}$	Text	0.42	0.00	0.30	0.51	0.51	0.52	0.27	0.41	0.51	0.47
	Qwen3-32b	Text	0.49	0.07	0.25	0.61	0.61	0.64	0.29	0.50	0.61	0.61
	Qwen3-8b $^{\text{cot}}$	Text	0.37	0.00	0.19	0.47	0.47	0.49	0.19	0.37	0.47	0.43
	Qwen3-8b	Text	0.40	0.13	0.19	0.49	0.49	0.54	0.16	0.42	0.49	0.46
	Qwen2.5-32b	Text	0.51	0.16	0.13	0.66	0.66	0.63	0.30	0.56	0.66	0.64
	Qwen2.5-14b	Text	0.44	0.14	0.10	0.51	0.51	0.59	0.29	0.43	0.51	0.55
	Qwen2.5-7b	Text	0.35	0.20	0.12	0.40	0.40	0.49	0.14	0.36	0.40	0.50
	Qwen2.5-7b-VL	Text	0.32	0.16	0.15	0.37	0.37	0.43	0.12	0.33	0.37	0.42
Closed-source	Qwen2.5-7b-VL	Vision	0.40	0.26	0.36	0.44	0.44	0.48	0.22	0.4	0.44	0.50
	Qwen2.5-7b-VL	V+T	0.19	0.05	0.04	0.21	0.21	0.27	0.09	0.18	0.21	0.31
	Claude-3.7-Sonnet	Text	0.74	0.51	0.59	0.80	0.80	0.79	0.72	0.74	0.80	0.80
	Claude-Sonnet-4	Text	0.73	0.36	0.61	0.78	0.78	0.79	0.79	0.69	0.78	0.80
Time-series	Gemini-2.5-Pro	Text	0.82	0.56	0.78	0.85	0.85	0.83	0.88	0.79	0.85	0.83
	Gemini-2.5-Flash	Text	0.57	0.10	0.55	0.69	0.69	0.66	0.34	0.57	0.69	0.53
	GPT-5-Minimal	Text	0.61	0.24	0.33	0.77	0.77	0.68	0.45	0.66	0.77	0.78
	GPT-4o	Text	0.60	0.32	0.35	0.73	0.73	0.7	0.38	0.64	0.73	0.67
	GPT-4o	Vision	0.58	0.30	0.71	0.60	0.60	0.55	0.63	0.55	0.60	0.57
	GPT-4o	V+T	0.70	0.59	0.75	0.76	0.76	0.70	0.60	0.73	0.76	0.74
	GPT-4o-mini	Text	0.50	0.17	0.14	0.60	0.60	0.66	0.31	0.51	0.60	0.61
	ChatTS	TS	0.55	0.46	0.79	0.59	0.59	0.56	0.34	0.56	0.59	0.56
Time-series	ChatTS 2	TS	0.19	0.06	0.76	0.10	0.10	0.10	0.36	0.09	0.10	0.10
	ITFormer	TS	0.15	0.02	0.06	0.15	0.15	0.19	0.23	0.12	0.15	0.18
	ChatTime	TS	–	–	–	–	–	–	–	–	–	–

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686

1687 Table 14: The *Average Offset* metric of different models on the **Base** subset’s numerical split. ^{*cot*} denotes *thinking* mode. ² denotes ChatTS without built-in statistical computation module. ^{-VL} =
 1688 Vision-Language. ’TS’ stands for Time Series modality, as time-series-specific models introduce
 1689 a TS encoder. ‘-’ indicates that the model failed to respond correctly. **Bold underlined** values
 1690 indicate the best performance within each category for each metric, and **bold** values indicate the
 1691 second-best performance. Stat. and Non-Stat. columns represent the questions with stationary and
 1692 non-stationary time series, respectively. **H** remark means the average offset value is higher than
 1693 1e5.

