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Abstract

Concept-based models like Concept Bottleneck Models (CBMs) have garnered significant
interest for improving model interpretability by first predicting human-understandable con-
cepts before mapping them to the output classes. Early approaches required costly concept
annotations. To alleviate this, recent methods utilized large language models to automat-
ically generate class-specific concept descriptions and learned mappings from a pretrained
black-box model’s raw features to these concepts using vision-language models. However,
these approaches assume prior knowledge of which concepts the black-box model has learned.
In this work, we discover the concepts encoded by the model through unsupervised concept
discovery techniques instead. We further leverage a simple input-dependent concept selec-
tion mechanism that dynamically retains a sparse set of relevant concepts of each input,
enhancing both sparsity and interpretability. Our approach not only improves downstream
performance, but also needs significantly fewer concepts for accurate classification. Lastly,
we show how large vision-language models can guide the editing of our models’ weights to
correct model errors.

1 Introduction

Deep neural networks have achieved tremendous success in a variety of tasks on various input modalities.
However, they are black-box models, making it difficult for humans to understand and comprehend their
decisions. Thus, there has been considerable recent interest in developing interpretable models. One popular
framework is Concept Bottleneck Models (CBMs) (Koh et al., 2020), i.e., models that first predict human-
understandable concepts and then use these concepts to predict the classes (Lampert et al., 2009; Kumar
et al., 2009). Initial CBMs are trained in an end-to-end fashion through supervision on both the concepts and
classes. However, the need for human-annotated concepts during model training requires the time-consuming
and expensive collection of such.

To address this limitation of initial CBMs, recent work (Yuksekgonul et al., 2023; Oikarinen et al., 2023;
Menon & Vondrick, 2023; Laguna et al., 2024; Dominici et al., 2024) has proposed converting pretrained
black-box models into CBMs in a post-hoc fashion. To avoid the need for annotations, they leveraged
large language models (e.g., GPT-3 (Brown et al., 2020)) to generate class-specific language descriptions
and learned a mapping from the black-box model’s uninterpretable features to these concepts using vision-
language models (e.g., CLIP (Radford et al., 2021)). However, this raises a crucial question:
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Figure 1: Overview of Unsupervised Concept Bottleneck Models (UCBMs). Top: We propose
to extract concepts from raw bottleneck features of a pretrained black-box model using an unsupervised
concept discovery method (Section 2.1). Bottom: We compute the alignment between the bottleneck’s
features and previously discovered concepts (middle). Finally, we train an interpretable classifier consisting
of our proposed input-dependent concept selection mechanism and a sparse linear classifier (middle to right,
Section 2.2).

How can we know a priori which concepts a pretrained black-box model has learned?

Instead of defining the concepts in advance, we propose to discover concepts that accurately decompose the
features learned by the black-box model. To do so, we draw from the rich literature on unsupervised concept
discovery (Ghorbani et al., 2019; Zhang et al., 2021; Zou et al., 2023; Fel et al., 2023b; Vielhaben et al.,
2023; Fel et al., 2023a; Huben et al., 2024; Stein et al., 2024). We chose CRAFT (Fel et al., 2023b) for
our experiments because it has been shown to yield human-understandable concepts (Fel et al., 2023a), but
other techniques are also possible. CRAFT employs non-negative matrix factorization (Lee & Seung, 1999)
to decompose each feature activation into a sparse linear combination of concept vectors. The set of shared
concept vectors forms a dictionary matrix. After learning this dictionary matrix, we compute the alignment
between the raw bottleneck features and the concept vectors to measure a concept’s presence or absence.

Subsequently, we train an interpretable linear classifier on the concepts’ alignment scores, linking the align-
ment scores to the predictions. Previous work (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Srivastava
et al., 2024) has shown that a sparsity penalty on the linear classifier’s weights ensures that each class relies
on only a sparse set of concepts. However, they did not examine the per-sample number of concepts that
affect the classification across all classes. That is, while individual classes rely on sparse sets of concepts,
the overall model depends on substantially more. Empirically, we found that typically 90% of the avail-
able concepts—up to ca. 4200 concepts (see Table 1)—affect the classification per input. As a result, it
complicates the interpretation of the model’s classification.

To address these challenges, we propose an input-dependent concept selection mechanism that ensures that
only a sparse set of concepts relevant for the classification of an individual input sample is dynamically
retained. We achieve this by applying a non-linear function before the sparse linear classifier to filter out
(i.e., zero out) concepts. We enforce the filtering either by forcing the output of the non-linear function
to be sparse or by directly controlling its sparsity through its hyperparameter. In our experiments, the
TopK function (Makhzani & Frey, 2014) performed best. This mechanism allows the concepts that are
retained or removed to vary between inputs, making it input-dependent. Importantly, it also preserves the
interpretability of CBMs, as the predictions remain linear w.r.t. the retained concepts. Finally, we show
that it also effectively controls information leakage; a common problem of CBMs (Mahinpei et al., 2021; Yan
et al., 2023; Srivastava et al., 2024).
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In summary, our contributions are as follows:

• We propose a new type of CBM called Unsupervised Concept Bottleneck Models (UCBMs)1; see Figure 1
for an overview. UCBMs convert pretrained, black-box models into a CBM by discovering and using the
concepts that the black-box model has learned.

• We propose an input-dependent concept selection mechanism that dynamically retains a sparse set of
concepts relevant to classification. For example, as few as ca. 1.4% of the available concepts are used per
input (Table 1).

• We show that UCBMs improve performance while having a substantially higher degree of sparsity com-
pared to previous work (Figure 3) and effectively controls information leakage (Figure 5).

• We show that UCBMs are interpretable qualitatively and through a user study (Section 3.2), and show
that large vision-language models can help us to intervene on UCBMs’ weights to fix errors (Section 3.3).

2 Unsupervised Concept Bottleneck Models with input-dependent concept selection

In this section, we introduce Unsupervised Concept Bottleneck Models (UCBMs), a novel CBM that uses
concepts that are automatically discovered and most accurately decompose the features learned by a black-
box model (Section 2.1), dynamically only retains the concepts most relevant to classification of each input,
and finally classifies the input with a sparse linear model (Section 2.2). Figure 1 provides an overview of our
method, and the above steps are described in detail below.
Notations. Let f : X → Rp be a pretrained, black-box model’s feature extractor that maps from an input
space X ⊆ Rd to the bottleneck feature space of a size of p. Further, let X ∈ RN×d be the input data matrix
where the ith row is the input xi ∈ X and let A = f(X) ∈ RN×p be the bottleneck feature activations.
Lastly, let Y denote the class label space.

2.1 Discovery of concepts learned by the black-box model

Previous post-hoc CBMs have either used human-annotated concepts (Yuksekgonul et al., 2023; Laguna
et al., 2024; Dominici et al., 2024) or aligned the black-box model’s features with precomputed text fea-
tures from vision-language models, using natural language descriptions, such as those generated by a large
language model (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Menon & Vondrick, 2023; Laguna et al.,
2024). Importantly, both approaches rely on a predefined set of concepts—either through concept annota-
tions or language descriptions thereof—implicitly assuming which concepts the black-box model has learned.
However, the concepts are typically unknown in advance.

Discovering the concepts that the black-box model has learned. To address this, we propose using
unsupervised concept discovery techniques for UCBMs. These enable us to discover the concepts that the
black-box model has actually learned, and do not require defining the concepts in advance.

Formally, the goal of unsupervised concept discovery is to extract a small set of interpretable concepts
C that most faithfully reconstruct the feature activations A. Assuming linearity of concepts, as per the
superposition hypothesis (Kim et al., 2018; Elhage et al., 2022), unsupervised discovery methods can be
understood as an instance of a dictionary learning problem (Dumitrescu & Irofti, 2018):

(U∗, C∗) = arg min
U,C

||A − UC||2F , (1)

where U ∈ RN×|C| (sparse coefficient matrix) represents the activations A = f(X) ∈ RN×p w.r.t. a new
basis spanned by the set of |C| concept activation vectors C ∈ R|C|×p (dictionary matrix), and || · ||F denotes
the Frobenius norm. Intuitively, we learn a sparse linear decomposition of the feature activations of each
input in Equation 1, where we weigh the shared concept vectors by the input-specific sparse coefficients. Fel
et al. (2023a) showed that previous methods, such as K-Means (Ghorbani et al., 2019), PCA (Zhang et al.,
2021; Zou et al., 2023), non-negative matrix factorization (Lee & Seung, 1999; Olah et al., 2018; Zhang et al.,

1Code is available at https://github.com/lmb-freiburg/ucbm.
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2021; McGrath et al., 2022; Fel et al., 2023b), or sparse autoencoders (Makhzani & Frey, 2014; Huben et al.,
2024), only differ in their constraints on U, C in Equation 1.

