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Abstract: In this paper, we introduce HALO, a novel Offline Reward Learning
algorithm that quantifies human intuition in navigation into a vision-based reward
function for robot navigation. HALO learns a reward model from offline data,
leveraging expert trajectories collected from mobile robots. During training, ac-
tions are sampled around a reference action and ranked using preference scores de-
rived from a Boltzmann distribution centered on the preferred action, and shaped
by binary navigation feedback. The reward model is trained via the Plackett-Luce
loss to align with these ranked preferences. We deploy HALO in two downstream
applications: (i) an offline learned policy trained directly on the HALO-derived
rewards, and (ii) a model-predictive-control (MPC) based planner that incorpo-
rates the HALO reward as an additional cost term. This showcases the versa-
tility of HALO across both learning-based and classical navigation frameworks.
Our real-world deployments on a Clearpath Husky across diverse scenarios show
that policies trained with HALO generalize effectively to unseen environments
and hardware setups. HALO outperforms state-of-the-art vision based navigation
methods, achieving at least a 33.3% improvement in success rate, a 6.171% re-
duction in normalized trajectory length, and a 26.6% reduction in Fréchet distance
compared to human expert trajectories.
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1 Introduction

Autonomous visual navigation is a fundamental capability for mobile robots operating in complex,
real-world environments [1, 2, 3, 4]. Traditional systems often rely on depth sensors such as LIDAR
or stereo cameras to estimate geometry and avoid obstacles. While effective, these sensors introduce
significant cost, power, and hardware complexity, limiting scalability across robot platforms[3, 5]. In
contrast, RGB cameras offer a low-cost and widely deployable sensing modality. However, building
reliable navigation systems based solely on RGB input remains challenging, particularly due to the
difficulty of inferring navigability and obstacle relevance directly from raw visual observations under
dynamic lighting, ambiguous pathways, or unstructured terrain. In this context, a method that can
leverage human intuition to interpret visual scenes and guide navigation decisions could enhance
trajectory safety and improve navigation success [6, 7].

Reinforcement Learning (RL) has demonstrated significant potential for navigation, allowing robots
to learn from direct interaction with the environment (i.e., online RL) and adapt based on experi-
ential data [8, 9]. Many online RL methods utilize simulators during training, leveraging parallel
processing and faster-than-real-time learning to improve efficiency. However, a key limitation is
the sim-to-real transfer gap [10], where policies trained in simulation often fail to generalize effec-
tively to real-world environments. To mitigate this, recent works have leveraged large-scale navi-
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gation datasets [11, 12] to train policies offline, an approach known as offline RL, which enables
learning directly from real-world observations without requiring costly or unsafe online interaction
[7, 13, 14, 15]. Advances in offline RL [16, 17] have further enabled robots to learn robust policies
in a data-efficient manner using pre-collected experience, reducing reliance on online interactions.
Despite these advances, both online and offline RL approaches typically depend on hand-engineered
reward functions, requiring substantial domain expertise to identify key components and mathemat-
ically formalize human intuition [18, 19]. Moreover, reward functions must be meticulously tuned,
often necessitating multiple rounds of real-world training and testing, a costly and resource-intensive
process. Furthermore, many RL-based navigation algorithms rely on LiDAR or depth cameras for
obstacle distance estimation during reward computation, which, while effective, introduces scalabil-
ity challenges due to sensor cost and deployment constraints [20, 13].

Recent research has also explored the use of large language models (LLMs) and vision-language
models (VLMs) to tackle the challenges of visual navigation. These models offer an alternative
paradigm: instead of explicitly optimizing reward functions, they use natural language under-
standing to interpret goals, identify obstacles, or infer human intent from egocentric observations
[21, 22, 23]. Building on this foundation, recent research has explored the application of these
models to enhance autonomous robot navigation [24, 25, 26, 27]. Typically, these approaches in-
volve providing the model with an egocentric view of the environment, along with a detailed text
description of the scene, and then prompting the model to generate a high-level plan or to infer the
likely behavior of nearby agents. Although these methods offer promising avenues for capturing
nuanced human intentions and facilitating adaptive navigation strategies, they have some limita-
tions. Specifically, LLM/VLM-based solutions often demand significant computational resources,
require continuous internet connectivity due to their reliance on cloud-based services, and are not
easily deployable on edge hardware [17, 16]. Consequently, these constraints impede their real-time
performance and scalability, ultimately limiting their applicability in safety-critical and resource-
constrained navigation scenarios.