1695

Category	Model Name	Modality	Total	Trend	Seasonality	Basic	Stat.	Non-Stat.	Local	Overall	Uni-Var.	Multi-Var.
Open-source	DeepSeek-V3	Text	1.06	1.17	0.68	0.69	0.69	1.64	0.69	0.79	0.69	1.94
	Kimi-K2	Text	1.24	1.80	0.57	1.14	1.14	1.68	0.49	1.27	1.14	1.59
	Qwen3-32b ^{<i>cot</i>}	Text	49.19	512.64	1.07	2.32	2.32	3.73	8.45	107.63	2.32	4.94
	Qwen3-32b	Text	4.57	34.94	0.75	1.43	1.43	1.48	2.72	8.34	1.43	3.17
	Qwen3-8b ^{<i>cot</i>}	Text	54.04	568.67	1.04	2.45	2.45	3.47	7.73	119.29	2.45	5.25
	Qwen3-8b	Text	6.01	39.83	0.81	3.05	3.05	1.76	4.96	10.64	3.05	4.15
	Qwen2.5-32b	Text	1.65	5.91	0.92	1.49	1.49	1.05	1.22	2.40	1.49	3.77
	Qwen2.5-14b	Text	16.56	170.23	0.90	2.06	2.06	1.12	1.33	36.76	2.06	5.37
	Qwen2.5-7b	Text	3.02	3.49	0.88	3.20	3.20	1.97	6.00	3.26	3.20	4.81
	Qwen2.5-7b-VL	Text	H	7.06	1.82	5.55	5.55	H	98.73	5.86	5.55	15.49
Closed-source	Qwen2.5-7b-VL	Vision	H	13.24	0.61	31.51	31.51	1.32	1.17	28.08	31.51	H
	Qwen2.5-7b-VL	V+T	H	34.87	1.01	H	H	H	17.56	H	H	4.15
Time-series	Claude-3.7-Sonnet	Text	0.48	1.24	0.46	0.32	0.32	0.39	0.62	0.51	0.32	0.50
	Claude-Sonnet-4	Text	0.72	1.26	0.56	0.62	0.62	0.78	0.58	0.75	0.62	0.44
	Gemini-2.5-Pro	Text	1.13	9.62	0.27	0.36	0.36	0.30	0.35	2.21	0.36	0.27
	Gemini-2.5-Flash	Text	34.04	350.9	0.62	2.49	2.49	1.48	8.87	74.38	2.49	5.57
	GPT-5-Minimal	Text	0.91	1.85	0.69	0.70	0.70	0.97	0.83	0.94	0.70	0.67
	GPT-4o	Text	2.27	16.22	0.71	0.45	0.45	1.18	1.40	3.70	0.45	2.57
	GPT-4o	Vision	1.47	2.70	0.30	2.46	2.46	1.10	0.63	2.50	2.46	4.18
	GPT-4o	V+T	0.72	1.66	0.25	0.31	0.31	0.73	1.35	0.59	0.31	0.48
	GPT-4o-mini	Text	1.24	2.58	0.86	0.94	0.94	1.30	1.21	1.28	0.94	1.63
	ChatTS	TS	1.79	6.75	0.23	1.68	1.68	1.34	0.90	2.72	1.68	2.26
Time-series	ChatTS ²	TS	21.89	130.25	0.24	20.54	20.54	8.88	0.88	43.18	20.54	7.21
	ITFormer	TS	H	7.08	0.94	10.89	10.89	1.59	0.79	10.10	10.89	H
	ChatTime	TS	-	-	-	-	-	-	-	-	-	-

1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728

1729

1730

1731

1732

1733

1734

1735

Table 15: Performance of different models on the **InWild** subset. cot denotes *thinking* mode. ¹ denotes models evaluated without any time-series input. ² denotes ChatTS without built-in statistical computation module. -VL = Vision-Language. 'TS' stands for Time Series modality, as time-series-specific models introduce a TS encoder. '-' indicates that the model failed to respond correctly. In reasoning tasks, abbreviations are: Ded. (Deductive), Ind. (Inductive), Analog. (Analogical), and Count. (Counterfactual). Best and second-best results within each category are underlined and **bolded**, respectively.