In this work, we chose non-negative matrix factorization (i.e., CRAFT (Fel et al., 2023b)) for UCBMs, as it
has been shown to discover human-understandable concepts (Fel et al., 2023a). However, we emphasize that
UCBMs will benefit from future unsupervised concept discovery methods.

2.2 Learning the classifier with input-dependent concept selection

In the previous subsection, we discovered concept vectors cj that most accurately decompose the uninter-
pretable features of a black-box model. Next, we compute the alignment scores between each concept vector
and the model’s features, denoted as simC(xi) ∈ [−1, 1]|C|, where simC(xi)j := ⟨ai,cj⟩

||ai||2·||cj ||2
is the cosine

similarity between the feature activations f(xi) = ai of input xi and concept cj ∈ C. Then, we dynamically
select the most relevant concepts and subsequently classify the input with a sparse linear model (Wong et al.,
2021). Both are described in detail below.

Sparse linear classifier. Following Yuksekgonul et al. (2023); Oikarinen et al. (2023); Srivastava et al.
(2024), we learn a sparse linear classifier by enforcing sparsity on its weight matrix (Wong et al., 2021):

min
W,b

N∑
i=1

L(WsimC(xi) + b, yi) + λw Rα(W)︸ ︷︷ ︸
LW

sparsity

, (2)

where W ∈ R|Y|×|C| are the weights, b ∈ R|Y| is the bias, yi ∈ Y is the target class for input xi, L repre-
sents the task-specific loss function (cross-entropy loss throughout this work), λw controls the regularization
strength on W, and Rα(W) := (1 − α) 1

2 ||W||F + α||W||1,1 denotes the elastic net regularization (Zou &
Hastie, 2005). Note that simC(xi) is normalized and frozen during optimization. Importantly, the sparsity
aims to make the linear model’s classifications sparse and Yuksekgonul et al.; Oikarinen et al. & Srivastava
et al. have shown that an individual class indeed relies on only a sparse set of concepts.

The main limitations with only applying sparsity on the weights W are that it fails to produce globally sparse
classifications and is input-independent. This lack of (global) sparsity limits interpretability and makes it
challenging to comprehend a prediction. Specifically, we found that even when a concept is non-visible, it
impacts classification—either for the predicted class or any other class (Table 1). We consider a concept
to be actively contributing if it has a non-zero influence on the output (see Equation 7 for details). The
reason that the concepts are non-zero and, consequently, influence classification is that the cosine similarities
between the black-box model’s activations and concepts are generally non-zero.2

Input-dependent concept selection mechanism. To ensure that only few concepts affect classification
per input without significant performance sacrifices, we propose a simple yet effective input-dependent concept
selection mechanism. Specifically, we introduce a concept selector π : R|C| → R|C|, which takes the alignment
scores simC(xi) as input and outputs a sparse set of non-zero (i.e., active) scores and zeroes out the others.
We enforce sparsity through a penalty term on concept selector’s output: Lπ

sparsity = ||π(·)||0. Intuitively,
the sparsity penalty Lπ

sparsity drives the concept selector π to only retain a sparse set of concepts which are
important for classifying the input xi, as signaled by the task-specific loss L in Equation 2.

We considered three candidates for the implementation of the input-dependent concept selection mechanism
(please refer to Appendix C for further technical details):

• ReLU: We define the concept selector using the ReLU activation function as:

π(xi) := max(0, simC(xi) − o) with trainable offset parameter o ∈ R|C|
+ . (3)

We apply elastic net regularization on the selector’s output: Lπ
sparsity = Rα(π(xi)).

2While the classifier could technically “turn off” a concept cj by setting its associated column vector to the null vector
(W:,j = 0), this would effectively reduce the number of concepts and degrades performance, e.g., see Figure 4. Consequently,
the sparse linear classifier is unlikely to learn many of such null vectors.
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• JumpReLU: We use JumpReLU activation function (Erichson et al., 2019) for concept selection with
trainable offset parameter o ∈ R|C|

+ and the Heaviside step function H. We define the concept selector as:

π(xi) := simC(xi) · H(simC(xi) − o) =
{

0, simC(xi) ≤ o
simC(xi), simC(xi) > o . (4)

Following Rajamanoharan et al. (2024), we compute the gradients of the expected loss using
straight-through-estimators (Bengio et al., 2013). We use the following sparsity penalty Lπ

sparsity =∑|C|
j H(simC(xi)j − oj). Note that Lπ

sparsity directly optimizes L0.
• TopK: The TopK activation function (Makhzani & Frey, 2014) only keeps the k ≪ |C| concepts with

the largest alignment scores and zeroes out the remaining concepts:

π(xi) := TopKk(simC(xi) − o) with trainable offset parameter o ∈ R|C|
+ . (5)

Note that the sparsity can be directly controlled by k and, thus, Lπ
sparsity = 0.

Final interpretable classifier. We obtain the final interpretable classifier by plugging Equation 3, 4, or 5
into Equation 2 together with the respective implementation of π and Lπ

sparsity:

min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwLW
sparsity + λπLπ

sparsity , (6)

where λπ (or k for TopK) controls the regularization strength of Lπ
sparsity. Appendix C provides a detailed

overview of all variants. It is important to note that the selection of concepts is learned in an unsupervised
manner, and that the prediction remains linear w.r.t. the active concepts (π(xi) ̸= 0).

Concept dropout. During initial experiments, we found that models became overly reliant on a single
concept. To reduce this reliance, we added a dropout layer (Srivastava et al., 2014) after concept selection.
As dropout is applied per concept, it encourages the model to spread its classification decisions across more
concepts. Interestingly, we found that this could also improve performance.

3 Experiments
We evaluated UCBM on diverse image classification tasks and compared it to relevant baselines. We show
that UCBMs outperform prior work and narrow the gap to their black-box counterparts, while relying
on substantially fewer concepts globally in their classification (Section 3.1). Then, we demonstrate the
interpretability qualitatively as well as through a user study (Section 3.2). Lastly, we showcase how large
vision-language models can be leveraged to intervene on UCBMs by informing weight editing in order to
fix model errors (Section 3.3). Appendix N provides further analysis on the out-of-distribution robustness,
fairness, and shape vs. texture bias of UCBMs.

Datasets & black-box feature backbones. The CBMs are evaluated on ImageNet (Deng et al., 2009)
with a pretrained ResNet-50 V2 (He et al., 2016), CUB (Wah et al., 2011) with ResNet-18 pretrained on
CUB, and Places-365 (Zhou et al., 2017) with ResNet-18 pretrained on Places-365.3 These datasets cover
a diverse set of tasks from standard image classification (ImageNet), fine-grained classification (CUB), to
scene recognition (Places-365). Experiments with Inception and transformer feature backbone are done in
Appendix F. We find that UCBMs achieve performance close to the original black-box models, consistent
with the results observed for the ResNet feature backbones in Table 2.

Implementation details. We trained our UCBMs with Adam (Kingma & Ba, 2015) and cosine annealing
learning rate scheduling (Loshchilov & Hutter, 2017) for 20 epochs. We used a learning rate of 0.001 on
ImageNet and Places-365, and 0.01 on CUB; except for the JumpReLU for which we set it to 0.08 on CUB.
We set α = 0.99 for the elastic net regularization for all variants. We tuned the other hyperparameters (λπ

or k, λw, and dropout rate) to yield a good trade-off between performance, sparsity, and fair comparability.
Refer to Appendix D for the hyperparameters and to Figure 6 and Appendix G for their effect.

3Models are provided at https://github.com/pytorch/vision (ImageNet), https://github.com/osmr/imgclsmob (CUB),
and https://github.com/Trustworthy-ML-Lab/Label-free-CBM (Places-365).
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Figure 2: The discovered concepts exhibit faithful behavior. Removing the saw blade (right) from
the original image (left) shrinks the alignment score of the respective concept 1985 (blue). Concepts are
represented by their most activating crops. Additional results are provided in Appendix A.

Experimental setup. Since the number of concepts |C| substantially influence downstream performance
(see Figure 4), we set |C| proportional to the number of classes with various (expansion) factors {0.5, 1, 3, 5}.
All models were trained on a single NVIDIA RTX 2080 GPU and a full training run took from few minutes
to a maximum of 1–2 days depending on dataset size and number of concepts |C|. We report top-1 accuracy
on the standard holdout sets throughout our experiments.

Baselines. We compared our UCBMs to Post-hoc CBM (Yuksekgonul et al., 2023), Label-free CBM
(Oikarinen et al., 2023), and VLG-CBM (with NEC = 5) (Srivastava et al., 2024), as they are the most
related to our work and the latter is the current state-of-the-art CBM. Note that Post-hoc CBM requires
concept annotations and is therefore not applicable on ImageNet and Places-365. Finally, we compared our
concept selectors with the binary (latent) indicator concept selector proposed by Panousis et al. (2023). We
reproduced the baseline results using their respective original codebases.