Main contributions: To address the limitations of hand-crafted reward functions in vision based
navigation, we propose HALQO, Human Preference ALigned Offline Reward Learning, a novel
framework that uses human feedback to train reward models from egocentric visual inputs and
action-conditioned trajectories. Our key contributions are:

* A preference-driven reward learning framework that uses Plackett-Luce loss to align
ranked action sets with human visual intuition, based on responses to binary feasibility
queries (e.g., ’Can the robot turn left?”, ’Can the robot accelerate?”’) from egocentric cam-
era views. The resulting reward model is deployed in two downstream settings: (i) training
a goal-conditioned offline policy, and (ii) augmenting a model predictive control (MPC)
planner with the learned reward as a cost term, demonstrating strong generalization across
diverse indoor and outdoor environments in both learning-based and classical navigation
frameworks. Furthermore, the annotated user preference dataset for sub-optimal trajecto-
ries will be released along with the code for the paper.

* An action-conditioned visual feature aggregation mechanism that uses a binary mask of
the predicted robot path generated via homography, to identify spatially relevant regions in
the image. This mask is processed through a CNN to produce a weighting map that mod-
ulates visual features, allowing the model to aggregate highly relevant image information
based on the intended action.

» Extensive real-world evaluation on the Clearpath Husky platform, showcasing HALO’s
ability to generalize across diverse indoor and outdoor environments not encountered dur-
ing training. Our reward-model-based policies operate in real time at approximately 50
Hz on a laptop (Nvidia 3060 GPU, Intel Core i7 CPU), and consistently outperforms state
of the art vision based navigation methods, achieving an 33.3% improvement in success
rate, 6.171% reduction in normalized trajectory length, and 26.6% lower Fréchet distance
to expert trajectories.



R(St ? a‘t) Trainable
Frozen
St 4 —> | DINO-v2 —» | MultiHead |__, Matrix
Self Attention P
@ Multiplication
User
# é Preferences

o~
<]

Plv,w | 1)

vor
v
:
s
o 3
£
g 0.008
s
.
-

o
020 -0.35 ~0.10 -005 000 05 010 05 0.20
Angular veocity &

Piv,w | 1)

A o060
i oos
0004 B
0003 “
o0z o

Plv,w| U

H
. 0050
i o003t
o.00;

U=[1001 U=[0110] U=[1011] U=[1100

0002

Figure 1: Architecture of the proposed reward model. Given the current observation IRGE a frozen DINO-
v2 encoder extracts patch embeddings. Simultaneously, the candidate action a; = (v, ws) is projected into
image space via a homography transform to produce a trajectory mask a;", which is passed through a trainable
CNN to yield a spatial relevance weighting. This vector modulates the image patch embeddings [28], focusing
on regions relevant to the trajectory. The resulting feature is passed through a trainable MLP to produce the
scalar reward R(s:, a¢). This reward can be used in either a model predictive controller (mvpc) or an offline
reinforcement learning policy (7rr). Bottom: Boltzmann distributions P(v,w | U) generated from binary user
preferences U, used to assign preference scores to actions during reward model training.

2 Related Work

In this section, we review key literature on autonomous visual navigation and reward modeling for
navigation based on preference data.

2.1 Navigation Algorithms for Mobile Robots

Classical geometric and rule-based methods laid the foundation for autonomous navigation [29],
but their reliance on depth sensors such as LiDAR limits scalability due to high cost and hardware
complexity [30, 3]. Reinforcement learning (RL) based methods enable robots to learn adaptive
navigation behaviors through interaction with their environments, often in simulation [31]. Building
on this, offline RL allows policies to be learned directly from large, real-world datasets without
requiring online exploration [7, 13]. However, many offline RL approaches still depend on hand-
crafted reward functions, which are difficult to design for nuanced tasks like obstacle avoidance or
visual goal-following, and often require extensive tuning [32]. For example, Shah et al. use multiple
manually defined objectives to train multi-objective policies [7], but none of these explicitly account
for obstacle avoidance, limiting their scalability and generalization to complex, real-world scenarios.

2.2 Reward Modeling for Navigation Based on Preference Data

Preference-based reward modeling has emerged as an effective way to align reinforcement learning
agents with human intentions. Christiano et al. introduced a method using human preferences over
trajectory segments to train reward models for policy optimization [33]. Lee et al. extended this
with PEBBLE, improving sample efficiency via unsupervised pre-training and experience relabeling
[34]. More recently, Wang et al. leveraged VLMs to automate preference labeling, eliminating
manual annotation for training reward models in simulation [35]. Most prior methods rely on the



Bradley-Terry model [36], which simplifies feedback into binary comparisons, limiting nuance and
introducing noise into the reward signal.

3 Background

In this section, we introduce key preliminaries necessary for a deeper exploration of the topics
discussed in this work.

3.1 Markov Decision Processes

We model robot navigation as a Markov Decision Process (MDP) with continuous states s € S
(egocentric RGB observations) and actions a € A (linear and angular velocities). A policy 7 (als)
selects actions to maximize the expected cumulative reward. Our work focuses on learning the
reward function R (s, a) directly from human preferences.