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Category	Model Name	Modality	Average	Feature Analysis					Temporal Reasoning						
				Acc.	Trend	Season	Noise	Volat.	Basic	Acc.	Ded.	Ind.	Causal		
Open-source	DeepSeek-V3	Text	0.61	0.67	0.73	0.57	0.79	0.55	0.75	0.59	0.60	0.63	0.52	0.58	0.57
	Kimi-K2	Text	0.63	0.69	0.71	0.63	0.85	0.58	0.71	0.61	0.62	0.65	0.56	0.64	0.55
	Qwen3-32b ^{cot}	Text	0.58	0.65	0.72	0.54	0.81	0.58	0.65	0.55	0.52	0.60	0.49	0.61	0.48
	Qwen3-32b	Text	0.50	0.56	0.67	0.49	0.54	0.43	0.62	0.48	0.48	0.51	0.42	0.54	0.42
	Qwen3-8b ^{cot}	Text	0.50	0.57	0.54	0.51	0.74	0.54	0.55	0.47	0.41	0.52	0.43	0.49	0.48
	Qwen3-8b	Text	0.45	0.48	0.45	0.43	0.65	0.34	0.58	0.44	0.48	0.46	0.42	0.45	0.37
	Qwen2.5-32b	Text	0.53	0.62	0.66	0.53	0.77	0.52	0.62	0.49	0.47	0.53	0.51	0.50	0.44
	Qwen2.5-14b	Text	0.53	0.61	0.60	0.55	0.73	0.58	0.63	0.49	0.48	0.53	0.48	0.53	0.41
	Qwen2.5-7b	Text	0.44	0.45	0.61	0.48	0.35	0.35	0.42	0.44	0.41	0.47	0.43	0.45	0.44
	Qwen2.5-7b-VL	Text	0.37	0.37	0.41	0.32	0.44	0.28	0.38	0.37	0.38	0.35	0.40	0.35	0.36
Closed-source	Qwen2.5-7b-VL	Vision	0.36	0.37	0.39	0.44	0.37	0.30	0.33	0.35	0.38	0.36	0.36	0.33	0.33
	Qwen2.5-7b-VL	V+T	0.39	0.41	0.48	0.41	0.45	0.30	0.40	0.38	0.39	0.37	0.43	0.36	0.35
	Qwen2.5-32b ¹	Text	0.34	0.34	0.40	0.40	0.24	0.33	0.31	0.34	0.35	0.35	0.38	0.31	0.30
	Claude-3.7-Sonnet	Text	0.69	0.78	0.81	0.72	0.85	0.73	0.81	0.65	0.66	0.67	0.58	0.71	0.60
	Claude-3.7-Sonnet	Vision	0.69	0.75	0.82	0.67	0.82	0.70	0.75	0.66	0.64	0.72	0.62	0.71	0.60
	Claude-3.7-Sonnet	V+T	0.73	0.79	0.84	0.71	0.87	0.70	0.85	0.71	0.66	0.76	0.70	0.74	0.66
	Claude-Sonnet-4	Text	0.71	0.79	0.78	0.67	0.91	0.70	0.89	0.68	0.67	0.75	0.60	0.69	0.63
	Claude-Sonnet-4	Vision	0.67	0.74	0.84	0.59	0.87	0.63	0.79	0.64	0.59	0.75	0.55	0.66	0.60
	Claude-Sonnet-4	V+T	0.71	0.78	0.81	0.64	0.90	0.72	0.86	0.68	0.65	0.76	0.62	0.72	0.66
	Gemini-2.5-Pro	Text	0.68	0.73	0.76	0.69	0.83	0.66	0.72	0.66	0.65	0.76	0.56	0.68	0.63
Time-series	Gemini-2.5-Pro	Vision	0.72	0.80	0.84	0.63	0.89	0.77	0.85	0.69	0.69	0.76	0.60	0.71	0.64
	Gemini-2.5-Pro	V+T	0.76	0.83	0.86	0.71	0.87	0.76	0.92	0.73	0.75	0.78	0.62	0.77	0.69
	Gemini-2.5-Flash	Text	0.50	0.50	0.53	0.40	0.59	0.45	0.55	0.51	0.47	0.57	0.45	0.56	0.45
	GPT-5-High	Text	0.72	0.76	0.82	0.67	0.87	0.60	0.85	0.70	0.69	0.72	0.66	0.76	0.68
	GPT-5-Minimal	Text	0.56	0.64	0.70	0.63	0.72	0.55	0.61	0.52	0.53	0.56	0.51	0.53	0.45
	GPT-4.1	Text	0.58	0.64	0.63	0.57	0.76	0.58	0.68	0.56	0.58	0.61	0.52	0.52	0.55
	GPT-4.1	Vision	0.58	0.61	0.70	0.46	0.70	0.51	0.67	0.57	0.57	0.61	0.57	0.55	0.56
	GPT-4.1	V+T	0.63	0.67	0.73	0.55	0.85	0.60	0.68	0.62	0.62	0.69	0.59	0.59	0.56
	GPT-4.1-Mini	Text	0.59	0.66	0.69	0.49	0.88	0.55	0.73	0.56	0.56	0.60	0.54	0.56	0.49
	GPT-4.1-Mini	Vision	0.49	0.51	0.56	0.37	0.54	0.51	0.55	0.49	0.51	0.45	0.52	0.50	0.48
Human	GPT-4o	Text	0.62	0.70	0.74	0.61	0.79	0.61	0.75	0.58	0.59	0.62	0.50	0.66	0.50
	GPT-4o	Vision	0.59	0.67	0.76	0.56	0.74	0.64	0.66	0.56	0.55	0.62	0.51	0.57	0.50
	GPT-4o	V+T	0.63	0.71	0.75	0.59	0.85	0.61	0.77	0.59	0.59	0.65	0.55	0.63	0.53
	ChatTS	TS	0.50	0.55	0.50	0.61	0.53	0.54	0.58	0.48	0.51	0.50	0.49	0.44	0.45
Time-series	ChatTS ²	TS	0.48	0.51	0.53	0.55	0.48	0.52	0.50	0.48	0.50	0.50	0.52	0.42	0.43
	ITFormer	TS	0.33	0.37	0.29	0.31	0.37	0.29	0.36	0.36	0.37	0.40	0.35	0.35	0.35
	ChatTime	TS	-	-	-	-	-	-	-	-	-	-	-	-	
	Human	Experts	-	0.67	0.71	0.59	0.67	0.75	0.75	0.80	0.66	0.66	0.72	0.63	0.67