Quality of the discovered concepts. Before we evaluated UCBMs, we verified that the discovered
concepts behave faithfully. For this, we analyzed the change in cosine similarities between feature activations
and concepts after the removal of relevant image parts of a certain concept; see Figure 2 and Appendix A.
For example, as we remove the saw blade (concept 1985), the cosine similarity of the aforementioned concept
decreases from ca. 0.5 to around 0.25 (Figure 2). We also manually verified that concepts are semantically
consistent and human-understandable. The quality can be exemplarily seen in the top activating crops (i.e.,
the top-n crops are selected based on the cosine similarity of their bottleneck feature activations to the
concept) throughout this paper. In addition, we evaluated the degree of polysemanticity in Appendix B.

3.1 Sparsity and performance results

How sparse are UCBMs’ decisions? Previous work evaluated sparsity based on (the average per-
class) number of non-zero weights in W (Oikarinen et al., 2023; Srivastava et al., 2024). However, these
approaches fail to consider two important factors: (1) how many concepts influence classification across all
inputs (globally), and (2) that certain concepts can be inactive for specific inputs, e.g., their value is zero.

To account for the aforementioned, we propose to compute the average number of concepts that actively
influence the classification decision for each input xi. Formally, we consider concept cj active for the
classification of input xi if

cj = π(xi)j ̸= 0︸ ︷︷ ︸
is the concept cj active?

∧ ∃ yi ∈ {1, ..., |Y|} for which Wyi,j ̸= 0︸ ︷︷ ︸
does the concept cj have an effect on any class?

. (7)

Tables 1 and 5 show that UCBMs with concept selection use substantially fewer concepts than UCBM
without concept selection and the other baselines. For example, on ImageNet, UCBM with TopK concept
selector uses an average of 42.0 concepts per input, while Label-free CBM, VLG-CBM, UCBM with binary
indicator concept selection, and UCBM without concept selection use averages of 4238.0, 3018.97, 1995.7,
or 3000.0, respectively. We find similar differences for CUB and Places-365.
How good is the performance of UCBMs? Table 2 shows that UCBMs mostly outperform the base-
line methods across all datasets, while being substantially sparser (Tables 1 and 5 and Figure 3). The
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Table 1: The concept selection mechanism leads to substantially fewer concepts being used in
the classification. We report the mean percentage number of active concepts according to Equation 7
w.r.t. to the total number of concepts |C|. Absolute numbers are provided in Table 5 in Appendix E. Label-
free CBM, VLG-CBM, UCBM without concept selection, and UCBM with binary indicator use many more
concepts than our UCBM variants with concept selection.

Mean number of active concepts/|C| (↓)
Method ImageNet CUB Places-365
Post-hoc CBM (Yuksekgonul et al., 2023) n/a 100% n/a
Label-free CBM (Oikarinen et al., 2023) 93.74% 99.95% 90.64%
VLG-CBM (Srivastava et al., 2024) 70.21% 98.66% 63.27%
UCBM w/o concept selection 100% 100% 100%
UCBM with binary indicator (Panousis et al., 2023) 66.52% 100% 49.28%

UCBM with ReLU concept selector 1.59% 30.5% 8.9%
UCBM with JumpReLU concept selector 1.43% 31.15% 9.11%
UCBM with TopK concept selector 1.4% 32.1% 8.88%

Table 2: UCBMs mostly outperform the baselines and reduce the gap to the original, black-box
model. We report mean top-1 accuracy with standard deviation across three training runs (we kept the
discovered concepts fixed). Note that the methods use different levels of sparsity (see Table 1) and refer to
Figure 3 that plots sparsity against performance.

Top-1 test accuracy (↑)
Method Sparse? ImageNet CUB Places-365
Original, black-box model ✗ 80.9 76.7 53.69
Post-hoc CBM (Yuksekgonul et al., 2023) (✓) n/a 60.10 n/a
Label-free CBM (Oikarinen et al., 2023) (✓) 78.09 74.38 50.67
VLG-CBM (Srivastava et al., 2024) (✓) 78.78 75.44 51.67
UCBM w/o concept selection (✓) 79.80 ± 0.027 75.15 ± 0.037 52.41 ± 0.028
UCBM with binary indicator (Panousis et al., 2023) (✓) 77.42 ± 0.056 74.93 ± 0.309 50.91 ± 0.105

UCBM with ReLU concept selector ✓ 79.07 ± 0.029 74.61 ± 0.128 50.86 ± 0.021
UCBM with JumpReLU concept selector ✓ 79.49 ± 0.016 74.57 ± 0.290 51.24 ± 0.019
UCBM with TopK concept selector ✓ 79.32 ± 0.009 74.96 ± 0.083 51.20 ± 0.050

performance-sparsity trade-off is visualized in Figure 3, where we control the number of active concepts (ac-
cording to Equation 7) by varying the hyperparameter k for UCBM with TopK concept selector, or λπ for
UCBM with ReLU or JumpReLU concept selector. We find that some models that allow for more concepts
(e.g., UCBMs without concept selection) unsurprisingly outperform our UCBM variants with concept selec-
tion. However, the UCBM variants with concept selection are substantially sparser and typically achieve at
least competitive, but mostly superior, task performance to the baselines. For example, our UCBM variants
outperform all baselines on ImageNet and all but VLG-CBM on CUB and Places-365. Besides that, Figure 3
shows that one can control the sparsity-performance trade-off through the respective hyperparameters. This
allows practitioners to set these hyperparameters according to their desired balance between sparsity (and
better interpretability) and performance, based on the requirements of their application.

Effect of the total number of concepts C. We found that performance is strongly influenced by the
total number of concepts |C| used. In Figure 4, we varied the number of concepts to assess this and, as
expected, find that increasing |C| improves performance. Note that UCBMs achieve competitive but mostly
superior performance (Table 2 and Figure 3) while using a smaller number of concepts |C|.
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Figure 3: Trade-off curves between sparsity and performance. We plot the mean number of active
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For UCBMs we plot the Pareto-curves. The UCBMs are substantially sparser than the baselines (see also
Table 1). Our UCBMs Pareto-dominate all baselines on ImageNet and Places-365, while only being outper-
formed by VLG-CBM on CUB (though it has substantially higher sparsity).
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Figure 5: The TopK concept selector effectively controls information leakage. Previous work
showed that even using random concepts could yield strong CBMs, suggesting information leakage. However,
performance with random concepts declines quickly, whereas it remains consistently high when using the
discovered concepts when varying k of the TopK concept selector.

Concept selection effectively controls information leakage. Recent work showed that CBMs’ con-
cept prediction may encode unintended class information (Margeloiu et al., 2021). For example, even many
random concepts can achieve strong downstream performance (Yan et al., 2023; Midavaine et al., 2024; Sri-
vastava et al., 2024). Figure 5 shows that k effectively controls information leakage, as the performance of
random concepts quickly drops when using smaller k (fewer active concepts).

Sensitivity analysis. We varied λw (Figure 6a), k (Figure 6b), and dropout rate (Figure 6c) to analyze
their impact on sparsity and performance. We find that only k controls sparsity (Equation 7) in TopK,
whereas for the other concept selectors, all hyperparameters affect sparsity (see Appendix G). We consider
this is as an advantage of TopK, as it disentangles the effect of the hyperparameters. This is discussed in
more detail in Appendix G. For performance, we find that larger λw and smaller k lead to worse performance.
For dropout rate, there typically seems to be a sweet spot.

3.2 Interpretability of UCBM

Explainable sample-wise decisions. Figure 7 shows qualitative examples of the most contributing con-
cepts with their contribution strength (contribution of concept cj to class yi: |Wyi,jπ(xi)j |). We find that
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Figure 6: Sensitivity analysis over λw (a), k (b), and dropout (c) on ImageNet. Larger λw and
smaller k worsen performance, though smaller k increases sparsity. There is no clear relation for dropout
(also across other datasets). Results for the other datasets and concept selectors are provided in Appendix G.
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(b) ‘American goldfinch’ (CUB), conf: 92.51%.

Figure 7: Decisions of UCBM with TopK concept selector rely on a few reasonable and diverse
concepts. Results on ImageNet (a) and CUB (b). Additional examples are provided in Appendix H.

the most contributing concepts are relevant to both the input and prediction, while also being diverse. For
example, UCBM with TopK concept selector focuses on concepts such as ‘tiger striped fur’, ‘whiskers’ or ‘big
cats’ snouts’ for the tiger in Figure 7a, or the ‘bright yellow plumage’ of the American goldfinch in Figure 7b.