3.2 Offline Reinforcement Learning

Offline RL enables training policies from fixed datasets without further environment interaction,
making it suitable when online exploration is unsafe or costly [37]. Algorithms such as CQL [17]
and IQL [16] address distribution shift and overestimation issues, and we build on these methods to
train policies with our learned reward.

3.3 Plackett-Luce Model for preference modeling

The Plackett-Luce model is a probabilistic framework for preference modeling [38] . Given a set
of actions A = {ay,as,...,a,} and associated scores 6;, the probability of observing a specific
ranking o is defined as

exp(0s(5))
_ . 1
H - > ke exp (0o (k) M

This formulation converts the scores into a probability distribution over rankings by exponentiating
the scores and normalizing them sequentially.

4 Our Approach: HALO

We present HALO, an offline algorithm that uses the Plackett-Luce framework to learn a reward
model aligned with human navigational preferences. In this section, we will focus on six key aspects
of our approach: (1) the dataset used for training and evaluation, (2) formulating the reward learning
problem, (3) generating probabilistic scores for actions based on human feedback, (4) offline reward
learning based on the Plackett-Luce model, (5) the proposed reward model architecture, and (6)
robot navigation using the learned reward model.

4.1 Dataset

We use the Socially CompliAnt Navigation Dataset (SCAND) [12] for offline training. It includes
demonstrations in indoor and outdoor settings, where a human operator teleoperates a wheeled or
legged robot around the UT Austin campus. From the 139 available scenes, we manually annotated
25 scenes (~=107,000 frames) with human preference scores (Section 4.3).

To augment this, we collected 116 additional scenes (33,000 frames) using a legged robot. Ap-
proximately 100 of these consist of short, truncated trajectories that would result in collisions or
unsafe behavior if executed further. These were deliberately included as negative examples to coun-
terbalance the overwhelmingly successful demonstrations in SCAND. Section 4.3 explains how



these negative trajectories are incorporated into the preference scoring framework to guide the re-
ward model toward safer behavior and improve generalization in safety-critical situations.

4.2 Formulating the Reward Learning Problem

We model human-aligned navigation as an MDP and focus on learning a reward function R(s;, a;)
that captures human navigational preferences from offline data.

In our framework, the action space .4 consists of continuous control commands represented by
linear and angular velocity pairs (v,w), and the state space S consists of the robot’s egocentric
RGB camera observation 1*%E_ The reward model is goal-independent and quantifies the quality
of actions based solely on the egocentric visual input, guided by human preference data.

The policy 7(a|s;) is defined as a stochastic distribution over continuous actions conditioned on
the current state. This formulation supports smooth and adaptive control strategies, suitable for
navigation in dynamic and complex environments.

4.3 Preference Scores from Human Feedback

To capture human intuition, we collect binary responses to five navigation queries based on the
robot’s egocentric view and expert action (v*,w*): (1) Can the robot turn left? (2) Turn right? (3)
Decelerate? (4) Accelerate? (5) Is the robot in immediate danger or behaving suboptimally? These
responses assess the feasibility of alternative actions. To reduce annotation effort, annotators were
able to reuse previous responses by simply advancing through frames without re-entering inputs
as long as the answers to the navigation queries remained unchanged. Labeling resumed when a
meaningful change in the scene, such as a hallway turn or a pedestrian entering, required a different
response, based on the annotator’s visual judgment rather than a predefined threshold.

If the user flags danger or suboptimal behavior, a corrective reference action (v*, w*) is assigned
based on user preference data. This differs from the expert action recorded in the dataset and typi-
cally involves reduced linear velocity and a sharp turn. This encourages the reward model to favor
safer and more responsive behaviors in similar scenarios.

We generate a discrete, dynamically feasible action set centered around (v*,w™*) that spans the
robot’s field of view:

Atocal = {(v,w) [v €V, w € Q}

Each action (v, w) € Ajoca is assigned a probability score based on its proximity to (v*,w*), using
a separable Boltzmann distribution (Eq. 2, 3):

P(U,W,U) :P(’U,Z/{) 'P((U,U), )

P(v,U) = P (‘E?%‘) , PlwU)= exp (J:MTZ;;‘) ) )
R () = e (-55)

v’ eV w’eN

The temperature values 7, (U) and 7, (I/) are selected adaptively based on user preferences U €
{0, 1}*, which correspond to the four directional queries. When a directional preference is indi-
cated, the corresponding temperature is set such that the preferred direction receives at least 95%
of the total probability mass in its respective marginal distribution. In the absence of preference,
the distribution is flattened by assigning a higher temperature. This ensures that undesirable actions
are assigned a selection probability of less than 0.05, and that the distribution sharpens or flattens
depending on the user’s certainty (Figure 1:Bottom).