1782
 1783
 1784 Table 16: Performance of different models on the **Match** subset. ^{cot} denotes *thinking* mode. ¹
 1785 denotes models evaluated without any time-series input. ² denotes ChatTS without built-in statistical
 1786 computation module. –VL = Vision-Language. 'TS' stands for Time Series modality, as time-series-
 1787 specific models introduce a TS encoder. ‘–’ indicates that the model failed to respond correctly.
 1788 **Bold underlined** values indicate the best performance within each category for each metric, and
 1789 **bold** values indicate the second-best performance.
 1790

Category	Model Name	Modality	Average	Isomorphic	Robust	Localization	Reverse
Open-source	DeepSeek-V3	Text	0.65	0.90	0.79	0.57	0.35
	Kimi-K2	Text	0.60	0.78	0.66	0.50	0.44
	Qwen3-32b ^{cot}	Text	0.60	0.80	0.64	0.42	0.52
	Qwen3-32b	Text	0.50	0.72	0.58	0.36	0.35
	Qwen3-8b ^{cot}	Text	0.50	0.62	0.56	0.36	0.46
	Qwen3-8b	Text	0.42	0.56	0.48	0.31	0.32
	Qwen2.5-32b	Text	0.62	0.84	0.72	0.53	0.41
	Qwen2.5-14b	Text	0.57	0.78	0.61	0.42	0.45
	Qwen2.5-7b	Text	0.40	0.45	0.49	0.35	0.29
	Qwen2.5-7b-VL	Text	0.30	0.31	0.36	0.27	0.28
	Qwen2.5-7b-VL	Vision	0.28	0.30	0.31	0.28	0.25
	Qwen2.5-7b-VL	V+T	0.34	0.40	0.41	0.27	0.30
	Qwen2.5-32b ¹	Text	0.25	0.25	0.25	0.25	0.25
Closed-source	Claude-3.7-Sonnet	Text	0.74	0.93	0.81	0.67	0.54
	Claude-Sonnet-4	Text	0.71	0.85	0.79	0.61	0.60
	Gemini-2.5-Pro	Text	0.79	0.96	0.80	0.59	0.80
	Gemini-2.5-Flash	Text	0.44	0.63	0.57	0.28	0.26
	GPT-5-High	Text	0.81	0.98	0.81	0.60	0.86
	GPT-5-Minimal	Text	0.57	0.84	0.67	0.53	0.26
	GPT-4.1	Text	0.67	0.89	0.82	0.55	0.40
	GPT-4.1-Mini	Text	0.63	0.90	0.78	0.44	0.40
	GPT-4o	Text	0.50	0.68	0.60	0.41	0.34
	GPT-4o	Vision	0.45	0.56	0.50	0.34	0.38
	GPT-4o	V+T	0.55	0.79	0.64	0.38	0.38
Time-series	ChatTS	TS	0.37	0.47	0.40	0.24	0.36
	ChatTS ²	TS	0.32	0.46	0.41	0.22	0.20
	ITFormer	TS	0.24	0.16	0.25	0.25	0.29
	ChatTime	TS	–	–	–	–	–

1821
 1822
 1823
 1824
 1825 Table 17: Performance of the ChatTS model on the **Match** subset across different time series length
 1826 ranges. *Total* corresponds to the range [13,504], and “–” indicates that no questions fall into the
 1827 given length range for that task.
 1828

Length Range	Isomorphic	Robust	Localization	Reverse
Total	0.47	0.40	0.24	0.36
[64, 1024]	0.53	0.57	0.23	0.44
[256, 512]	–	–	0.36	–

1836

1837

1838 Table 18: Performance of different models on the **Align** subset. cot denotes *thinking* mode. 1
 1839 denotes models evaluated without any time-series input. 2 denotes ChatTS without built-in statistical
 1840 computation module. -VL = Vision-Language. 'TS' stands for Time Series modality, as time-series-
 1841 specific models introduce a TS encoder. '-' indicates that the model failed to respond correctly.
 1842 **Bold underlined** values indicate the best performance within each category for each metric, and
 1843 **bold** values indicate the second-best performance.