Figure 8 compares the explanation of our UCBM with TopK concept selector, Label-free CBM, and VLG-
CBM (more examples are provided in Appendix H). We find that UCBM relies on fewer concepts, that are
present in the image and relevant to the predicted class. In contrast, Label-free CBM and VLG-CBM often
rely on concepts that are correlated with the predicted class but absent in the image. This is especially
pronounced for misclassifications (Figures 20f to 20i in Appendix H).
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Which model is more comprehensible?

Figure 9: Users strongly
prefer UCBM. From clearly
UCBM (blue) to clearly Label-
free CBM (red).

User study on explainable sample-wise decisions. To corrobo-
rate the qualitative results above, we conducted a user study to assess
the interpretability of UCBM with TopK concept selector compared to
Label-free CBM (we omitted VLG-CBM due to its qualitative similarity
to Label-free CBM, see Figure 8 and Appendix H). Specifically, we evalu-
ated the comprehensibility of the explanations. Note that the approaches
present their concepts differently: UCBM and Label-free CBM use visual
or textual concept representations, respectively. Thus, for fair compari-
son, we labeled concepts or retrieved images using SigLIP SoViT-400m
(Zhai et al., 2023; Alabdulmohsin et al., 2023). Further details on the
user study design are provided in Appendix I.

Figure 9 shows that users strongly preferred UCBM over Label-free CBM, corroborating the qualitative
results shown in Figures 7 and 8 and Appendix H. Further analysis is provided in Appendix I.

Explainable class-level decision rules. To derive class-level decision rules, we computed the average
contribution of each concept for a class. Figure 10 shows the top-3 concepts for two classes. We find
that UCBM with TopK concept selector focuses on reasonable, human-understandable concepts relevant to
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Figure 8: The decisions of UCBM with TopK concept selector (left) are more comprehensible
than those of Label-free CBM (middle) and VLG-CBM (right). Our approach relies on concepts
that are present in the image and relevant to the prediction, whereas Label-free CBM and VLG-CBM tend to
use concepts that are not even present, which is particularly pronounced for misclassifications. Appendix H
provides additional examples. Best viewed digitally and with zoom.

0 20 40

Avg concept contribution in %

2746

187

1878

othersC
on

ce
pt

id

(a) ‘pineapple’ (ImageNet).

0 20 40 60

Avg concept contribution in %

113

187

129

othersC
on

ce
pt

id
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Figure 10: UCBM with TopK concept selector identifies class-relevant concepts (represented by
the most activating crops). Results for ImageNet (a) and CUB (b). Additional examples are provided in
Appendix J.

each class. For example, Figure 10a shows that UCBM bases its classification of pineapples on the typical
‘pineapple’s texture’ or its ‘leaves’.

3.3 Case study: Correcting errors using a multi-modal LLM

In this subsection, we show how a multi-modal LLM (GPT-4o (Achiam et al., 2023)) can guide us to correct
errors in UCBMs (specifically, a UCBM with TopK concept selector trained on ImageNet). We prompted the
model asking it to adjust the weights of the sparse linear classifier W in UCBMs (Equation 6) to correct an
error without affecting the classification of other inputs. The prompt included the misclassified input image,
the top-5 concepts, and their contributions for both the misclassified and correct class. For an example of
the prompt, see Appendix M. During initial experiments, we found that the suggested changes, ∆W, were
sometimes too strong, leading to errors of previously correct inputs. To address this, we ran a grid search
on the training set of ImageNet to find optimal weighing factors βi ∈ [0, 1] for each proposed change ∆Wi.

Figure 11 shows three examples that were correctly classified after applying the weight adjustments proposed
by the LLM. This demonstrates the intervenability of UCBMs and illustrates the potential use case of multi-
modal LLMs to automatically identify and correct the traceable causes of errors of UCBMs.
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example prediction, before → after edit test accuracy, before → after edit
1 volcano → loggerhead sea turtle 79.322 → 79.322
2 eel → tench 79.322 → 79.328
3 goose → flamingo 79.322 → 79.326

Figure 11: UCBMs are intervenable. We used a multi-modal LLM to help us to correct errors by guiding
the edits of the weights of UCBM with TopK concept selector (k = 42) that was trained on ImageNet.

4 Related works

Concept-based models. Concept Bottleneck Models (CBMs) (Koh et al., 2020) are trained to directly
leverage concepts in their classifications (Lampert et al., 2009; Kumar et al., 2009). Many works highlighted
(and partially addressed) the limitations of them (Margeloiu et al., 2021; Mahinpei et al., 2021; Havasi et al.,
2022; Marconato et al., 2022; Raman et al., 2024). Other work improved the performance-interpretability
trade-off (Espinosa Zarlenga et al., 2022; Yang et al., 2023) or extended them beyond image classification
(Ismail et al., 2023; Zarlenga et al., 2023) (see Appendix L how UCBM can be also extended to such).

The most related methods to our work convert a pretrained black-box model into a CBM post-hoc (Yuk-
sekgonul et al., 2023; Oikarinen et al., 2023; Menon & Vondrick, 2023; Laguna et al., 2024; Dominici et al.,
2024). These approaches alleviate the need for costly concept annotations by leveraging language models,
like GPT-3 (Brown et al., 2020), to automatically generate class-specific descriptions and vision-language
models, like CLIP (Radford et al., 2021), to learn a mapping from a black-box model’s uninterpretable fea-
tures to these concepts. In contrast to these, we do not presume which concepts the black-box model has
learned, but find the ones that most accurately decompose the black-box model’s features in an unsuper-
vised manner. Concurrently, Rao et al. (2024) discovered concepts with sparse autoencoders to transform
CLIP into a concept-based classifier. In contrast to the aforementioned works, we also introduced a novel
input-dependent concept selection mechanism that dynamically retains only a sparse set of concepts per
input.
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Concept discovery. Early work searched for neuron-aligned concepts (Bau et al., 2017; Olah et al.,
2017), while later works, inspired by the superposition hypothesis (Kim et al., 2018; Elhage et al., 2022),
went beyond this to (linear) vector (Kim et al., 2018; Zhou et al., 2018; Olah et al., 2018; Ghorbani et al.,
2019; Zhang et al., 2021; McGrath et al., 2022; Zou et al., 2023; Fel et al., 2023b; Huben et al., 2024; Stein
et al., 2024), linear subspace (Vielhaben et al., 2023), or density-based (Vielhaben et al., 2024) concept
representations. Early work needed costly annotated datasets to find concepts through supervision. Later
work overcame this bottleneck by formulating concept discovery as a dictionary learning problem (Fel et al.,
2023a).

Model editing. Model editing aims to modify a model’s weights to remove a bias or correct errors. Previ-
ous work edited knowledge in large language models (Zhu et al., 2020; Meng et al., 2022), generative image
models (Bau et al., 2020; Oldfield et al., 2023; Gandikota et al., 2023), or modified a classifier’s predic-
tion rules (Santurkar et al., 2021; Oikarinen et al., 2023). These works relied on, e.g., human intervention,
factorization, or hypernetworks, whereas we leverage large vision-language models to inform model editing.

5 Limitations & future work

The main limitation (or advantage) of our approach is that discovered concepts are only represented visually,
not textually. While images may be more informative, texts aid faster and easier interpretability. To
obtain textual descriptions of concepts, we could manually label concepts. However, this does not scale
to large amounts of concepts. Thus, we also experimented with automatic concept labeling through large
vision-language models (GPT-4o (Achiam et al., 2023)), see Appendix K for details. While we found it to
yield overall good concept descriptions, we also found many instances with poor descriptions; especially for
non-object-centric or more abstract concepts. Thus, we reviewed and edited, or manually crafted concept
descriptions as needed.

Another limitation of our approach is that we only extract concepts from the bottleneck layer of black-box
models. We conjecture that the use of concepts throughout the feature hierarchy of these models may be
beneficial for concept-based models in terms of performance and/or interpretability, as such a hierarchy is
also learned by black-box models (Zeiler & Fergus, 2014). For instance, an early layer could find concepts for
‘windows’, ‘car body’, or ‘wheels’, while a later layer assembles them to a ‘car’ concept (Olah et al., 2020).

Lastly, UCBMs inherit the limitations of unsupervised concept discovery methods, such as not fully resolved
polysemanticity (Graziani et al., 2024) (see Appendix B for an empirical evaluation) or concepts possibly
not encoding the intended semantics (Mahinpei et al., 2021; Marconato et al., 2023; Bortolotti et al., 2024).
Future work could explore discovery methods that are guaranteed (under certain conditions) to identify the
true concepts encoded by a black-box model (Leemann et al., 2023).

6 Conclusion

We presented UCBMs, which convert pretrained black-box models into interpretable concept-based models
by discovering the concepts that the model has learned through unsupervised concept discovery. We further
introduced an input-dependent concept selection that effectively only retains the concepts most relevant for
classifications of each input. Our experiments show that UCBMs outperform previous methods, while being
substantially sparser globally. Finally, we qualitatively and quantitatively validated the interpretability of
UCBMs, and showcased how multi-modal LLMs can guide the editing of UCBMs to correct its errors.