To reflect the user’s perceived desirability of a scene, the final score is scaled by a scalar factor A
(Eq. 4), defined as:

1
- ﬁ; if udanger = 1;
)\(U, udunger) = + Zi:l ! (4)
1+ 30 Ui,  otherwise.
The final preference score assigned to an action (v, w) is therefore:
Pref(v,w | U) = MU, Uganger) - P(v,w | U). (5)

These scores are used to rank the n,, X n,, candidate actions, with the reference action always ranked
highest. The resulting preference-ordered list o serves as supervision for reward model training.

4.4 Reward model learning based on preference data using the Plackett Luce loss

We use the Plackett-Luce model (Section 3.3) to learn a reward function that maximizes the proba-
bility of observing the preference rankings generated in Section 4.3. To achieve this, we minimize
the negative log-likelihood of the Plackett-Luce ranking probability defined in Eq. (1), ensuring that
the learned reward function aligns with human preferences.

n—1 n—1 n
LoL ==Y Ooi)+ Y log [ D exp(bo;)) 6)
i=1 i=1 j=i

By minimizing the Plackett-Luce loss defined in Eq. (6), the reward model is trained to assign
higher values to actions that appear earlier in the ranked preference list, ensuring that the learned
reward function captures human intuition in navigation. This loss offers a scalable and context-aware
formulation for learning from ranked actions, capturing the relative importance of all candidates in
a single ranking. Unlike pairwise comparison methods, it avoids the (”” é"“) comparisons required
per timestep, resulting in a more stable loss landscape and efficient optimization.

To the best of our knowledge, this is the first approach to incorporate Plackett-Luce preference-based
reward learning for modeling human intuition in autonomous navigation. This formulation offers a
structured, scalable, and globally consistent framework for aligning navigation policies with human
preferences.

4.5 Reward Model Architecture

The overall architecture of our system is illustrated in Figure 1. Given a state s, = I®%5 and a

candidate action a; = (v;,w;) € R?, the model outputs a scalar reward R (s, a;).

Image Feature Extraction: We use DINOv2 [39], a self-supervised feature extractor based on
the Vision Transformer (ViT) architecture, to extract patch-level embeddings from the input image
IRGB The frozen encoder outputs N, spatial patch embeddings of dimension d., denoted as F; €
RNp*de  These embeddings are further refined via Ny, Transformer layers with h self-attention
heads, yielding F* € RNpXde,

Action-Conditioned Visual Feature Aggregation: Given an action (v,w), we generate a binary
trajectory mask by projecting the path the robot would follow under that action over a fixed time
horizon onto the image plane using a homography transform (see Figure 1). This results in a bi-
nary mask a® € R Hn>xWm which is processed by a lightweight CNN composed of stacked
convolutional and pooling layers, followed by a final sigmoid activation. The output is a spatial

relevance map W, € RV NpX+/No - which is flattened into an N,-dimensional vector. This vector



is then used to modulate the DINOv2 patch embeddings Fi* € R™»*de via element-wise multi-
plication, allowing the model to emphasize image regions relevant to the given action and support
action-conditioned perception analogous to attention-based gating.

Final Reward Prediction: The aggregated feature representation is passed through a simple MLP
head that maps it directly to a scalar reward value. This architecture provides an efficient mechanism
for capturing the relationship between visual input and action-specific context.

4.6 Training and Offline Navigation Policy

Once trained, the reward model can be used in two ways: (i) to supervise a goal-conditioned of-
fline policy, or (ii) to augment classical navigation algorithms such as Dynamic Window Approach
(DWA) or Model Predictive Control (MPC) by serving as an additional cost term.

To improve reward learning stability and generalization, we incorporate two regularization strategies
during training: (i) a focal-style penalty applied to the raw preference scores generated in Section
4.3, and (ii) a diversity regularizer that discourages similar rewards for dissimilar actions. These
additions help the model produce more discriminative and informative reward outputs.

Additional training details, including offline policy learning methodology, MPC implementation and
hyperparameters are provided in Appendix 7.2.

S Results and Analysis

5.1 Implementation and Comparisons

We integrate our method into the Clearpath Husky wheeled robot for real-world experiments. The
Clearpath Husky is outfitted with a Realsense d435i camera, and a laptop containing an Intel i7 pro-
cessor and an NVIDIA RTX 3060 GPU. To compare against our reward model (section 4.2), we also
designed a hand-engineered reward (HER) model that accounted for distance to the goal, distance
to any obstacles utilizing lidar data, and a smoothness term to discourage sudden acceleration. We
validated our method by comparing the IQL [40] policy trained on our reward model to the IQL pol-
icy trained on hand-engineered rewards (HER). Additionally, we trained a behavioral cloning policy
(BC) [41] on the same data used to train the reward model. We also compared our method with a
classical method [42] and a learning-based vision-action method, VANP [43].