1844

1845 Category	1846 Model Name	1847 Modality	1848 Average	1849 TS→Sem	1850 Sem→TS
1847 Open-source	DeepSeek-V3	Text	0.94	0.95	0.94
	Kimi-K2	Text	0.95	0.94	0.96
	Qwen2.5-32b	Text	0.93	0.92	0.94
	Qwen2.5-14b	Text	0.88	0.87	0.88
	Qwen2.5-7b	Text	0.69	0.68	0.71
	Qwen3-32b cot	Text	0.89	0.92	0.86
	Qwen3-32b	Text	0.87	0.86	0.88
	Qwen3-8b cot	Text	0.86	0.88	0.83
	Qwen3-8b	Text	0.79	0.74	0.84
	Qwen2.5-7b-VL	Text	0.64	0.68	0.59
1853 Closed-source	Qwen2.5-7b-VL	Vision	0.60	0.61	0.60
	Qwen2.5-7b-VL	V+T	0.73	0.78	0.67
	Qwen2.5-32b 1	Text	0.27	0.29	0.26
	Claude-3.7-Sonnet	Text	0.97	0.97	0.98
	Claude-Sonnet-4	Text	0.98	0.98	0.99
	Gemini-2.5-Pro	Text	0.97	0.97	0.99
	Gemini-2.5-Flash	Text	0.94	0.94	0.95
	GPT-5-High	Text	0.99	0.99	0.99
1865 Time-series	GPT-5-Minimal	Text	0.97	0.97	0.98
	GPT-4o	Text	0.96	0.96	0.97
	GPT-4o-Mini	Text	0.86	0.82	0.90
	ChatTS	TS	0.80	0.68	0.91
1871 Time-series	ChatTS 2	TS	0.45	0.49	0.42
	ITFormer	TS	0.29	0.32	0.26
	ChatTime	TS	-	-	-

1875

1876

1877

1878

1879

1880

1881

Table 19: Token cost for a single evaluation on the InWild subset (1,084 samples).

1882

1883

1884

1885

1886

1887

1888

1889

1882 Model	1883 Input/Output Tokens	1884 Price Cost
Qwen2.5-32B	≈6M / ≈20k	0
DeepSeek-V3	≈5M / ≈250k	≈\$1.62
GPT-4o	≈5M / ≈400k	≈\$16.50
Claude-Sonnet-4	≈5M / ≈600k	≈\$24.00
Gemini-2.5-Pro	≈6M / ≈500k	≈\$12.50

1890 E STATISTICAL ROBUSTNESS ANALYSIS

1891
 1892 To assess the testing stability, robustness, and validity of MMTS-Bench, we conducted comprehensive
 1893 statistical evaluations and bias analyses: **Bootstrap Confidence Interval**, **Iterative Subsampling**
 1894 **Analysis**, and **Assessment of Dataset Artifacts**. These experiments evaluate the dataset's
 1895 testing stability, the adequacy of its scale, and its resistance to spurious correlations, respectively.
 1896

1897 E.1 BOOTSTRAP CONFIDENCE INTERVAL

1898 To evaluate the reliability of model performance and quantify its uncertainty, we adopted the non-
 1899 parametric bootstrap method. Specifically, the experimental setup is as follows: Given a test set
 1900 of size D , we generated $N = 1000$ bootstrap samples, also of size D , through sampling with
 1901 replacement.

1902 We selected a few representative models (covering close-source, open-source LLMs and TS-LLMs)
 1903 for the MMTS-InWild subset, the choice split of the MMTS-Base subset, and the entire MMTS-
 1904 Bench dataset. We then calculated their respective accuracy scores to obtain an empirical distribution
 1905 for this metric. Based on this distribution, we report the mean accuracy, standard deviation (std),
 1906 and the 95% confidence interval (CI).
 1907

1908 Table 20: Bootstrap confidence interval of different models on the MMTS-InWild dataset.
 1909

1910 Models	1911 Mean	1912 Std	1913 CI Low	1914 CI High
1915 Gemini-1.5-Pro (text)	0.6827	0.0142	0.6541	0.7103
1916 Gemini-2.5-Pro (vision)	0.7262	0.0138	0.6983	0.7537
1917 GPT-4o (text)	0.6128	0.0148	0.5830	0.6421
1918 DeepSeekV3 (text)	0.6218	0.0150	0.5932	0.6504
1919 Qwen2.5-32b (text)	0.5379	0.0156	0.5083	0.5683