Broader impact statement
There are many potential positive as well as negative societal impacts of our work. However, we do not see
any particular impact specific to our work that does not apply to the general impact of advancing the field
of concept-based models, a subfield of machine learning.
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(a) Removing the head and neck of an ostrich makes concepts 654 (green), 549 (red), and 1843 (purple) disappear
from the top-5 cosine similarities.
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(b) Removing the ears of an angora rabbit makes concept 1693 (green) disappear from the top-5 cosine similarities.
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(c) Removing the neck of an acoustic guitar makes concept 2975 (red) disappear from the top-5 cosine similarities.

Figure 12: Concepts discovered in an unsupervised manner exhibit faithful behavior. Concepts
are represented by their most activating image crops. From the original image (left), we manually removed
image parts (right) and computed the concept-activation cosine similarities for an ostrich (a), angora rabbit
(b), and acoustic guitar (c). We find that cosine similarity scores reduce, as we remove an image part where
that concept or these concepts were previously present.

A Additional results for the faithfulness of discovered concepts

Figure 12 provides additional results for the faithfulness of the discovered concepts. In Figure 12a removing
the head and neck of the ostrich in the input image makes concepts 654 (green), 549 (red), and 1843 (purple)
disappear from the top-5 cosine similarities. Since concepts 654, 549 and 1843 represent parts of an ostrich’s
head or neck, this demonstrates the faithfulness of the discovered concepts. Figures 12b and 12c show similar
behavior for a rabbit’s ears and guitar’s neck, respectively.

B Evaluation of concept polysemanticity

The goal of unsupervised discovery methods is to disentangle the concepts from the original feature space.
That is, we typically find that individual neurons represent multiple different concepts. Although concept dis-
covery reduces the degree of polysemanticity, recent work shows that some level of polysemanticity remains,
albeit significantly reduced (Graziani et al., 2024).

To evaluate the level of polysemanticity, we visually investigated whether the top-9 most activating image
crops for each concept appear to be mono- or polysemantic (see Figure 13 for examples). Specifically, we
randomly selected 100 concepts discovered in our ImageNet experiment. We found that 12 of these concepts
exhibited polysemanticity, while the remaining 88 appear to be monosemantic. This indicates that most
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(a) Monosemantic concepts. (b) Polysemantic concepts.

Figure 13: Examples of mono- and polysemantic concepts.

Table 3: Overview of interpretable classifiers. In the equations below, let s̃(xi) := simC(xi) denote the
normalized cosine similarity between activations f(xi) = ai for input xi and the concepts C, W ∈ R|Y|×|C|

and b ∈ R|Y| are the weights and bias of the linear classifier, o ∈ R|C|
+ is a trainable offset parameter,

yi ∈ Y denotes the target class of input xi for a total of |Y| classes, L denotes the task-specific loss function
(cross-entropy loss throughout this work), Rα is the elastic net regularization penalty (Zou & Hastie, 2005),
λw, λπ govern the regularization strengths, H denotes the Heaviside step function, and TopK denotes the
TopK activation function (Makhzani & Frey, 2014). Note that s̃(xi) is frozen during optimization. Further,
note that the TopK concept selector does not need a sparsity penalty since sparsity can be controlled directly
using the hyperparameter k.

name concept selector π interpretable classifier

ReLU π(xi) := max(0, s̃(xi) − o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W) + λπRα(π(xi))

JumpReLU π(xi) := s̃(xi) · H(s̃(xi) − o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W) + λπ

|C|∑
j

H(s̃j(xi) − oj)

TopK π(xi) := TopKk(s̃(xi) − o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W)

concepts discovered by the unsupervised discovery are monosemantic, but a number of concepts still retain
polysemantic characteristics.

C Further details on the interpretable classifiers

Table 3 provides the complete overview of the interpretable classifiers for all of our UCBM variants from
Section 2.2. Below, we provide further details for the JumpReLU and TopK concept selectors.

JumpReLU concept selector. The JumpReLU activation function (Erichson et al., 2019) is defined as
follows:

JumpReLUo(x) = x · H(x − o) =
{

0, x ≤ o
x, x > o , (8)

where H is the Heaviside step function. Note that we cannot directly train our offset parameter o. Thus,
following Rajamanoharan et al. (2024), we used straight-through-estimators (Bengio et al., 2013) to make o
trainable. Specifically, we adopted the pseudo-derivates from Rajamanoharan et al. (2024):

∂̃

∂̃o
JumpReLUo(x) := −0

ϵ
K(x − o

ϵ
) (9)
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Table 4: Hyperparameter settings for all UCBMs variants on ImageNet | CUB | Places-365.

λπ k λw dropout rate
UCBM w/o concept selection n/a n/a

1e-4 | 8e-4 | 4e-4 0.1 | 0.2 | 0.2UCBM with ReLU concept selector 2e-5 | 1e-4 | 2e-5 n/a
UCBM with JumpReLU concept selector 1e-5 | 4e-7 | 4e-7 n/a
UCBM with TopK concept selector n/a 42 | 66 | 162

and
∂̃

∂̃o
H(x − o) := −1

ϵ
K(x − o

ϵ
) , (10)

where ∂̃ denotes the pseudo-derivative, K is a kernel (following Rajamanoharan et al. (2024) we used the
rectangle function: rect(x) := H(x + 1

2 ) − H(x − 1
2 )), and ϵ can be seen as the KDE bandwidth.

TopK concept selector. The TopK activation function (Makhzani & Frey, 2014) is defined as follows:

TopKk(x)i =
{

xi if xi ∈ top-k(x),
0 otherwise,

. (11)

We used the TopK implementation of Gao et al. (2025) who internally apply a non-linearity (we used ReLU)
after the actual TopK function. Note that we can directly control the sparsity through the hyperparameter
k and the TopK concept selector becomes equivalent to the identity function as k = |C|.

Why do we add a trainable offset parameter o? We introduce the additional trainable offset param-
eter o ∈ R|C|

+ to allow the classifier to adapt to different ranges of alignment scores for each concept. The
reasons for this is that the distribution of scores can vary between concepts. For example, for one concept,
the scores may be more uniformly distributed, indicating a more ambiguous presence of the concept. For
another concept, the scores might follow a bimodal distribution, indicating two distinct modes that indicate
the object is present or absent. The offset parameter helps the classifier in such cases to account for such
different distributions.

D Hyperparameter settings

Table 4 provides the hyperparameters (λπ, k, λw, dropout rate) for all our UCBMs variants. We chose
those hyperparameters such that they yielded a good trade-off between performance, sparsity, and fair
comparability (see Figure 6 and Appendices E and G). It is important to note that we first optimized λπ for
the ReLU and JumpReLU concept selectors and then set k accordingly, as we found that its relationship to
sparsity (c.f., Equation 7) is straightforward.

E Number of concepts used per class prediction

Table 5 provides the absolute numbers for Table 1. UCBM variants with concept selector use substantially
fewer concepts than prior CBMs and UCBM without concept selection or binary indicator (Panousis et al.,
2023).

Beyond the sparsity measurements in Tables 1 and 5, we computed how many concepts the models need to
explain their prediction of a class. For this, we computed the mean number of concepts that are required to
explain 95% (or 90%) of a model’s prediction per sample:

1
N

N∑
i=1

C ′
i , where min

C′
i
⊆{1,...,|C|}

|C ′
i| s.t.

∑
c∈C′

i

|Wỹi,cπ(xi)c|∑
c∈{1,...,|C|}

|Wỹi,cπ(xi)c|
≥ 95% , (12)
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Table 5: The concept selection mechanism leads to substantially fewer concepts being used
in the classification. We report the mean number of active concepts with standard deviation according
to Equation 7. Parentheses show the total number of concepts |C|. Label-free CBM, VLG-CBM, UCBM
without concept selection, and UCBM with binary indicator use many more concepts than our UCBM
variants with concept selection.

Mean number of active concepts (c.f. Equation 7)
Method ImageNet CUB Places-365
Post-hoc CBM (Yuksekgonul et al., 2023) n/a 112.0 (112) n/a
Label-free CBM (Oikarinen et al., 2023) 4238.0 (4521) 211.9 (212) 1820.0 (2008)
VLG-CBM (Srivastava et al., 2024) 3018.97 (4300) 661.99 (671) 1382.99 (2186)
UCBM w/o concept selection 3000.0 (3000) 200.0 (200) 1825.0 (1825)
UCBM with binary indicator (Panousis et al., 2023) 1995.7 (3000) 200.0 (200) 899.3 (1825)

UCBM with ReLU concept selector 47.8 (3000) 61.0 (200) 162.4 (1825)
UCBM with JumpReLU concept selector 42.8 (3000) 62.3 (200) 166.2 (1825)
UCBM with TopK concept selector 42.0 (3000) 64.2 (200) 162.0 (1825)

Table 6: UCBM with TopK concept selector requires less concepts to explain a prediction. We
report the mean and the standard deviation of the number of concepts that are required to explain 95% of
the prediction (see Equation 12 for more details).