5.2 Evaluation Metrics

We evaluate our reward model on three navigation metrics: (1) Success rate, (2) Normalized trajec-
tory length, and Fréchet distance [44] w.r.t. the human teleoperation. Detailed descriptions of these
metrics and their computation can be found in Appendix 7.1.1.

5.3 Discussion

We present HALO’s performance results and comparisons quantitatively in Table 1 and qualitatively
in Figure 2. These comparisons span three diverse real-world navigation scenarios. In the following
discussion, we analyze how each method performs within these settings, highlighting differences
in social compliance and obstacle avoidance. HALO consistently outperforms baseline methods in
terms of Success Rate and Fréchet Distance, demonstrating its ability to produce safer and more
human-aligned trajectories without relying on LiDAR or hand-crafted rewards. Trajectory length
and Fréchet distance are reported as N/A when the success rate is 0, and improvement metrics are
computed only against vision-based policies; DWA, which uses LiDAR for planning, is not included.
Further qualitative results comparing HALO and HER methods are discussed in the Appendix 7.1.3.
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Figure 2: Comparison across three diverse real-world navigation scenarios (outdoors, low light, indoors).
Each row shows the trajectory taken by different methods, DWA [42], VANP [43], HER + IQL [40]/BC[41],
and HALO-based policies, highlighting differences in social compliance, obstacle avoidance, and goal-reaching
behavior.

Scenario Method Success Rate (%) 1 Normalized Traj. Length | Fréchet Distance | (m)
DWA (7) [42] 30 1.043 1.677
VANP [43] 60 1.205 1.216
HER + TD3-BC (%) [45] 0 N/A N/A
Scenario 1 HER + IQL (t) [40] 50 1.118 3.665
HALO + TD3-BC 10 0.565 6.758
HALO + IQL 80 1.049 1.140
HALO + DWA 70 1.212 0.892
DWA (7) [42] 100 1.157 0.678
VANP [43] 60 1.294 1.682
Scenario 2 | HER +TD3-BC () [45] 0 N/A N/A
HER + IQL () [40] 10 1271 3.851
HALO + TD3-BC 70 1.269 1.040
HALO + IQL 90 1.030 0.759
HALO + DWA 70 1.306 1.573
DWA (7) [42] 0 N/A N/A
HER + TD3-BC (1) [45] 0 N/A N/A
) HER + IQL () [40] 0 N/A N/A
Scenario 3 HALO + TD3-BC 10 0.481 4.022
HALO + IQL 80 1.136 1.263
HALO + DWA 40 0.687 4.179

Table 1: Performance comparison of different navigation methods across three scenarios. Methods with a ¥
have the benefit of using LiDAR

Across outdoor, low-light, and indoor scenarios, HALO consistently outperformed baselines in both
success rate and Fréchet Distance and Normalized Trajectory Length (Table 1). In outdoor settings
with pedestrians, HALO+DWA produced smoother, socially compliant trajectories that aligned with
human preferences, while HALO+IQL achieved comparable success without relying on LiDAR.
Under low-light conditions, HALO-trained policies maintained larger safety buffers around pedes-
trians than baseline planners. In challenging indoor hallways with glass walls, only HALO-trained
policies generalized successfully, while LiDAR-based and hand-engineered reward methods failed.
Overall, HALO provided safer, more socially aligned navigation across diverse environments and
modalities. Detailed scenario-by-scenario analysis of each of these settings are provided in Ap-
pendix 7.1.2

6 Conclusions

We presented HALO, a novel offline reward learning algorithm that aligns robot navigation with
human preferences by leveraging egocentric visual data and expert trajectories. HALO quantifies
intuitive human navigation behavior through ranked action preferences and uses the Plackett-Luce
model to learn a reward function without requiring hand-engineered heuristics. We demonstrated
its adaptability by deploying it in both offline policy learning and model predictive control plan-
ners, where HALO achieves superior performance over state-of-the-art baselines across success
rate, trajectory safety, and Frechet distance metrics. Our real-world evaluations highlight HALO’s
robustness across different robot platforms and scenarios.



Limitations

It is hard to estimate the performance of the HALO rewards early on in the training process. Since
HALO trains the reward model first, the performance of the reward model is unknown until a policy
is trained with the selected reward model. This sequential coupling of reward modeling and policy
means the performance of the reward model is not apparent until much later into the training process.
The coupling of the reward model with the policy can also make it difficult to pinpoint whether the
reward model or the policy should be fine-tuned. If a policy does not perform well, one may need to
fine-tune both the reward model and the corresponding policy.