1920 Table 21: Bootstrap confidence interval of different models on the MMTS-Base's choice split.
 1921

1920 Models	1921 Mean	1922 Std	1923 CI Low	1924 CI High
1925 Gemini-1.5-Pro (text)	0.6340	0.0205	0.5933	0.6726
1926 Claude-3.7-Sonnet (text)	0.5967	0.0207	0.5581	0.6391
1927 GPT-4o (text)	0.5609	0.0210	0.5211	0.6021
1928 DeepSeekV3 (text)	0.5433	0.0205	0.5053	0.5845
1929 Qwen2.5-32b (text)	0.4727	0.0218	0.4331	0.5158

1930 Table 22: Bootstrap confidence interval of different models on the complete MMTS-Bench dataset.
 1931

1930 Models	1931 Mean	1932 Std	1933 CI Low	1934 CI High
1935 Gemini-1.5-Pro (text)	0.7235	0.0094	0.7059	0.7422
1936 GPT-4o (text)	0.6059	0.0103	0.5864	0.6265
1937 DeepSeekV3 (text)	0.6366	0.0100	0.6165	0.6562
1938 Qwen2.5-32b (text)	0.5789	0.0104	0.5580	0.5986

1939 The experimental results (Table 20, 21, 22 and Figure 10) indicate that the performance evaluations
 1940 across all models exhibit low statistical dispersion, both on the full dataset and the subsets.
 1941 Specifically, the bootstrapping experiment shows that the standard deviation (std) ranges only
 1942 between $0.01 \sim 0.02$, and the width of the 95% CI remains within a narrow range (approximately
 1943 $0.5 \sim 0.8$ percentage points).

1944 These tight error bounds strongly confirm the statistical robustness of the MMTS-Benchmark. It
 1945 demonstrates that the benchmark is insensitive to data sampling variance and can provide stable
 1946 and reproducible evaluation results for cross-model and cross-capability comparisons. Furthermore,
 1947 to further suppress the stochastic noise from model generations, we also introduced a mechanism