#concepts to explain 95% of the prediction (Equation 12)
Approach ImageNet CUB Places-365
UCBM w/o concept selection 8.79 ± 8.093 5.79 ± 1.774 46.1 ± 11.594
UCBM with ReLU concept selector 3.83 ± 2.323 4.7 ± 1.586 15.72 ± 4.032
UCBM with JumpReLU concept selector 5.05 ± 3.334 4.53 ± 1.679 25.05 ± 8.068
UCBM with TopK concept selector 4.95 ± 2.933 5.25 ± 1.747 24.72 ± 8.04

where ỹi denotes the model’s prediction of input xi.

Table 6 shows that UCBMs with concept selector rely on fewer concepts than UCBM without concept
selection. Note that relying on fewer concepts makes it easier for users to comprehend a prediction since
they do not need to inspect a lot of concepts.

Figure 14 provides a detailed per-class analysis of the mean number of concepts required to predict each
class, i.e., to explain 90% or 95% of the prediction (Equation 12). While some classes only rely on a
few or even only a single concept, others require substantially more. For example, on ImageNet, certain
classes—such as ‘goldfish’, ‘great grey owl’, ‘trilobite’, ‘quail’, ‘hornbill’, ‘abacus’, ‘bell or wind chime’, ‘harp’,
‘jigsaw puzzle’, ‘marimba’, ‘maze’, ‘graduation cap’, ‘mousetrap’, ‘piggy bank’, ‘pinwheel’, ‘pool table’, ‘solar
thermal collector’, ‘umbrella’, ‘water tower’, ‘crossword’, ‘jackfruit’, and ‘horse chestnut seed’—typically only
use a single concept. In contrast, other classes—such as ‘Redbone Coonhound’, ‘Tibetan Terrier’, ‘Golden
Retriever’, ‘patas monkey’, ‘titi monkey’, and ‘monastery’—require substantially more concepts on average
(13).

F Other feature encoder choices

Table 7 shows the results for InceptionV3 (Szegedy et al., 2015) and ViT-B/16 (Dosovitskiy et al., 2021)
feature encoders, both pre-trained on ImageNet.4 Consistent with the findings in Section 3.1, UCBM with
TopK concept selector achieves performance close to the original, black-box models. While we maintained

4Both (black-box) models are provided at https://github.com/pytorch/vision.
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Figure 14: Analysis of number of concepts used per class. Top panel: Cumulative contribution of the
top 10 concepts per class. Middle and bottom panels: Number of concepts required to reach 90% or 95%
cumulative contribution per class, respectively. While some classes rely on only a few concepts, others rely
on more.

Table 7: UCBM also performs well with InceptionV3 and ViT backbone on ImageNet.

Method ImageNet top-1 test accuracy
Original InceptionV3 77.29
UCBM w/ TopK 73.23
Original ViT-B/16 81.01
UCBM w/ TopK 77.94

the same sparsity level for UCBM when using InceptionV3 as the feature encoder, applying the same level to
ViT led to a performance drop, necessitating a reduced level of sparsity. We hypothesize that non-negative
matrix factorization may not be the most effective approach for extracting concepts from ViT’s non-negative
feature space. Exploring alternative concept discovery methods, such as sparse autoencoders, could allow us
to restore higher levels of sparsity with less performance compromises.
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Figure 15: Sensitivity analysis for UCBM with TopK concept selector over λw (a), k (b), and
the dropout rate (c) for CUB (left) and Places-365 (right).

10−4 10−3

λw

78.0

78.5

79.0

te
st

ac
c

50

60

av
g

ac
tiv

e
co

nc
ep

ts

10−4 10−3

λw

74.6

74.8

te
st

ac
c

60

65

av
g

ac
tiv

e
co

nc
ep

ts
10−4 10−3

λw

50

52

te
st

ac
c

140

160

av
g

ac
tiv

e
co

nc
ep

ts

(a) Performance vs. λw.

10−6

λπ

75.0

77.5

80.0

te
st

ac
c

0

200

av
g

ac
tiv

e
co

nc
ep

ts

10−7 10−5

λπ

74

75

te
st

ac
c

50

100

av
g

ac
tiv

e
co

nc
ep

ts

10−7 10−5

λπ

45

50

te
st

ac
c

0

200

400

av
g

ac
tiv

e
co

nc
ep

ts
(b) Performance vs. λπ.

0.00 0.25

dropout rate

78.8

79.0

te
st

ac
c

50

100

av
g

ac
tiv

e
co

nc
ep

ts

0.0 0.2 0.4

dropout rate

72

74

te
st

ac
c

25

50

75

av
g

ac
tiv

e
co

nc
ep

ts

0.00 0.25

dropout rate

50.0

50.5

te
st

ac
c

150

175

200

av
g

ac
tiv

e
co

nc
ep

ts

(c) Performance vs. dropout.

Figure 16: Sensitivity analysis for UCBM with ReLU concept selector over λw (a), λπ (b), and
the dropout rate (c) for ImageNet (left), CUB (middle), and Places-365 (right).

G Additional sensitivity analysis results

Figure 15 provides the results for the sensitivity analysis for UCBM with TopK concept selector on CUB
and Places-365. Figures 16 and 17 provide the results for UCBM with ReLU or JumpReLU concept selector,
respectively.

We find that the hyperparameters k (for TopK) or λπ (for ReLU and JumpReLU) control the trade-off
between performance and sparsity (see also Figure 3). Regarding the other hyperparameters, λw and dropout
rate, it is important to observe that they have less influence on the sparsity for the TopK concept selector
than for the other concept selectors. We consider this as an advantage of the TopK concept selector, as it
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Figure 17: Sensitivity analysis for UCBM with JumpReLU concept selector over λw (a), λπ (b),
and the dropout rate (c) for ImageNet (left), CUB (middle), and Places-365 (right).

reduces the interaction between hyperparameters. This makes hyperparameter tuning simpler and simplifies
the interpretation: k governs the average number of active concepts per sample, λw governs the number of
concepts used per class, and the dropout rate influences whether the classifier relies on a broader or narrower
set of concepts.

For λw, we find that increasing it typically leads to worse performance and a smaller average number of
active concepts per sample. Interestingly, for the UCBMs with ReLU concept selector trained on ImageNet
and Places-365, we observe the opposite behavior. For the dropout rate, a higher dropout rate results in
more active concepts per sample, though its relationship with performance is less clear.

H Additional examples of explainable decisions

Additional examples for sample-wise explanations. Figure 18 provides more examples of explainable
decision of UCBM with TopK concept selector on ImageNet, CUB, and Places-365. We typically find that
our method relies on a small set of concepts that are present in the images, human-comprehensible and
class-relevant. For instance, for the viaduct in Figure 18a, UCBM uses class-relevant concepts (e.g., ‘arches’,
‘stones’, or ‘walkway’). For the ‘railroad track’ in Figure 18c, it uses concepts such as ‘tracks’ or ‘train’.
Interestingly, it also uses the concept ‘large window’ that is also related to, e.g., buses. This indicates that
UCBMs first assess if concepts are present or absent and then based on that evidence predict the class that
is most likely given that.

Understanding misclassifications of UCBMs. Figure 19 shows that we can comprehend why UCBMs
made a misclassification. For example, Figure 19a shows that the UCBM incorrectly predicted ‘car wheel’
instead of ‘station wagon’. However, the image shows such station wagon mirrored in a car wheel. Looking
at the most contributing concepts reveals that UCBM focused on concepts that are related to the car wheel,
as it is the most salient in the image.
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(d) ‘art gallery’ (Places-365), conf.: 72.55%.

Figure 18: Explainable decisions by UCBM with TopK concept selector on ImageNet (a), CUB (b), and
Places-365 (c, d) classes. The model’s prediction are comprehensible and typically rely on only few concepts.