The method has demonstrated inconsistent performance, where the robot will fail to avoid obstacles
in scenarios where it has successfully navigated before. When the model fails to avoid an obstacle,
it is often unclear why. During the training process, different versions of the model demonstrated
certain tendencies, where one checkpoint model may be great at navigating outdoor scenes, and
another checkpoint would be better at avoiding people while indoors or in conditions where there
are many reflective surfaces such as glass walls. An ensemble of policies trained on the same reward
model could be explored to mitigate this limitation.

Our method is limited by its field of view, without any explicit memory buffer. Since our method
was trained on a variety of robots with varying size, width, and turning radii, the robot trained on
our method showed a lack of awareness of its own width. Combined with a narrow field of view,
the robot sometimes successfully avoid an obstacle only to turn back into the very same obstacle.
By the time the robot sees an obstacle again it is too late to change course. The method struggles
especially when the turning clearance is tight. Inclusion of a short-term memory and parameters
about the vehicle width may mitigate these limitations.
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7 Appendix

7.1 Results and Analysis

This section provides definitions for the evaluation metrics used in the main paper and presents ad-
ditional qualitative results comparing HALO-based and hand-engineered reward policies in diverse
real-world navigation scenarios.

7.1.1 Maetrics

Metric

Definition

Description

Success Rate

N, success
N, total

Fraction of episodes where the robot
reaches the goal without collisions.
N, total = 10

Normalized Trajectory
Length

Lactual
Lexpert

Ratio of the executed trajectory length
to the expert trajectory length. Lower
is better.

Fréchet Distance to
Expert Trajectory

inf max
a,Btel0,1

T (a)) = Te(BEDI

Measures the maximum distance be-
tween points on the robot trajectory
T, and expert trajectory 7, under con-
tinuous, non-decreasing time repa-
rameterizations. This metric captures
both spatial proximity and temporal

alignment. Lower is better.

Table 2: Evaluation metrics used for assessing navigation performance.

All metrics are averaged over both the successful (reaching the goal) and unsuccessful trials (colli-
sion/ not reaching the goal)

7.1.2 Detailed Analysis of Evaluation Scenarios

Scenario 1 depicts an outdoor environment featuring pedestrians and a crosswalk. In this setting,
a human would naturally prefer to avoid pedestrians and navigate along the crosswalk to reach
the goal. The MPC planner equipped with the HALO reward model (HALO + DWA) mirrors
this human-like behavior, producing smoother, more socially compliant trajectories. As a result,
it achieves a lower Fréchet distance and a higher success rate. In contrast, the DWA planner opts for
a direct path that ignores the sidewalk and pedestrian context, largely due to its reliance on LiDAR-
only perception. While VANP demonstrates the ability to avoid pedestrians, it exhibits jerky motion,
particularly within the crosswalk region, attributed to inconsistent action predictions. Similar to the
HALO + DWA method, the IQL policy trained with the HALO model (HALO + IQL) also demon-
strates social compliance by achieving a low Fréchet distance, although not as low as HALO + DWA.
It achieves a success rate comparable to the DWA method, but without relying on LiDAR. The IQL
policy trained using the hand-engineered reward (HER + IQL) achieved moderate success rates but
did not perform as well as its HALO counterpart. The behavior cloning policy trained with HALO
rewards (HALO + BC) was able to successfully avoid obstacles but failed to reach the goal. The BC
policy trained using hand-engineered rewards (HER + BC) became stuck in a slight left-hand turn,
ultimately driving itself into the bushes.

Scenario 2 features pedestrians and pavement regions under low-light conditions. While the DWA
planner avoids pedestrians and proceeds directly toward the goal, both VANP and the MPC planner
with the HALO reward model (HALO + DWA) adopt a more socially aware approach by main-
taining a large buffer radius around pedestrians, even if it requires adjusting their heading back
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toward the goal after passing. This behavior reflects the socially compliant navigation induced by
the HALO reward model in the MPC-based planner. The IQL and behavior cloning (BC) policies
trained with the HALO reward model both achieved relatively high success rates but demonstrated
less social compliance. They tended to take more direct paths toward the goal, often passing closer
to pedestrians compared to HALO + DWA. The policies trained with the hand-engineered reward
(HER) consistently failed to reach the goal. Specifically, the behavior cloning policy trained with
the hand-engineered reward (HER + BC) became stuck heading toward the curb.

Scenario 3 takes place in an indoor hallway environment with glass walls and pedestrians. LiDAR-
based approaches like DWA struggle in this setting, failing to detect glass walls and resulting in
collisions. Similarly, IQL and behavior cloning (BC) methods trained with hand-engineered rewards
fail to generalize to this unseen scenario. In contrast, the BC policy trained using the HALO reward
demonstrates relatively better performance, indicating improved generalization. Notably, the IQL
policy trained with the HALO model exhibits human-like behavior, successfully recognizing both
glass walls and pedestrians and navigating the hallway effectively to reach the goal.