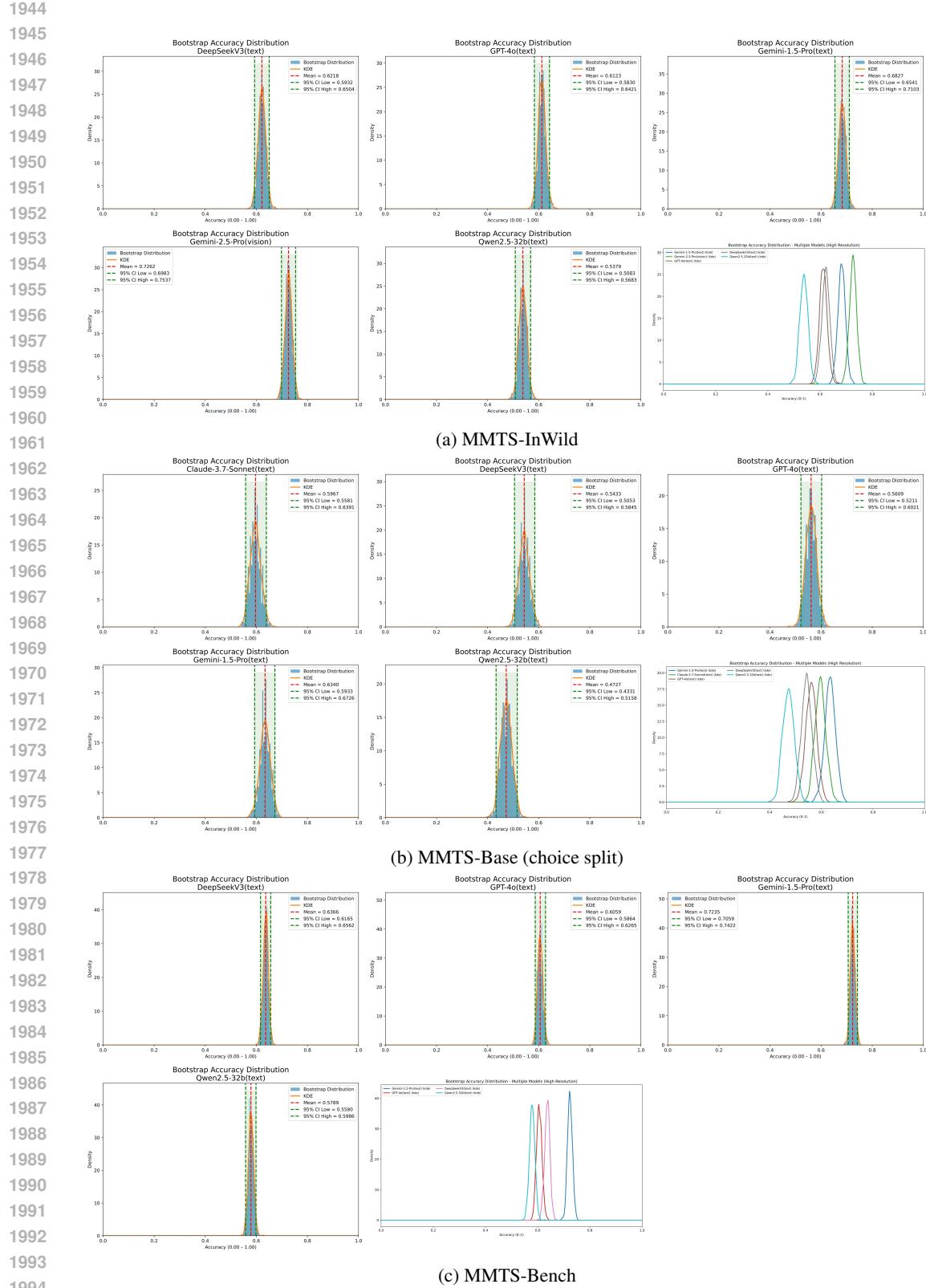


Figure 10: Visualization of the accuracy distribution and confidence intervals for different representative models on the MMTS-InWild, MMTS-Base (choice split), and MMTS-Bench datasets.

1998 of multiple sampling and majority voting during the evaluation, thereby establishing a more robust
 1999 performance baseline.
 2000

2001 E.2 ITERATIVE SUBSAMPLING ANALYSIS

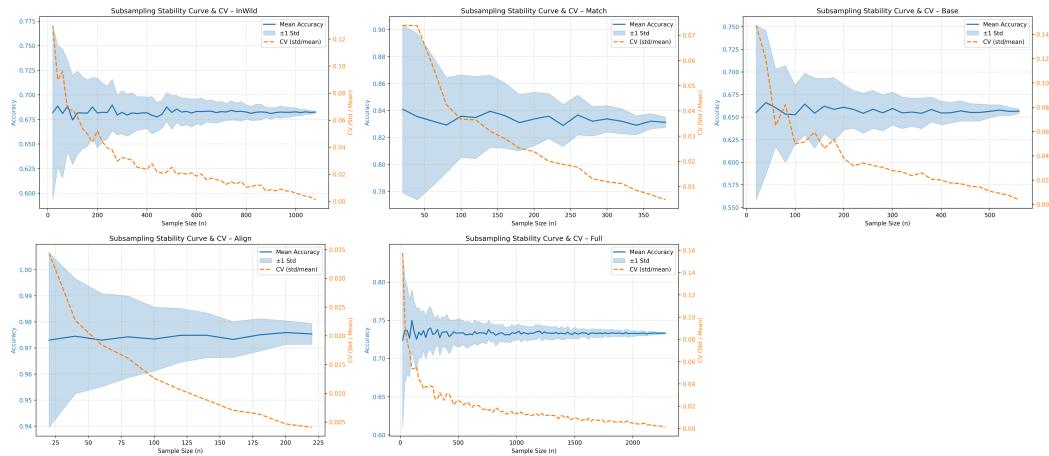
2003 To investigate the relationship between evaluation stability and dataset scale, and to estimate the
 2004 minimal sample size required to yield robust results, we conducted an Iterative Subsampling Anal-
 2005 ysis focusing on the representative model, Gemini-2.5-Pro, with text input.
 2006

2007 The specific experimental setup is as follows: For a given dataset size D , we set the subsampling
 2008 size S as a variable that progressively increases from an initial value up to D , with an increment
 2009 step of $T = 20$. At each fixed size S , we perform $N = 50$ independent repetitions of sampling,
 2010 and calculate the mean, standard deviation (std), and coefficient of variation (CV) of the model’s
 2011 performance.

2012 We use the coefficient of variation ($CV = \sigma/\mu$) as the core metric to measure evaluation stability.
 2013 The dataset size S is deemed to possess sufficient statistical stability when the CV curve, as S
 2014 increases, shows a descending trend and falls below a pre-set convergence threshold of $\tau = 0.02$.⁸
 2015 This experiment covered the entire MMTS-Benchmark and its four subsets.

2016
 2017 Table 23: Comparison of the minimum required sample size for stable assessment versus the actual
 2018 sample size in the subsampling analysis experiment, along with the model’s mean, standard devia-
 2019 tion, and coefficient of variation under the actual sample size across four data subsets and the entire
 2020 MMTS-Bench dataset.