Additional examples for the comparison of UCBM to Label-free CBM and VLG-CBM. Fig-
ure 20 compares the explanations of UCBM with TopK concept selector, Label-free CBM (Oikarinen et al.,
2023), and VLG-CBM (Srivastava et al., 2024). We find that our approach provides more comprehensible ex-
planations:5 UCBM relies on intuitive concepts that are present in the image and relevant to the prediction.
In contrast, Label-free CBM and VLG-CBM tend to rely on concepts that are correlated to the predicted
class but may not be present in the image, e.g., the concepts ‘graduation markings’ or ‘graduation ceremony’
for the prediction ‘graduation cap’ in Figure 20d.6 We quantified the usage of non-visible concepts in the
predictions of each method in Table 8. Note that such reliance on prediction-class correlated but absent
concepts is particularly pronounced for misclassifications (Figures 20f to 20i and Table 8). For example in
Figure 20h showing a broom nearby a lake, Label-free CBM relies on the concepts ‘mellow, flute-like sound’,
‘wind instrument’, or ‘bagpipe’. Similarly, VLG-CBM relies on the concepts ‘tangled twisted shape’, ‘made
of rope or string’, or ‘Mexican food’. None of these concepts are present in the image. We believe relying on
such non-visible concepts is not helpful to understand the decision of a concept-based model.

I Further details on the user study

In the user study, we studied whether users consider the explanations of the decisions of UCBM to be
comprehensible. To do so, we compared the explanations of UCBM with TopK concept selector with Label-
free CBM (Oikarinen et al., 2023). Both were trained on ImageNet.

Task. We asked users to assess which model provides a more comprehensible explanation from a scale from
‘Model A clearly more’ to ‘Model B clearly more’. Further, we asked for the reasons why they think one
model is more comprehensible than the other.

5These qualitative findings are further corroborated in the user study in Section 3.2 and Appendix I.
6We suspect the reason for this are shortcomings of the vision language models used in both approaches. For instance, the

concept ‘graduated cylinder’ is unrelated to the prediction of ‘graduation cap’ in Figure 20d. However, the word ‘graduated’ is
related to ‘graduation’. Indeed, when we compute the cosine similarity of text features (we considered the following: ‘graduated
cylinder’, ‘graduation ceremony’, ‘graduation markings’, ‘graduation’, ‘university’, ‘dog’, ‘house’), we found that concepts related
graduation have higher similarities with the graduated cylinder than the unrelated concepts. We leave further investigations
for future work.
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Figure 19: The most contributing concepts explain the misclassifications on ImageNet of UCBM
with TopK concept selector. a: The image shows a station wagon mirrored in a car wheel. Most of the
top-5 concepts are related to car wheels, which explains that the model only focuses on the car wheel itself
instead of the mirrored station wagon. This clearly explains why the model predicts ‘car wheel’ instead of
‘station wagon’. b: The image shows an eft next to a bottle cap. The concepts show that the model used
concepts related to bottle caps, which is the object at the center of the image. c: The image shows two
granny smith apples next to a goblet that was predicted by the model. The concepts reveal that the model
focuses on concepts related to the goblet at the center of the image. d: The image shows a sports car,
including one of its front wheels. The most important concept is related to sports cars. The other concepts
also focus more on general car concepts than on the wheels.

User study data. We showed users sample-wise (local) explanations based on which concepts contributed
the most to the decision of each model, akin to Figures 8, 10, 18 and 19. Importantly, 20% of samples
showed misclassifications of both models (for the other 80% both model predicted correctly).7 We include
misclassifications to also understand how comprehensible models are under errors. We believe this is an
important aspect to study, as users will also interact with models that make errors in practice. For sake of
this user study, we simplified the explanations by removing the concept contributions and only showed the
names and top-activating image crops of the five most contributing concepts and a corresponding concept
description.

Note that UCBM and Label-free CBM represent their concepts differently: UCBMs show visual representa-
tions, whereas Label-free CBM shows concept descriptions. To ensure fair comparison, we labeled the most
activating image crops of UCBM’s concepts and retrieved images using SigLIP SoViT-400m (Zhai et al.,
2023; Alabdulmohsin et al., 2023) for Label-free CBM’s concepts.

Setup. We implemented the user study in a lightweight Python GUI so that users could run the study
locally on their machines. Users were provided with the task description (Figure 21) and an example
(Figure 22). After the instruction, users interacted with our user study interface (Figure 23).

We asked ten users to rate a total of 200 samples (20 per user). Users participated voluntarily and without
payment. They have strong background in machine learning and related fields. However, none of them is
working on concept-based models or had seen explanations of UCBM before.

7No sample for which one model was correct and the other was incorrect was shown in the user study.
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(e) GT: ‘spotted salamander’, UCBM: ‘spotted salamander’ (90.35%), Label-free CBM: ‘spotted salamander’
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Further analysis. Complementary to the results presented in Section 3.2, we conducted further analysis
on the results of the user study. Figure 24 shows that users strongly preferred our UCBM with Topk concept
selector over Label-free CBM in ca. 65-70% of evaluations (Label-free CBMs are only preferred in ca. 15%).
Users’ preference was similar for correct or incorrect predictions.

Users based their preference decisions mostly on relevance to the prediction (selected in 66.5% of the evalu-
ations). However, relevance to the image (55%) and informativeness (55%) closely followed it.

26



Published in Transactions on Machine Learning Research (05/2025)

0 5

Concept contribution

1807
2510
1194
1353

297
others

C
on

ce
pt

id

0 5

Concept contribution

2995
3415
4708

973
3171

others

0 5

Concept contribution

4165
4175

214
8
5

others

sleeping bag

blue tent fabric

tent

head/face covering

frontal face

window

covers the entire window

windows

glass screen

attached to a window frame

used to keep insects out

usually found on windows

blind

arabic inscriptions

yard

(f) GT: ‘tent’, UCBM: ‘sleeping bag’ (97.70%), Label-free CBM: ‘window screen’ (59.72%), VLG-CBM: ‘window
screen’ (39.38%)

0.0 2.5

Concept contribution

2309
2983

924
2310

119
others

C
on

ce
pt

id

0.0 2.5

Concept contribution

3098
958

1301
NOT 3304

4494
others

0 5

Concept contribution

919
390

1480
1130

1
others

motorcycle-sized tires

motorcycles

protective gear

motor sport vehicle

vehicle on road

arch

gate

large, imposing structure

burrows

tourists

grand ornate design

central courtyard

moat

kingdom

4x4

(g) GT: ‘umbrella’, UCBM: ‘vespa’ (54.38%), Label-free CBM: ‘triumphal arch’ (23.74%), VLG-CBM: ‘palace’
(32.57%)

0.0 2.5

Concept contribution

1249
1348

753
2291
2653

others

C
on

ce
pt

id

0.0 2.5

Concept contribution

1558
4706

108
144

63
others

0 5

Concept contribution

2415
3501

22
19
13

others

grey/white surface

rods

round, vertical object

parking meter screen

sticks

mellow, flute-like sound

wind instrument

bagpipe

bassoon case

native american tribe

tangled twisted shape

made of rope or string

mexican food

magnoliophyta

christmas decoration

(h) GT: ‘broom’, UCBM: ‘shovel’ (52.98%), Label-free CBM: ‘flute’ (26.59%), VLG-CBM: ‘knot’ (48.52%)

0.0 2.5

Concept contribution

2818
2021
2884
2228
1712

others

C
on

ce
pt

id

0 2

Concept contribution

1597
4341

377
32

2831
others

0 5

Concept contribution

995
1890

5
2
1

others

wood house

shore barrier

reflective water surface

ship reling

flecks/stripes texture

military personnel

soldiers

captain

world war i

uniform or simple design

hazardous environment

rubber seal

yard

collar

4x4
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Figure 20: Comparison of explainable decisions of UCBM with TopK concept selector (left) vs.
Label-Free CBM (middle) vs. VLG-CBM (right). Subfigures a-e and f-i show correct or incorrect
predictions of the CBMs, respectively. Our UCBM with TopK concept selector provides more comprehensible
explanations, while Label-free CBM and VLG-CBM often rely on concepts that are not even visible in the
image (this is especially pronounced for misclassifications).

J Additional examples of explainable decision rules

Figure 25 provides more examples of explainable decision rules of UCBM. The examples show that UCBM
uses reasonable human-interpretable concepts to build the score of a specific class.
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Table 8: Number of concepts used in the predictions that are actually visible in the image. We
report the numbers concepts that are actually visible in the image by inspecting Figures 8 and 20. Our
UCBM reliably uses concepts that are actually visible within in the image. In contrast, Label-free CBM and
VLG-CBM frequently use concepts that, while relevant to the predicted class, are not actually present in
the given image.

Correct predictions (Figures 8 and 20a to 20e; total of 7)
i-th most important concept UCBM Label-free CBM VLG-CBM
1st 7/7 5/7 3/7
2nd 6/7 3/7 4/7
3rd 6/7 0/7 4/7
4th 7/7 2/7 3/7
5th 5/7 2/7 1/7

Incorrect predictions (Figures 20f to 20i; total of 4)
i-th most important concept UCBM Label-free CBM VLG-CBM
1st 4/4 1/4 1/4
2nd 3/4 0/4 0/4
3rd 4/4 0/4 0/4
4th 3/4 0/4 0/4
5th 4/4 1/4 0/4

Figure 21: Instruction text.
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Figure 22: Instruction example.