7.1.3 Further Qualitative Analysis

Figure 3: Qualitative Analysis for Behavioral Cloning (BC) and Implicit Q-Learning (IQL) policies
for HALO and Hand Engineered Reward (HER)

(top) illustrates example outputs from HALO-BC and HER-BC policies across varied navigation
scenarios. The bottom panel shows similar comparisons for IQL policies.

Figure 3 (top) illustrates example outputs from HALO-BC and HER-BC policies across varied
navigation scenarios, while Figure 3 (bottom) presents comparable results for Implicit Q-Learning
(IQL) policies. In both cases, we showcase five egocentric images and compare the actions selected
by the policies to those taken by a human operator.

The HALO-BC/HALO-IQL policies are trained using reward models learned from human prefer-
ence feedback, while the hand-engineered reward (HER) BC/IQL policies are trained using man-
ually defined rewards (see Section 7.4). In all images, the human-selected actions correspond to
higher velocities or sharper turns, while the BC/IQL policies tend to produce more conservative
actions. The divergence between human and policy behavior may be attributable to the human op-
erator’s access to contextual information beyond the robot’s egocentric view. For example, in the
leftmost image, the human executes a sharp left turn, potentially into oncoming traffic. While this
action may appear suboptimal based solely on the visible scene, it could reflect additional cues, such
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as an approaching agent or a clearer path outside the frame. Given only the egocentric input, the
actions chosen by the BC/IQL policies often appear more cautious and contextually appropriate.
Each trajectory represents a three-second prediction horizon; the policies will generate new actions
before the current trajectory completes.

The HALO-trained policies generate plausible and socially compliant behaviors across diverse sce-
narios. In the crosswalk image (Figure 3 second from the left), while the human prepares to turn
left, the policies prioritize entering the sidewalk, reflecting goal-directed yet safe behavior. When
pedestrians are present, the policies prefer to pass on the right, consistent with social norms. In
the second-to-last image, a crowded scenario, the human elects to turn right over a yellow curb and
through a dense group of pedestrians. This may be feasible due to the use of a legged robot in the
SCAND dataset, but the policies instead select a leftward trajectory, trading crowd avoidance for
slight proximity to vehicle lanes. In the rightmost image, the policies successfully infer a trajectory
through an open door, demonstrating spatial reasoning using only egocentric input.

7.2 Implementation Details

This section details the policy network implementation, the CNN used to process trajectory masks,
the key hyperparameters, and model dimensions used in HALO.

Policy Network. The policy network shares the same visual encoder and MLP structure as the
reward model but replaces trajectory-based attention with uniform aggregation. Specifically, patch
embeddings F} are averaged to obtain a global context vector, which is passed through an MLP to
predict the parameters of a Gaussian distribution over actions. During deployment, actions are sam-
pled from this distribution; during training, gradients are propagated using the reparameterization
trick. Q and V networks follow the same structure as the reward model and the policy respectively
but output a single scalar value instead of action parameters.

Trajectory Mask CNN. To convert the binary trajectory mask a;* into a spatial weighting map
Wy, we use a lightweight convolutional neural network with the following structure:

Conv2D(1, 4, kernel size=3, stride=1, padding=1), ReLU
e MaxPool2D (kernel_size=2, stride=2)

* Conv2D(4, 8, kernel_size=3, stride=1, padding=1), ReLU
* Conv2D(8, 4, kernel_size=3, stride=1, padding=1)

* Conv2D(4, 1, kernel_size=3, stride=1, padding=1), Sigmoid

7.2.1 Model Parameters

Symbol  Definition Value

HW Input image height and width 224,224

H,,,W,, Mask resolution after homography projection 32,32

N, Number of image patches (from DINO-v2) 256

de Embedding dimension of each patch 384

fi Aggregated feature vector from weighted patches R334

Ry Scalar reward output R

Ny, Ny Number of discrete velocity and angular bins 5,5
Dropout rate for MLPs 0.1

Table 3: Definitions and values of key model dimensions and constants used throughout the architecture.
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7.3 Training Methodology

7.3.1 Reward Model Training

The reward model is trained using the Plackett-Luce (PL) loss, which aligns predicted scalar rewards
with human-labeled preference rankings over discrete action sets. We apply a 20% validation split
and employ early stopping based on validation loss. In addition to the PL loss, we incorporate three

auxiliary loss terms to regularize the reward predictions:

* Reward Diversity Regularization: Encourages the model to assign more distinct rewards
to dissimilar actions. This is achieved by penalizing pairs of actions whose reward differ-
ences are too small relative to their distances in action space, using a symmetric hinge-
based loss:

1
Laiv = E(a; a;) [maX <07 llai — a;ll — E\n‘ - 7“j|> + max (0, ¢[r; — 7| — |la; — aj||)
where a;, a; are actions and r;, r; are their predicted rewards. The constant c¢ defines the

desired proportionality between action and reward differences.