Dataset	Full Sample	Min Sample	Mean	Std	CV
Align	240	60	0.9813	0.0100	0.0041
Base (choice)	568	400	0.6357	0.0203	0.0038
Match	400	260	0.7795	0.0199	0.0047
InWild	1084	600	0.6811	0.0130	0.0011
Full	2292	600	0.7199	0.0093	0.0010



2045 Figure 11: Trends of model accuracy metrics (mean, standard deviation, and coefficient of variation)
 2046 with varying subsampling size on four subsets and the entire MMTS-Bench.
 2047

2048 ⁸We empirically set the convergence threshold to $\tau = 0.02$, which requires the standard deviation of the
 2049 evaluation score to be controlled within 2% of the mean. For a typical model accuracy range (50% ~ 80%), this
 2050 means the measurement error is limited to an absolute range of approximately 1% ~ 1.6%. This strict stability
 2051 constraint is crucial for suppressing “ranking flips” caused by sampling variance, ensuring the benchmark can
 reliably distinguish between models with slight performance differences.

2052 The experimental results (Table 23 and Figure 11) demonstrate that the current data scale of MMTS-
 2053 Bench provides an ample safety margin for evaluation stability. Specifically, the actual sample size
 2054 of each subset significantly exceeds the minimum number of samples required to reach the con-
 2055 vergence threshold (approximately $1.42 \sim 4$ times the required minimum), and the lowest CV has
 2056 dropped to the 10^{-3} magnitude. This outcome confirms that we have not only ensured high confi-
 2057 dence in the evaluation results at the current scale but have also achieved a good balance between
 2058 statistical robustness and evaluation efficiency (computational and time costs).

2059

2060 E.3 ASSESSMENT OF DATASET ARTIFACTS AND SHORTCUT LEARNING

2061

2062 A substantial body of research warns against benchmark performance driven by spurious corre-
 2063 lations or explicit features rather than genuine reasoning (Geirhos et al., 2020; Gururangan et al.,
 2064 2018). To ensure MMTS-Bench evaluates robust time-series reasoning rather than relying on dataset
 2065 artifacts, we analyzed the dependency of model performance on explicit surface-level attributes.

2066

2067 Specifically, we examined the correlation between TSQA accuracy and three explicit factors: se-
 2068 quence length (L), variable count (V), and question text length (T) on the InWild subset. We
 2069 evaluated three representative models: GPT-4o, Qwen2.5-32B, and ChatTS(Xie et al., 2024). We
 introduce three metrics to quantify these dependencies:

2070

- **Correlation (r_L, r_T):** The Pearson correlation coefficient between accuracy and the loga-
 2071 rithm of sequence length (r_L) or question text length (r_T). A value close to 0 indicates no
 2072 linear dependency.
- **Length Sensitivity (Δ_{long}):** The difference in mean accuracy between the samples in the
 2073 longest quartile (≥ 75 th percentile) and the shortest quartile (≤ 25 th percentile).
- **Dimensionality Gap (Δ_{dim}):** The difference in mean accuracy between multivariate and
 2074 univariate samples.

2075

2076 As presented in Table 24, the results reveal minimal dependence on these artifacts. The correlation
 2077 with sequence length is negligible across all models ($|r_L| < 0.08$), and the accuracy gap between
 2078 extreme lengths (Δ_{long}) remains within a narrow range (approx. $0.05 \sim 0.08$), showing no con-
 2079 sistent bias towards short or long sequences. Similarly, the performance gap between univariate
 2080 and multivariate series is marginal ($|\Delta_{\text{dim}}| < 0.04$), and question length shows only a weak effect
 2081 ($|r_T| \approx 0.15$). These findings confirm that MMTS-Bench performance is not trivially predictable
 2082 by simple metadata features.

2083

2084 Table 24: Analysis of potential dataset artifacts and shortcut learning on the InWild subset. Small
 2085 absolute values for all metrics indicate that model performance is not dominated by simple features
 2086 like length or dimensionality.

2087

Model Name	r_L	Δ_{long}	Δ_{dim}	r_T
GPT-4o	-0.0693	0.0824	-0.0101	-0.1451
Qwen2.5-32B	0.0547	-0.0525	0.0353	-0.0264
ChatTS	0.0727	-0.0502	-0.0163	-0.0862

2088

2089

2090 E.4 CONCLUSION

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106 **F USE OF LLMs**
21072108 During the preparation of this paper, we employed large language models (LLMs) to polish para-
2109 graphs and assist with grammar checking, aiming to reduce the gap with native English writing and
2110 to improve readability for reviewers and readers. LLMs were also used extensively in constructing
2111 the benchmark, with specific details already mentioned earlier.
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159