Figure 23: User study sample.
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Figure 24: Users strongly preferred UCBM with TopK concept selector over Label-free CBM
for correct as well as incorrect predictions.
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Figure 25: Visualization of decision rules learned by UCBM with TopK concept selector on
ImageNet (a), CUB (b) and Places-365 (c, d).
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K Concept labeling with a large vision-language model

As an alternative to providing the top-activating image crops and manual concept labelling, we also experi-
mented with large vision-language models (GPT-4o (Achiam et al., 2023)) to automatically label concepts.
We prompted it with the top-9 image crops and task description:

The nine pictures within the image are matching a specific concept.
Can you describe the concept with very few words (ca. 1–3)?

Figure 26 shows the outputted concept labels for twelve, diverse concepts. Overall, we found that concept
labels are mostly matching to the top image crops, e.g., Figures 26a, 26d, 26e and 26k. However, there
are also concepts that may not be correctly labelled. For example, the large vision-language model outputs
“motorcycle racing” for the image crops in Figure 26b. While this matches well with most of the image crops,
it does not for the baseball player (bottom middle) and cyclist (bottom right). We suspect that the concept
is representing a more general concept for “safety equipment” instead. For another example, in Figure 26h,
the large vision-language model labelled the concept as “ocean textures”. However, the image crops more
likely resemble a starry sky rather than some ocean textures due to the point structure.

(a) metal fencing/
wire mesh

(b) motorcycle racing (c) fence/fencing (d) white poodles

(e) moka pot (f) chains and links (g) exercise equipment (h) ocean textures

(i) restaurant table/
dining experience

(j) lighthouses (k) lifeboat (l) tree bark/
wood textures

Figure 26: Labeling of concepts using large vision-language models. The subfigures’ captions are
the labeling/descriptions that the large vision-language model (GPT-4o (Achiam et al., 2023)) assigned to
the provided concept visualizations.
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L Applications of UCBMs beyond image classification

Recent work applied concept-based models to tabular data (Zarlenga et al., 2023) and language models
(Ismail et al., 2023). Although our primary focus is image classification—the domain where concept-based
models have been studied most extensively—UCBMs are also applicable to other domains. Specifically, we
first need to find the concepts again. For example, sparse autoencoders have become a popular method for
uncovering human-understandable concepts in LLMs. Once we have found these concepts, we can train an
interpretable classifier, as described in Section 2.2.

M Example prompt to the large vision-language model

Figure 27 shows an example prompt to the large vision-language model for the misclassification from the
lower, left subfigure in Figure 11. Figure 28 shows the corresponding output from the large vision-language
model.

N Robustness, fairness, and shape vs. texture bias of UCBMs

In the following analysis of robustness, fairness, and shape vs. texture bias of UCBMs, we focus on the
UCBM model with the TopK concept selector trained on ImageNet.

How robust are UCBMs? We evaluated the out-of-distribution robustness of UCBMs using the dataset
provided in the model-vs-human toolbox (Geirhos et al., 2021), with the corresponding codebase available
at https://github.com/bethgelab/model-vs-human. This dataset includes twelve parametric image dis-
tortions, such as uniform noise, rotations, etc. Figure 29 shows that UCBMs exhibit robustness comparable
to that of the original black-box model. This is expected, as UCBMs likely inherit the biases encoded in the
frozen bottleneck features of the black-box model.

How fair are UCBMs? Recent work has demonstrated significant disparities in class-wise accuracy—
referred to as “image recognition unfairness”—even on balanced datasets like ImageNet (Cui et al., 2024).
As shown by Figure 30, this unfairness is evident in both black-box models and also our UCBM. Specifically,
UCBM achieves a test accuracy of 100% for the best-performing class (‘ostrich’) and only 20% for the
worst-performing class (‘laptop computer’). The black-box model (ResNetV2) shows a similar pattern, with
100% accuracy for the best-performing class (‘ostrich’) and just 16% for the worst-performing class (‘laptop
computer’). These results are consistent with Cui et al.’s hypothesis that the underlying representations
(frozen bottleneck features of the black-box model), rather than the classifier itself, are the primary source
of this unfairness.

Are UCBMs more shape or texture biased? To investigate shape vs. texture bias, we used the shape-
texture cue conflict dataset introduced by Geirhos et al. (2019), employing the associated codebase available
at https://github.com/bethgelab/model-vs-human. Figure 31 shows that UCBMs exhibit a texture bias
similar to that of the original black-box model. This is again expected, as UCBMs likely inherit the biases
present in the frozen bottleneck features of the black-box model.
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The image from above leads to the following output if we are putting it into a trained concept bottleneck
model.

Ground truth: tench
Prediction: eel

Top-5 model prediction sorted by the logits:
Class eel: 7.71
Class tench: 7.05
Class silver salmon: 6.76
Class snoek fish: 6.08
Class sturgeon: 5.93

Largest five concept contributions (by absolute value) for ground truth class tench, sorted by size (and their
weight in the final linear layer):
Concept 2088: 5.27 (0.34)
Concept 2987: 1.48 (0.20)
Concept 162: 0.17 (0.01)
Concept 2177: 0.01 (0.00)
Concept 2479: 0.01 (0.00)

Largest five concept contributions (by absolute value) for predicted class eel sorted by size (and their weight in
the final linear layer):
Concept 333: 2.94 (0.34)
Concept 1367: 2.26 (0.20)
Concept 760: 0.72 (0.11)
Concept 2088: 0.68 (0.04)
Concept 2987: 0.51 (0.07)

Furthermore, the layer from the concept similarities to the prediction is a linear layer. Which weights (concept
and class) should be adjusted by how much in order to get a correct classification for this image, while not
changing any other classifications? Please give an answer in case of ’increase/decrease weight of class i and
concept j by x’.

Figure 27: Input prompt to the large vision-language model to edit the linear classifier’s weights
to correct an error.
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To get the model to correctly classify the image as "tench" instead of "eel," we’ll need to adjust the weights
in the final linear layer between the relevant concepts and the classes. Here’s the approach to identifying which
weights should be adjusted and by how much:

Step-by-step Approach:

1. Identify Misclassification and Concept Contributions:

• The model currently predicts "eel" with a logit of 7.71, while "tench" has a logit of 7.05.
• To change the classification to "tench," we need the logit for "tench" to be higher than the logit

for "eel."

2. Calculate Difference Needed:

• Currently, the difference between "eel" and "tench" logits is: 7.71 − 7.05 = 0.66.
• To correctly classify the image as "tench," the logit for "tench" must exceed "eel." Therefore, we

need to adjust the weights such that the logit for "tench" increases by at least 0.66.

3. Determine Which Concept Weights to Adjust:

• For "tench," the largest contributing concept is 2088 with a contribution value of 5.27 and a
weight of 0.34.

• For "eel," concept 2088 is also present with a smaller contribution (0.68) and a lower weight
(0.04).

• Adjusting concept 2088’s weight for "tench" might be the most straightforward way to change the
output because it has a significant contribution value.

4. Calculate Weight Adjustments:

• To increase the "tench" logit by 0.66, we need to find an increase in the weight of concept 2088
for "tench":

Increase in logit = concept contribution × weight increase.

Here, the concept contribution for 2088 is 5.27. So, we need to find the weight increase (∆w)
such that:

5.27 × ∆w = 0.66.

Solving for ∆w:

∆w = 0.66
5.27 ≈ 0.125

5. Adjust the Weight:

• Increase the weight between "tench" and concept 2088 by approximately 0.125.

Final Answer:

• Increase the weight of class tench and concept 2088 by 0.125.

This targeted adjustment will help correct the classification for this specific image without affecting other classi-
fications significantly, as it focuses on the concept that most strongly contributes to the "tench" logit.

Figure 28: Output of the large vision-language model to edit the linear classifier’s weights to
correct the error.
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(c) Power equalization.
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(d) Rotation.
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(e) Uniform noise.
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(g) Low-pass.
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(h) High-pass.
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(i) Phase noise.
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(j) Eidolon I.

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(k) Eidolon II.
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(l) Eidolon III.

Figure 29: Out-of-distribution accuracies for UCBM, the original black-box model (ResNetV2),
and human observers. UCBM behaves similar to the original, black-box model.
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Figure 30: Class-wise ImageNet test accuracy UCBM and ResNet50V2. UCBM exhibits significant
disparities in class-wise accuracy, indicating fairness issues similar to those of the original, black-box model.
Class indices are sorted by the test accuracies of ResNetV2.
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Figure 31: UCBMs (blue circles) exhibit a texture bias similar to that of the original black-box
model (ResNetV2, orange crosses). In contrast, humans (green diamonds) are more shape biased.
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