* Focal Regression Regularization: A weighted mean squared error (MSE) that penalizes
large reward errors more heavily, thereby encouraging the model to capture both order
(from PL loss) and relative magnitudes:

Lioca =B |(F—1)2 - |F — 1|7

where 7 € R? and r € R are the predicted and target reward vectors, and -y controls the
emphasis on larger errors.

* L2 Regularization: A regularization term that penalizes large reward magnitudes to im-
prove numerical stability and prevent overly confident predictions:

Lio =E[||7]3]

where 7 denotes the vector of predicted rewards.

The final training objective is given by:

ﬁtotal = LPL + Alﬁdiv + >\2£L2 + AS Efocal

Table 4 summarizes the hyperparameters used for training the reward model.

Hyperparameter Value
Optimizer AdamW
Learning rate 2x107%
Weight decay 1x1073
Batch size 256
Number of epochs 200
Scheduler Cosine Annealing with Warm Restarts
Warm-up epochs 3

Cosine Tj 25
Cosine Ty 2
Validation split 20%

A1 (reward diversity) 2.0

A2 (L2 penalty) 0.01

As (focal regression)  0.05

Table 4: Training hyperparameters used for reward model optimization.
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7.3.2 Policy Training

We train goal-conditioned policies using two offline methods: Behavior Cloning (TD3-BC) [41],
and Implicit Q-Learning (IQL) [40]. Since the emphasis of our method is the training of the re-
ward model, we leveraged the standard implementation of the clean offline reinforcement learning
(CORL) [46] library. The offline RL implementations such as learning rate, loss functions, etc were
mostly kept as-is with changes implemented when appropriate, such as including image transforma-
tions for the DINOV2 encoder, and providing the trajectory mask to the critic network. In all cases,
the reward signal is provided by our trained preference model.

7.4 Baselines and Classical Control Details
7.4.1 Hand-Engineered Reward for Offline Comparison Methods

Each action (v, w) is simulated forward in time into a trajectory 7, o, = {(z¢, yt, 0¢) }1—,. The com-
parison methods benefit from access to LiDAR, enabling the use of hand-crafted reward functions
that exploit precise geometric cues for obstacle avoidance.

The reward is computed as a weighted sum of three cost components:

R(U7 w) = - )\goal : dgoal(Tv,wag) + Ahead eerr(Tv,wa g) —+ Aobs - Cobs(Tv,w) + Asmooth * ||a - CLprev||2
~—_—— —_————— —_————— —_—
goal distance heading error obstacle cost smoothness
where:

. dgoal(rww, g): Euclidean distance between the final state of the trajectory and the goal
position,

* Oerr(Tv,w, g): absolute difference in heading between the final trajectory angle and the goal
orientation,

* Cobs(Tw,w): an exponential penalty that emphasizes proximity, assigning higher cost to tra-
jectories near LIDAR-detected obstacles by weighting inversely with distance.

* |la — aprev||2: L2 norm enforcing smoothness relative to the previous action.

We use the following weights, empirically selected based on our offline dataset:
1 1

>\g0a1 =7 Ahead = 1.0, Aobs = g:

5’ )\smooth =1.0

7.4.2 Goal Conditioning with HALO

To enable goal-directed navigation with our learned reward model, we modify the hand-engineered
reward by replacing the obstacle penalty with the output of HALO, which captures human prefer-
ences, including implicit notions of obstacle avoidance and social compliance:

R('U»UJ) = - (>\g0al : dgoal(Tv,w7 g) —+ Ahead * aerr(Tv,wa g)) + Apalo RHALO(Sa a)
—————

learned reward

This formulation preserves geometric alignment to the goal while incorporating semantics from
human-labeled preferences. All existing weights are retained from the hand-engineered formulation,
and we set \pao = %
7.4.3 DWA Planner Configuration

We adopt a standard goal-conditioned Dynamic Window Approach (DWA) planner with a 1.0-
second planning horizon, 5 Hz control frequency, and 25 uniformly sampled linear and angular
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velocities. To integrate learned preferences, we simply add the negative of our reward model’s
output as a cost term:

J(a) = Jowa(s,a) — Anaio - Ruaro(s, a)

Here, Jpwa (s, a) denotes the hand-crafted reward based on goal distance, heading error , and action
transition smoothing (excluding obstacle cost), and RuarLo(s,a) is the learned preference-based

reward. We set Ahaio = +.
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